ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ

Σχετικά έγγραφα
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2012

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

Πέµπτη, 29 Μαΐου 2003 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

Επομένως ο γεωμετρικός τόπος των εικόνων του z είναι ο κύκλος με κέντρο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

4 η ΕΚΑ Α. = g(t)dt, x [0, 1] i) είξτε ότι F(x) > 0 για κάθε x (0, 1] ii) είξτε ότι f(x)g(x) > F(x) για κάθε x (0, 1] και G(x) για κάθε x (0, 1]

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1o. ΘΕΜΑ 2o

ΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x

προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. c είναι παράγουσες της f στο Δ και κάθε άλλη παράγουσα G της f στο Δ παίρνει τη μορφή G( x) F( x) c,

Μαθηματικά Θετικής & Τεχνολογικής Κατεύθυνσης

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ/ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

x είναι f 1 f 0 f κ λ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 2014

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013

5o Επαναληπτικό Διαγώνισμα 2016

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0]

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

και γνησίως αύξουσα στο 0,

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1. Θεωρία (θεώρηµα Fermat) σχολικό βιβλίο, σελ Α2. Θεωρία (ορισµός) σχολικό βιβλίο, σελ Α3.

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3)

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

( ) ( ) ΘΕΜΑ 2 ο Α. Είναι. f (x) > 0 e 1 x > 0 1 x > 0 1 > x x < 1. η f είναι γνησίως αύξουσα Στο [ 1, + ) η f είναι γνησίως φθίνουσα.

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

ΛΥΣΕΙΣ ΙΟΥΝΙΟΣ (

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΛΥΣΕΙΣ ΘΕΜΑ Α. Α1. Σχολικό βιβλίο σελίδα 217. Α2. Σχολικό βιβλίο σελίδα 273. Α3. Σχολικό βιβλίο σελίδα 92 Α4. Λ - Σ - Σ - Λ - Σ ΘΕΜΑ Β. B1.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΜΑΙΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ. Άρα ο γ.τ. των Μ(z) είναι κύκλος µε κέντρο το Ο(0, 0) και ακτίνα ρ=1

- + Απαντήσεις. Θέμα Β Β1. Από την Cf παρατηρούμε ότι 0. f x για κάθε (0,4) συνεπώς η f είναι γνήσια αύξουσα στο [4, 5] και γνήσια φθίνουσα στο [0,4].

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2012 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

ΘΕΜΑ Α. A2. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Μονάδες 2. Α3. Να διατυπώσετε το θεώρημα Rolle. Μονάδες 6

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i)

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005

Transcript:

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 7 Απριλίου ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία σχολικού βιβλίου σελ.. Α. Θεωρία σχολικού βιβλίου σελ. 8. Α. Θεωρία σχολικού βιβλίου σελ. 69. Α. i. Σωστό ii. Σωστό iii. Σωστό iv. Λάθος v. Σωστό ΘΕΜΑ Β Β. Είναι Re z = () α) Φέρνουµε τον z στην µορφή κ+ λi, : ( + βi i) ( α + + i) z = α + i α + + i z φανταστικός, εάν και µόνο αν α+ + i+ αβi+ βi β αi i+ = α+ + α β+ αβ+ β α = + i α+ + α+ + Από την σχέση () προκύπτει α β + = α β + =. α + + ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) Η τελευταία εξίσωση επαληθεύεται από όλα τα σηµεία Μ (α, β) του µιγαδικού επιπέδου τα οποία είναι εικόνες του z= α+ βi και µόνο αυτά. Άρα, ο γεωµετρικός τόπος των εικόνων του z είναι η ευθεία y+ =. β) Έστω w = + yi,, y IR. Είναι w i= + (y )i Εποµένως, Im(w i) = y Έχουµε: ( i) Im w i = w + i ( i ) y = + yi + i i y = + y i + y = + y + y = + y + y + y y + = + y + y + + y = Άρα ο γεωµετρικός τόπος των εικόνων του w είναι η γραµµή µε εξίσωση + y=, η οποία είναι παραβολή, αφού + y = y = Β. Το z w ισούται µε την απόσταση των εικόνων των µιγαδικών z και w, εποµένως εκφράζει την απόσταση των σηµείων της ευθείας (ε): y+ = από τα σηµεία της παραβολής C: y=. M, y τυχαίο σηµείο της παραβολής, και Ν τυχαίο σηµείο της Έστω ευθείας. Σύµφωνα µε τα παραπάνω πρέπει και αρκεί να αποδείξουµε ότι 7 MN. Θεωρούµε την προβολή Μ του Μ στην ευθεία. Προφανώς MN MM. Επειδή y = είναι M, η απόσταση του Μ από την ευθεία (ε) είναι: ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) εποµένως + + + + 8 MM= d( M, ε) = = + MM ( + ) + 7 ( + ) + 7 7 7 = = = 7 Συνεπώς MN MM, που αποδεικνύει το ζητούµενο. ος τρόπος εύρεσης του ελαχίστου από την (). Έστω f = + + 8, A = IR. H f είναι παραγωγίσιµη στο IR ως f πολυωνυµική µε f () = +, IR. Έχουµε f () = + = = Άρα για την () f ( ) > >, =, η f έχει ελάχιστο το MM f < < () f = 7, οπότε + + 8 7 και από 7 7 = d( M, ε) = Β. α) Οι εικόνες δύο συζυγών µιγαδικών είναι σηµεία συµµετρικά, ως προς τον άξονα. Εφόσον οι εικόνες του w είναι τα σηµεία,, IR, οι εικόνες του w, είναι τα,, IR, που έχουν γεωµετρικό τόπο την παραβολή C: y=, αφού αυτά και µόνο αυτά την επαληθεύουν. β) Έστω g( ) = και πρόσηµο της διαφοράς g( ) h( ) h = +. Αρχικά βρίσκουµε τις ρίζες και το. Είναι + g h + + g h = = 8 = = η = ɺ ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) Το ζητούµενο εµβαδό είναι E = g() h() d = [h() g()]d d = + = + = 8τµ. 6 ΘΕΜΑ Γ Γ. Είναι f f = e g e f e f = e e g e e f ( ) e f( ) = g ( ) e f e = g + e f e = g + e + c, () µε c IR Αν στη σχέση () θέσουµε όπου =, έχουµε f e = g + e + c e = e + c c = Εποµένως η () δίνει f = e g +, IR. Γ. α) Από την σχέση f ( ) f( ) = e g ( ), για f ( ) f( ) eg ( ) f ( ) eg ( ) = έχουµε = =, () Ακόµα f + f + () για κάθε IR Αν θεωρήσουµε f( ) ( ) η () γράφεται ( ) ( ) + = ϕ, τότε επειδή f( ) + = ϕ( ) ϕ ( ) =, ϕ ϕ. Συνεπώς η φ() παρουσιάζει για = (ολικό) ελάχιστο. Ακόµη η φ() είναι παραγωγίσιµη στο R µε: f ϕ = f +. ϕ = + ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) Για την φ() ισχύουν οι υποθέσεις του Θ. Ferma, άρα ισοδύναµα + = = Εποµένως από την () έχουµε: eg ( ) = f f g =. ϕ =, ή β) Έστω >. Θέτουµε + =, οπότε + + + = = + = + + + + Επειδή lim =, το τείνει στο. Έχουµε + + + g( ) g( ) lim ( + ) g = lim g( ) + + = lim = g ( ) = Γ. α) Είναι f( ) = e g( ) + και f( ) = e ( ) +, IR. g =, IR, οπότε: Η f είναι παραγωγίσιµη στο IR µε f ( ) = e ( ) + = e ( ) + e ( ) = e ( )( + ) Ο πίνακας µε τις ρίζες και το πρόσηµο της f ( ), τη µονοτονία και τα ακρότατα της f είναι: + f () + + f () e + H f είναι συνεχής στα διαστήµατα (, ], [, ], [, + ) και f ( ) > για <, f ( ) < για < <, f ( ) Άρα η f είναι γνησίως αύξουσα στο (, ] [, ] και γνησίως αύξουσα στο [, + ). Έχουµε > για >. lim f = lim e + = + =,, γνησίως φθίνουσα στο ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 5 ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) αφού + ( ) + ( ) e lim e ( ) = lim lim lim e = = DLH Ακόµη αφού ( e ) ( e ) ( ) = lim = lim = lim e = DLH e + lim f = lim e + = +, + + ( ) lim = + και lim e + = +. Εποµένως η f παρουσιάζει τοπικό µέγιστο για ολικό ελάχιστο για τότε = το = το f( ) =. Αν = ( ), A = [, ] και A (, ) A, f A = lim f, + =, + e e, f( A ) = f( ), f( ) =, + e και f A =, lim f =, +. + Εποµένως το σύνολο τιµών της f είναι το β) Η = +, = = [ + ) f IR f A f A f A, h = e +, IR είναι παραγωγίσιµη στο IR µε Έστω ε η εφαπτοµένη που φέρουµε στη ( ) h = e + = e e = e, IR h ( ) f = + και e C από το σηµείο,h το σηµείο επαφής. Η εξίσωση της εφαπτοµένης είναι η οποία γράφεται y h = h, y e = e M,λ και ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 6 ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) Επειδή το M,λ είναι σηµείο της εφαπτοµένης, για = και y = λ η τελευταία σχέση δίνει e e λ = + e + λ ( ) = ( ) ( ) e ( ) + = λ f( ) = λ Όπως δείξαµε στο προηγούµενο ερώτηµα, η f είναι γνησίως µονότονη σε καθένα από τα διαστήµατα A, A, A, οπότε η εξίσωση f() = λ, έχει το πολύ µία λύση σε καθένα από αυτά και, συνεπώς, συνολικά έχει το πολύ τρεις λύσεις στο IR. Αυτό αποδεικνύει, ότι από το σηµείο M(, λ ) άγονται το πολύ τρεις εφαπτόµενες στη C. h ος τρόπος απόδειξης, ότι η εξίσωση f() = λ έχει το πολύ τρεις ρίζες. Υποθέτουµε ότι έχει τέσσερις διαφορετικές ρίζες τις ρ,ρ,ρ,ρ και έστω χωρίς βλάβη της γενικότητας ρ < ρ < ρ < ρ. Αυτές είναι ρίζες και της συνάρτησης φ() = f() λ Η φ είναι συνεχής σε καθένα από τα διαστήµατα [ ρ, ρ ] [ ρ, ρ ] [ ρ, ρ ] και παραγωγίσιµη σε καθένα από τα (ρ, ρ ), (ρ, ρ ), (ρ, ρ ) µε φ'() = f '() και ακόµα φ(ρ= φ(ρ= φ(ρ= φ(ρ= Άρα εφαρµόζεται το θεώρηµα Rolle σε καθένα από τα διαστήµατα (ρ, ρ ), (ρ, ρ ), (ρ, ρ ), όποτε υπάρχουν κ (ρ, ρ ), κ (ρ, ρ ), κ (ρ, ρ ) τέτοια, ώστε φ'(κ= φ'(κ= φ'(κ = Προφανώς κ < κ < κ. Επειδή φ'() = f '() προκύπτει ότι η εξίσωση f '() = έχει τρεις διαφορετικές ρίζες, τις κ, κ, κ, που είναι άτοπο, διότι, όπως αποδείχτηκε στο προηγούµενο ερώτηµα, έχει δύο ακριβώς δύο ρίζες τις =, =. ΘΕΜΑ. Θεωρούµε την συνάρτηση h: IR IR µε h = e d e + ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 7 ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) Η h είναι παραγωγίσιµη στο IR µε παράγωγο h = e e + e + = e Η h µηδενίζεται για = και για κάθε είναι e e h > > < ' < Εποµένως, η h είναι γνησίως φθίνουσα στο IR, οπότε έχουµε: h < h < h > () Η πρώτη από τις δοσµένες ανισότητες για κάθε IR δίνει: g ( ) g e d g e + g < ή h( g ( )) < και λόγω της (): g ( ) > γνησίως αύξουσα στο IR., που σηµαίνει ότι η g είναι ος τρόπος Με ολοκλήρωση κατά παράγοντες έχουµε: g ( ) g g < e d g e g ' g ( ) e d< g e g g '' g g g g e < e d g e g g e e d< g e g g > Και τώρα συνεχίζουµε ως εξής: g (*) ( ) g > ( e d ) d Επειδή e d g (*) g ( ) g ( ) e d d > g e d > (*) e, για κάθε IR είχαµε g g, η (*) αποκλείει g ''( ), αφού τότε θα e d e d, άτοπο. Εποµένως g ''( ) >, που σηµαίνει ότι η g είναι γνησίως αύξουσα στο IR.. Θεωρούµε την συνάρτηση f µε f g ( ) ( ) = e d, [,] - ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 8 ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) Η f είναι συνεχής, ως σύνθεση των συνεχών συναρτήσεων g και g µε = g e d. Ακόµα g( ) g( ) f f e d e d = < Εποµένως, από το Θεώρηµα του Bolzano υπάρχει ρ (, ) τέτοιο ώστε f (ρ) = ή Αν g(ρ) >, επειδή Αν g(ρ) < επειδή άτοπο από την (). g ( ρ) e d= e > θα είναι e > θα είναι () ( ρ) g e d > άτοπο από την (). ( ρ) ( ρ) g e d > e d g <, οµοίως Εποµένως g(ρ) =. Στη συνέχεια, εφαρµόζεται το Θεώρηµα του Rolle για την g στο διάστηµα [ρ, ], αφού ως παραγωγίσιµη είναι συνεχής στο [ρ, ], παραγωγίσιµη στο ρ τέτοιο, ώστε (ρ, ) και ακόµα g(ρ) = g() =. Εποµένως, υπάρχει (,) g ( ) = () Αλλά η g είναι γνησίως αύξουσα οπότε: ρ< < g ρ <g <g g ρ <<g που αποδεικνύει το ζητούµενο.. Έστω < <. Θέτουµε u= g + Είναι lim u = lim = + διότι: g + ( ) lim = < g( ) lim + = g() + <, γιατί από την µονοτονία της g είναι > g >g g > που σηµαίνει ότι η g είναι γνησίως αύξουσα στο [, + ).Έτσι < < g < g g < g + < Στη συνέχεια το ζητούµενο όριο γίνεται lim g lim = + g u u + g ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 9 ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) Η εφαπτοµένη της C g στο σηµείο της Μ(, g()) έχει εξίσωση: y g = g' y = g' g '() + g () Επειδή η g είναι γνησίως αύξουσα η g είναι κυρτή στο IR, οπότε τα σηµεία της C είναι πάνω από τα αντίστοιχα σηµεία της εφαπτοµένης της, εκτός του g σηµείου επαφής, εποµένως για κάθε IR Επειδή g' > είναι g g' g '() + g () () lim g' g '() + g() = lim g' = + + + Αν h( ) = g g ' + g( ), µε IR αφού lim h( ) + α>, ώστε στο ( α,+ ) είναι h( ) > οπότε από () είναι Επειδή Αν φ( ) + g( ) h( ) > < g h( ) lim =, από κριτήριο παρεµβολής θα είναι h = g( ) g = φ, τότε φ( ) διότι είναι φ( ) > στο ( α,+ ) και Ώστε + + u + + = + θα υπάρχει lim =. g lim g = lim = + lim g u = +, lim g g( ) + lim φ =. + = lim g( u) = + + u. Η εξίσωση έχει προφανή ρίζα την =. Θα αποδείξουµε ότι είναι µοναδική. Πραγµατικά είναι: g( + ) = g() + g() g( ) g( + ) g() = g() g( ) (5) Αν υποθέσουµε ότι >, τότε θεωρούµε τα διαστήµατα [ +, ] και [, ]. Αυτά είναι καλώς ορισµένα και ξένα µεταξύ τους, αφού ισχύουν < < και + < <, δηλαδή + < < <. ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) Εφαρµόζεται, τώρα, για την g το θεώρηµα µέσης τιµής σε καθένα από τα [ +, ] και [, ], γιατί η g είναι συνεχής σ αυτά και παραγωγίσιµη στα αντίστοιχα ανοιχτά διαστήµατα. Υπάρχουν, εποµένως, ξ, ξ µε + < ξ < < < ξ <, (6) τέτοια ώστε g() g( + ) g( ) g() = g '( ξ ) και = g '( ξ ) Λόγω της (5): g '( ξ ) = g '( ξ ) g '( ξ ) = g '( ξ ) Άτοπο, γιατί από την (6) και την µονοτονία της g είναι ξ < ξ g'( ξ ) < g '( ξ ) Πάλι, αν υποθέσουµε ότι < <, τότε εργαζόµαστε στα διαστήµατα [, + ] και [, ]. Αυτά είναι καλώς ορισµένα και ξένα µεταξύ τους, αφού ισχύουν < < και < + <, δηλαδή < < < + Εφαρµόζεται, οµοίως, για την g το θεώρηµα µέσης τιµής σε καθένα από τα [, + ] και [, ], γιατί η g είναι συνεχής σ αυτά και παραγωγίσιµη στα αντίστοιχα ανοιχτά διαστήµατα. Υπάρχουν, εποµένως, ξ, ξ µε < ξ < < < ξ < +, (7) τέτοια ώστε g( + ) g() g() g( ) = g '( ξ ) και = g '( ξ ) Λόγω της (5): g '( ξ ) = g '( ξ ) Άτοπο, γιατί από την (7) και την µονοτονία της g είναι ξ < ξ g'( ξ ) < g '( ξ ). Ώστε η εξίσωση έχει µοναδική λύση την προφανή =. ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ