aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 2014

Σχετικά έγγραφα
ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ

ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2012

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

( ) ( ) ΘΕΜΑ Β Β1. Θέτουμε z = x + yi, x, y ΙR Είναι: 2 x + y + 2xi 4 2i = 0 2x + 2y 4 + (2x 2)i = 0. 2y = 2 y = 1 ήy= 1 = = = Άρα = 1+ i, z2. z 1 Β2.

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

και γνησίως αύξουσα στο 0,

Π Α Ν Ε Λ Λ Α Δ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ Κ Ε Ρ Δ Ι Σ Ε Ε Ξ Υ Π Ν Α Μ Ο Ν Α Δ Ε Σ Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ

ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016.

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

5o Επαναληπτικό Διαγώνισμα 2016

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση:

y = 2 x και y = 2 y 3 } ή

Λύσεις του διαγωνίσματος στις παραγώγους

3o Επαναληπτικό Διαγώνισμα 2016

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

. Β2. Η συνάρτηση f είναι παραγωγίσιμη με: 1 1 1, και f ( x) ( ln(ln x) ).

Κεφάλαιο 4: Διαφορικός Λογισμός

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

Α3. Σχολικό βιβλίο σελ. 142 Γεωμετρική ερμηνεία του θ. Fermat: Στο σημείο (x o, f(x o )) η εφαπτομένη της C f είναι οριζόντια.

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ. x x. = 3, x (2,5) 0 είναι η h. Α4. α) Σ β) Σ γ) Σ δ) Λ


( ) ( ) ( 3 ) ( ) = ( ) ( ) ( ) ( ) ( ) ( 1) ( ) (( ) ( )) ( ) + = = και και και και. ζ να ταυτισθούν, δηλαδή θα πρέπει: f x ημ x. 6 x x x.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α2. Να διατυπώσετε το θεώρημα του Βolzano. Μονάδες 5

Επιμέλεια: Παναγιώτης Γιαννές

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

f '(x 0) lim lim x x x x

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

2x 4 0, αδύνατη. x Πανελλαδικές Εξετάσεις Μαθηματικά Κατεύθυνσης 11 Ιουνίου Θέμα Α Α1. Σχολικό βιβλίο σελ.99

την αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

Σελίδα 1 από 3. f ( x ) 0. Τι σημαίνει γεωμετρικά το Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού ( Μονάδες 5 ) (Α3) Πότε η ευθεία y x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΜΑΙΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ. Άρα ο γ.τ. των Μ(z) είναι κύκλος µε κέντρο το Ο(0, 0) και ακτίνα ρ=1

f ( x) f ( x ) για κάθε x A

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 16 MAΪΟΥ 2011 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Εξετάσεις 11 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

2015zi 2015zi 2015zi 2015zi 4030zi 4030zi z z

20 επαναληπτικά θέματα

ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2015

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Transcript:

aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ Α Α. Σελ 5 Α. Σελ 73 Α3. Σελ 5 Α4. α) Λ β) Σ γ) Σ δ) Σ ε) Λ ΘΕΜΑ Β B. Θέτω z yi στην εξίσωση και έχουμε: z z z i 4 i yi yi yi i 4 i y i 4 i y i 4 i y 4 i Συνεπώς πρέπει να ισχύει: y 4 () και () Από τη () έχουμε: Αντικαθιστώντας στη () έχουμε: y 4 y Συνεπώς οι λύσεις της εξίσωσης είναι: z i και z i B. Υπολογίζω πρώτα την παράσταση i i : i i i i i i i i i i 39 i Συνεπώς i Συνεπώς w 3i 39 493 3 i i i i Επιμέλεια-Χριστοδούλου Γεώργιος Pag

Β3. ος τρόπος: Αντικαθιστώ στη δοθείσα σχέση: u 3i 4 i i i u ( 3 i) 4 4i i i u ( 3 i) 3 4i u ( 3 i) 5 u ( 3 i) 5 Συνεπώς ο γεωμετρικός τόπος των μιγαδικών αριθμών u είναι κύκλος με κέντρο Κ(,3) και ακτίνα ρ = 5. ος τρόπος: Θέτω u yi και αντικαθιστώ στη δοθείσα σχέση: yi 3i 4 i i i yi 3i 4 4i i i y 3 i 3 4i y 3 5 y 3 5 ΘΕΜΑ Γ Γ. Η h ( ) είναι παραγωγίσιμη στο ως πράξεις παραγωγίσιμων συναρτήσεων: h ( ) ln για κάθε. Συνεπώς η h είναι γνησίως αύξουσα στο, συνεπώς είναι «-». Ομοίως η h ( ) είναι παραγωγίσιμη στο ως πράξεις παραγωγίσιμων συναρτήσεων: h ( ) για κάθε. (Επομένως η h είναι γνησίως φθίνουσα) Άρα η h είναι κοίλη στο. Επιμέλεια-Χριστοδούλου Γεώργιος Pag

Γ. Παρατηρώ πως: h() ln ln ln ln Συνεπώς η ανίσωση γίνεται: h( h ( )) h( h ( )) ln ln h h h( h ( )) h() h ( ) h ( ) h ( ) h () Γ3. Υπολογίζω την οριζόντια ασύμπτωτη: Πρέπει lim h ( ). Έχουμε: lim ( ) lim ln( h ) που είναι απροσδιόριστη μορφή. Όμως: ln( ) ln ln( ) ln Υπολογίζω το lim lim lim D. L. H. Άρα lim ln Συνεπώς y = η οριζόντια ασύμπτωτη. Υπολογίζω την πλάγια ασύμπτωτη, έστω y. h ( ) Πρέπει lim και lim h( ). Εχουμε: ln( ) ln( ) lim lim Υπολογίζω το Άρα ln( ) lim lim ln( ) ln( ) lim. Συνεπώς: h h lim ( ) lim ( ) lim ln( ) lim ln( ) Συνεπώς η πλάγια ασύμπτωτη είναι η y. Επιμέλεια-Χριστοδούλου Γεώργιος Pag 3

Γ4. Το ζητούμενο εμβαδό περικλείεται από την C, τον άξονα, την ευθεία =. Συνεπώς πρέπει να βρω το σημείο τομής της φ() με τον. ( ) h( ) ln ή (αδύνατον) ή h( ) ln h ( ) ln Συνεπώς: h ( ) ln Έχουμε: E h( ) h() ( ) d E h( ) ln d E ln( ) ln d E ln ln d E ln d ln διότι και. Άρα: E ln d ln d ln d ' ln ln ln d d ln d ln d ln d ln ln d ln ln ln ln( ) ln.. ' Επιμέλεια-Χριστοδούλου Γεώργιος Pag 4

ΘΕΜΑ Δ Δ. Για να είναι συνεχής η f( ) στο πρέπει: Έχουμε: lim f ( ) f () lim f ( ) lim lim f (), άρα συνεχής στο. D. L. H. Η f είναι παραγωγίσιμη στο * : f ( ). Θεωρώ την ( ) g η οποία είναι παραγωγίσιμη στο. Ισχύει: g ( ). Μελετώ την g ως προς τη μονοτονία: g ( ) και δημιουργώ τον πίνακα: H g() παρουσιάζει ολικό ακρότατο στο με g() =. Από τον ορισμό έχουμε: g( ) g() g( ) για κάθε και g() > για. Άρα f () > για. Συνεπώς εφόσον η f συνεχής στο, θα είναι και γνησίως αύξουσα στο. Δ.a Βρίσκουμε το σύνολο τιμών της f. Εφόσον η f είναι γνησίως αύξουσα τότε: f ( ) lim f ( ), lim f ( ) lim f( ) lim lim f ( ) lim lim D. L. H. Συνεπώς το σύνολο τιμών της f() είναι το (, ), δηλαδή f( ) για κάθε. Επιμέλεια-Χριστοδούλου Γεώργιος Pag 5

Παρατηρώ για έχουμε προφανή λύση. Θα αποδείξω πως είναι και η μοναδική. Έστω πως η f ( ) f ( ) f ( ) f ( ) f ( ) f ( u) du έχει άνισες λύσεις.τότε ισχύει: f ( u) du f ( u) du, δηλαδή: f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) f ( u) du f ( u) du f ( u) du f ( u) du f ( u) du f ( u) du f ( u) du Και επειδή f( ), θα ισχύει: f ( ) f ( ), άτοπο, καθώς η f είναι γνησίως αύξουσα στο και άρα -, δηλ f ( ) f ( ). Συνεπώς η εξίσωση έχει μια μοναδική λύση την. Δ.β Η f είναι παραγωγίσιμη στο διότι: f ( ) f () lim lim lim lim lim D. L. H. D. L. H. Έστω (t) και y(t) η τετμημένη και η τεταγμένη αντίστοιχα. Ζητείται το σημείο Μ τέτοιο ώστε y (t) = (t) δηλαδή y (t) = (t) (). Ισχύει: y(t) = f((t)) η οποία είναι παραγωγίσιμη ώς σύνθεση παραγωγίσιμων συναρτήσεων. Άρα: Αντικαθιστώ στην (): Επιμέλεια-Χριστοδούλου Γεώργιος Pag 6

διότι f γνησίως αύξουσα και άρα -. Συνεπώς y(t) =. Άρα το ζητούμενο σημείο Μ(,). Δ3. Αντικαθιστώ την f στην g: g( ) g( ) H g είναι παραγωγίσιμη στο (, ) ως πράξεις παραγωγίσιμων συναρτήσεων: g ( ) ( ) g ( ) Δύο προφανείς λύσεις είναι = και =. Θεωρώ την h( ), η οποία είναι παραγωγίσιμη για κάθε > : h ( ). Άρα η h είναι γνησίως αύξουσα. Επίσης η h() είναι συνεχής στο [,] και ισχύει: h() h() h() h() Άρα από θεώρημα Bolzano υπάρχει τουλάχιστον ένα (, ) τέτοιο ώστε f( ). Δημιουργώ πίνακα προσήμων: Συνεπώς η g παρουσιάζει τοπικά ελάχιστα στις θέσεις = και = ενώ τοπικό μέγιστο στη θέση. Επιμέλεια-Χριστοδούλου Γεώργιος Pag 7