http://elearn.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση αντιγραφής ή ύπαρξης παροραµάτων δεν φέρουµε καµία ευθύνη..i) cos( θ) a. b a b () (k) + () + () (k) [ + k ] ( + k) + k cos π 4 > ( + k) + k > ( + k ) ( + k ) > + 4 k ( + k) >
4 k ( + k) > 4 k 4 k+ k > k k+ k > k k > k ( k ) > k, k.ii) a. Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: - - Γ Γ ---> { } ~
- - + Γ ---> Γ { } Γ ~ - -3 Γ ---> { } Γ 3 ~ - - 3-3 + Γ ---> Γ { } Γ ~ 3-3 - 3-3 Άρα τα δύο διανύσµατα είναι γραµµικά ανεξάρτητα κι επειδή παράγουν τον χώρο είναι µία βάση του 3
b. Βρίσκουµε πρώτα µία ορθογώνια βάση: u [,,, - ] u x x. u u u. u > () () + (-) () + () () + () (-) u {[, -,, ] } [,,, - ] () + () + () + (-) > u {[, -,, ] } 6 [,,, - ] > u -7,,, 3 6 6 και κατόπιν την κάνουµε κανονική διαιρώντας κάθε διάνυσµα µε το µέτρο του: u e u > u e + + ( -) > 4
u e 6 > u e [ 6 ] > e 6 6 u > e 6 6,,, 3 6 6 6 u e u > u e + + + 3-7 6 6 > u e 7 6 > 5
u e 6 > e 7 u > e, 7,, 5 7 c. Το άθροισµα της διάστασης του U µε την διάσταση του ορθογώνιου συµπληρώµατός του U _ _ είναι ίσο µε την διάσταση του R 4, δηλ. µε 4, άρα η διάσταση του U _ _ είναι. Εποµένως αρκεί να βρούµε δύο διανύσµατα τα οποία να είναι κάθετα και στο x, και στο x Έστω ένα τυχόν διάνυσµα v του U _ _ v [ x,,, w] x w x+ w x w > x+ w () x w x + 6
x w > x + () Λύνουµε το σύστηµα των () και (): x+ w x + Γ --> Γ - Γ <> 3 w x + <> w 3 x Εποµένως τα διανύσµατα που ψάχνουµε είναι: v [,,, 3 ] v 3 > 7
v [ ] + 3 [ ] - - Άρα µία βάση είναι:, 3 - - http://elearn.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση αντιγραφής ή ύπαρξης παροραµάτων δεν φέρουµε καµία ευθύνη..i) Έστω u x x, άρα f(u) + x x x x Επίσης v, και f(v) + λ x Εποµένως λ.u+µ.v + µ λ x + µ λ x f(λ.u+µ.v) + µ + λ x + µ ( λ x + µ ) ( λ x + µ ) Επίσης έχουµε ότι: λ ( x λ.f(u)+µ.f(v) + x ) + µ ( + ) λ x x + µ λ x λ.f(u)+µ.f(v) + µ + λ x + µ λ x x + µ 8
Συγκρίνοντας βλέπουµε ότι: f(λ.u+µ.v) λ.f(u)+µ.f(v) > η f δεν είναι γραµµική Έστω δύο πίνακες του M ( R ), και δύο πραγµατικοί αριθµοί λ, µ: v v a b c d a b c d λ a λ v + µ v + µ a λ b + µ b λ c + µ c λ d + µ d > g ( λ v + µ v ) g λ a + µ a λ b + µ b λ c + µ c λ d + µ d λ a + µ a + λ d + µ d ( a + d ) λ + ( a + d ) µ λ g( v ) + µ g( v ) κι επίσης ισχύει ότι: g άρα η g είναι γραµµική.ii) 9
Επειδή η f είναι γραµµική θα έχουµε ως προς την κανονική βάση του R f (, ) f ( e + e ) f( e ) + f( e ) > f( e ) + f( e ) (,, ) () f (, ) f ( e + e ) f( e ) + f( e ) > f( e ) + f( e ) (-,, ) () Αν λύσουµε το σύστηµα των () και () ως προς, f( e ), f( e ), έχουµε: f( e ) + f( e ) (,, ) f( e ) + f( e ) (-,, ) Γ --> Γ - Γ <> f( e ) ( 3,, -) f( e ) + f( e ) (-,, ) Γ -> Γ + Γ
<> f( e ) ( 3,, -) f( e ) (,, ) <> f( e ) ( -3, -, ) f( e ) (,, ) Εποµένως για το τυχόν (x,) R ( x, ) x e + e > f ( x, ) f ( x e + e ) x f( e ) + f( e ) > f ( x, ) x (,, ) + (-3, -, ) > f ( x, ) ( 3 + x, + x, ).iii) f ( x,, ) x+ + 3 x+ + 4 +
a. Τα στοιχεία του πίνακα ως προς τις κανονικές βάσεις βρίσκονται παίρνοντας τις εικόνες των διανυσµάτων της κανονικής βάσης του R 3 και εκφράζοντάς τις ως γραµµικό συνδυασµό των διανυσµάτων της κανονικής βάσης του R 3 e [,, ], f( e ) [,, ], f( e ) () e + () e + () e 3 e [,, ], f( e ) [,, ], f( e ) () e + () e + () e 3 e 3 [,, ], f( e 3 ) [ 3, 4, ], f( e 3 ) (3) e + (4) e + () e 3 ( ) Ο πίνακας θα έχει σαν η στήλη τις συντεταγµένες του f e ως προς τα e, e, e 3, του R 3, κ.ο.κ. για τις επόµενες στήλες, δηλ: 3 A 4 b. Για τον υπολογισµό µιας βάσης του πυρήνα kerf έχουµε: f( X) O <> A X O <> x+ + 3 x+ + 4 + <>
x+ + 3 x+ + 4 + Γ ---> Γ + { Γ } <> x+ + 3 + + Γ ---> Γ + { Γ } Γ 3 ---> Γ 3 + { Γ } <> x x <> x [ ] - - kerf - - dimkerf 3
Επίσης για την εικόνα Ιmf έχουµε: ( ) f,, x + + x 3 + + x 4 + + + [ ] x [ ] [ ] 3 4 + + [ ] x [ ] [ ] + + [ ] + x [ ] + Ενώ στον πίνακα µε στήλες τα διανύσµατα:, παρατηρούµε ότι:, det δηλ. rank άρα είναι γραµµικά ανεξάρτητα κι εποµένως µια βάση είναι: Imf, 4
dimimf Ισχύει dimkerf + dimimf 3 dim( R 3 ) c. x+ + 3 x+ + 4 + a b c <> x+ + 3 a x+ + 4 b + c Γ ---> Γ + { Γ } <> x+ + 3 a + b a + c Γ ---> Γ + { Γ } Γ 3 ---> Γ 3 + { Γ } <> x+ a b + b a c b+ a δηλ. το σύστηµα λύνεται αν και µόνο αν: 5
c b+ a http://elearn.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση αντιγραφής ή ύπαρξης παροραµάτων δεν φέρουµε καµία ευθύνη. 3.i) a. Χαρακτηριστικό πολυώνυµο του Α: λ 3 det ( A λι) det λ 4 λ ( λ ) det + λ 4 det λ 4 3 det λ λ + ( λ ) ( 3λ+ λ ) + λ 4λ λ 3 Ιδιοτιµές του Α : 4λ λ 3 <> λ ( 4+ λ ) <> λ λ λ 3 4 6
Για την ιδιοτιµή λ ( A λι) X O <> x+ + 3 x+ + 4 + <> x+ + 3 x+ + 4 + από το. iii) b. ερώτηµα <> x <> x [ ] - - u - - Για την ιδιοτιµή λ 4 7
( A λι) X O <> 3 x+ + 3 x + 4 3 <> 3 x+ + 3 x + 4 3 Γ ---> { Γ } 3 <> x 3 x + 4 3 Γ ---> Γ + { Γ } <> x 3 5 + 3 3 5 8
Γ ---> { 3Γ } 5 <> x 3 3 3 Γ ---> Γ + { } 3 Γ Γ 3 ---> Γ 3 + { Γ } <> x 3 <> x 3 <> x 3 <> 9
u 3 3 Παρατηρούµε ότι ο πίνακας δεν διαγωνοποιείται διότι τα δύο ιδιοδιανύσµατα είναι λιγότερα από τρί\ α δηλ. η γεωµετρική πολλαπλότητα ( ) είναι µικρότερη από την αλγεβρική πολλαπλότητα ( 3) b. Σύµφωνα µε το Θεώρηµα Cale - Hamilton ο Α µηδενίζει το χαρακτηριστικό του πολυώνυµο, δηλ.: 4 A A 3 O > A 3 4 A > A ( + ) 4 A Επίσης βλέπουµε ότι: A 4 A ( + ) A A 3 A [ 4 A ] 4 A 3 6 A > A ( + ) 4 A Έστω λοιπόν ότι ισχύει:
A ( n+ ) 4 n A Θα δείξουµε ότι ισχύει και για n+: A ( + + ) n A A ( n+ ) A [ 4 n A ] 4 n A 3 4 n [ 4 A ] 4 ( n+ ) A εποµένως δείξαµε επαγωγικά ότι για κάθε θετικό ακέραιο n ισχύει: A ( + ) n 4 n A 3.ii) x n x n + 9 n n 8 x n 7 n > x n n 9, -8-7 x n n > A 9-8 -7 ιαγωνοποιούµε τον Α. Ιδιοτιµές, ιδιοδιανύσµατα του Α: det ( A λι) det λ 9-8 7 λ λ + 7λ 8
<> λ + 7λ 8 a, β 7, γ -8, 8 <> λ, ή λ -8 Για την ιδιοτιµή λ ( A λι) X O <> 9 x + 9 x 8 x 8 x <> 9 x + 9 x 8 x 8 x Γ --> Γ + Γ <> 9 x + 9 x <>
x x x x ηλαδή το αντίστοιχο ιδιοδιάνυσµα είναι: x x x x [ x ] - > u - Για την ιδιοτιµή λ -8 ( A λι) X O <> 8 x + 9 x 8 x 9 x <> 8 x + 9 x 8 x 9 x Γ --> Γ + Γ <> 8 x + 9 x 3
<> x x x x ηλαδή το αντίστοιχο ιδιοδιάνυσµα είναι: x x x x [ x ] - > u - O διαγωνοποιών πίνακας είναι: P - - Επίσης έχουµε για τον αντίστροφο του Ρ: P - - - P - - > P - { } - - - - > 4
P - - - - - Και τότε ισχύει: P - A P D P - A P -8 > A P D P - > A n { P D P - } { P D P - }... { P D P - } > A n P D n P - > A n P -8 n P - > A n -,, - ( -8) n - - - - > A n - - -, - ( -8) n ( -8 ) n > 5
A n (-8 ) n (-8 ) n + (-8 ) n + (-8 ) n > A n (- ) n 8 n (-) n 8 n + (- ) n 8 n + (-) n 8 n Άρα από την σχέση: X n A n X, µε X. θα έχουµε τελικά: x n n ( -) n 8 n ( -) n 8 n, + ( -) n 8 n + ( -) n 8 n > x n n 3 (- ) n 8 n 3+ 4 ( -) n 8 n ηλαδή: x 8 8 3 (-) 8 8 8 3+ 4 ( -) 8 8 8 > x 8 8 3 8 8 3+ 4 8 8 > x 8 8 3 64 3+ 4 64 > 6
x 8 8 3 65 3+ 66 http://elearn.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση αντιγραφής ή ύπαρξης παροραµάτων δεν φέρουµε καµία ευθύνη. 4. a. a A b c Σύµφωνα µε το Φασµατικό Θεώρηµα του ΣΕΥ ιαγωνοποίηση, σελ. 36-37 ο πίνακας Α διαγωνοποιείται µε ορθογώνιο διαγωνοποιούντα πίνακα Ρ αν και µόνο αν είναι συµµετ\ ρικός, δηλ. αν και µόνο αν c a. Τότε έχουµε για τον Α την λεγόµενη παραγοντοποίση Schur: A P D P T όπου P πίνακας ορθογώνιος, δηλ. P P T P T P I 3 b. Υπολογίζουµε ιδιοτιµές και ιδιοδιανύσµατα για τον πίνακα: a A b a Εύρεση ιδιοτιµών: 7
λ a det ( A λι) det b λ a λ λ det + b λ a det λ b λ a λ ( b+ λ ) + a ( b+ λ ) ( a λ ) ( a+ λ ) ( b+ λ ) <> λ λ λ 3 a b a Εύρεση ιδιοδιανυσµάτων: Για την ιδιοτιµή λ a ( A λι) X O <> a x+ a ( b a) a x a <> a x+ a ( b a) a x a Γ3 --> Γ3 + Γ 8
<> + a x a <> x Εποµένως: x { } u Για την ιδιοτιµή λ b ( ) A λι X O <> + b x a a x b 9
<> b x+ a a x b Γ --> ( - a / b ) Γ <> a a x b a x b Γ3 --> Γ3 - Γ <> a a x b b + a b <> a a x b ( ) a b ( a+ b ) b <> 3
x Εποµένως: x { } u Για την ιδιοτιµή λ a ( ) A λι X O <> + a x a ( ) + a b + a x a <> + a x a ( ) + a b + a x a Γ3 --> Γ3 - Γ <> 3
a x+ a <> x Εποµένως: x { } - u 3 - Σύµφωνα µε την Πρόταση, Ε Υ, Κεφ., τα ιδιοδιανύσµατα του Α είναι κάθετα Αρκεί να διαιρεέσουµε το κάθε ένα µε το µέτρο του για να γίνουν και µοναδιαία: u e u > 3
e e u u > e e 3 u 3 u3 > e 3 Άρα ο ορθογώνιος πίνακας P είναι: P [ ],, e e e 3 > P Πράγµατι: 33
P T P a P T A P b a c. Έχουµε τον πίνακα: A b Οι ιδιοτιµές είναι τα διαγώνια στοιχεία, άρα: λ λ, b λ 3 Από την στιγµή που ο Α διαγωνοποιείται (για την ακρίβεια: είναι ήδη διαγώνιος), η διάσταση του ιδιοχώρου που αντιστοιχεί στην διπλή ιδιοτιµή θα πρέπει να είναι κι αυτή. http://elearn.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση αντιγραφής ή ύπαρξης παροραµάτων δεν φέρουµε καµία ευθύνη. 5.i) Πράγµατι αν πάρουµε για τυχόν x R την αντίστοιχη τετραγωνική µορφή θα έχουµε: x T [ A A T ] x [ x T A ] [ A T x] [ A T x ] T [ A T x] 34
όπου θέσαµε A T x, ενώ είναι γνωστές οι ιδιότητες: [ A T ] T A ( A B) T B T A T Άρα έχουµε ότι: x T [ A A T ] x > A A t είναι θετικά ηµιορισµένος 5.ii) x + + + a x + a + x Από τον ορισµό της τετραγωνικής µορφής, Κεφ., Ε Υ, σελ., έχουµε για τον αντίστοιχο πίνακά της Α ότι: a a a 33 a a 3 a a a 3 και λόγω συµµετρίας ο Α είναι τελικά: a A a a a 35
Εποµένως η απάιτηση που µας ζητείτε είναι ισοδύναµη µε την απαίτηση ο Α να έχει µη αρνητικές ιδιοτιµές: λ a det ( A λι) det a λ a a λ ( λ ) det + λ a a det a λ a a det λ a λ a ( λ ) ( λ+ λ a ) + a λ+ a + λ λ+ 3λ λ 3 + a λ λ 3 + 3λ + ( + a ) λ λ ( λ + 3λ+ a ) <> λ λ + 3λ+ a Η διακρίνουσα του ανωτέρω τριωνύµου είναι: + 8 a δηλ. ισχύει πάντα >, άρα υπάρχουν δύο ρίζες. Tο άθροισµα των ριζών του τριωνύµου είναι: λ + λ b a (-3) (-) 36
> 3 λ + λ Tο γινόµενο των ριζών του τριωνύµου είναι: λ λ c a [ + a ] [ (-)] > λ λ a Αν λοιπόν απαιτήσουµε το γινόµενο να είναι µη αρνητικό, δηλ. αν: λ λ <> a <> a <> a <> a <> 37
a [ -, ] τότε οι δύο ρίζες θα είναι µη αρνητικές και η τετραγωνική µορφή θετικά ηµιορισµένη 38