Μεταγλωττιστές ΙΙ. 26 Ιανουαρίου Νικόλαος Καββαδίας Μεταγλωττιστές ΙΙ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μεταγλωττιστές ΙΙ. nkavv@uop.gr. 26 Ιανουαρίου 2011. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ"

Transcript

1 Μεταγλωττιστές ΙΙ Ανασκόπηση του μαθήματος και ϑέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας 26 Ιανουαρίου 2011

2 Σκιαγράφηση της διάλεξης Παραλειπόμενα Αναδρομή στο περιεχόμενο του μαθήματος Ενδεικτικά ϑέματα εξετάσεων (ϑεωρία και ασκήσεις) Θέματα για πρακτική εξάσκηση (ασκήσεις) Άλλα ϑέματα (κρίσεως και σύνθεσης)

3 Η έννοια της μεταγλώττισης και η δομή του μεταγλωττιστή Μετάφραση από μία πηγαία γλώσσα η οποία διέπεται από γραμματική σε κάποια τελική γλώσσα στο ίδιο ή διαφορετικό επίπεδο αφαίρεσης compiler: το λογισμικό που επιτελεί τη μετάφραση προγραμμάτων σε γλώσσα προγραμματισμού υψηλού επιπέδου (HLL) στο επίπεδο του κώδικα μιας πραγματικής ή εικονικής μηχανής Η διαδικασία της μεταγλώττισης μπορεί να χωριστεί στη φάση της ανάλυσης και στη φάση της σύνθεσης ΑΝΑΛΥΣΗ: αποδόμηση και κατανόηση του πηγαίου προγράμματος ΣΥΝΘΕΣΗ: κατασκευή του αποτελέσματος στην τελική γλώσσα διατηρώντας σημασιολογική ισοδυναμία με το πηγαίο πρόγραμμα Οι πρακτικοί μεταγλωττιστές αποτελούνται από πολλά διαδοχικά τμήματα (περάσματα)

4 Γενική ορολογία από την ανάπτυξη μεταγλωττιστών (Δ. Σπινέλλης) Κειμενογράφος/Διορθωτής (Editor): Επιτρέπει τη συγγραφή και την αλλαγή του προγράμματος Προεπεξεργαστής (Preprocessor): Επεξεργάζεται το πρόγραμμα εκτελώντας απλούς συμβολικούς μετασχηματισμούς και παράγει ένα ισοδύναμο πρόγραμμα (αφορά τις C, C++, Fortran) Συμβολομεταφραστής (Assembler): Μετατρέπει τη συμβολική γλώσσα του επεξεργαστή σε γλώσσα μηχανής Μεταγλωττιστής (Compiler): Μεταφράζει μια γλώσσα υψηλού επιπέδου σε γλώσσα επιπέδου μηχανής Διερμηνευτής (Interpreter): Εκτελεί άμεσα ένα πρόγραμμα σε γλώσσα υψηλού επιπέδου Συνδέτης (Linker): Συρράφει τμήματα ενός προγράμματος που έχουν μεταγλωττιστεί ξεχωριστά σε ένα ενιαίο πρόγραμμα Φορτωτής (Loader): Φορτώνει το πρόγραμμα στη μνήμη του επεξεργαστή διορθώνοντας αναφορές σε ϑέσεις μνήμης εντολών και δεδομένων του προγράμματος Αποσφαλματωτής (Debugger): Επιτρέπει την εκτέλεση του προγράμματος βήμα-βήμα με σκοπό την ανίχνευση λαθών που μπορεί να περιέχει το πρόγραμμα

5 Η εργαλειοθήκη του σχεδιαστή μεταγλωττιστών Κειμενογράφος/Διορθωτής: vi, emacs, Geany, Context, Prism Editor, Notepad-++ Λεκτική/συντακτική ανάλυση: lex+yacc, flex+bison, ANTLR (πρώην PCCTS), GOLD Parser Builder Συμβολομεταφραστής-Συνδέτης-Αποσυμβολομεταφραστής: binutils (as, ld, objdump) Μεταγλωττιστής (Compiler): GCC, LCC, LLVM, COINS, Phoenix, PCC, Trimaran, SUIF/Machine-SUIF Πρότυπη βιβλιοθήκη της C: glibc, newlib, uclibc, dietlibc Αποσφαλματωτής (Debugger): GDB Γεννήτορες γεννητόρων κώδικα: BURG, IBURG, LBURG, OLIVE Οπτικοποίηση γράφων: Graphviz, VCG Άλλα εργαλεία: sparse, Aha!, superopt, copt

6 Τύποι IR Η εξαγωγή της IR (ενδιάμεση αναπαράσταση) είναι το αποτέλεσμα της λεκτικής, συντακτικής και σημασιολογικής ανάλυσης του πηγαίου προγράμματος Επίπεδη διαμόρφωση σε μορφή εντολών: κώδικας τριών διευθύνσεων (Three-Address Code, συχνά 3AC ή TAC) Απλή δομή, κατάλληλη για βελτιστοποιήσεις Διαμόρφωση τύπου γράφου: Γράφος Ροής Ελέγχου-Δεδομένων (CDFG: Control-Data Flow Graph) Περισσότερο αποκαλυπτική για τα χαρακτηριστικά του πηγαίου προγράμματος, κατάλληλη για γέννηση κώδικα

7 Σύνοψη του μαθήματος 1 Η οργάνωση του δομημένου μεταγλωττιστή 2 Γέννηση ενδιάμεσης αναπαράστασης 3 Επιλογή κώδικα 4 Καταμερισμός καταχωρητών 5 Βελτιστοποιήσεις ανεξάρτητες από την αρχιτεκτονική 6 Χρονοπρογραμματισμός κώδικα και βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική 7 Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας και ανάδειξη της τοπικότητας 8 Γέννηση τελικού κώδικα 9 Επαναστοχεύσιμοι μεταγλωττιστές

8 Δ1: Οργάνωση του μεταγλωττιστή Στοιχεία από το διαδικαστικό προγραμματισμό (διαγράμματα ροής, ANSI C) Παρουσίαση της οργάνωσης του δομημένου μεταγλωττιστή Η χρησιμότητα της ενδιάμεσης αναπαράστασης Πρακτικοί μεταγλωττιστές Ενδεικτικά ϑέματα 1) Να δοθεί το σχηματικό διάγραμμα του τυπικού σχεδιασμού ενός μεταγλωττιστή, να ονομαστεί κάθε επιμέρους τμήμα του και να δοθεί σύντομη περιγραφή της λειτουργίας του. 2) Ποια η λειτουργία του πίνακα συμβόλων (σύντομα); 3) Ποια τα πλεονεκτήματα της χρήσης ενδιάμεσης αναπαράστασης στο σχεδιασμό ενός επαναστοχεύσιμου μεταγλωττιστή; Να δοθεί αριθμητικό παράδειγμα για την περίπτωση μεταγλωττιστή ο οποίος δέχεται τις πηγαίες γλώσσες ANSI C, C++, και Pascal και παράγει κώδικα στις γλώσσες συμβολομεταφραστή για τις αρχιτεκτονικές x86, MIPS, ARM και PowerPC.

9 Δ2: Γέννηση ενδιάμεσης αναπαράστασης Αποδόμηση σύνθετων εκφράσεων της ANSI C Βασικό μπλοκ - αναπαράσταση DAG Κώδικας τριών διευθύνσεων (three address code) Μεταγλώττιση πηγαίου κώδικα σε TAC Γράφοι εξάρτησης δεδομένων CFG και CDFG Ορισμός της SSA Κατασκευή SSA

10 Δ2: Ενδεικτικά ϑέματα 1) Τι είναι η μορφή Στατικής Απλής Ανάθεσης (SSA) και ποια η κύρια ιδιότητά της; 2) Τι είναι ο γράφος ροής ελέγχου (CFG) και τι αναπαριστά; Τι είναι βασικό μπλοκ σε ένα γράφο ροής ελέγχου και ποια τα χαρακτηριστικά του; Δώστε ένα παράδειγμα βασικού μπλοκ (μέχρι 7 εντολές) με κώδικα τριών διευθύνσεων (TAC). 3) Ο παρακάτω ANSI C κώδικας περιγράφει έναν αλγόριθμο υπολογισμού του παραγοντικού (n!) του μη-αρνητικού ακέραιου αριθμού n. Να παραχθεί ο γράφος ροής ελέγχου-δεδομένων (CDFG) για τον αλγόριθμο. if (n == 0) { res = 1; } else { res = 1; for (i = 1; i <= n; i++) { res = res * i; } }

11 Δ2: CFG από δομημένο πηγαίο κώδικα Κώδικας ANSI C extern int f(int); int main(void) { int i; int *a; } for (i = 0; i < 10; i++) { a[i] = f(i); } Το CFG της συνάρτησης main με δηλώσεις C

12 Δ2: Παράδειγμα 1 στην κατασκευή SSA (από την εργασία των Aycock-Horspool) Πηγαίο πρόγραμμα i = 123; j = i * j; do { PRINT(j); if (j > 5) { i = i + 1; } else { break; } } while (i <= 234); BB3: i = i + 1 BB1: i = 123 j = i * j BB2: PRINT(j) t0 = j > 5 T T F BB4: BB5: t1 = i <= 234 F BB6:

13 Αντιπαράθεση non-ssa και SSA IR ως TAC Non-SSA IR BB1: i = 123; j = i * j; BB2: PRINT(j); t0 = j > 5; if (t0) goto BB3; else goto BB4; BB3: i = i + 1; goto BB5; BB4: goto BB6; BB5: t1 = i <= 234; if (t1) goto BB2; else goto BB6; BB6: SSA IR BB1: i1 = 123; j1 = i1 * j0; BB2: i2 = phi(i1, i4); PRINT(j1); t0 = j1 > 5; if (t0) goto BB3; else goto BB4; BB3: i4 = i2 + 1; goto BB5; BB4: goto BB6; BB5: t1 = i4 <= 234; if (t1) goto BB2; else goto BB5; BB6: i7 = phi(i4, i2);

14 Αντιπαράθεση non-ssa και SSA IR ως CFG Non-SSA CFG SSA CFG BB1: i = 123 j = i * j BB2: PRINT(j) t0 = j > 5 T F BB1: i0 = j0 = i1 = 123 j1 = i1 * j0 BB2: i2 = phi(i1, i4) PRINT(j1) t0 = j1 > 5 BB3: i = i + 1 T T F BB4: BB3: i4 = i2 + 1 T BB4: BB5: t1 = i <= 234 BB5: t1 = i4 <= 234 BB6: F F BB6: i7 = phi(i4, i2)

15 Προτεινόμενα ϑέματα στην κατασκευή SSA (για εξάσκηση) Ακολουθία Fibonacci BB0: x = n; f0 = 0; f1 = 1; res = f0; if (x <= 0) {goto BB4;} else {goto BB1;} BB1: res = f1; if (x == 1) {goto BB4;} else {goto BB2;} BB2: k = 2; goto BB3; BB3: f = f1 + f0; f0 = f1; f1 = f; res = f; k = k + 1; if (k <= x) {goto BB3;} else {goto BB4;} BB4: Απαρίθμηση πληθυσμού BB1: data = inp; count = 0; goto BB2; BB2: temp = data & 1; count = count + temp; data = data >> 1; if (data == 0) {goto BB3;} else {goto BB2;} BB3:

16 Δ3: Επιλογή κώδικα Η έννοια της κοινής υποεκφράσεως Μη βέλτιστη πλακόστρωση δένδρου ροής δεδομένων για την επιλογή κώδικα Σχεδιασμός AST από κειμενική αναπαράσταση DFT Ενδεικτικά ϑέματα 1) Να περιγραφεί η αρχή λειτουργίας της επιλογής κώδικα με κάλυψη δένδρου. 2) Υπάρχουν τεχνικές οι οποίες επιτυγχάνουν βέλτιστη επίλυση του προβλήματος της κάλυψης δένδρου για την επιλογή κώδικα; Αν ναι, αναφέρετε μία τέτοια τεχνική και ένα λογισμικό εργαλείο το οποίο να την χρησιμοποιεί.

17 Δ4: Καταμερισμός καταχωρητών Διαστήματα ζωής: εξαγωγή από κώδικα TAC Καθολικός καταμερισμός καταχωρητών Χρωματισμός γράφου - Γράφοι παρεμβολής Περιοχές ζωής - η διαφορά τους από τα διαστήματα ζωής Ο αλγόριθμος του Chaitin και πως εφαρμόζεται Ο αλγόριθμος γραμμικής σάρωσης: περιγραφή και εφαρμογή Ενδεικτικά ϑέματα (ϑεωρία) 1) Τι γνωρίζετε για την περιοχή ζωής και για το διάστημα ζωής; Ποιες οι διαφορές τους; 2) Αναλύστε την υπολογιστική πολυπλοκότητα του αλγορίθμου γραμμικής σάρωσης για τον καταμερισμό καταχωρητών.

18 Ενδεικτικά ϑέματα: Καταμερισμός καταχωρητών Να πραγματοποιηθεί καταμερισμός καταχωρητών: α) Με τον αλγόριθμο χρωματισμού γράφου (k = 3) για το γράφο παρεμβολής του σχήματος. β) Με τον αλγόριθμο της γραμμικής σάρωσης για τους χρόνους ζωής (A-F). Ο αριθμός των διαθέσιμων φυσικών καταχωρητών είναι R = 3.

19 Παράδειγμα εξαγωγής διαστημάτων χρόνου ζωής μεταβλητών Βασικό μπλοκ του παραδείγματος 1 b = 1; 2 c = 2; 3 a = b + c; 4 d = a * 2; 5 e = b / 3; 6 return (e - d); Υπολογισμός των διαστημάτων ζωής των μεταβλητών a X X b X X X X X c X X d X X X e X X

20 Θέματα εξάσκησης: Ανάλυση χρόνου ζωής Εστω το παρακάτω CFG. Να δοθούν τα σύνολα ζωντανών μεταβλητών στα σημεία 1 ως 5. Απάντηση i Μεταβλητές που μόνο διαβάζονται είναι ζωντανές πριν το σημείο εισόδου i Ελέγξτε όλες τις διαδρομές

21 Παράδειγμα εφαρμογής του αλγορίθμου γραμμικής σάρωσης για τον καταμερισμό καταχωρητών Εστω οι προσωρινές μεταβλητές A, B, C, D, E και τα αντίστοιχα διαστήματα 1 ως 5 του σχήματος και R = 2 Εναρξη I1 active A R0 A Εναρξη I2 active A, B R1 B Εναρξη I3 active A, B R0 A, R1 B, spill C Εναρξη I4 active B, D R0 D, R1 B, C spilled Εναρξη I5 active D, E R0 D, R1 E, C spilled

22 Δ5: Βελτιστοποιήσεις ανεξάρτητες από την αρχιτεκτονική Ο βελτιστοποιητής στο πλαίσιο του δομημένου μεταγλωττιστή Βασικές διαφορές μεταξύ βελτιστοποιήσεων υψηλού και χαμηλού επιπέδου - Παραδείγματα Η εφαρμογή όλων των βαθμωτών βελτιστοποιήσεων Σχεδιασμός δένδρου κυριαρχίας (όχι βέλτιστος αλγόριθμος) Ενδεικτικά ϑέματα (ϑεωρία) 1) Εφαρμόστε διαδοχικά δίπλωση σταθεράς, διάδοση σταθεράς, αλγεβρικές απλοποιήσεις και εξουδετέρωση κοινής υποεκφράσεως στο παρακάτω τμήμα κώδικα. if (k == 0) { a = ; b = a; c = (b + e) * 1024; d = e + b; } else { x = 9 * a + c / 2; }

23 Δ6: Χρονοπρογραμματισμός κώδικα και βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική Εξαρτήσεις εντολών Αρχές στατικού και δυναμικού χρονοπρογραμματισμού Ο αλγόριθμος ASAP Ο αλγόριθμος χρονοπρογραμματισμού λίστας Ενδεικτικά ϑέματα ϑεωρίας 1) Να αναφέρετε τις αρχές που διέπουν και τα χαρακτηριστικά (ομοιότητες, διαφορές) του στατικού και του δυναμικού χρονοπρογραμματισμού. 2) Τι είναι η εξάρτηση εντολής και τι είναι εξάρτηση δεδομένων; Να αναφερθούν τα είδη εξάρτησης δεδομένων.

24 Χρονοπρογραμματισμός κώδικα (ακολουθιακός ή ASAP) Η σχέση eda = MAX((0.875 x y), x) όπου x = MAX( a, b ) και y = MIN( a, b ) αποτελεί μία προσέγγιση της ευκλείδειας απόστασης στο επίπεδο, η ακριβής τιμή της οποίας δίνεται από την έκφραση a2 + b 2. Ζητείται ο σχεδιασμός αρχικά του γράφου ροής a in1 abs b in2 abs δεδομένων που υπολογίζει τη μεταβλητή eda και στη 3 t1 max t1 t2 t2 min 1 συνέχεια το χρονοπρόγραμμα που προκύπτει με την 3 x y 1 τεχνική ASAP (As Soon As Possible). Εχετε στη διάθεσή shr x shr σας τις εξής μονάδες υλικού: αθροιστές (ADD), t3 αφαιρέτες (SUB), εξαγωγείς απόλυτης τιμής (ABS), x sub t4 εξαγωγείς ελαχίστου (MIN) και μεγίστου (MAX), καθώς t5 και αριστερούς (SHL) και δεξιούς (SHR) λογικούς add ολισθητές κατά σταθερή ποσότητα n. Ολες οι μονάδες t6 υλικού απαιτούν 1 κύκλο καθυστέρησης. max t7 eda

25 Άλλα ϑέματα στο χρονοπρογραμματισμό κώδικα 1) Ζητείται να σχεδιαστεί ο γράφος ροής δεδομένων για τον πολλαπλασιασμό μιας εισόδου x με τις σταθερές 5, 17 και 23. Στη συνέχεια να δοθεί το αντίστοιχο χρονοπρόγραμμα που προκύπτει με ακολουθιακή δρομολόγηση ή με δρομολόγηση ASAP και ο αριθμός των απαιτούμενων κύκλων μηχανής για την εκτέλεσή του. Η μονάδα ϑα διαθέτει τις αντίστοιχες εξόδους u, v, w. Εχετε στη διάθεσή σας τις εξής μονάδες υλικού: αθροιστές (ADD), αφαιρέτες (SUB), και αριστερούς (SHL) και δεξιούς (SHR) λογικούς ολισθητές κατά σταθερή ποσότητα n. Ολες οι μονάδες υλικού απαιτούν 1 κύκλο μηχανής. Σημειώνεται ότι η ολίσθηση κατά n ϑέσεις αριστερά ισοδυναμεί με πολλαπλασιασμό με το 2 n και η ολίσθηση κατά n ϑέσεις δεξιά, με διαίρεση με το 2 n.

26 Ασκήσεις προς επίλυση στο χρονοπρογραμματισμό κώδικα Εστω η υποθετική αρχιτεκτονική RISC: Διαμόρφωση Συμπεριφορά Κύκλοι μηχανής ADD/SUB R1, R2, R3 R1 := R2 ± R3 1 MUL R1, R2, R3 R1 := R2 R3 2 DIV R1, R2, R3 R1 := R2 / R3 4 LOAD R1, imm(r2) R1 := MEM(R2 + imm) 1 STORE imm(r2), R1 MEM(R2 + imm) := R1 2 1 Ζητείται ο χρονοπρογραμματισμός ASAP για τους υπολογισμούς Q = (A B) (C/D) και Y = (B C) (D E) ή 2 Ζητείται ο ακολουθιακός/asap χρονοπρογραμματισμός του εξής κώδικα LOAD R1, C LOAD R2, D LOAD R3, B LOAD R4, A DIV R5, R1, R2 MUL R6, R3, R4 SUB R5, R6, R5 STORE X, R5 LOAD R5, E MUL R5, R5, R2 SUB R6, R3, R1 SUB R6, R6, R5 STORE Y, R6

27 Ερώτηση κρίσεως/σύνθεσης γνώσεων: Τι είναι ο βελτιστοποιητής χαμηλού επιπέδου; Ο βελτιστοποιητής χαμηλού επιπέδου χρησιμοποιείται ορισμένες φορές για περαιτέρω βελτίωση του τελικού κώδικα Αξιοποιεί ιδιαίτερα χαρακτηριστικά της στοχευόμενης αρχιτεκτονικής Παραδείγματα βελτιστοποιητών χαμηλού επιπέδου Χρονοπρογραμματιστής εντολών (instruction scheduler): τοποθετεί τις εντολές του επεξεργαστή σε χρονοθυρίδες (time-slots) για την παράλληλη εκτέλεσή τους Υπερβελτιστοποιητής (superoptimizer): βελτιστοποιεί περιοχές του τελικού κώδικα με εφαρμογή ωμής δύναμης Βελτιστοποιητής κλειδαρότρυπας (peephole optimizer): επιβάλλει μακρο-αντικαταστάσεις με ή χωρίς συνθήκη, εξετάζοντας κάθε φορά ένα παράθυρο του τελικού κώδικα

28 Δ7: Βελτιστοποιήσεις για εκμετάλλευση της παραλληλίας και ανάδειξη της τοπικότητας Η διαδικασία της βελτιστοποίησης Γενικευμένη δομή βρόχων και πεδίο επανάληψης Loop unswitching, loop reversal Strip mining Loop tiling Loop unrolling Software pipelining και σύγκριση με loop unrolling

29 Ενδεικτικά ϑέματα από τη βελτιστοποίηση βρόχων 1) Να εφαρμοστεί πλακόστρωση βρόχων (loop tiling) για μέγεθος πλακιδίου ίσο με 16. Οι πίνακες a, b έχουν από n στοιχεία. for (i = 0; i < n-1; i++) { b[i] += (a[i] + a[i+1])/2; } β) Να εφαρμοστεί loop unswitching και loop unrolling (με unroll factor u = 4) στο παρακάτω τμήμα κώδικα. Οι πίνακες a, b, x έχουν από 100 στοιχεία. for (i = 0; i < 100; i = i + 1) { if (c > 10) { x[i] = a[i] + b[i]; } else { x[i] = a[i] - b[i]; } }

30 Δ8: Γέννηση τελικού κώδικα για RISC επεξεργαστές Γενικά στοιχεία για την αρχιτεκτονική επεξεργαστή MIPS Γενικό μοντέλο κλήσης υπορουτινών Κλήση υπορουτινών με σύνδεση Αντίστροφη ερμηνεία (reverse engineering, disassembling) προγραμμάτων MIPS-I, MIPS32 Γέννηση ευθύγραμμου κώδικα και κώδικα με φυσικούς βρόχους

31 Κώδικας συμβολομεταφραστή για τον MIPS: Εύρεση μεγαλύτερου στοιχείου πίνακα # a0: address of element mem[0] # a1: value to match prog: add $t0, $zero, $zero # t0 = 0 add $v0, $zero, $zero # v0 = 0 add $v1, $zero, $zero # v1 = 0 loop: sltu $t2, $t0, $a1 # t2 = (t0 < a1) beq $t2, $zero, fin # if (!t2) goto fin lw $t1, 0($a0) # t1 = mem[a0] sltu $t2, $t1, $v0 # t2 = (t1 < v0) UNSIGNED! bne $t2, $zero, skip # if (t2) goto skip add $v0, $t1, $zero # v0 = t1 add $v1, $t0, $zero # v1 = t0 skip: addi $t0, $t0, 1 # t0 = t0 + 1 addi $a0, $a0, 4 # a0 = a0 + 4 j loop # goto loop fin: # $finish Το πρόγραμμα αυτό βρίσκει το μεγαλύτερο στοιχείο σε έναν πίνακα απρόσημων 32-bit ακεραίων και επιστρέφει το στοιχείο αυτό στον καταχωρητή $v0 και τη ϑέση του στον πίνακα στον $v1

Προηγμένα Θέματα Θεωρητικής Πληροφορικής

Προηγμένα Θέματα Θεωρητικής Πληροφορικής Προηγμένα Θέματα Θεωρητικής Πληροφορικής Ανασκόπηση του μαθήματος - Γέννηση τελικού κώδικα για RISC επεξεργαστές Νικόλαος Καββαδίας nkavv@uop.gr 02 Ιουνίου 2010 Σκιαγράφηση της διάλεξης Σύνοψη του μαθήματος

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Προηγμένα Θέματα Θεωρητικής Πληροφορικής.

Σκιαγράφηση της διάλεξης. Προηγμένα Θέματα Θεωρητικής Πληροφορικής. Σκιαγράφηση της διάλεξης Προηγμένα Θέματα Θεωρητικής Πληροφορικής Ανασκόπηση του μαθήματος - Γέννηση τελικού κώδικα για RISC επεξεργαστές Νικόλαος Καββαδίας nkavv@uop.gr Σύνοψη του μαθήματος Ενδεικτικά

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση ενδιάμεσης αναπαράστασης. 10 Νοεμβρίου 2010. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση ενδιάμεσης αναπαράστασης. 10 Νοεμβρίου 2010. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Γέννηση ενδιάμεσης αναπαράστασης Νικόλαος Καββαδίας nkavv@uop.gr 10 Νοεμβρίου 2010 Η έννοια της ενδιάμεσης αναπαράστασης Ενδιάμεση αναπαράσταση (IR: intermediate representation): απλοποιημένη,

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Καταμερισμός καταχωρητών Νικόλαος Καββαδίας nkavv@uop.gr 01 Δεκεμβρίου 2010 Γενικά για τον καταμερισμό καταχωρητών Καταμερισμός καταχωρητών (register allocation): βελτιστοποίηση μεταγλωττιστή

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Χρονοπρογραμματισμός κώδικα και βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Χρονοπρογραμματισμός κώδικα και βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική Μεταγλωττιστές ΙΙ Χρονοπρογραμματισμός κώδικα και βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική Νικόλαος Καββαδίας nkavv@uop.gr 21 Δεκεμβρίου 2010 Βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική

Διαβάστε περισσότερα

8 Βελτιστοποιήσεις για την ανάδειξη της παραλληλίας

8 Βελτιστοποιήσεις για την ανάδειξη της παραλληλίας Αντικείμενο του μαθήματος Προηγμένα Θέματα Θεωρητικής Πληροφορικής Προηγμένα Θέματα Θεωρητικής Πληροφορικής Η οργάνωση του μεταγλωττιστή Νικόλαος Καββαδίας nkavv@uop.gr 10 Μαρτίου 2010 Επιμέρους στόχοι

Διαβάστε περισσότερα

Προηγμένα Θέματα Θεωρητικής Πληροφορικής

Προηγμένα Θέματα Θεωρητικής Πληροφορικής Προηγμένα Θέματα Θεωρητικής Πληροφορικής Η οργάνωση του μεταγλωττιστή Νικόλαος Καββαδίας nkavv@uop.gr 10 Μαρτίου 2010 Αντικείμενο του μαθήματος Προηγμένα Θέματα Θεωρητικής Πληροφορικής Επιμέρους στόχοι

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. Επιλογή κώδικα. 24 Νοεμβρίου Νικόλαος Καββαδίας Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. Επιλογή κώδικα. 24 Νοεμβρίου Νικόλαος Καββαδίας Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Επιλογή κώδικα Νικόλαος Καββαδίας nkavv@uop.gr 24 Νοεμβρίου 2010 Ο γεννήτορας κώδικα Επιθυμητές ιδιότητες του γεννήτορα κώδικα (code generator) Το παραγόμενο πρόγραμμα χαμηλού επιπέδου

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας και ενίσχυση της τοπικότητας

Μεταγλωττιστές ΙΙ. Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας και ενίσχυση της τοπικότητας Μεταγλωττιστές ΙΙ Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας και ενίσχυση της τοπικότητας Νικόλαος Καββαδίας nkavv@uop.gr 22 Δεκεμβρίου 2010 Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας

Διαβάστε περισσότερα

Προηγμένα Θέματα Θεωρητικής Πληροφορικής

Προηγμένα Θέματα Θεωρητικής Πληροφορικής Προηγμένα Θέματα Θεωρητικής Πληροφορικής Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας και ενίσχυση της τοπικότητας (Ι) Νικόλαος Καββαδίας nkavv@uop.gr 19 Μαΐου 2010 Βελτιστοποιήσεις για την εκμετάλλευση

Διαβάστε περισσότερα

Φόρμα Σχεδιασμού Διάλεξης (ημ/α: 17/03/08, έκδοση: 1.0)

Φόρμα Σχεδιασμού Διάλεξης (ημ/α: 17/03/08, έκδοση: 1.0) 1. Κωδικός Μαθήματος: (Εισαγωγή στον Προγραμματισμό) 2. Α/Α Διάλεξης: 1 1. Τίτλος: Εισαγωγή στους υπολογιστές. 2. Μαθησιακοί Στόχοι: Συνοπτική παρουσίαση της εξέλιξης των γλωσσών προγραμματισμού και των

Διαβάστε περισσότερα

Νικόλαος Καββαδίας Μεταγλωττιστές ΙΙ

Νικόλαος Καββαδίας Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Η οργάνωση του μεταγλωττιστή Νικόλαος Καββαδίας nkavv@uop.gr 03 Νοεμβρίου 2010 Αντικείμενο του μαθήματος CST325: Μεταγλωττιστές ΙΙ (1) Επιμέρους στόχοι του μαθήματος Παρουσίαση ϑεμάτων

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

Γέννηση ενδιάμεσης αναπαράστασης. Προηγμένα Θέματα Θεωρητικής Πληροφορικής. Τύποι IR. Άποψη του μεταγλωττιστή από την πλευρά της IR.

Γέννηση ενδιάμεσης αναπαράστασης. Προηγμένα Θέματα Θεωρητικής Πληροφορικής. Τύποι IR. Άποψη του μεταγλωττιστή από την πλευρά της IR. Η έννοια της ενδιάμεσης αναπαράστασης Προηγμένα Θέματα Θεωρητικής Πληροφορικής Γέννηση ενδιάμεσης αναπαράστασης Νικόλαος Καββαδίας nkavv@uop.gr 17 Μαρτίου 2010 Ενδιάμεση αναπαράσταση (IR: intermediate

Διαβάστε περισσότερα

Γενικά για τον καταμερισμό καταχωρητών. Προηγμένα Θέματα Θεωρητικής Πληροφορικής. Εναλλακτικές προσεγγίσεις στο πρόβλημα του

Γενικά για τον καταμερισμό καταχωρητών. Προηγμένα Θέματα Θεωρητικής Πληροφορικής. Εναλλακτικές προσεγγίσεις στο πρόβλημα του Γενικά για τον καταμερισμό καταχωρητών Προηγμένα Θέματα Θεωρητικής Πληροφορικής Καταμερισμός καταχωρητών Νικόλαος Καββαδίας nkavv@uop.gr 1 Απριλίου 010 Καταμερισμός καταχωρητών (register allocation): βελτιστοποίηση

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος. Περιεχόμενο εξετάσεων

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος. Περιεχόμενο εξετάσεων Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Θέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας nkavv@uop.gr 08 Ιουνίου 2011 Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος Εξεταστική περίοδος Ιουνίου-Ιουλίου

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Επαναστοχεύσιμοι μεταγλωττιστές. 19 Ιανουαρίου 2011. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Επαναστοχεύσιμοι μεταγλωττιστές. 19 Ιανουαρίου 2011. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Επαναστοχεύσιμοι μεταγλωττιστές Νικόλαος Καββαδίας nkavv@uop.gr 19 Ιανουαρίου 2011 Σκιαγράφηση της διάλεξης Εισαγωγή στα ενσωματωμένα συστήματα (embedded systems) Η χρησιμότητα των επαναστοχεύσιμων

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση τελικού κώδικα για RISC επεξεργαστές. 12 Ιανουαρίου 2011. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση τελικού κώδικα για RISC επεξεργαστές. 12 Ιανουαρίου 2011. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Γέννηση τελικού κώδικα για RISC επεξεργαστές Νικόλαος Καββαδίας nkavv@uop.gr 12 Ιανουαρίου 2011 Σκιαγράφηση της διάλεξης Η αρχιτεκτονική επεξεργαστή MIPS Γέννηση τελικού κώδικα για τον

Διαβάστε περισσότερα

Προηγμένα Θέματα Θεωρητικής Πληροφορικής

Προηγμένα Θέματα Θεωρητικής Πληροφορικής Προηγμένα Θέματα Θεωρητικής Πληροφορικής Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας και ενίσχυση της τοπικότητας (ΙΙ) Νικόλαος Καββαδίας nkavv@uop.gr 26 Μαΐου 2010 Μετασχηματισμοί βρόχου (loop

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. Βελτιστοποιήσεις ανεξάρτητες από την αρχιτεκτονική. Νικόλαος Καββαδίας Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. Βελτιστοποιήσεις ανεξάρτητες από την αρχιτεκτονική. Νικόλαος Καββαδίας Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Βελτιστοποιήσεις ανεξάρτητες από την αρχιτεκτονική Νικόλαος Καββαδίας nkavv@uop.gr 08 Δεκεμβρίου 2010 Η έννοια της βελτιστοποίησης προγράμματος Βελτιστοποίηση προγράμματος (program optimization):

Διαβάστε περισσότερα

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα αλήθειας δύο προτάσεων

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

nkavv@physics.auth.gr nkavv@uop.gr

nkavv@physics.auth.gr nkavv@uop.gr Γλώσσες Περιγραφής Υλικού Μη προγραμματιζόμενοι επεξεργαστές Νικόλαος Καββαδίας nkavv@physics.auth.gr nkavv@uop.gr 26 Μαΐου 2009 Σκιαγράφηση της διάλεξης Μη προγραμματιζόμενοι επεξεργαστές Υλοποίηση με

Διαβάστε περισσότερα

Προηγμένα Θέματα Θεωρητικής Πληροφορικής

Προηγμένα Θέματα Θεωρητικής Πληροφορικής Προηγμένα Θέματα Θεωρητικής Πληροφορικής Βελτιστοποιήσεις ανεξάρτητες από την αρχιτεκτονική Νικόλαος Καββαδίας nkavv@uop.gr 28 Απριλίου 2010 Η έννοια της βελτιστοποίησης προγράμματος Βελτιστοποίηση προγράμματος

Διαβάστε περισσότερα

Η έννοια της βελτιστοποίησης προγράμματος. Προηγμένα Θέματα Θεωρητικής Πληροφορικής

Η έννοια της βελτιστοποίησης προγράμματος. Προηγμένα Θέματα Θεωρητικής Πληροφορικής Η έννοια της βελτιστοποίησης προγράμματος Προηγμένα Θέματα Θεωρητικής Πληροφορικής Βελτιστοποιήσεις ανεξάρτητες από την αρχιτεκτονική Νικόλαος Καββαδίας nkavv@uop.gr 28 Απριλίου 2010 Βελτιστοποίηση προγράμματος

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. Γενικά χαρακτηριστικά του επεξεργαστή MU0. nkavv@uop.gr. Προγραμματιζόμενοι επεξεργαστές

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. Γενικά χαρακτηριστικά του επεξεργαστή MU0. nkavv@uop.gr. Προγραμματιζόμενοι επεξεργαστές Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Προγραμματιζόμενοι επεξεργαστές Νικόλαος Καββαδίας nkavv@uop.gr Προγραμματιζόμενοι επεξεργαστές Ρεαλιστικό παράδειγμα: ο επεξεργαστής MU0 (MicroProcessor

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων κώδικας

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων κώδικας Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Μοντελοποίηση συνδυαστικών κυκλωμάτων Νικόλαος Καββαδίας nkavv@uop.gr 06 Μαρτίου 2012 Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων

Διαβάστε περισσότερα

Γλώσσες Περιγραφής Υλικού Ι

Γλώσσες Περιγραφής Υλικού Ι Γλώσσες Περιγραφής Υλικού Ι Θέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας nkavv@uop.gr 29 Μαΐου 2012 Σκιαγράφηση της διάλεξης Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος Εξεταστική περίοδος Ιουνίου-Ιουλίου

Διαβάστε περισσότερα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής. Ακαδημαϊκό Έτος ΠΑΡΑΔΟΤΕΟ: Έκθεση Προόδου Υλοποίησης του Μαθήματος «Εισαγωγή στον Προγραμματισμό»

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής. Ακαδημαϊκό Έτος ΠΑΡΑΔΟΤΕΟ: Έκθεση Προόδου Υλοποίησης του Μαθήματος «Εισαγωγή στον Προγραμματισμό» Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ακαδημαϊκό Έτος 2007 2008 ΠΑΡΑΔΟΤΕΟ: Έκθεση Προόδου Υλοποίησης του Μαθήματος «Εισαγωγή στον Προγραμματισμό» Διδάσκοντες: Θεόδωρος Ανδρόνικος & Δημήτριος Θεοτόκης Περιεχόμενα

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ

ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1α ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ Οι επιστήμονες ταξινομούν τους οργανισμούς σε ομάδες ανάλογα με τα κοινά τους χαρακτηριστικά. Τα πρώτα συστήματα ταξινόμησης βασιζόταν αποκλειστικά στα μορφολογικά

Διαβάστε περισσότερα

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016 Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

Σχεδίαση Ψηφιακών Κυκλωμάτων

Σχεδίαση Ψηφιακών Κυκλωμάτων Σχεδίαση Ψηφιακών Κυκλωμάτων Ανασκόπηση του μαθήματος και ϑέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας nkavv@uop.gr 26 Ιανουαρίου 2011 Σκιαγράφηση της διάλεξης Αναδρομή στο περιεχόμενο του μαθήματος Ενδεικτικά

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

Φόρμα Σχεδιασμού Διάλεξης (ημ/α: 17/03/08, έκδοση: 1.0)

Φόρμα Σχεδιασμού Διάλεξης (ημ/α: 17/03/08, έκδοση: 1.0) 2. Α/Α Διάλεξης: 1 1. Τίτλος: Εισαγωγή στο Λογικό Προγραμματισμό. 2. Μαθησιακοί Στόχοι: Εισαγωγή στις έννοιες του διαδικαστικού και του δηλωτικού προγραμματισμού. 3. Θέματα που καλύπτει: Εισαγωγή στις

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Σχεδίαση Ψηφιακών Κυκλωμάτων.

Σκιαγράφηση της διάλεξης. Σχεδίαση Ψηφιακών Κυκλωμάτων. Σκιαγράφηση της διάλεξης Σχεδίαση Ψηφιακών Κυκλωμάτων Ανασκόπηση του μαθήματος και ϑέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας nkavv@uop.gr Αναδρομή στο περιεχόμενο του μαθήματος εξετάσεων (ϑεωρία και

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

Γλώσσες Περιγραφής Υλικού Ι

Γλώσσες Περιγραφής Υλικού Ι Γλώσσες Περιγραφής Υλικού Ι Μηχανές πεπερασμένων καταστάσεων Νικόλαος Καββαδίας nkavv@uop.gr 24 Απριλίου 2012 Σκιαγράφηση της διάλεξης Μηχανές πεπερασμένων καταστάσεων (FSM: Finite-State Machine) Ορισμός

Διαβάστε περισσότερα

CSE.UOI : Μεταπτυχιακό Μάθημα

CSE.UOI : Μεταπτυχιακό Μάθημα Θέματα Αλγορίθμων Αλγόριθμοι και Εφαρμογές στον Πραγματικό Κόσμο CSE.UOI : Μεταπτυχιακό Μάθημα 10η Ενότητα: Χρονικά Εξελισσόμενες ικτυακές Ροές Σπύρος Κοντογιάννης kntg@cse.ui.gr Τμήμα Μηχανικών Η/Υ &

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. Μηχανές Πεπερασμένων Καταστάσεων: Εισαγωγή και.

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. Μηχανές Πεπερασμένων Καταστάσεων: Εισαγωγή και. Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Μηχανές πεπερασμένων καταστάσεων Νικόλαος Καββαδίας nkavv@uop.gr 24 Απριλίου 2012 Μηχανές πεπερασμένων καταστάσεων (FSM: Finite-State Machine) Ορισμός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.

Διαβάστε περισσότερα

Σχεδίαση Ψηφιακών Κυκλωμάτων

Σχεδίαση Ψηφιακών Κυκλωμάτων Σχεδίαση Ψηφιακών Κυκλωμάτων Συνδυαστική και ακολουθιακή λογική Νικόλαος Καββαδίας nkavv@uop.gr 10 Νοεμβρίου 2010 Σκιαγράφηση της διάλεξης Αρχές σχεδίασης συνδυαστικών κυκλωμάτων CMOS Λογικές πύλες και

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Σχεδίαση Ψηφιακών Κυκλωμάτων. Ορισμοί για τις χρονικές καθυστερήσεις διάδοσης. Συνδυαστική και ακολουθιακή λογική

Σκιαγράφηση της διάλεξης. Σχεδίαση Ψηφιακών Κυκλωμάτων. Ορισμοί για τις χρονικές καθυστερήσεις διάδοσης. Συνδυαστική και ακολουθιακή λογική Σκιαγράφηση της διάλεξης Σχεδίαση Ψηφιακών Κυκλωμάτων Συνδυαστική και ακολουθιακή λογική Νικόλαος Καββαδίας nkavv@uop.gr Αρχές σχεδίασης συνδυαστικών κυκλωμάτων CMOS Λογικές πύλες και βασικά συνδυαστικά

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

Αναγνώριση Προτύπων 1

Αναγνώριση Προτύπων 1 Αναγνώριση Προτύπων 1 Σημερινό Μάθημα Βασικό σύστημα αναγνώρισης προτύπων Προβλήματα Πρόβλεψης Χαρακτηριστικά και Πρότυπα Ταξινομητές Classifiers Προσεγγίσεις Αναγνώρισης Προτύπων Κύκλος σχεδίασης Συστήματος

Διαβάστε περισσότερα

Βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική. Προηγμένα Θέματα Θεωρητικής Πληροφορικής

Βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική. Προηγμένα Θέματα Θεωρητικής Πληροφορικής Βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική Προηγμένα Θέματα Θεωρητικής Πληροφορικής Χρονοπρογραμματισμός κώδικα και βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική Νικόλαος Καββαδίας nkvv@uop.r

Διαβάστε περισσότερα

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή: Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής. Ακαδημαϊκό Έτος ΠΑΡΑΔΟΤΕΟ: Έκθεση Προόδου Υλοποίησης του Μαθήματος «Λογικός Προγραμματισμός»

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής. Ακαδημαϊκό Έτος ΠΑΡΑΔΟΤΕΟ: Έκθεση Προόδου Υλοποίησης του Μαθήματος «Λογικός Προγραμματισμός» Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ακαδημαϊκό Έτος 2007 2008 ΠΑΡΑΔΟΤΕΟ: Έκθεση Προόδου Υλοποίησης του Μαθήματος «Λογικός Προγραμματισμός» Διδάσκοντες: Θεόδωρος Ανδρόνικος & Μιχαήλ Στεφανιδάκης Περιεχόμενα

Διαβάστε περισσότερα

Προηγμένα Θέματα Θεωρητικής Πληροφορικής

Προηγμένα Θέματα Θεωρητικής Πληροφορικής Προηγμένα Θέματα Θεωρητικής Πληροφορικής Επαναστοχεύσιμοι μεταγλωττιστές Νικόλαος Καββαδίας nkavv@uop.gr 15 Ιουνίου 2010 Σκιαγράφηση της διάλεξης Εισαγωγή στα ενσωματωμένα συστήματα (embedded systems)

Διαβάστε περισσότερα

Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 2

Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 2 Τμήμα Μησανικών Πληποφοπικήρ, Τ.Ε.Ι. Ηπείπος Ακαδημαϊκό Έτορ 2016-2017, 6 ο Εξάμηνο Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 2 Διδάςκων Τςιακμάκθσ Κυριάκοσ, Phd MSc in Electronic Physics (Radioelectrology)

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

Συναρτήσεις ΙΙ. Σημερινό μάθημα

Συναρτήσεις ΙΙ. Σημερινό μάθημα Συναρτήσεις ΙΙ 1 Σημερινό μάθημα Εμβέλεια Εμφωλίαση Τύπος αποθήκευσης Συναρτήσεις ως παράμετροι Πέρασμα με τιμή Πολλαπλά return Προκαθορισμένοι ρ Παράμετροι ρ Υπερφόρτωση συναρτήσεων Inline συναρτήσεις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές Ι: Εισαγωγή στη γλώσσα

Ηλεκτρονικοί Υπολογιστές Ι: Εισαγωγή στη γλώσσα Τ Ε Τ Υ Π Κ Ηλεκτρονικοί Υπολογιστές Ι: Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95 Σημειώσεις Διαλέξεων Σ. Σ Ηράκλειο Σεπτέμβριος 2014 Copyright c 2006 2014 Σ. Σταματιάδης, (stamatis@materials.uoc.gr)

Διαβάστε περισσότερα

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης Συγκέντρωση Κίνησης 6.1. Εισαγωγή Σε ένα οπτικό WDM δίκτυο, οι κόμβοι κορμού επικοινωνούν μεταξύ τους και ανταλλάσουν πληροφορία μέσω των lightpaths. Ένα WDM δίκτυο κορμού είναι υπεύθυνο για την εγκατάσταση

Διαβάστε περισσότερα

Η Πληροφορική στο Δημοτικό Διδακτικές Προσεγγίσεις Αδάμ Κ. Αγγελής Παιδαγωγικό Ινστιτούτο

Η Πληροφορική στο Δημοτικό Διδακτικές Προσεγγίσεις Αδάμ Κ. Αγγελής Παιδαγωγικό Ινστιτούτο Η Πληροφορική στο Δημοτικό Διδακτικές Προσεγγίσεις Αδάμ Κ. Αγγελής Παιδαγωγικό Ινστιτούτο Α) Το γενικό πλαίσιο.ε.π.π.σ. και Α.Π.Σ. Β) Ο Υπολογιστής στην τάξη Γ) Ενδεικτικές ραστηριότητες Α) Το γενικό πλαίσιο.ε.π.π.σ.

Διαβάστε περισσότερα

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις» ( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε

Διαβάστε περισσότερα

«Εξατομικεύοντας την επιλογή των πόρων των ψηφιακών βιβλιοθηκών για την υποστήριξη της σκόπιμης μάθησης» Άννα Μαρία Ολένογλου

«Εξατομικεύοντας την επιλογή των πόρων των ψηφιακών βιβλιοθηκών για την υποστήριξη της σκόπιμης μάθησης» Άννα Μαρία Ολένογλου ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΥΠΗΡΕΣΙΕΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΕ ΨΗΦΙΑΚΌ ΠΕΡΙΒΑΛΛΟΝ Εργασία στο μάθημα «Ψηφιακές Βιβλιοθήκες» Παρουσίαση του άρθρου (ECDL, 2008, LNCS,

Διαβάστε περισσότερα

Γλώσσες Περιγραφής Υλικού Ι

Γλώσσες Περιγραφής Υλικού Ι Γλώσσες Περιγραφής Υλικού Ι Μοντελοποίηση συνδυαστικών κυκλωμάτων Νικόλαος Καββαδίας nkavv@uop.gr 06 Μαρτίου 2012 Σκιαγράφηση της διάλεξης Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων

Διαβάστε περισσότερα

www.cslab.ece.ntua.gr

www.cslab.ece.ntua.gr Ε ό Μ ό Π ί Σ ή Η ό Μ ώ Μ ώ Η/Υ Τ έ Τ ί Π ή Υ ώ Εργαστήριο Υπολογιστικών Συστημάτων www.cslab.ece.ntua.gr Διπλωματική εργασία Συγκριτική μελέτη μεθόδων αποθήκευσης αραιών πινάκων σε μπλοκ για την βελτιστοποίηση

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Προηγμένα Θέματα Θεωρητικής Πληροφορικής

Σκιαγράφηση της διάλεξης. Προηγμένα Θέματα Θεωρητικής Πληροφορικής Σκιαγράφηση της διάλεξης Προηγμένα Θέματα Θεωρητικής Πληροφορικής Επαναστοχεύσιμοι μεταγλωττιστές Νικόλαος Καββαδίας nkavv@uop.gr 15 Ιουνίου 2010 Εισαγωγή στα ενσωματωμένα συστήματα (embedded systems)

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Η οργάνωση ενός μη-προγραμματιζόμενου επεξεργαστή (1) Μη προγραμματιζόμενοι επεξεργαστές

Σκιαγράφηση της διάλεξης. Η οργάνωση ενός μη-προγραμματιζόμενου επεξεργαστή (1)  Μη προγραμματιζόμενοι επεξεργαστές Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Μη προγραμματιζόμενοι επεξεργαστές Νικόλαος Καββαδίας nkavv@physics.auth.gr nkavv@uop.gr 26 Μαΐου 2009 Μη προγραμματιζόμενοι επεξεργαστές Υλοποίηση με

Διαβάστε περισσότερα

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Μηχανές Πεπερασμένων Καταστάσεων: Εισαγωγή και.

Σκιαγράφηση της διάλεξης. Μηχανές Πεπερασμένων Καταστάσεων: Εισαγωγή και. Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Μηχανές πεπερασμένων καταστάσεων Νικόλαος Καββαδίας nkavv@physics.auth.gr, nkavv@uop.gr 12 Μαΐου 2009 Μηχανές πεπερασμένων καταστάσεων (FSM: Finite-State

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

Γλώσσες Περιγραφής Υλικού Μηχανές πεπερασμένων καταστάσεων Νικόλαος Καββαδίας nkavv@physics.auth.gr, nkavv@uop.gr 12 Μαΐου 2009 Σκιαγράφηση της διάλεξης Μηχανές πεπερασμένων καταστάσεων (FSM: Finite-State

Διαβάστε περισσότερα

Συναρτήσεις & Κλάσεις

Συναρτήσεις & Κλάσεις Συναρτήσεις & Κλάσεις Overloading class member συναρτήσεις/1 #include typedef unsigned short int USHORT; enum BOOL { FALSE, TRUE}; class Rectangle { public: Rectangle(USHORT width, USHORT

Διαβάστε περισσότερα

Μεγέθη ταλάντωσης Το απλό εκκρεμές

Μεγέθη ταλάντωσης Το απλό εκκρεμές Μεγέθη ταλάντωσης Το απλό εκκρεμές 1.Σκοποί: Οι μαθητές Να κατανοήσουν τις έννοιες της περιοδικής κίνησης και της ταλάντωσης Να κατανοήσουν ότι η περιοδική κίνηση δεν είναι ομαλή Να γνωρίσουν τα μεγέθη

Διαβάστε περισσότερα

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών 1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε

Διαβάστε περισσότερα

Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95

Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95 Τ Ε Τ Υ Π Κ Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95 Σημειώσεις Διαλέξεων Σ. Σ Ηράκλειο Φεβρουάριος 2015 Copyright c 2006 2015 Σ. Σταματιάδης, (stamatis@materials.uoc.gr) Η στοιχειοθεσία έγινε από

Διαβάστε περισσότερα

Αντικειμενοστραφής. Προγραμματισμού

Αντικειμενοστραφής. Προγραμματισμού Αντικειμενοστραφής προγραμματισμός Σημερινό μάθημα Μειονεκτήματα Δομημένου Προγραμματισμού Αντικειμενοστραφής προγραμματισμός Ορισμοί Κλάσεις Αντικείμεναμ Χαρακτηριστικά ΑΠ C++ Class 1 Δομημένος Προγραμματισμός

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming)

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 1 Πανεπιστήμιο Κύπρου Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής ΜΜΚ 452: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 2 Εισαγωγή: Η

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. Διαφορές μεταξύ των περιγραφών συνδυαστικών και ακολουθιακών κυκλωμάτων

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. Διαφορές μεταξύ των περιγραφών συνδυαστικών και ακολουθιακών κυκλωμάτων Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Μοντελοποίηση ακολουθιακών κυκλωμάτων Νικόλαος Καββαδίας nkavv@uop.gr 13 Μαρτίου 2012 Στοιχεία ακολουθιακής σχεδίασης με Verilog HDL Λίστα ευαισθησίας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

Α. ΓΙΑ ΟΛΟΥΣ ΤΟΥΣ ΜΑΘΗΤΕΣ ΘΡΗΣΚΕΥΤΙΚΑ. ΙΣΤΟΡΙΑ (Γενικής Παιδείας) ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ (Γενικής Παιδείας) ΛΟΓΟΤΕΧΝΙΑ (Γενικής Παιδείας)

Α. ΓΙΑ ΟΛΟΥΣ ΤΟΥΣ ΜΑΘΗΤΕΣ ΘΡΗΣΚΕΥΤΙΚΑ. ΙΣΤΟΡΙΑ (Γενικής Παιδείας) ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ (Γενικής Παιδείας) ΛΟΓΟΤΕΧΝΙΑ (Γενικής Παιδείας) 2014 15 1 Α. ΓΙΑ ΟΛΟΥΣ ΤΟΥΣ ΜΑΘΗΤΕΣ ΘΡΗΣΚΕΥΤΙΚΑ Διδακτικές ενότητες: 1 6, 10, 11, 12, 15, 16. ΙΣΤΟΡΙΑ (Γενικής Παιδείας) ΚΕΦΑΛΑΙΟ Α Ενότητες : 1, 2, 3 (εκτός από : Επανάσταση στις Ηγεμονίες, Εδραίωση της

Διαβάστε περισσότερα

Ολοκληρωμένη Χωρική Ανάπτυξη. Ειδική Υπηρεσία Στρατηγικής, Σχεδιασμού Και Αξιολόγησης (ΕΥΣΣΑ) Μονάδα Α Στρατηγικής και Παρακολούθησης Πολιτικών

Ολοκληρωμένη Χωρική Ανάπτυξη. Ειδική Υπηρεσία Στρατηγικής, Σχεδιασμού Και Αξιολόγησης (ΕΥΣΣΑ) Μονάδα Α Στρατηγικής και Παρακολούθησης Πολιτικών Ολοκληρωμένη Χωρική Ανάπτυξη Ειδική Υπηρεσία Στρατηγικής, Σχεδιασμού Και Αξιολόγησης (ΕΥΣΣΑ) Μονάδα Α Στρατηγικής και Παρακολούθησης Πολιτικών Ξάνθη, 12 Μαΐου 2015 Χωρική Συνοχή σύνολο αρχών για την αρμονική,

Διαβάστε περισσότερα

Επιμέλεια σύνταξης απαντήσεων: Μαρία Πέτρα ΑΠΑΝΤΗΣΕΙΣ

Επιμέλεια σύνταξης απαντήσεων: Μαρία Πέτρα ΑΠΑΝΤΗΣΕΙΣ Κλάδος: ΠΕ 60 ΝΗΠΙΑΓΩΓΩΝ ΕΞΕΤΑΣΗ ΣΤΗ ΔΕΥΤΕΡΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Ειδική Διδακτική και Παιδαγωγικά Γενική Διδακτική) Κυριακή 1-2-2009 ΕΡΩΤΗΜΑ 2ο: Την τελευταία περίπου πενταετία εφαρμόζεται στα νηπιαγωγεία

Διαβάστε περισσότερα

Εφαρμογές στην κίνηση Brown

Εφαρμογές στην κίνηση Brown 13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή. ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται

Διαβάστε περισσότερα

Περιγραφή Περιγράμματος

Περιγραφή Περιγράμματος Περιγραφή Περιγράμματος Σήμερα! Περιγραφή Περιγράμματος Κώδικας Αλύσσου (chain code) Πολυγωνική γραμμή Υπογραφή (signature) περιγράμματος Μετασχηματισμός Fourier περιγράμματος 1 Περιγραφή Περιγράμματος

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Ανάθεση σε VARIABLE. Ανάθεση σε SIGNAL. identifier := expression; Συντρέχων και ακολουθιακός κώδικας

Σκιαγράφηση της διάλεξης. Ανάθεση σε VARIABLE. Ανάθεση σε SIGNAL. identifier := expression; Συντρέχων και ακολουθιακός κώδικας Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Δομές ακολουθιακού και συντρέχοντος κώδικα Νικόλαος Καββαδίας nkavv@physics.auth.gr 24 Μαρτίου 2009 Συντρέχων και ακολουθιακός κώδικας Ανάθεση σε ΜΕΤΑΒΛΗΤΗ

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ : ΕΞΙ

Διαβάστε περισσότερα

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών

Διαβάστε περισσότερα

Επιχειρησιακή Ερευνα Ι

Επιχειρησιακή Ερευνα Ι Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.

Διαβάστε περισσότερα

ΠΡΟΣΕΓΓΙΣΤΙΚΑ ΣΧΗΜΑΤΑ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΔΡΟΜΟΛΟΓΗΣΗΣ

ΠΡΟΣΕΓΓΙΣΤΙΚΑ ΣΧΗΜΑΤΑ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΔΡΟΜΟΛΟΓΗΣΗΣ Μ Π Σ Λ Θ Α Υ m l ΠΡΟΣΕΓΓΙΣΤΙΚΑ ΣΧΗΜΑΤΑ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΔΡΟΜΟΛΟΓΗΣΗΣ Δ Ε Γεώργιος Ζώης Επιβλέπων: Σταύρος Γ. Κολλιόπουλος, Επ. Καθηγητής, Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Ε.Κ.Π.Α. Αθήνα, Μάρτιος

Διαβάστε περισσότερα