Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής Τεχνολογικής Κατεύθυνσης Γ Λυκείου

Σχετικά έγγραφα
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. σας προτείνουν για άλλη μια χρονιά, ένα ολοκληρωμένο

5o Επαναληπτικό Διαγώνισμα 2016

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

20 επαναληπτικά θέματα

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

3o Επαναληπτικό Διαγώνισμα 2016

5o Επαναληπτικό Διαγώνισμα 2015 Διάρκεια: 3 ώρες

AΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ( t) f dt = G(β) G(α) A2. Πότε η γραφική παράσταση μιας συνάρτησης f λέμε ότι έχει:

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

2o Επαναληπτικό Διαγώνισμα 2016

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ

55 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

20 επαναληπτικά θέματα

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

20 επαναληπτικά θέματα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

Για παραγγελίες των βιβλίων

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

x R, να δείξετε ότι: i)

Α1. Θεωρία Σελίδες Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ 2014

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

1 ο Τεστ προετοιμασίας Θέμα 1 ο

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

( ) ( ) ( ) ( ) ( ) ( )

Για να προσδιορίσουμε τη μονοτονία της συνάρτησης η πρέπει να βρούμε το πρόσημο της h, το οποίο εξαρτάται από τη συνάρτηση φ(x) = e x 1

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

Κατεύθυνσης. Απαντήσεις Θεμάτων Επαναληπτικών Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0.

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

Π Α Ν Ε Λ Λ Α Δ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ Κ Ε Ρ Δ Ι Σ Ε Ε Ξ Υ Π Ν Α Μ Ο Ν Α Δ Ε Σ Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

. Β2. Η συνάρτηση f είναι παραγωγίσιμη με: 1 1 1, και f ( x) ( ln(ln x) ).

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

ΠΑΡΟΡΑΜΑΤΑ ΣΤΟ ΒΙΒΛΙΟ ΤΟΥ Η. ΡΟΥΣΑΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. ΤΟ 3ο ΚΑΙ ΤΟ 4ο ΘΕΜΑ (ΕΚΔΟΣΕΙΣ ΠΑΤΑΚΗ)

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος)

6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51.

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ- ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

( ) ( ) ( ) ( ) ( ) ( ) = α συνεπώς: α 2βα +β + α 2α + 1= 0 α β + α 1 = 0 α 1= α β = 0 1 β = 0 β = 1 + = + = συνεπώς: ( ) + 1 για κάθε x R.

1 1 1 (x yi) x yi = = = 2 (x - 1) + y 2

Λύσεις του διαγωνίσματος στις παραγώγους

Transcript:

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής Τεχνολογικής Κατεύθυνσης Γ Λυκείου Θέμα Α Α. Να αποδείξετε ότι αν f () στο (α, o) και f () στο ( o,β), τότε το f ( o) είναι τοπικό μέγιστο της f. (8 μονάδες) β Α. Να δώσετε τον ορισμό του ορισμένου ολοκληρώματος f ()d της συνεχούς α συνάρτησης f από το α στο β. ( μονάδες) Α. Να δώσετε την γεωμετρική ερμηνεία του Θεωρήματος Μέσης Τιμής. ( μονάδες) Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση. α. z z Im(z). Σ Λ β. Στα σημεία καμπής η εφαπτομένη της C f διαπερνά την καμπύλη. Σ Λ γ. Η ευθεία y=λ+β λέγεται πλάγια ασύμπτωτη της f() στο αν lim[f () (λ β)]. Σ Λ o δ. To σύνολο τιμών μιας συνεχούς συνάρτησης f με πεδίο ορισμού το [α, β] είναι το διάστημα [m, M], όπου m, M η ελάχιστη τιμή και η μέγιστη αντίστοιχα τιμή της f. Σ Λ β α β ε. f ()g()d f ()g() f ()g ()d α. Σ Λ α β ( μονάδες ανά ερώτημα)

Θέμα B Β. Να βρείτε τον γεωμετρικό τόπο των μιγαδικών C των εικόνων του μιγαδικού w για τον οποίο ισχύει w i καθώς και w i w τον μιγαδικό w του παραπάνω γεωμετρικού τόπου που έχει το ελάχιστο μέτρο. (7 μονάδες) i Β. Αν για τον μιγαδικό z ισχύει ότι: w και w i, να βρείτε τον z γεωμετρικό τόπο C των εικόνων των μιγαδικών z. ( μονάδες) Β. Να αποδείξετε ότι z + w lim. z + w (5 μονάδες) Β. Αν u z, u z και u z όπου z, z, z μιγαδικοί που κινούνται στον C, να αποδείξετε ότι uu uu uu α. u u u β. R R u u u u u u ( μονάδες) (6 μονάδες) Θέμα Γ Κατά την πρόκληση ενός θερμού επεισοδίου μεταξύ δύο κρατών Α και Β, οι ειδικές δυνάμεις του κράτους Α έστειλαν ένα φουσκωτό σκάφος (σημείο Σ) στη βραχονησίδα του παρακάτω σχήματος. Η πορεία του σκάφους ακολουθεί την καμπύλη της συνάρτησης: ln( ) f (),. Ο στόχος είναι να αποβιβαστούν στο νοτιότερο σημείο της διαδρομής τους, δηλαδή στο σημείο Κ της βραχονησίδας και να εγκαταστήσουν ένα επίγειο ραντάρ ανίχνευσης σκαφών, με δυτική κατεύθυνση.

Γ. Ο ρυθμός μεταβολής της τετμημένης (t) του σημείου Σ δίνεται από τον τύπο: (t). (t) Να βρείτε: α. Να βρείτε τις συντεταγμένες του σημείου Κ. ( μονάδες) β. Να βρείτε τον ρυθμό μεταβολής της γωνίας φ που σχηματίζει η εφαπτομένη της C f στο σημείο Σ με τον άξονα, τη χρονική στιγμή t o που το φουσκωτό σκάφος έχει τετμημένη 9 και να εξηγήσετε γιατί βγαίνει σχεδόν μηδέν. (7 μονάδες) γ. Το ραντάρ θα ανιχνεύει την περιοχή που περικλείεται από την C f, την ευθεία και έχει εμβέλεια 7 μίλια. Να βρείτε το εμβαδόν του χωρίου που θα καλύπτει το ραντάρ. y (6 μονάδες)

Γ. Το κράτος Β με τη σειρά του στέλνει ένα ανιχνευτικό σκάφος (Τ) το οποίο ακολουθεί την 6( ) 5 καμπύλη της συνάρτησης g(), > και κινείται βορειοανατολικά. ( ) α. Να εξηγήσετε γιατί το σκάφος (Τ) αν ακολουθήσει την πορεία του, κάποια χρονική στιγμή θα παραβιάσει τα χωρικά ύδατα του κράτους Α που προσδιορίζονται από την ευθεία y=6 6. ( μονάδες) β. Την χρονική στιγμή t o που το σκάφος (Τ) έχει ταχύτητα μίλια/min και η τετμημένη του ισούται με, ο στρατιώτης πυροβολεί με κατεύθυνση την κατεύθυνση του σκάφους Τ νομίζοντας ότι είδε ύποπτη κίνηση. Να βρείτε τον συντελεστή διεύθυνσης της ευθείας που ακολούθησε η σφαίρα. (5 μονάδες) Θέμα Δ Δίνεται η συνάρτηση: y g() f (y t)dt dy, R. Η f() συνεχής στο R,g()= και g() κυρτή για >. Δ. Αν η ευθεία y= + είναι εξίσωση της εφαπτομένης της C g στο Μ(,g()), να υπολογίσετε το ολοκλήρωμα Δ. Αν f (u)du f () f () πιθανή θέση σημείου καμπής. f (u)du.,να αποδείξετε ότι η g() έχει τουλάχιστον μία Δ. Αν επιπλέον η g () είναι γνησίως αύξουσα, να αποδείξετε ότι υπάρχει τουλάχιστον ένα ξ(,), με α. ξ ξ. f (u)du f (u)du ξ β. f (u)du f ( ) f () Δ. Να δείξετε ότι: g()d. Καλή Επιτυχία στις Εξετάσεις!!! (6 μονάδες) (5 μονάδες) ( μονάδες) ( μονάδες)

Απαντήσεις Διαγωνίσματος Θέμα Α Λύση Α. σχολικό σελίδα 6 Α. σχολικό σελίδα Α. σχολικό σελίδα 7 Α. α Λ ( z z Im(z) i ) β Σ γ Λ ( lim[f () (λ β)] ) δ Σ ε Σ Θέμα Β Λύση Β. w i w i w w i w i w (i) w i w i () w i w i w i w i η οποία παριστάνει τον θετικό κλάδο (μιας υπερβολής με α=α= άρα η κορυφή της είναι το σημείο Κ(,). (Θυμίζω: ΜΕ = w i και ΜΕ= w i, άρα πρέπει ΜΕ >ΜΕ) Ε (-γ,) Μ w Ε(,γ) Κ Ε (,-γ) (ΜΕ ) (ΜΕ) =α και επειδή (ΜΕ ) (ΜΕ)=> (ΜΕ )>(ΜΕ) Προφανώς min w = με w=i

i i iz z Β. i i z z z z z z z Έστω z=+yi τότε: z z ( ) y yi ( ) y ( y ) y ( ) y άρα ο z κινείται σε κύκλο με κέντρο (,) και ακτίνα ρ= Δηλαδή z. Β. z z z και w. Άρα w z και lim w w z w z + w z + w w w w w lim lim lim w + z w w z + w z z Β. α. u z u u άρα u u u u, u,u u u u uu uu uu uu uu uu uu u u uu u u u uu uu uu u u u u u u u u u u u u u u u u u u uu uu uu u u u β. u u u u u u R R R u u u u u u u u u Αν p u u u τότε. p u u u yi Έστω p= +yi R(p), άρα R p yi y p y Άρα R R R(p) R( ) u u u u u u p y y

Θέμα Γ Λύση Γ. y=6-6 y=6-6 Σ K α. ln ( ) ln ( ) f (), f () ( ) ( ) f () ln ( ) ln ( ) ( ) f () + f() O.M.= f Για η f() παρουσιάζει ολικό ελάχιστο το f.

Άρα K,. β. ln (t) ln ( ) εφθ f () εφ θ(t) f θ(t) ( ) (t) και την χρονική στιγμή t o. 9 ln ln (t o) ln εφθ(t o) 6 (t o) 9 (t) (t) ln (t) (t) (t) Άρα εφθ(t) (t) ln (t) (t) (t) ln (t) (t) (t) (t) (t) συν θ(t) εφ θ(t) θ (t) εφ (t) θ (t) 9 Την χρονική στιγμή t o (t o) θα ισχύει: ln(t o) (t o) (t o) εφ θ(t o) θ (t o) (t ) o (6 ) θ (t o) θ (t o) 9 ln 6 9 9 9 9 6 9 6 9 9 6 6 ln ( ) lim αφού lim ln( ) ( ) γιατί lim ( ), με ( ) και lim ( ) με Άρα η ευθεία = είναι κατακόρυφη ασύμπτωτη της C f. 9 δηλαδή η εφαπτομένη σχεδόν ταυτίζεται με την = και η γωνία δεν μεταβάλλεται!

γ. Η ευθεία y εφάπτεται στην C f στο Κ (το ολικό ελάχιστο της C f ). Η εμβέλεια είναι 7 μίλια. Άρα θέλουμε το εμβαδόν από = 7, μέχρι =. Άρα ln( ) ln( ) E f () ( )d ( )d d d I I ( ) ( ) ln ( ) I d θέτω u ln ( ), άρα du d και u, u ln 8 ( ) u (ln 8) I udu ln 8 ln 8 7 I d 6 (ln 8) 7 Τελικά Ε=Ι +Ι =,5 6 Γ. α. g() 6( ) 5 ( ) g() 6( ) 5 ( ) Θα βρούμε την πλάγια ασύμπτωτη της C g στο +. λ lim lim 6 (πηλίκο μεγιστοβάθμιων όρων) 6( ) 5 πράξεις 6 65 β lim g() λ lim 6 lim 6 ( ) H y=6 6 είναι πλάγια ασύμπτωτη της C g. Προφανώς 6 6> 6 6. Άρα κάποια χρονική στιγμή το σκάφος (Τ) θα παραβιάσει τα χωρικά ύδατα του κράτους Α.

((t) ) 6((t) ) 5 ε β. λ g(t) 8 (t) (t) ((t) ) (t) (t) 6((t) ) 5 ((t) ) Επομένως την χρονική στιγμή t o, u(t )= (t o )= και (t o )=. Άρα ο συντελεστής διεύθυνσης της ευθείας της σφαίρας θα είναι 8(t ο) (t ο) ((t ο) ) (t ο) (t ο) 6((t ο) ) 5 λ ε ((t ) ) 8 ( ) 6( ) 5 8 ( ) ο Θέμα Δ Λύση Δ. θέτω u y t άρα du dt και u y, u y Δ. y y Άρα g() f (u)du dy y g () f (u)du και g () f (u)du και g() Άρα ε: y g()=g ()( )y = Tελικά f (u)du =. f (u)du y= a a g () f (u)du f (u)du f (u)du f (u)du f ( ) f ( ) Τελικά g () f (u)du f ( ) f ( ) g () f (u)du f () f (). Άρα το σημείο Α(,g()) είναι πιθανή θέση σημείου καμπής. f (u)du +

Δ. Για > g() κυρτή. Άρα g () γνησίως αύξουσα. g () f (u)du συνεχής στο [, ] ως γινόμενο των συνεχών και συνεχής ως εκθετική και f (u)du παραγωγίσιμη ως ολοκλήρωμα της συνεχούς f(u), άρα και συνεχής. g () παραγωγίσιμη στο (, ) με g () f (u)du f ( ) f ( ) Από Θ.Μ.Τ. για την g (), υπάρχει τουλάχιστον ένα ξ(,) με g () g () g(ξ) f (u)du f (u)du f (u)du f (u)du α. g (). ξ ξ ξ ξ ξ ξ f (u)du. ξ g (ξ) g () f (u)du f (u)du f (u)du f (u)du ξ ξ και f (u)du f (u)du ξ g β. ξ g (ξ) g () f (u)du f (u)du f (u)du f () f ( ) f (u)du f () f ( ) f (u)du f ( ) f () Δ. Για > η g() είναι κυρτή, άρα βρίσκεται πάνω από κάθε εφαπτομένη της. g() g() g() d g()d ( )d ( ) g()d