Μη γράφετε στο πίσω μέρος της σελίδας

Σχετικά έγγραφα
Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας

Μαθηματική Λογική (προπτυχιακό) Εξέταση Ιανουαρίου 2018 Σελ. 1 από 5

Μη γράφετε στο πίσω μέρος της σελίδας

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Μη γράφετε στο πίσω μέρος της σελίδας

Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Στοιχεία Προτασιακής Λογικής

ψ φ2 = k χ φ2 = 4k χ φ1 = χ φ1 + χ φ2 + 3 = 4(k 1 + k 2 + 1) + 1 ψ φ1 = ψ φ1 + χ φ2 = k k = (k 1 + k 2 + 1) + 1

, για κάθε n N. και P είναι αριθμήσιμα.

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60

Μη γράφετε στο πίσω μέρος της σελίδας

Κ Ε Μη γράφετε στο πίσω μέρος της σελίδας

Διακριτά Μαθηματικά Ι

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

Μη γράφετε στο πίσω μέρος της σελίδας

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

Μαθηματική Λογική και Λογικός Προγραμματισμός

Στοιχεία Προτασιακής Λογικής

Μαθηματική Λογική και Λογικός Προγραμματισμός

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο )

Ασκήσεις Επανάληψης Λύσεις

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

Μαθηματική Λογική και Λογικός Προγραμματισμός

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Σημειώσεις Μαθηματικής Λογικής. Χειμερινό Εξάμηνο Δ. Ζώρος, Ν. Καρβέλας Σύμφωνα με παραδόσεις του Λ. Κυρούση

Λογική Πρώτης Τάξης. Γιώργος Κορφιάτης. Νοέµβριος Εθνικό Μετσόβιο Πολυτεχνείο

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική)

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

p p p q p q p q p q

Στοιχεία Κατηγορηματικής Λογικής

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική)

lim f ( x ) 0 gof x x για κάθε x., τότε

. (iii) Μόνο οι εκφράσεις που σχηµατίζονται από τα i,ii είναι προτασιακοί τύποι.

Σειρά Προβλημάτων 1 Λύσεις

Κατηγορηµατική Λογική Προτασιακή Λογική: πλαίσιο διατύπωσης και µελέτης επιχειρηµάτων για πεπερασµένο πλήθος «λογικών αντικειµένων». «Λογικό αντικείµε

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Ασκήσεις Επανάληψης Λύσεις

Πληρότητα της μεθόδου επίλυσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

Επανάληψη. ΗΥ-180 Spring 2019

ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012


Μη γράφετε στο πίσω μέρος της σελίδας

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα

Στοιχεία Κατηγορηματικής Λογικής

Ασκήσεις μελέτης της 8 ης διάλεξης

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Προτασιακής Λογικής

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Μαθηματική Λογική και Λογικός Προγραμματισμός

9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W

Υποθετικές προτάσεις και λογική αλήθεια

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

5 Σύγκλιση σε τοπολογικούς χώρους

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)

στο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4

Λύσεις Σειράς Ασκήσεων 1

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

Μαθηματική Λογική και Απόδειξη

Μαθηματική Λογική και Λογικός Προγραμματισμός

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

Πρόταση. Αληθείς Προτάσεις

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

f(x ) 0 O) = 0, τότε το x

Διαγώνισμα στις Συναρτήσεις και τα Όρια τους

Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης).

ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

Transcript:

Μαθηματική Λογική Εξέταση Σεπτεμβρίου 2016 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις σας μην ξεπερνάτε, για οποιοδήποτε λόγο, τα καθορισμένα όρια αριθμού γραμμών. Σελίδες για πρόχειρο θα σας δοθούν χωριστά. Γράψτε τον ΑΜ σας σε όλες τις σελίδες (και ονοματεπώνυμο και ΑΜ στο πρόχειρο). Επώνυμο: Όνομα: ΑΜ: Βαθμοί 1 (1) 2 3α 3β Σύνολο Κ Ε

ΑΜ: Σελ. 2 από 5 Θέμα 1 [1 μονάδα]. Έστω Σ ενδεχομένως άπειρο σύνολο προτάσεων πρωτοτάξιας γλώσσας. Ποιος ή ποιοι από τους παρακάτω ισχυρισμούς αληθεύουν; (I) Αν το Σ δεν είναι ικανοποιήσιμο, τότε υπάρχει πεπερασμένο υποσύνολο του Σ που δεν είναι ικανοποιήσιμο. (II) Αν υπάρχει πεπερασμένο υποσύνολο του Σ που δεν είναι ικανοποιήσιμο, τότε το Σ δεν είναι ικανοποίησιμο. (III) Αν δεν υπάρχει πεπερασμένο υποσύνολο του Σ που δεν είναι ικανοποιήσιμο, τότε το Σ είναι ικανοποιήσιμο. Κυκλώστε το σωστό, χωρίς αιτιολόγηση ούτε σχόλια: (1) Αληθεύει ο ισχυρισμός (Ι) ενώ δεν αληθεύουν οι άλλοι δύο. (2) Αληθεύουν οι ισχυρισμοί (Ι) και (ΙΙ) ενώ δεν αληθεύει ο άλλος. Αληθεύει ο ισχυρισμός (ΙI) ενώ δεν αληθεύουν οι άλλοι δύο. (4) Αληθεύει ο ισχυρισμός (ΙII) ενώ δεν αληθεύουν οι άλλοι δύο. (5) Αληθεύουν οι ισχυρισμοί (Ι) και (ΙΙI) ενώ δεν αληθεύει ο άλλος. (6) Αληθεύουν οι ισχυρισμοί (ΙI) και (ΙΙI) ενώ δεν αληθεύει ο άλλος. (7) Ουδείς αληθεύει. (8) Αληθεύουν όλοι Απάντηση: Σωστό είναι το (8).

ΑΜ: Σελ. 3 από 5 Θέμα 2 [3 μονάδες]. Έστω ϕ, χ, ψ τρεις τύποι της προτασιακής λογικής. Χωρίς χρήση πινάκων αληθοτιμών να αποδείξετε ότι ο τύπος (((ϕ χ) ψ) (ϕ (χ ψ))) είναι ταυτολογία (αποδείξεις με πίνακες αληθοτιμών δεν θα ληφθούν υπόψη). Υπόδειξη: Υποθέστε ότι για κάποια απονομή, η υπόθεση είναι αληθής και το συμπέρασμα ψευδές. Απάντηση: Ας υποθέσουμε ότι υπάρχει απονομή αληθοτιμών που κάνει το δεδομένο τύπο ψευδή. Τότε αναγκαστικά ο τύπος ((ϕ χ) ψ) είναι αληθής (Α) και ο τύπος (ϕ (χ ψ)) ψευδής (Ψ). Τότε όμως από το δεύτερο, ο τύπος ϕ θα ήταν Α και ο τύπος (χ ψ) Ψ. Από το τελευταίο συμπεραίνουμε ότι ο τύπος χ είναι Α και ο ψ Ψ. Επειδή τώρα οι ϕ, χ είναι Α, συμπεραίνουμε ότι ο (ϕ χ) είναι Α και επομένως, επειδή ο ψ είναι Ψ, συμπεραίνουμε ότι ο ((ϕ χ) ψ) είναι Ψ, άτοπο.

ΑΜ: Σελ. 4 από 5 Θέμα 3α [3 μονάδες]. Έστω πρωτοβάθμια γλώσσα L της οποίας τα έξω λογικά σύμβολα είναι (α) το διμερές κατηγορηματικό σύμβολο <, δύο σύμβολα σταθερών 0, 1 και δύο διθέσια σύμβολα συναρτήσεων +,. Έστω ακόμη R = R, < R, 0 R, 1 R, + N, R η ερμηνεία (δομή) για την L, όπου R το σύνολο των πραγματικών και τα υπόλοιπα σύμβολα ερμηνεύονται με το συνήθη τρόπο. (i) Δεδομένου ενός φυσικού αριθμού n 0 να γράψετε τύπο ϕ n μίας ελεύθερης μεταβλητής ο οποίος να ορίζει στη R το ανοικτό διάστημα (0, 1/n). (ii) Υπάρχει πραγματικός αριθμός r R έτσι ώστε για κάθε φυσικό n, R = ϕ n r ; (iii) Ισχύει ότι για κάθε φυσικό n 0, R = xϕ n (x); Απάντηση: (i) Ας βρούμε πρώτα όρο n ~ του οποίου η ερμηνεία στο R είναι ο φυσικός n. Αυτός είναι ο : ( (1 + 1) + + 1). }{{} n φορές το σύμβολο σταθεράς 1 Τώρα ο παρακάτω τύπος ϕ n, με ελεύθερη μεταβλητή το x, ορίζει στην R το ζητούμενο διάστημα: y((y n ~ = 1) 0 < x x < y). (ii) Όχι δεν υπάρχει τέτοιος πραγματικός διότι δεν υπάρχει θετικός πραγματικός αριθμός ο οποίος να είναι μικρότερος από 1/n, για κάθε n 0. (iii) Παρατηρούμε ότι για n 0 έχουμε ότι : 1 R = ϕ n n + 1, άρα συμπεραίνουμε ότι η απάντηση είναι θετική.

ΑΜ: Σελ. 5 από 5 Θέμα 3b [3 μονάδες]. Υπάρχει δομή R = R, < R, 0 R, 1 R, + R, R η οποία να ικανοποιεί το ίδιο σύνολο προτάσεων με την R και επίσης να υπάρχει r R τέτοιο ώστε για κάθε φυσικό n, R = ϕ n r ; Απάντηση: Η απάντηση είναι θετική. Θεωρούμε το σύνολο των προτάσεων Th(R) που επαληθεύονται στην R. Το σύνολο των τύπων Σ = Th(R) {ϕ n (x) n N \ {0}} είναι πεπερασμένα ικανοποιήσιμο. Πράγματι για κάθε πεπερασμένο υποσύνολο Σ k Σ, υπάρχει φυσικός k N \ {0} έτσι ώστε Σ k Th(R) {ϕ n (x) 1 n k}. Είναι όμως φανερό τότε ότι το Σ k είναι ικανοποιήσιμο από την R και για την απονομή x = 1 k+1. Επομένως από το Θεώρημα Συμπάγειας έχουμε ότι το Σ είναι ικανοποιήσιμο από δομή R = R, < R, 0 R, 1 R, + R, R και για μια απονομή η οποία δίδει στη μεταβλητή x μια τιμή r R. Η τιμή αυτή είναι το ζητούμενο r.