Στη συνέχεια οι τυχαίες διαδικασίες θα µελετηθούν στο πεδίο συχνότητας. ( t) X( f)

Σχετικά έγγραφα
Μέχριτώραηµελέτητωντυχαίωνδιαδικασιώνέγινεστοπεδίοτουχρόνου (µέσητιµή, συναρτήσεις αυτοσυσχέτισης, αµοιβαίου συσχετισµού και συµµεταβολής).

Επεξεργασία Στοχαστικών Σημάτων

Η Έννοια της τυχαίας ιαδικασίας

Τηλεπικοινωνιακά Συστήματα Ι

Βέλτιστα γραµµικά χρονικά αναλλοίωτα συστήµατα Συστήµατα που ελαχιστοποιούν το µέσο-τετραγωνικό σφάλµα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

Τι είναι σήµα; Σεραφείµ Καραµπογιάς

Εισαγωγή στη Σχεδίαση RF Κυκλωμάτων

Επεξεργασία Στοχαστικών Σημάτων

Υπολογίζουμε εύκολα τον αντίστροφο Μετασχηματισμό Fourier μιας συνάρτησης χωρίς να καταφεύγουμε στην εξίσωση ανάλυσης.

ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Συναρτήσεις Συσχέτισης

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)

Τι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη

Συστήματα Επικοινωνιών

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας

Στοχαστικές Ανελίξεις

Εισαγωγή στη Σχεδίαση RF Κυκλωμάτων

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Λύσεις Θεµάτων Εξεταστικής Ιανουαρίου 2009 Mάθηµα: «Ψηφιακές Επικοινωνίες» G F = 0.8 T F = 73 0 K

Ψηφιακή Επεξεργασία Σηµάτων. ηµήτριος Βαρσάµης Καθηγητής Εφαρµογών

( x) Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ - ΠΙΘΑΝΟΤΗΤΑΣ. Βασικά αξιώµατα και ιδιότητες της πιθανότητας. Σεραφείµ Καραµπογιάς

Επεξεργασία Στοχαστικών Σημάτων

Παράδειγµα ενός ηλεκτρικού συστήµατος

Συμπίεση Δεδομένων

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουμε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήματος.

NRZ Non return to zero: Οι άσσοι καταλαµβάνουν ολόκληρη τη διάρκεια bit. (Μικρό Bandwidth)

Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

Ενδεικτικές Ασκήσεις για το μάθημα: «Μετρήσεις Φυσικών Μεγεθών»

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 2004., η οποία όµως µπορεί να γραφεί µε την παρακάτω µορφή: 1 e

HMY 220: Σήματα και Συστήματα Ι

h(t τ k ) X (t) = X (t) = (shot noise). 3/28 4/28

ΑΝΑΠΤΥΓΜA -ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα

Τελεστικοί Ενισχυτές

Ψηφιακή Επεξεργασία Σημάτων

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Μαθηµατική Παρουσίαση των FM και PM Σηµάτων

Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

Επαναληπτικές Ασκήσεις για το µάθηµα Ψηφιακή Επεξεργασία Σηµάτων

Διάρκεια εξέτασης 2 ώρες

0, αλλιώς. Σεραφείµ Καραµπογιάς. Παράδειγµα 1 Η πηγή X(t) είναι στατική Gaussian µε µέση τιµή µηδέν και φασµατική πυκνότητα ισχύος.

Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΕΚΠΑΙΔΕΥΤΙΚΟ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων

Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5α. Σημειώσεις μαθήματος: E mail:

ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 2. Ανάλυση Ηλεκτρικού Σήµατος

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

Εφαρμογή στις ψηφιακές επικοινωνίες

6. Τελεστικοί ενισχυτές

MAJ. MONTELOPOIHSH II

Στοχαστικές Ανελίξεις

( s ) Παραγώγιση στο χρόνο. Ολοκλήρωση στο χρόνο. Θεώρηµα αρχικής και τελικής τιµής Ο ΜΟΝΟΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Σεραφείµ Καραµπογιάς

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Ανάλυση Θορύβου Σε Γραμμικά Κυκλώματα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Φίλτρα διέλευσης: (α) χαμηλών συχνοτήτων (β) υψηλών συχνοτήτων

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης

Να εξετάσετε αν είναι συναρτήσεις πυκνότητας πιθανότητας, κι αν είναι να υπολογίσετε τη συνάρτηση κατανομής πιθανότητας F x (x).

Κεφάλαιο 1 ο. Βασικά στοιχεία των Κυκλωμάτων

HMY 220: Σήματα και Συστήματα Ι

Να σχεδιαστεί ένας ενισχυτής κοινού εκπομπού (σχ.1) με τα εξής χαρακτηριστικά: R 2.3 k,

ΚΕΦΑΛΑΙΟ 14 ΚΑΤΩ ΙΑΒΑΤΑ ΦΙΛΤΡΑ BESSEL-THOMSON

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις:

ΕΠΙΔΡΑΣΗ ΤΟΥ ΘΟΡΥΒΟΥ ΣΤΑ ANΑΛΟΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΑΒΙΒΑΣΗΣ ΣΗΜΑΤΟΣ. Προσθετικός Λευκός Gaussian Θόρυβος (Additive White Gaussian Noise-AWGN

stopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

H ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. στις τηλεπικοινωνίες

ιαφορική εντροπία Σεραφείµ Καραµπογιάς

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος

Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι:

SOURCE. Transmitter. Channel Receiver

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)

Άσκηση 1 ΛΥΣΗ. Το Q Στη χαρακτηριστική αντιστοιχεί σε ρεύµα βάσης 35 (Fig.2). Η πτώση τάσης πάνω στην : Στο Q έχω

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z. χρόνου και εξηγήσουµε έννοιες όπως περιοχή σύγκλισης, πόλος και µηδενικό.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι V 86

Transcript:

Μέχρι τώρα η µελέτη των τυχαίων διαδικασιών έγινε στο πεδίο του χρόνου (µέση τιµή, συναρτήσεις αυτοσυσχέτισης, αµοιβαίου συσχετισµού και συµµεταβολής. Στη συνέχεια οι τυχαίες διαδικασίες θα µελετηθούν στο πεδίο συχνότητας. Για ένα νοµοτελειακό σήµα x( οιφασµατικέςιδιότητεςπεριγράφονταιαπότο µετασχηµατισµό Fourier ( x( j π e d ( είναιηφασµατικήπυκνότητατάσης (volage densiy specrum Το σήµα x( µπορεί να ανακτηθεί µε τον αντίστροφο µετασχηµατισµό Fourier x ( ( e j π d Η περιγραφή τυχαίας διαδικασίας µέσω του φάσµατος πυκνότητας τάσης δεν είναι πάνταεφικτή. Γιατολόγοαυτόχρησιµοποιούµετηφασµατικήπυκνότηταισχύος.

Φασµατικά Χαρακτηριστικά Τυχαίας ιαδικασίας Ηµέσηισχύς µιαςτυχαίαςδιαδικασίας (δίνεται + [ ] + [ ( ] E ( d lim lim E d Ορίζουµε τη Φασµατική Πυκνότητας Ισχύος της τυχαίας διαδικασίας ως ( E lim [ ( ] οπότε η µέση ισχύς της διαδικασίας βρίσκεται µε το ολοκλήρωµα + ( d 4-

Ιδιότητες της Φασµατικής Πυκνότητας Ισχύος ( ( ( όταν η είναι πραγµατική 3 Η είναι πραγµατική ( [ [ ] 4 ( d A E ( + 5 F A[ R (, +τ ] ( ( Αν η ( είναι τουλάχιστον στατική (µε την ευρεία έννοια τότε R F ( τ ( R ( τ ( e jπ τ dτ ( R τ e j π τ ( dτ 4-3

Παράδειγµα (συνηµιτονοειδές κύµα µε τυχαία φάση Γιατητυχαίαδιαδικασία ( A cos (π +Θ όπουθτυχαίαµεταβλητή οµοιόµορφα κατανεµηµένη στο διάστηµα [ π να βρεθεί η συνάρτηση αυτοσυσχέτισης και η φασµατική πυκνότητα ισχύος της τυχαίας διαδικασίας. Απάντηση x ( ; ϑ Acos(π + ϑ x ( ; ϑ Acos(π + ϑ x ( ; ϑ 3 Acos(π + ϑ3 x ( ; ϑ 4 Acos(π + ϑ4 Η συνάρτηση αυτοσυσχέτισης της τυχαίας διαδικασίας είναι A R ( τ cos( π τ Η φασµατική πυκνότητα ισχύος της τυχαίας διαδικασίας είναι A 4 δ ( + R A ( δ + 4 (τ A [ δ( + ( ] ( A ( Τυχαίες διαδικασίες στο πεδίο συχνοτήτων 4 δ τ 4-4

Παράδειγµα (τυχαίο δυαδικό κύµα ίνεται η τυχαία διαδικασία της οποίας τα δείγµατα συνάρτησης είναι η έξοδος ενός ψηφιακού διαµορφωτή ο οποίος στα δυαδικά ψηφία και αντιστοιχεί ορθογώνιους παλµούς µε πλάτη A και A αντίστοιχα και χρονικής διάρκεια. Να βρεθεί η συνάρτηση αυτοσυσχέτισης και η φασµατική πυκνότητα ισχύος της διαδικασίας. ( x k A A d είγµα συνάρτησης τυχαίου δυαδικού κύµατος Τοχρονικόδιάστηµα d είναιδείγµατυχαίαςµεταβλητής d οµοιόµορφακατανεµηµένης στο διάστηµα [, Τ (, d d d, αλλιώς Υποθέτοντας ότι τα δυαδικά ψηφία και είναι ισοπίθανα έχουµε E[(]. 4-5

Η συνάρτηση αυτοσυσχέτισης της τυχαίας διαδικασίας είναι [ ] ( (, ( E R Αν > οιτυχαίεςµεταβλητέςλαµβάνονταισεδιαφορετικάχρονικάδιαστήµατα παλµών και λόγω της ανεξαρτησίας είναι [ ] [ ] [ ] ( ( ( (, ( E E E R Αν < µε και <, οιτυχαίεςµεταβλητές ( καιχ( λαµβάνονται στοίδιοχρονικόδιάστηµαπαλµούανκαιµόνοαντοχρονικόδιάστηµα d ικανοποιεί την d <. Ηυποσυσθήκηµέσητιµή E[( ( d ] δίνεταιως [ ] < αλλιώς,, ( ( A E d d Ολοκληρώνονταςγιαόλεςτιςτιµέςτηςµεταβλητής d έχουµε [ ] ( d A d d A d d A E d ( ( ( 4-6

Η συνάρτηση αυτοσυσχέτισης της τυχαίας διαδικασίας είναι R A ( τ ( τ,, τ < τ (τ R A τ Χρησιµοποιώντας το µετασχηµατισµό Fourier του τριγωνικού παλµού η φασµατική πυκνότητα ισχύος της τυχαίας διαδικασίας είναι ( A sinc ( ( A 3 3 4-7

Η Gaussian τυχαία µεταβλητή Η συνάρτηση πυκνότητας πιθανότητας είναι ( x m ( σ x e πσ όπου mείναιηµέσητιµήκαισ ηδιασπορά ( x πσ,67 πσ,68 m σ m m+ σ Η συνάρτηση πυκνότητας πιθανότητας της Gaussian τυχαίας µεταβλητής x 4-8

Μέσο Τετραγωνικό Εύρος Ζώνης της Φασµατικής Πυκνότητας Ισχύος Γνωρίζουµε ότι η διασπορά είναι ένα µέτρο του ανοίγµατος της συνάρτησηςπυκνότηταςπιθανότητας. Η ανάλογη ποσότητα για την κανονικοποιηµένη φασµατική πυκνότητα ισχύος µίας τυχαίας διαδικασίας είναι το µέσο τετραγωνικό εύρος ζώνης rms (roo mean squared bandwidh ηοποίασυµβολίζεταιως W rms ( rad/sec Αν η διαδικασία είναι βασικής ζώνης το µέσο τετραγωνικό εύρος ζώνης δίνεται από W rms ω ( ω ( ω dω dω 4-9

Παράδειγµα ίνεται η τυχαία διαδικασία που έχει τη φασµατική πυκνότητα ισχύος ( ω [ + ( ω / ] Να προσδιοριστεί το µέσο τετραγωνικό εύρος ζώνης Λύση W rms ω ( ω ( ω dω dω + ω + ( ω ( ω dω dω + + + + ω [ ( ω / ] [ ( ω / ] dω 5π dω 5π 5 π W rad rms 5π sec (ω 5 4 W rms ω rad sec 4-

Ορίζουµε ως διαφασµατική πυκνότητα ισχύος για τις τυχαίες διαδικασίες ( και Y( ( F[ ( τ ] Y R Y Επειδή ισχύει R Y ( τ R ( τ h ( τ Y ( ( H ( έχουµε Ενώ επειδή ισχύει Y R Y ( τ R ( τ Y έχουµε ( ( ( H( Y 4-

Τυχαίες ιαδικασίες και Γραµµικά Συστήµατα ( H ( ( Y Γιατηµέσητιµήσυνόλουτηςεξόδουέχουµε m H( m Y m H ( Για τις συναρτήσεις φασµατικής πυκνότητας ισχύος έχουµε H ( Y ( ( H ( ( H ( ( ( H( Y H ( ( ( H( Y 4-

Φασµατική Πυκνότητα Ισχύος του Αθροίσµατος ιαδικασιών ίνονται οι W τυχαίες διαδικασίες ( και Y( και ορίζεται η τυχαία διαδικασία Ανοιδύοδιαδικασίεςείναιασυσχέτιστεςτότε R Y (τ m m Y καιανµία τουλάχιστον από τις διαδικασίες έχει µέση τιµή ίση µε το µηδέν τότε Z ( ( + Y ( Η συνάρτηση αυτοσυσχέτισης της Z( είναι R ( τ R ( τ + R ( τ + R ( τ + R ( τ ZZ και η φασµατική πυκνότητα ισχύος της Z( είναι Z YY ( ( ( Z + Y Y Y ( ( + ( + Re[ ( ] Y Y 4-3

Μίξη τυχαίας διαδικασίας µε συνηµιτονοειδή τυχαία διαδικασία R YY, Πολλαπλασιατής ( ( ( A cos( ( A cos π Η συνάρτηση αυτoσυσχέτισης της εξόδου είναι Y π ( + τ E[ Y( Y( +τ ] E [ A ( ( + τ cos( π cos( π + τ ] π [ cos( π τ + cos( π + τ ] A R ( τ π παρατηρούµεότιηr (, + τ εξαρτάταιαπότο έτσι A A [ R ( + τ ] lim R (, τ YY, + YY d A ( π τ d+ lim R ( τ cos( 4π + τ A lim R ( τ cos π d A R π ( ( τ cos τ 4-4

Γνωρίζουµε για τη φασµατική πυκνότητα ισχύος Εποµένως η φασµατική πυκνότητα ισχύος της εξόδου του πολλαπλασιαστή είναι A F [ R (, +τ ] ( YY YY ( 4 + ( [ ] A A F R ( τ cos( π τ [ + ( ] YY ( ( YY ( A 4 YY ( + + 4-5

Λευκός Θόρυβος Μία συνάρτηση δείγµατος n( µίας W τυχαίας διαδικασίας N( ονοµάζεται λευκός θόρυβος αν N N ( Η συνάρτηση αυτοσυσχέτισης της διαδικασίας είναι ( N δ ( R ( τ τ NN R NN (τ N ( N δ ( τ N τ 4-6

Παρατηρούµε N ( d Ο θερµικός θόρυβος έχει φασµατική πυκνότητα ισχύος N ( ( e h h k h k e h k h N ( h k k Όπου h 6,6 k,38 3 34 joule sec είναι η σταθερά του lanck και joule/kelvin η σταθερά του olzmann Ο θερµικός θόρυβος αποτελεί µία καλή προσέγγιση λευκού θορύβου αφού διατηρεί σταθερή τιµή για µία µεγάλη σχετικά περιοχή συχνοτήτων, πράγµατι N N (,9 N (,9 4-7

Θερµικός Θόρυβος (Θόρυβος Johnson Αν n( είναιηστιγµιαία τάση στα άκρα µίας αντίστασης R λόγω θερµικής κίνησης των ηλεκτρονίων, η συνάρτηση πυκνότητας πιθανότητας της n( ακολουθεί στατιστική Gausse, µε µέση τιµή ίση µε µηδέν, δηλαδή, ( υ e σ π υ σ Η διακύµανση του θερµικού θορύβου είναιίσηµε (υ π m σ σ [ ] n ( n ( 4 k R d Vols E υ H n ( ισούται αριθµητικά µε την ισχύ του θορύβου ανά µονάδα αντίστασης Έχουµε τα δύο Ισοδύναµα Θορύβου κυκλώµατα µίας αντίστασης. Ισοδύναµο θορύβου της αντίστασης R κατά hevenin Ισοδύναµο θορύβου της αντίστασης R κατά Noron 4-8

Πηγές θερµικού θορύβου Κάθε φυσική αντίσταση µπορεί να µοντελοποιηθεί µε µία πηγή θορύβου σε σειρά µε µία αθόρυβη αντίσταση. n( R (ενθόρυβη R L R (αθόρυβη E n ( R L Η έξοδος n( της πηγής θορύβου χαρακτηρίζεται ως δείγµα συνάρτησης της τυχαίας διαδικασίας N(. Η φασµατική πυκνότητα ισχύος του θερµικού θορύβου που εµφανίζεται στα άκρα αντίστασης R είναι R h V R ( h k e Hz Σε θερµοκρασία δωµατίου αποδεικνύεται ότι φασµατική πυκνότητα ισχύος είναι περίπου R ( k R V Hz e h k + h k, εποµένως, η 4-9

Ανηαντίστασηαυτήσυνδεθείµεαντίστασηφόρτου R L τότεέχουµεµέγιστη µεταφερόµενη ισχύ (προσαρµογή όταν η µέγιστη µεταφερόµενη ισχύς είναι R E [ N 4 R L R L ( ] Εποµένως η φασµατική πυκνότητα ισχύος του θορύβου στην αντίσταση φόρτου είναι k n ( Το kσυµβολίζεταισυνήθωςµεν,εποµένωςηφασµατικήπυκνότηταισχύος του θερµικού θορύβου γενικά εκφράζεται ως ( N n W Hz W Hz 4-

Ιδανικά φίλτρα H ( Ζώνη αποκοπής c Ζώνη διέλευσης c Ζώνη αποκοπής Ιδανικό βαθυπερατό φίλτρο H ( Ζώνη αποκοπής Ζώνη διέλευσης Ζώνη αποκοπής Ζώνη διέλευσης Ζώνη αποκοπής Ιδανικό ζωνοπερατό φίλτρο 4-

Αν λευκός θόρυβος διέλθει µέσα από ένα ιδανικό φίλτρο βασικής ζώνης (χαµηλοπερατό η έξοδός του θα είναι λευκός θόρυβος περιορισµένου εύρους ζώνης µε φασµατική πυκνότητα ισχύος, < <, αλλιως ɺ N ( και συνάρτηση αυτοσυσχέτισης ή N, < <, αλλιως ɺ ( N R NN ( τ / / N e j π τ d R NN ( τ sin ( π τ π τ R NN (τ N N ( τ 4-

Αν λευκός θόρυβος διέλθει µέσα από ένα ιδανικό φίλτρο διέλευσης ζώνης (ζωνοπερατό συχνοτήτων η έξοδος θα είναι λευκός ζωνοπερατός θόρυβος µε φασµατική πυκνότητα ισχύος και συνάρτηση αυτοσυσχέτισης, < < +, αλλιως ɺ N ( R sin ( π τ ( τ cos(π τ NN π τ R NN (τ N ( τ + + 4-3

Παράδειγµα Μίατυχαίαδιαδικασίαθορύβουείναιστατικήµετηνευρεία έννοια (W και έχει συνάρτηση αυτοσυσχέτισης R NN ( τ e a τ Να προσδιοριστεί η φασµατική πυκνότητα ισχύος της τυχαίας διαδικασίας θορύβου. Λύση a a + (π Από το γνωστό ζευγάρι µετασχηµατισµού Fourier F NN ( a a + (π e a (τ R a,5 a, 9 ( a a 5 5 τ (sec, 5, 5 ( Hz 4-4

Ισοδύναµο Εύρος Ζώνης Θορύβου Ορίζουµε ως ισοδύναµο εύρος ζώνης θορύβου το εύρος ζώνης neq ενός ιδανικού φίλτρου που αφήνει να περάσει την ίδια ολική ισχύ θορύβου µε την πραγµατική διάταξη, αν στην είσοδό του δεχόταν τον ίδιο λευκό θόρυβο. Η ισχύς θορύβου στην έξοδο του πραγµατικού φίλτρου πραγ N H ( d N H ( d Η ισχύς θορύβου στην έξοδο του ιδανικού φίλτρου ιδαν neq neq N H ( d N H ( neq Το ισοδύναµο εύρος ζώνης θορύβου H ( d H ( neq 4-5

Η συνάρτηση µεταφοράς ισχύος (power ranser uncion πραγµατικού και του ιδανικού του φίλτρου H ( H max neq neq Το τετράγωνο του µέτρου της απόκρισης συχνότητας του πραγµατικού φίλτρου H I ( Ίσα εµβαδά H max neq neq Το τετράγωνο του µέτρου της απόκρισης συχνότητας του ιδανικού φίλτρου 4-6

Θερµικός Θόρυβος από κύκλωµα RC R C y ( x ( ( k R R C y ( Y ( Κύκλωµα RC Ισοδύναµο θορύβου Απόκριση συχνότητας του κυκλώµατος RC H ( H ( Z C Z + C Z R + j π RC + j Απόκριση συχνότητας κυκλώµατος RC 4-7

Η συνάρτηση φασµατικής πυκνότητας ισχύος της εξόδου του κυκλώµατος Y ( k R Y ( ( H ( Y ( k R + ( Η συνάρτηση αυτοσυσχέτισης εξόδου (τ R YY k C R Y ( τ k C e τ RC k C Ηισχύςτηςέξοδου RC RC τ y RY ( k C 4-8

Ενεργός θερµοκρασία θορύβου Στα συστήµατα επικοινωνίας, όταν χρησιµοποιούµε ενισχυτές για να ανυψώσουµε τη στάθµηενόςσήµατος, ενισχύεταιεπίσηςκαι οθόρυβοςπουδιαβρώνειτοσήµα. Επειδή κάθε ενισχυτής έχει πεπερασµένο εύρος-ζώνης, µπορούµε να αναπαραστήσουµε έναν ενισχυτή ως ένα φίλτρο µε απόκριση συχνότητας H(. Ας υπολογίσουµε την έξοδοενόςενισχυτήότανστηνείσοδότουσυνδεθείπηγήθερµικούθορύβου. Πηγή θερµικού θορύβου Προσαρµογή Ενισχυτής H( Προσαρµογή Φόρτος Θερµικός θόρυβος που εφαρµόζεται σε φόρτο µέσω ενισχυτή. Η ισχύς του θορύβου στην έξοδο του τετραπόλου (ενισχυτής είναι N ( neq N H ( + + no N H ( d H ( d max Όπου H ( max είναι η µέγιστη διαθέσιµη απολαβή ισχύος του τετραπόλου Ενεργός θερµοκρασία θορύβου Εικόνα θορύβου 4-9

Κάθε τετράπολο στην πράξη παρέχει επιπρόσθετο θόρυβο στην έξοδό του εξαιτίας θορύβου που δηµιουργείται εσωτερικά. Εποµένως η ισχύς του θορύβου στην έξοδό του ενισχυτή µπορεί να εκφρασθεί ως no neq H ( max + ni neq ks H ( max N + όπου ni είναιηισχύςτηςεξόδουτουενισχυτήεξαιτίαςτουθορύβουπουπαράγεται εσωτερικά. Εποµένως, no Ας ορίσουµε την ποσότητα ni neqk H ( max + s neqk H ( ενερ neq k H ( ως ενεργό θερµοκρασία θορύβου (eecive noise του τετραπόλου (ενισχυτή. Τότε ισχύει ni max no neq k H ( max s+ ( Έτσι, ερµηνεύουµε το θόρυβο εξόδου ως προερχόµενον από µία πηγή θερµικού θορύβουσεθερµοκρασία s + ενερ στηνείσοδοενόςισοδύναµουιδανικούτετραπόλου. ενερ max ni Ενεργός θερµοκρασία θορύβου Εικόνα θορύβου 4-3

Τετράπολο µε προσαρµοσµένη πηγή και φόρτο e s Z s e n Zin Γραµµικό κύκλωµα Z ou eou Z L ιαθέσιµη ισχύ θορύβου στην είσοδο από την πηγή Available noise power o he source d as de 4 R n ( ( ιαθέσιµη ισχύ θορύβου στην έξοδο λόγω της πηγής Available noise power in he oupu due o he source d aos de 4 R o o ( ( ιαθέσιµη ισχύ θορύβου στην έξοδο που προέρχεται από το κύκλωµα ao G k ενερ d όπου G είναι η απολαβή ισχύος του κυκλώµατος G d d aos as R R o e e o ( ( 4-3

Θερµοκρασία θορύβου ενός τετραπόλου Πηγή ενεργού θερµοκρασίας Ενθόρυβο Τετράπολο d ao d aos + ao Ως ενεργό θερµοκρασία ενός τετραπόλου, ορίζουµε την θερµοκρασία Τ ενερ µίας θερµικής πηγής θορύβου που θα έπρεπε να βάλουµε στην είσοδο του τετραπόλου αν ήταναθόρυβο, γιαναδώσειστηνέξοδότουισχύ ao ίσηµετηνπρόσθετηισχύτου τετραπόλου + ενερ Αθόρυβο Τετράπολο d ao d aos + ao k d k ενερ d Αθόρυβο Τετράπολο d ao d aos + ao 4-3

Μίαπηγήσήµατος µεισχύ si στηνείσοδοενός ενισχυτήδηµιουργεί ισχύεξόδου Πηγή σήµατος si Προσαρµογή Ενισχυτής H( so Προσαρµογή Φόρτος Έτσι το NR της εξόδου του ενισχυτή είναι Σήµα που εφαρµόζεται σε φόρτο µέσω ενισχυτή. so H ( max si N εξοδ so no (+ ενερ N / H ( s N H ( max εισοδ max neq si (+ ενερ / s N neq si (+ ενερ / s Παρατηρείστεότιτο NR εξόδου υποβαθµίζεται κατάτο συντελεστή ( + ενερ / s. Έτσιτο ενερ είναιέναµέτροτουθορύβουπουεισάγειοενισχυτής. Ιδανικόςενισχυτής είναιεκείνοςγιατονοποίοισχύει ενερ. Ενεργός θερµοκρασία θορύβου Εικόνα θορύβου 4-33

Λειτουργική Εικόνα Θορύβου Λειτουργική εικόνα θορύβου ενός τετραπόλου ορίζεται ο λόγος της ισχύος του θορύβου στην έξοδο no προς την ισχύ του θορύβου στην έξοδο ενός ιδανικού (αθόρυβου τετραπόλου. F op F op Εναλλακτικός ορισµός της λειτουργικής εικόνας θορύβου τετραπόλου είναι ( ( N N ao aos εισοδ εξοδ Λογαριθµίζοντας και τα δύο µέλη της Εξίσωσης, λαµβάνουµε εξοδ F op log log + log F N N Εποµένως το log F παριστά τις απώλειες στο NR εξαιτίας του επιπρόσθετου θορύβου που εισάγει ο ενισχυτής. Σε πολλούς ενισχυτές χαµηλού θορύβου, όπως οι λυχνίες διαδιδόµενου κύµατος, η εικόνα θορύβου έχει τιµή κάτω από 3 d. Οι συµβατικοί ενισχυτές ολοκληρωµένων κυκλωµάτων παρουσιάζουν εικόνα θορύβου µεταξύ 6-7d. εισοδ 4-34

F op ao aos daos + d aos ao ao + + d aos Η λειτουργική εικόνα θορύβου και η ενεργός θερµοκρασία τετραπόλου συνδέονται µε την Αν υποθέσουµε ότι το τετράπολο οδηγείται από πηγή µε ενεργό θερµοκρασία ο θορύβουτ 9Κτότεορίζεταιηεικόναθορύβουαναφοράς F + ενερ ενερ s 4-35

Θόρυβος από γραµµή µεταφοράς ή υποβιβαστή Ορίζουµε ως απώλεια L το λόγο της ισχύος εξόδου προς την ισχύ εισόδου G L εξοδ εισοδ Αποδεικνύεται ότι η ενεργός θερµοκρασία προσαρµοσµένης γραµµής µεταφοράς που βρίσκεταισεθερµοκρασίατ περ είναι ενερ L ( περ Η εικόνα θορύβου της προσαρµοσµένης γραµµής µεταφοράς που βρίσκεται σε θερµοκρασίατ περ είναι F L 4-36

Θερµοκρασία Θορύβου Συστήµατος Τετραπόλων σε Σειρά k s d G Τετράπολο G G3 Τετράπολο Τετράπολο 3 d + aos ao k ενερ d k ενερ d k ενερ 3 d k s d k ενερολικ G ολικ Τετράπολο d d aos + ao Η συνολική ενεργός θερµοκρασία θορύβου για συνδεδεµένα σε σειρά τετράπολα είναι ενερ ενερ oλ ενερ+ + G G ενερ3 G 4-37

Θερµοκρασία Συστήµατος ΟρίζουµεωςθερµοκρασίασυστήµατοςΤ Συσ τοάθροισµατηςολικήςθερµοκρασίας θορύβουτ ενερολικ. όλουτουδέκτησυντηνθερµοκρασίαθορύβουτηςκεραίαςτ κερ + Συσ κερ ενερ ολικ κερ Κεραία G κερ in RF Γραµµή µεταφοράς ενερ ολικ έκτης G in G k ( κερ + ενερολικ neq N ολικ G k( G + in κερ ενερ ολικ k in neq Συσ neq 4-38