ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

Σχετικά έγγραφα
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1

x 1 δίνει υπόλοιπο 24

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Επαναληπτικές Ασκήσεις

θετικοί αριθμοί, να δείξετε ότι

ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για

i. Οι αντίθετες γωνίες έχουν το ίδιο ημίτονο Σ Λ iii. Ένα πολυώνυμο P(x) διαιρείται με το x-ρ αν και μόνο αν Ρ(ρ)=0 Σ Λ

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

( ) x 3 + ( λ 3 1) x 2 + λ 1

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

1ο Κεφάλαιο: Συστήματα

5 η δεκάδα θεµάτων επανάληψης

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

2 (1) 1 0 ln( (2)) 3 (2) 3 0. e f και f f. f( g( x)) 3x 4, για κάθε x. συνx 5. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ου ΚΕΦΑΛΑΙΟΥ

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικές Ασκήσεις Φάκελος : Άλγεβρα Β-Λυκείου Επιµέλεια : Φωτεινή Καλδή

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1

ΣΥΝΔΙΑΣΤΙΚΑ ΘΕΜΑΤΑ. 2 Α)Να βρείτε το ω για το οποίο το υπόλοιπο της διαίρεσης του P(x) με το x-ημω είναι ίσο με 2. Β)να λύσετε την εξίσωση Px ( ) (2 )

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ

ΣΥΝΔΙΑΣΤΙΚΑ ΘΕΜΑΤΑ. 2 Α)Να βρείτε το ω για το οποίο το υπόλοιπο της διαίρεσης του P(x) με το x-ημω είναι ίσο με 2. Β)να λύσετε την εξίσωση Px ( ) (2 )

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R

( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31.

Px α x α x... α x α. Ο αριθμός κ λέγεται βαθμός

5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ. x, τότε ισχύει f(4) f(2). x τότε ισχύει. αν 1.

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 1 0 / 1 2 /

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΑΛΓΕΒΡΑΣ... ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑ 1 Ο

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (1o Γ Λυκείου) να ανήκουν στη γραφική παράσταση της συνάρτησης f( x)

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001

αβ (, ) τέτοιος ώστε f(x

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

Ημερομηνία: Κυριακή 29 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Προσομοίωση προαγωγικών εξετασεων Άλγεβρας Β Λυκείου Σχ. έτος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ. x 0 για κάθε xεr και για την συνάρτηση g ισχύει i. Να βρείτε

x 1 vii) f(x) 5 x 4 viii) 2 + γ) f (x) = στ) f (x) = e x -1 Β. Γραφική παράσταση Γ. Ίσες συναρτήσεις x 3 x 3 f(x), g(x) ιι)

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 /

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 18 ΔΕΚΕΜΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. f x = x 6x + 3, x 1, 1. Η f είναι συ-

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R

Ασκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΗΡΑΚΛΕΙΟΥ

x R, να δείξετε ότι: i)

ΘΕΩΡΗΜΑ ROLLE Θ.Μ.Τ. ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

Ημερομηνία: Σάββατο 29 Δεκεμβρίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Αν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η

3 η δεκάδα θεµάτων επανάληψης

ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. και 1. και. με λ Z,είναι γνησίως αύξουσα στο R. f x και g x. 2 f x y f x f y g x g y.

ΣΥΝΑΡΤΗΣΕΙΣ. 3. Μια μπάλα πέφτει από την κορυφή ενός πυργου. Το ύψος στο οποίο βρίσκετε μετά από t sec δίνεται από τη συνάρτηση f () x 75 3

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

ΟΝΟΜ/ΜΟ :... ΟΜΑ Α Α. 1. Χαρακτηρίστε µε ΣΩΣΤΟ (Σ) ή ΛΑΘΟΣ (Λ) τις παρακάτω προτάσεις : Σχῆµα 1: Ασκηση 1δ.

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ)

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 16 σελίδες. εκδόσεις. Καλό πήξιμο

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x

Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 2 ωρών στις Συναρτήσεις

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

g(x) =α x +β x +γ με α= 1> 0 και

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

Transcript:

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης: 7 169 ( ) 9 ( ) (1 ). Έστω ότι για μια γωνία ω, όπου, ισχύει ότι: ( ). 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. 11 169 ( ) β. Να υπολογίσετε την τιμή της παράστασης: ( ) (18 ). Δίνεται η συνάρτηση με τύπο: f ( ) k a 1, a, k 0. Γνωρίζουμε ότι η συνάρτηση έχει περίοδο T καθώς και ότι η μέγιστη τιμή της είναι το. α. Να δείξετε ότι k=4 και α=. β. Να βρείτε για ποιες τιμές του χ η συνάρτηση παίρνει τη μέγιστη και την ελάχιστη τιμή της, την οποία και να προσδιορίσετε. f ( ) f f f ( ) γ. Να δείξετε ότι : δ. Να χαράξετε τη γραφική παράσταση της συνάρτησης f για,0 4. Δίνονται οι συναρτήσεις f ( ) 1 g( ) 1. α. Αν Τ 1 και Τ είναι οι περίοδοί τους, να αποδείξετε ότι Τ 1 +Τ =π καθώς και ότι g(4 ) f(8 ) 1. β. Να λύσετε την εξίσωση f ( ) g( ), 0,. γ. Να χαράξετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις τους για 0,. Δίνεται η συνάρτηση f ( ) 1 6. α. Να αποδείξετε ότι: f ( ) f β. Να βρείτε την τιμή του ημχ για την οποία ισχύει f()=0. γ. Να βρείτε σε ποια σημεία του διαστήματος [0,π] η γραφική παράσταση της συνάρτησης f τέμνει τον οριζόντιο άξονα. 1

6. Α. Να λύσετε και να διερευνήσετε το σύστημα: a 1 a 1 y a a 1 1 a y 1 Β. Να βρείτε αν υπάρχει τιμή του α για την οποία το σύστημα έχει λύση το ζευγάρι (-,). Κάντε ανάλογο έλεγχο για το ζευγάρι (,-1). 7. Έστω D, D, D y οι ορίζουσες ενός συστήματος το οποίο γνωρίζουμε ότι έχει μοναδική λύση ( o, y o ). Ισχύουν επίσης οι σχέσεις: D 4D D y D D D y ( ) ( y ) Να υπολογίσετε τη λύση ( o,y o ) καθώς και τη γωνία ω. 8. Δίνονται τα πολυώνυμα o o P a a Q a ( ) ( ) ( 1) α. Αν το (χ+1) είναι παράγοντας του Ρ(χ), να βρείτε το υπόλοιπο της διαίρεσης του Q() με το (χ - ). β. Να βρείτε τα α,β ώστε το πολυώνυμο: πολυώνυμο. H( ) P( ) Q( ), να είναι το μηδενικό γ. Να βρείτε την τιμή του α για την οποία το πολυώνυμο: K( ) Q( ), έχει παράγοντα τον όρο (χ-α+1). 9. Δίνεται η συνάρτηση με τύπο: 1 ln a f( ) ln a α. Να περιορίσετε κατάλληλα το α, ώστε η συνάρτηση να έχει πεδίο ορισμού το R. β. Να βρείτε για ποιες τιμές του α η συνάρτηση είναι γνήσια αύξουσα. γ. Αν a e, να λύσετε την ανίσωση: f f 10. Δίνεται η συνάρτηση με τύπο: f ( ) ln( e ) α. Να βρείτε το πεδίο ορισμού της β. Να συγκρίνετε τους αριθμούς: f(ln 4), f (ln ) γ. Να λύσετε την ανίσωση: f ( ) ln ln( e ) 11. Έστω ότι το πολυώνυμο: ( ) ( 4 6) ln P( ) (ln a) ln a a 1 έχει θετικούς ακέραιους συντελεστές και αρνητική ακέραια ρίζα. α. Να υπολογίσετε τα α και β. β. Για α=e και β=1, να λύσετε την ανίσωση: P( e ) e 1. Δίνεται το πολυώνυμο: P k e e k 4 ( ) ln 1 1 1, [0, ], 0. α. Αν το πολυώνυμο είναι ου βαθμού και έχει παράγοντα την ποσότητα (χ-1), να υπολογίσετε τις τιμές των k και θ. β. Για τις τιμές των k και θ που υπολογίσατε στο (α) ερώτημα, να λύσετε την ανίσωση : P ( ) 0 1 γ. Να λύσετε την ανίσωση: e ( e 1) e e 0

1. Αν για το πολυώνυμο Ρ() γνωρίζουμε ότι είναι τουλάχιστον δευτέρου βαθμού και πως διαιρούμενο με (+1) αφήνει υπόλοιπο ( ), ενώ διαιρούμενο με (+) αφήνει υπόλοιπο (-1), να βρείτε το υπόλοιπο της διαίρεσης του Ρ() με το πολυώνυμο ( ++). 4 14. Έστω το πολυώνυμο P( ) a a 1, a,. Αν γνωρίζετε ότι έχει παράγοντα το (χ +), να υπολογίσετε τα α,β και να λύσετε την εξίσωση Ρ()=0. 4 1. Δίνεται το πολυώνυμο P( ) 7 a 1, a,. Το πολυώνυμο έχει παράγοντα το ( -1). Να βρείτε τις τιμές των α,β και να λύσετε την ανίσωση P()>0. 16. Δίνονται τα πολυώνυμα: P( ) a, Q( ). Αν το P() έχει παράγοντα το Q(), να βρείτε τις τιμές των α,β και να λύσετε την ανίσωση P()<0. 17. Να λύσετε τις παρακάτω εξισώσεις: i. 1 7 1 ii. 10 iii. 1 iv. 1 1 v. 1 4 18. Να λύσετε την ανίσωση: 1. 19. Δίνεται η συνάρτηση f με τύπο: f ( ) log. Να βρείτε το πεδίο ορισμού της και να δείξετε ότι: i. Είναι περιττή ii. Να λυθεί η εξίσωση: f()-f(-)=. 0. Δίνεται η συνάρτηση f με τύπο: f ( ) (ln a ),. α. Για ποιες τιμές του α ορίζεται η συνάρτηση; β. Για ποιες τιμές του α, η συνάρτηση γίνεται γνήσια φθίνουσα; γ. Για a e, να λυθεί η ανίσωση: f(ln ) f(1). 1. Να λυθούν οι παρακάτω εξισώσεις και ανισώσεις: 1 1 1 1 i. 4 ii. 4 4 iii. 69 1 6 6 4 0. Να λυθούν οι παρακάτω εξισώσεις και ανισώσεις: i ii log. 10. ln 6ln 11ln 6 0 iii iv ln ln.. log(1 ) log( ) log( 10 1). Δίνεται η συνάρτηση με τύπο: 4 f( ). Να βρείτε το πεδίο ορισμού της. Στη 9 συνέχεια, να λύσετε την εξίσωση: f ( ) 4. log y log 4. Να λύσετε τα συστήματα: y y0 log log( y). Να λύσετε τις ανισώσεις : 1 6 1 1 1. 1.. 8 1 18 7 4 1 1

6. Να λύσετε τις εξισώσεις: ln ln ln 1. ln( e ) ln. 4 0. e 4. log. 1 96 7. Δίνεται η συνάρτηση με τύπο: f( ) ln( 6) 1. Να βρείτε το πεδίο ορισμού της.. Να βρείτε τα σημεία τομής της με τους άξονες.. Να βρείτε για ποιες τιμές του χ η γραφική της είναι κάτω από τον χχ. 8. Δίνεται η συνάρτηση : f( ) ln 1. Να βρείτε το πεδίο ορισμού της.. Να αποδείξετε ότι f()+f(-)=0. Να λύσετε την εξίσωση f( e 1) 0. 9. Ε. Δίνεται η συνάρτηση με τύπο: 1. Να βρείτε το πεδίο ορισμού της.. Να λυθεί η ανίσωση: 0. Δίνεται η συνάρτηση με τύπο: f (ln ) 0 1 1 f( ) 10 9 9 1 f( ) 1 ln a Α. Να βρείτε την τιμή του α ώστε η f να έχει πεδίο ορισμού όλο το R. Β. Να βρείτε για ποιες τιμές του α, η συνάρτηση είναι γνήσια αύξουσα. Γ. Για 1 a e, να λύσετε την ανίσωση: f (ln ) f (ln ) 1. Να υπολογίσετε τις τιμές των α, β, γ όπου: ln ln10ln Α. a e 10, e, 10 log 1log Β. Για τις τιμές των α, β, γ που βρήκατε παραπάνω να λύσετε την ανίσωση:. Να λύσετε τις εξισώσεις: i) ln a ln ln 6 0 ln ii) e iii) e. Α. Να βρείτε τις τιμές του α, για τις οποίες ορίζεται σε όλο το η συνάρτηση f()= (α -α). Β. Για ποιες από αυτές τις τιμές η συνάρτηση είναι α) γνησίως αύξουσα β) γνησίως φθίνουσα 1 7 Γ. Για a, να λυθεί η ανίσωση: f( 1) 64 ln e 1 a 4. Έστω η συνάρτηση f( ) a 1 4

α) Να βρείτε τις τιμές του α για τις οποίες η συνάρτηση f ορίζεται σε όλο το β) Να βρείτε τις τιμές του α για τις οποίες η συνάρτηση f είναι: i) γνησίως φθίνουσα στο ii) γνησίως αύξουσα στο 1 γ) Για, να λύσετε την ανίσωση: f ( ) 7 f ( ) 0. Δίνεται η συνάρτηση με τύπο: f ( ) a ln( e ), a. Η γραφική της παράσταση περνά από το σημείο Α(ln,1). a. Να βρείτε το πεδίο ορισμού της. β. Να αποδείξετε ότι α=1. γ. Να συγκρίνετε τα f(ln), f(ln8). δ. Να λύσετε την εξίσωση f()=0. 6. Δίνεται η συνάρτηση με τύπο: f ( ) ln(9 e ). α. Να βρείτε το πεδίο ορισμού της. β. Να αποδείξετε ότι f(1)<0. γ. Να λύσετε την ανίσωση: f ( ) ln. 7. Δίνεται η συνάρτηση με τύπο: f( ) ln. α. Να βρείτε το πεδίο ορισμού της. β. Να αποδείξετε ότι: f()+f(-)=0. γ. Να λύσετε την εξίσωση: f ( ) f ( ) ln( 1). 8. Δίνεται η συνάρτηση f με τύπο: f ( ) ( ln ),. α. Να βρείτε για ποιες τιμές του α ορίζεται η συνάρτηση. β. Να βρείτε για ποιες τιμές του α η συνάρτηση είναι γνήσια αύξουσα. γ. Για e, να λύσετε την ανίσωση: f( ) f(9 ). 9. Αν για τις γωνίες α και β γνωρίζουμε ότι: 4 1, ό 0, τότε: 1 α. Να υπολογίσετε τα ημ(α+β) και εφ(α+β) β. Να υπολογίσετε τα συν(α-β) και σφ(α-β). 1 40. α. Να αποδείξετε ότι: 4 β. Να υπολογίσετε την εφ7 ο. 41. Αν για την γωνία α γνωρίζουμε ότι:, ό να υπολογίσετε : α. Τους τριγωνομετρικούς αριθμούς του τόξου α. β. Να υπολογίσετε τα ημα και συν4α.

4. α. Να αποδείξετε ότι: 1 β. Να αποδείξετε ότι: 1 1 γ. Αν 0<χ<π/, να λυθεί η εξίσωση: 1 1 0 1 4. α. Να υπολογίσετε τους τριγωνομετρικούς αριθμούς των 1 ο. β. Να υπολογίσετε τους τριγωνομετρικούς αριθμούς των 10 ο. 6

ΑΠΑΝΤΗΣΕΙΣ 1 1 169 1..,,.... 60 1 1 1 1 169..,,.... 60 1 1. 4.. 6.., k 1... k 4. ma 6 min ή, min f. f( ) f( ) f 6. 4,, g(4 ) f(8 ) 1 0 1. ( ) 1 4 4 7 ή, έ,,. ( ), ( ). ί 1 1,,. ή. 0,... ή 1 1 y. D (a 1)(a ), D (a )(a ), D a, ά :, έ ά ύ 1 ί ύ, ώ 1 ί, y. 1 1. Ό, ί ύ. 1 1, y ή 4 8 7. 0 o 8. 1. 0,. a. a 1 ή a 4 9.. έ 1, e e, e. a 1, e., 1, 10.. ln,. f(ln 4) ln 4, f(ln) ln ln ln10. ln(e e ) ln e 6 11.... ln ή ln, ή ln.. e e 0 e 1 0 a. k e, 1 0,. 1 e 0, e 0,1 1.. e 1 0 7 11 6 6 7

1. () a,, P() 1 0 ά. 14. 1. a 11, 7, 1 7 1 0, 1 1, 4, 1 a 7,, 1 0, 1, 16. 17. 1 7 i. ii. 4 6 iii. 6 iv., v., 18. (,1] (, ) 19. a., f( ) f(). 0 a. a e,e e,. a e,e. e 0. 1. i. [0,] ii. 1 iii. 1 ή 1. i. 100, 10 ii. e, e, e iii. 1, e iv., ln. A (,0] [1 /, ),, ί ί ή. f ln ln 4.. 6. 1 i. 100, y 10 1 1 1 i. 1 1 0 ii. y, 1 1 0 iii. ώ, 1 0 ln ln 1 ln i. ii. 0, iii. e, iv. 0 v. ln 1 ln e ln ln6 ln7 ln6 ln7 7. i. A, ii. A,0 iii., f ln ln ln ln i. A, ii. έ iii. 0 8. f 1 i. A,0 ii.,1 f e 9. 8

0. A. a 1, e e,e B. a 1, e. f(), ln ln 0 1, e 1. A. a,, B. ln e e.. 1 1 1 i. e ή ii. ή e iii. e ή e e e 1 1 1 1 i. a,,0 0,, 1 1 1 ii. f ή ύ a,, iii. 4 4 1 a. a 1,0 0,. f a 1,0. 0 1 4. a. ln,. 1 a ln1, a 1. f(ln) 1 ln f(ln8) 1 ln 6. 1. ln, ή. e 6. a. ύ 9 e, A. ύ ί 0 9 e 1 f ln. 9 e e ln 1. A,. 0 7. f 8. 9. a 0,1 1, e. 0,1. 0 9. 16 16. ( ), ( ). ( ), ( ). 6 6 6 6 40. 7 41. 4 7 4 117 7.,,.., 4 7 1 6 4. Στην τελευταία εξίσωση θέτω ψ=εφχ και προκύπτει μόνη δεκτή ρίζα η χ=π/4. 9