ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

Σχετικά έγγραφα
ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ

Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος του Μανώλη Ψαρρά Άσκηση 1 η

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

x. Αν ισχύει ( ) ( )

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn.

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i

ΘΕΜΑ 1 Ο ( ) ( )( ( )) ΘΕΜΑ 2 Ο ΘΕΜΑ 3 Ο. ισχύει : ( ) ( ) ( ) ( ) P A B = P A + P B P A B. P A P A P B P B

ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις:

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

Γ. Ε. ΛΥΚΕΙΟ 2008 ΜΑΘ. ΚΑΙ ΣΤ. ΣΤΑΤ. ΤΑΞΗ Γ

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

P(A ) = 1 P(A). Μονάδες 7

ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β =

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ

ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΒΑΣΙΛΕΙΟΣ ΝΤΑΙΦΩΤΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

P A B P(A) P(B) P(A. , όπου l 1

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 η εκάδα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 Ο

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

Δ ι α γ ω ν ί ς μ α τ α π ρ ο ς ο μ ο ί ω ς η σ 1

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

1) ( ) ω Α άρα έχουμε: P( ω ) ( ' ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 20 ΜΑΪΟΥ 2013

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ

ΘΕΜΑΤΑ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ

Μαθηματικός Περιηγητής σχ. έτος

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

F x h F x f x h f x g x h g x h h h. lim lim lim f x

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Transcript:

Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα ΙΙΙ. Αν η συνάρτηση g f,, Α. α ή α Β. 0 είναι συνεχής στο 0 τότε το α παίρνει τις τιμές: 0 Γ. α=0 Δ. IV. H συνάρτηση h nf έχει πεδίο ορισμού: A., B., Γ. Δ. -,- υ,., ή α V. Η h () είναι ίση με: A. B. Γ. Δ. Ε. Τίποτε από τα προηγούμενα VI. Στο σημείο A 0, h 0 η εφαπτομένη της γραφικής παράστασης της h έχει εξίσωση: Α. y 0 B. y 0 Γ. y Δ. y 0 ΘΕΜΑ ο Α. Εξετάστε τη g ως προς τη μονοτονία και τα ακρότατα. Β. Δείξτε ότι g() 0 για κάθε 0 Δίνονται οι συναρτήσεις: f, 0 g Γ. Δείξτε ότι η f είναι γνησίως αύξουσα στο 0, ΘΕΜΑ ο Θεωρούμε τη συνάρτηση f n,4 Α. Να μελετηθεί η f ως προς τη μονοτονία και τα ακρότατα.

Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ Β. Να βρείτε την εξίσωση της εφαπτομένης στη γραφική παράσταση της f στο σημείο της A,f. Γ. Δίνονται τα ενδεχόμενα Α, Β του δειγματικού χώρου Ω ενός πειράματος τύχης για τα οποία ισχύει: B A α) Να δείξετε ότι PABPA PB β) Αν η πιθανότητα Ρ(Α) είναι ίση με τη μέγιστη τιμή της f ενώ PB PA B να υπολογίσετε τις πιθανότητες PA, PB. Στο κυκλικό διάγραμμα παρουσιάζεται η βαθμολογία ενός τμήματος μαθητών στα μαθηματικά Ι. να βρεθεί η μέση τιμή της βαθμολογίας. ΙΙ. βρείτε το ποσοστό των μαθητών που πήραν βαθμό από 0 ως 4. ΙΙΙ. αν επιλέξουμε τυχαία έναν μαθητή βρείτε την πιθανότητα να έχει πάρει το πολύ 6. IV. να εξεταστεί αν το δείγμα έχει ομοιογένεια ως προς την απόδοσή του. [8, ) 40% 90 [, 6) 0% [6, 0) 8 [0, 4) [4, 8) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο f Ι. Πρέπει: 0, Σωστό το Γ. ΙΙ. f lm 0 Σωστό το Δ. f ΙΙΙ. g a lm lm lm lm 0 0 0 0, 0, 0 Πρέπει lm g g0 0. Είναι lm g 0 a a a a g 0 a Σωστό το Δ. ΙV. h lnf ln Πρέπει : 0 - Σωστό το Α. V. h' ln ' ' ' Σωστό το Β.,

VI. Στο σημείο και εξίσωση: y Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ A0, h0η εξίσωση της εφαπτόμενης έχει συντελεστή διεύθυνσης λ h0 β διέρχεται από A0, h0, y h0 ln 0 0 οπότε: Για 0 y 0 οπότε: () 0, 0 0 β β 0 Άρα η εξίσωση: y y y 0 Σωστό το Β. ΘΕΜΑ ο f, 0 g Α. Για : g' ' Η μονοτονία και τα ακρότατα της g φαίνονται στον διπλανό πίνακα: Άρα : στο,0 η g γνησίως φθίνουσα, στο 0, η g γνησίως αύξουσα, στο 0 0παρουσιάζει ελάχιστο το g0 0. B. Αφού η g στο 0, αν 0 g g0 g 0. Γ. g ' f ' 0 Δείξαμε στο Β ότι g 0 για κάθε 0 g f' 0 για κάθε 0 ακόμα 0 για κάθε 0 f στο 0, Άρα η g () - 0 + g() + τ. ε. g(0) = 0 ΘΕΜΑ ο f n,4 0 A. f n,4, 0 Η μονοτονία και τα ακρότατα της f φαίνονται στον διπλανό πίνακα: Άρα : στο 0, η f, στο, η f, στο 0 η f παρουσιάζει μέγιστο το f 0,4. 0 + f () f() + τ. μ. f() = 0,4 Β. Στο σημείο A,f η εφαπτομένη της γραφικής παράστασης της f έχει συντελεστή διεύθυνσης λ f' Οπότε έχει εξίσωση: y β () Η εφαπτομένη διέρχεται από το A,f οπότε: Για

Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ,y,4 yf ln,4 y,4 y,4,4 β,4- - ββ,4 Άρα η εξίσωση της εφαπτόμενης: Γ. BABA B y,4 α) οπότε: PA-BPAPABPAB PA PB β) είναι PA 0,4 PBPA B Οπότε: PB0,4PBP B 0,4PB 0, κλάσεις f f % α f f 0-4 0,05 5 8 0, 4 0, 4-8 6 0,0 0 7, 6 7, 8-0 0,40 40 44 4 00 40-6 4 0,5 5 90,5 96 49 6-0 8 0,0 0 6,8 4,4 Σύνολο 00 60 0,6 8,8 Ι. Σ f 0, 6 ΙΙ. 40% 5%,5% ΙΙΙ. 5% 0% 5% IV. S Σ f () 8,8 (0, 6) 6, 44 Άρα S 6, 44 S 6,44 Οπότε CV 0,6 Για να είναι ομοιογενές το δείγμα πρέπει: CV 0, 6,44 6,44 0, 0, 6 (0, 6) 0, 0... 6, 44,6 άτοπο Άρα δεν είναι ομοιογενές. 4

Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Για τα ενδεχόμενα Α, Β του δειγματικού χώρου Ω ισχύουν τα έξης: 5 4 PA' PB' PA B τότε: 7 Ι. Η πιθανότητα PA B είναι: A. B. Γ. Δ. 7 ΙΙ. Η πιθανότητα P(A B) ΙΙΙ. Η πιθανότητα PA B είναι: είναι: 4 A. B. Γ.. 7 7 4 A. B. Γ.. 4 7 Β. Σε μια κανονική κατανομή η μέση τιμή είναι 5 και ο συντελεστής μεταβολής 0%. Το ποσοστό των παρατηρήσεων που είναι μεταξύ 0 και 0 είναι: Α. 4% Β. 68% Γ. 48% Δ. 95% Ε. 99,7%. Γ. Η μέση τιμή και η διακύμανση 8 μαθητών της Γ Λυκείου στα μαθηματικά είναι, S 0. Για τους βαθμούς των επτά μαθητών ισχύει: ( ) 6. Βρείτε το βαθμό του 8ου μαθητή αν γνωρίζουμε ότι δεν αρίστευσε. 7 ΘΕΜΑ ο 4 Δίνεται η συνάρτηση f ( ) 6 5 Ι) Βρείτε το πεδίο ορισμού της f. ΙΙ) Θεωρούμε το δειγματικό χώρο Ω που αποτελείται από απλά ισοπίθανα ενδεχόμενα, και Α, Β δύο ενδεχόμενα του Ω. Αν P(A B) 0,6, P(B) lmf (), βρείτε το Ρ (Α) ώστε τα ενδεχόμενα Α, Β να είναι ξένα μεταξύ τους. ΘΕΜΑ ο Α. Δίνεται η συνάρτηση f με πεδίο ορισμού το. Για την οποία ισχύει: f 4 f Ι. Να βρείτε τον τύπο της f. ΙΙ. Βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της f στο σημείο M,f ΙΙΙ. Εξετάστε την f ως προς τη μονοτονία και τα ακρότατα. Β. Στο πίνακα που ακολουθεί δίνονται οι επισκέψεις 50 μαθητών μιας τάξης σε διάφορα μουσεία της χώρας. Επισκέψεις Μαθητές v v y y 7 Σύνολο 50 y 5 5

Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ Αν να υπολογιστούν: α) Η διασπορά S. β) Η τυπική απόκλιση S. γ) Ο συντελεστής μεταβολής CV. Οι βαθμοί δύο μαθητών σε 0 μαθήματα ήταν αντίστοιχα. Μαθητής Α 0 8 0 7 8 7 6 7 6 0 Μαθητής Β 8 6 7 5 6 6 7 0 0 Ι. Να βρείτε τη μέση τιμή, τη διάμεσο και την επικρατούσα τιμή της βαθμολογίας του κάθε μαθητή. ΙΙ. Βρείτε ποια από τις δύο βαθμολογίες έχει την καλύτερη ομοιογένεια. ΙΙΙ. Εκ των υστέρων διαπιστώθηκε ότι από τυπογραφικό λάθος οι βαθμοί του Μαθητή Α ήταν κατά 5 μονάδες πάνω από τις πραγματικές τους τιμές. Αφού υπολογίσετε τις σωστές τιμές της βαθμολογίας του, υπολογίστε το νέο συντελεστή μεταβολής. Ποια βαθμολογία έχει τώρα τη μεγαλύτερη διασπορά; ΘΕΜΑ ο ο ΔΙΑΓΩΝΙΣΜΑ Δίνεται η γραφική παράσταση της f, [0,]. Γνωρίζουμε ότι η f 0 έχει ακριβώς ρίζες στο [0,], τις f (0) 5, f () 0, f (), f 8, και ότι Α) Να μελετηθεί η f ως προς τη μονοτονία Β) Να μελετηθεί η f ως προς τα ακρότατα (τοπικά-ολικά) ψ 0 ψ ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο f () n. Α) Να βρεθεί το f(0) B) Να βρεθεί η f (0) h n(h ) h Γ) Να υπολογισθεί το lm h0 h Δ) Να βρεθούν οι τιμές του, για τις οποίες η γραφική παράσταση της f βρίσκεται επάνω από τον. ΘΕΜΑ ο Στη Γ λυκείου ενός σχολείου, στα μαθηματικά Γενικής Παιδείας η μέση βαθμολογία σ ένα διαγώνισμα ήταν 4 και ο συντελεστής μεταβλητότητας ήταν, ενώ στα Μαθηματικά 4 Κατεύθυνσης η μέση βαθμολογία ήταν 0 και η τυπική απόκλιση 0,8. Ο Γιώργος στο διαγώνισμα των Μαθηματικών Γενικής Παιδείας έγραψε 5 και στο διαγώνισμα των Μαθηματικών Κατεύθυνσης, αν η βαθμολογία και στα δύο μαθήματα ακολουθεί περίπου κανονική κατανομή, α) σε ποιο από τα δύο μαθήματα πήγε καλύτερα ο Γιώργος β) αν η βαθμολογία της Ελευθερίας στο διαγώνισμα των Μαθηματικών Γενικής Παιδείας περάστηκε κατά λάθος ως αντί για 5 ποια θα 6

Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ είναι η μέση βαθμολογία στο διαγώνισμα μετά τη διόρθωση της βαθμολογίας της Ελευθερίας αν το πλήθος των μαθητών ήταν 00. Το μήκος των ράβδων που κατασκευάζει μια βιομηχανία ακολουθεί κανονική ή σχεδόν κανονική κατανομή με τυπική απόκλιση cm. Η πιθανότητα μια ράβδος να έχει μήκος μεγαλύτερο του m είναι 0,05. Α) Να βρεθεί το μέσο μήκος των ράβδων και ο συντελεστής μεταβλητότητας Β) Αν η πιθανότητα μια ράβδος να έχει μήκος μεγαλύτερο των 97cm είναι 0,085, να βρεθεί η πιθανότητα το μήκος μιας ράβδου να είναι μεγαλύτερο των 95cm και μικρότερο των 98cm. 4 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Α) Να δείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P P PB P B) Ρίχνουμε δύο αμερόληπτα ζάρια και θεωρούμε τα ενδεχόμενα Α «η ένδειξη της πάνω έδρας του πρώτου ζαριού είναι άρτιος αριθμός» και Β «η ένδειξη της πάνω έδρας του δεύτερου ζαριού είναι άρτιος αριθμός». Να αντιστοιχίσετε τα ενδεχόμενα της στήλης Α με τους συμβολισμούς τους στη γλώσσα των συνόλων που βρίσκονται στη στήλη Β. ΣΤΗΛΗ Α ΣΤΗΛΗ Β. Η ένδειξη της πάνω έδρας ενός τουλάχιστον ζαριού είναι άρτιος αριθμός α.. Η ένδειξη της πάνω έδρας του πρώτου ζαριού είναι περιττός αριθμός β.. Οι ενδείξεις των πάνω εδρών και των δύο ζαριών είναι άρτιοι αριθμοί γ. 4. Οι ενδείξεις των πάνω εδρών και των δύο ζαριών είναι περιττοί αριθμοί δ. 5. Η ένδειξη της πάνω έδρας μόνο του δεύτερου ζαριού είναι άρτιος αριθμός ε. στ. ΘΕΜΑ ο ln 4 με >0. Να βρείτε την παράγωγο της f. Να εξετάσετε την f ως προς την μονοτονία της. Να προσδιορίσετε τα ακρότατα της (Δίνεται 0 ) Α. Δίνεται η συνάρτηση f 7

Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ Β. Να υπολογισθούν τα όρια: 4. lm. lm. 5 lm 5 ΘΕΜΑ ο Α. α. Να συμπληρωθεί ο παρακάτω πίνακας και να υπολογισθεί η μέση τιμή και η τυπική απόκλιση. Κλάσεις [-) -5 0, 5-7 0, 7-9 0, 9- Σύνολο f f f β. Γνωρίζοντας ότι ένα δείγμα είναι ομοιογενές όταν CV 0%, τότε αν οι τιμές του δείγματος αυξηθούν κατά μία σταθερά c, με c 0, να υπολογισθούν οι τιμές του c ώστε το δείγμα να γίνει ομοιογενές. γ. Αν c,,,...,0 όπου Ω δειγματικός χώρος με ισοπίθανα απλά ενδεχόμενα, να βρεθεί η πιθανότητα του ενδεχομένου Α: το δείγμα να είναι ομοιογενές και c να είναι άρτιος αριθμός. Α. Έστω Ω={,,,4,5,6,7,8,9,0} ένας δειγματικός χώρος, ο οποίος αποτελείται από απλά και ισοπίθανα ενδεχόμενα. Επιλέγουμε τυχαία ένα απλό ενδεχόμενο κ. Να βρείτε την πιθανότητα η εξίσωση 4 0 να μην έχει πραγματικές ρίζες. Β. Το 0% των μαθητών μιας τάξης ενός σχολείου έχουν τερηδόνα, το 6% έχει ουλίτιδα και το % έχει και τα δύο. Επιλέγουμε τυχαία έναν μαθητή και έστω Α το ενδεχόμενο «ο μαθητής έχει τερηδόνα» και Β το ενδεχόμενο «ο μαθητής έχει ουλίτιδα».. Τι εκφράζει το ενδεχόμενο και ποία η πιθανότητα του.. Πως συμβολίζεται το ενδεχόμενο «ο μαθητής έχει τουλάχιστον μια ασθένεια» και ποια είναι η πιθανότητα του.. Πως συμβολίζεται το ενδεχόμενο «ο μαθητής δεν έχει καμία ασθένεια» και ποια είναι η πιθανότητα του. 8