ΠΙΝΑΚΕΣ 1.1. ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ. Ονοµάζουµε πίνακα Α n m µία διάταξη n m αριθµών και j = 1, 2,, m, σε n γραµµές και m στήλες.



Σχετικά έγγραφα
α β γ δ β γ α α α α α α Α = α α α = α α + α α α α α α α α α D Α

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ

ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ

Μαθηµατικά Ιβ Σελίδα 1 από 7 ΚΑΙ ΟΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΟΡΙΖΟΥΣΕΣ. άθροισµα του δείκτη (θέση) του στοιχείου είναι άρτιο ή περιττό δηλαδή ( 1) = ( + ), στο στοιχείο α 32 είναι ( 1)

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

ακτίνα του τέλους του µείον τη διανυσµατική ακτίνα της αρχής του. 19. Ποια ανισοτική σχέση ισχύει για το µέτρο του αθροίσµατος δυο διανυσµάτων;

f (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

Θ Ε Ω Ρ Ι Α. Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ της Β τάξης

Ε Π Α Ν Α Λ Η Ψ Η. 1. Τα σύνολα των αριθµών: 2. Η Απόλυτη τιµή ενός πραγµατικού αριθµού α είναι ίση µε την µε την απόστασή του από το

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

1. Κάθε πολυώνυµο που µετά από αναγωγή οµοίων όρων και διάταξη κατά τις φθίνουσες

Α. ΕΠΊΛΥΣΗ ΕΞΙΣΩΣΕΩΝ 2 ου ΒΑΘΜΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

Καρτεσιανές Συντεταγµένες

ΙΔΙΟΤΙΜΕΣ. Λύση. Σχηματίζουμε την εξίσωση (2): x = 0. Οι κολώνες του πίνακα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Η έννοια του διανύσματος

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

Ο Ρ Ι Ζ Ο Υ Σ Ε Σ. το σύνολο των μεταθέσεων (βλέπε σελ. 19) Ν. Την μετάθεση p [permutation] την συμβολίζουν ως εξής:

Γ. κινηθούµε 3 µονάδες κάτω και 4 µονάδες δεξιά. κινηθούµε 3 µονάδες κάτω και 4 µονάδες αριστερά Ε. κινηθούµε 3 µονάδες δεξιά και 4 µονάδες πάνω

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ

Η έννοια της συνάρτησης

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

Δηλαδή, α ν = α α α α ν παράγοντες. Για δυνάμεις, με εκθέτες γενικά ακέραιους αριθμούς, ισχύουν οι επόμενες ιδιότητες. μ+ν. μ ν. α = μ ν. ν ν.

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

τριγώνου ΑΒΓ είναι κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε την απάντηση σας. Με βάση την τριγωνική ανισότητα για

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ τοποθετημένους σε μ γραμμές και v στήλες. Το σύμβολο. λέγεται πίνακας διάστασης μ x ν. α α

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη.

ENA ΣΧΗΜΑ ΜΕ ΕΝΔΙΑΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΑΣΕΙΣ. Κόσυβας Γιώργος. 1ο Πειραματικό Γυμνάσιο Αθηνών

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ 1 Ο ΚΕΦΑΛΑΙΟ

Άλλοι τύποι για το εµβαδόν τριγώνου Λόγος εµβαδών οµοίων τριγώνων - πολυγώνων

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

τετραγωνικό εκατοστόµετρο 1 cm m2 =

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι.

έλλειψη µε εστίες Ε (- γ, 0), Ε (γ, 0) και σταθερό άθροισµα 2α. 2. * Η εξίσωση

3.3 ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ

ΚΕΦΑΛΑΙΟ 4. α > α. Γνωρίζουµε ότι για κάθε x ( 0, + ) l οg x. Αυτό σηµαίνει ότι σε κάθε x ( 0, ) l οg x, εποµένως έχουµε τη συνάρτηση:

ΕΦΑΡΜΟΓΕΣ. είναι ακέραιος.

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

( ) ( ) ( ) ( ) ( ) ( )

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN

3 η δεκάδα θεµάτων επανάληψης

Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό

Συνηµίτονο µιας οξείας γωνίας ορθογωνίου τριγώνου λέγεται:

Minimum night coastal temperature in O C. Mean daily Sunshine ( Hours)

3 Εσωτερικό γινόµενο διανυσµάτων

ΠΡΟΛΟΓΟΣ. Μάρτιος 1998.

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Γ! ΤΑΞΗΣ

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

Μ' ένα καλά µελετηµένο κτύπηµα, σκότωσε τον κύκλο, την εφαπτόµενη

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ.

ΓΡΑΜΜΙΚΕΣ, ΙΓΡΑΜΜΙΚΕΣ, ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΜΑΘΗΜΑΤΙΚΑ. Β Τάξη Ενιαίου Λυκείου Θετική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα.

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

1. Δίνεται το τριώνυμο f x 2x 2 2 λ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΥΟ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Β ΛΥΚΕΙΟΥ

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i

Εμβαδόν τετραγώνου: Ε = α 2. Εμβαδόν ορθογωνίου παραλληλογράμμου: Ε = α β. β Εμβαδόν πλάγιου παραλληλογράμμου: Ε = υ β. α υ

Γραµµική Αλγεβρα Ι. Ενότητα: Ορίζουσες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

αριθμών Ιδιότητες της διάταξης

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1]

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΓΥΜΝΑΣΙΟΥ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΙΝΑΚΕΣ 1Δ-2Δ

ΣΕΙΡΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. n 1 2 n. Για τη σύγκλιση της σειράς διακρίνουμε τις παρακάτω περιπτώσεις: (i) Αν υπάρχει το lim σ n

ΚΕΦΑΛΑΙΟ 4 ΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. α Rκαι. Rτότε

ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑ.Λ (ΟΜΑ Α Β ) 2009 ΕΚΦΩΝΗΣΕΙΣ

Γενικές ασκήσεις σελίδας

Μαθηματικά Γ Γυμνασίου AΣΚΗΣΕΙΣ ΣΤΙΣ ΙΣΟΤΗΤΕΣ ΤΡΙΓΩΝΩΝ

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ

Transcript:

ΓΕΝΙΚΑ ΠΕΡΙ ΠΙΝΑΚΩΝ - ΟΡΙΣΜΟΙ Ονοµάζουµε πίνκ Α n m µί διάτξη n m ριθµών κι j,,, m, σε n γρµµές κι m στήλες ηλδή: Α ( σµβ ij ) ορσ n n m m nm a ij όπου i,,, n Έτσι όπως γράφετι ο πίνκς Α, ο ριθµός a ij, που λέγετι στοιχείο του πίνκ, βρίσκετι στην i - γρµµή κι στην j - στήλη Ένς πίνκς Α n µε n γρµµές κι µί στήλη ονοµάζετι πίνκς στήλη, δηλδή: Α n Ενώ ένς πίνκς Α, n µε µί γρµµή κι n στήλες ονοµάζετι πίνκς γρµµή, δηλδή: Α ( ) n Πρτήρηση Κάθε στοιχείο του χώρου σν πίνκς γρµµή n n R µπορεί ν θεωρηθεί σν πίνκς στήλη n ή Έν πίνκς Α n n όπου το πλήθος των γρµµών είνι ίσο µε το πλήθος των στηλών λέγετι τετργωνικός ηλδή: Α n n n n nn στοιχεί,,, nn του προηγούµενου τετργωνικού πίνκ Α ποτελούν την κύρι διγώνιό του Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

Ένς τετργωνικός πίνκς Α n n θ λέγετι άνω τριγωνικός ότν τ στοιχεί κάτω της κύρις διγωνίου είνι µηδέν ηλδή ότν έχουµε γι i k i > k Όµοι θ λέγετι κάτω τριγωνικός ότν τ στοιχεί πάνω π' την κύρι διγώνιο είνι µηδέν ηλδή έχουµε, γι i < k i k Ότν ο τετργωνικός πίνκς Α είνι πάνω κι κάτω τριγωνικός θ λέγετι διγώνιος Πράδειγµ Γι τους τετργωνικούς πίνκες Α, Β, Γ έχουµε ότι ο Α είνι πάνω τριγωνικός, ο Β είνι διγώνιος κι ο Γ είνι κάτω τριγωνικός ΠΡΑΞΕΙΣ ΠΙΝΑΚΩΝ ) Πρόσθεση πινάκων Ας είνι οι n m πίνκες ( ), B (βi j) µε i,,, n κι j,,, m Ορίζουµε σν άθροισµ των πινάκων Α, Β τον n m πίνκ Α+Β µε στοιχεί τ + β ηλδή: Ιδιότητες Α + Β ( + β ) i n, j m Α + Β Β + Α, ( Α + Β) + Γ Α + ( Β + Γ) Α + Α, Α + ( Α) Με συµβολίζουµε τον πίνκ που έχει όλ τ στοιχεί του ίσ µε β) Βθµωτός πολλπλσισµός Ορίζουµε τον πολλπλσισµό πργµτικού ριθµού λ R µε τον πίνκ Α, σν τον πίνκ που προκύπτει πό τον πολλπλσισµό όλων των στοιχείων του Α µε το λ ηλδή: λ Α λ( i j) ( λi j), i,,,n, j,,,m πχ λ λ λ λ λ Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

Ιδιότητες λ ( Α + Β) λα + λβ, ( λ + µ ) Α λα + µ Α Α Α, ( λµ ) Α λ( µ Α) γ) Πολλπλσισµός πινάκων Ας είνι οι πίνκες: Α n m µε ( ), i n, j m κι Β m k µε B ( β ), j m, k j Ορίζουµε το γινόµενο ΑΒ των πινάκων Α, Β τον n k πίνκ του οποίου τ στοιχεί προκύπτουν πό τ εσωτερικά γινόµεν των γρµµών του Α µε τις στήλες του Β ηλδή το γ i στοιχείο του ΑΒ προκύπτει ν πάρουµε το εσωτερικό γινόµενο της i-γρµµής του Α κι της στήλης του Β γ,,, ), ( β, β,, β ) i ( i i im m Συνεπώς i β + iβ + + imβ m i jβ m j j ΑΒ ( γ i ) µε i n, k κι γ i m j β j Γι ν γίνετι ο πολλπλσισµός πρέπει το πλήθος των στηλών του Α ν είνι ίσο µε το πλήθος των γρµµών του Β ιότι προφνώς, γι ν έχουµε το γ στοιχείο του ΑΒ το διάνυσµ γρµµή του Α κι το διάνυσµ στήλη του Β, είνι πρίτητο ν έχουν το ίδιο πλήθος συντετγµένων i ΠΑΡΑ ΕΙΓΜΑ Ν βρεθεί το γινόµενο του πίνκ Α µε τον πίνκ Β, όπου: Α, Β 6 ΑΒ + + 6 + + + 6 + 6 + + 6 Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

Άρ ΑΒ Πρτήρηση Μπορεί το γινόµενο δύο πινάκων ΑΒ ν ορίζετι κι ν µην ορίζετι το ΒΑ, πχ ν ο Α είνι κι ο Β είνι ο ΑΒ ορίζετι κι είνι πίνκς ενώ ο ΒΑ δεν ορίζετι Ιδιότητες ( ΑΒ ) Γ Α( ΒΓ) Α ( Β + Γ) ΑΒ + ΑΓ ή ( Α + Β) Γ ΑΓ + ΒΓ Α( λ Β) ( λα) Β λ( ΑΒ) Φυσικά θ πρέπει τ πρπάνω γινόµεν ν ορίζοντι Προσοχή: Αν ορίζοντι τ ΑΒ κι ΒΑ δεν ισχύει γενικά ότι ΑΒ ΒΑ ΠΑΡΑ ΕΙΓΜΑ Γι τους πίνκες εξετάστε ν ΑΒ ΒΑ Α, Β Έχουµε: ΑΒ + + ΒΑ + + 7 Προφνώς ΑΒ ΒΑ Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

ΜΟΝΑ ΙΑΙΟΣ ΑΝΑΣΡΟΦΟΣ ΑΝΙΣΡΟΦΟΣ ΠΙΝΑΚΑΣ Ο n n πίνκς µε, γι i j κι, γι i j λέγετι µονδιίος κι συµβολίζετι µε n I ή πλώς Ι Πρτηρούµε εύκολ ότι γι ένν n m πίνκ θ ισχύει: Ι m, I n Oρισµός Ας είνι ο n m πίνκς Α ) Λέµε νάστροφο του πίνκ Α, τον m n ( πίνκ Α ( βi j), όπου β ji µε i,,,m, j,,, n ηλδή ο Α έχει στήλες τις γρµµές του Α κι γρµµές τις στήλες του Α Πράδειγµ 7 7 Συνεπώς ν σ' έν πίνκ Α κάνουµε τις γρµµές στήλες πίρνουµε τον νάστροφό του Α Ιδιότητες του νάστροφου πίνκ ( Α ) Α ( Α + Β) Α + Β ( ΑΒ ) Β Α Ένς τετργωνικός n n πίνκς που έχει ίσ τ συµµετρικά στοιχεί ως προς την κύρι διγώνιο λέγετι συµµετρικός ηλδή ότν Α Α Πράδειγµ Ο πίνκς Α είνι συµµετρικός, φού Α Α Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

6 Ένς τετργωνικός n n πίνκς Α κλείτι ντιστρέψιµος ή οµλός ότν υπάρχει n n πίνκς, που συµβολίζετι µε Α, τέτοιος ώστε: ΑΑ Α Α Ι n Ιδιότητες του ντίστροφου πίνκ : ( Α ) Α k k ( ) ( ) Α (B) B T ( ) ( ) T OΡΘΟΓΩΝΙΟΙ ΠΙΝΑΚΕΣ Ένς n n πίνκς ( ), µε R, λέγετι ορθογώνιος, ότν το σύνολο των δινυσµάτων των στηλών του (, x,, ) x x n είνι ορθοκνονικό ηλδή το εσωτερικό γινόµενο των στηλών νά δύο είνι µηδέν γι i j (τ δινύσµτ νά δύο είνι κάθετ) κι έν γι i j (µονδιί) x x i j, ν i j, ν i j Πρότση Ένς n n πίνκς ( ), µε R, είνι ορθογώνιος, ότν κι µόνο ότν έχει ντίστροφο (είνι οµλός) που ισούτι µε τον νάστροφό του ηλδή: Α Α Πρότση Αν ο n n πίνκς ( ), µε R, είνι ορθογώνιος τότε έχει ορίζουσ ίση µε ± ηλδή: det ± Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ

7 Πράδειγµ ίνετι ο πίνκς Α Επειδή τ δινύσµτ : x (,, ), x,, κι x,, είνι µονδιί, δηλδή x x x κι κάθετ δηλδή x x, x x, x x ο πίνκς Α είνι ορθογώνιος Πρτηρούµε ότι Α Α διότι Α Α Ι Πράδειγµ Έστω ο πίνκς Α Επειδή τ δινύσµτ: x (,, ), ( ) T x,, x,, είνι µονδιί, δηλδή x x x κι κάθετ x x, x x, x x ο πίνκς Α είνι ορθογώνιος Επίσης πρτηρούµε ότι Α Α κι ( ) T διότι Α Α Ι Studies & Publishing ΣΟΛΩΜΟΥ 9 (ΠΟΛΥΕΧΝΕΙΟ) ΗΛ: 87 wwwarnοsgr ΦΡΟΝΙΣΗΡΙΑΚΑ ΜΑΘΗΜΑΑ ΦΟΙΗΩΝ ΑΕΙ ΑΕΙ ΕΑΠ - ΕΜΠ