Μεταγλωττιστές ΙΙ. 26 Ιανουαρίου Νικόλαος Καββαδίας Μεταγλωττιστές ΙΙ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μεταγλωττιστές ΙΙ. nkavv@uop.gr. 26 Ιανουαρίου 2011. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ"

Transcript

1 Μεταγλωττιστές ΙΙ Ανασκόπηση του μαθήματος και ϑέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας 26 Ιανουαρίου 2011

2 Σκιαγράφηση της διάλεξης Παραλειπόμενα Αναδρομή στο περιεχόμενο του μαθήματος Ενδεικτικά ϑέματα εξετάσεων (ϑεωρία και ασκήσεις) Θέματα για πρακτική εξάσκηση (ασκήσεις) Άλλα ϑέματα (κρίσεως και σύνθεσης)

3 Η έννοια της μεταγλώττισης και η δομή του μεταγλωττιστή Μετάφραση από μία πηγαία γλώσσα η οποία διέπεται από γραμματική σε κάποια τελική γλώσσα στο ίδιο ή διαφορετικό επίπεδο αφαίρεσης compiler: το λογισμικό που επιτελεί τη μετάφραση προγραμμάτων σε γλώσσα προγραμματισμού υψηλού επιπέδου (HLL) στο επίπεδο του κώδικα μιας πραγματικής ή εικονικής μηχανής Η διαδικασία της μεταγλώττισης μπορεί να χωριστεί στη φάση της ανάλυσης και στη φάση της σύνθεσης ΑΝΑΛΥΣΗ: αποδόμηση και κατανόηση του πηγαίου προγράμματος ΣΥΝΘΕΣΗ: κατασκευή του αποτελέσματος στην τελική γλώσσα διατηρώντας σημασιολογική ισοδυναμία με το πηγαίο πρόγραμμα Οι πρακτικοί μεταγλωττιστές αποτελούνται από πολλά διαδοχικά τμήματα (περάσματα)

4 Γενική ορολογία από την ανάπτυξη μεταγλωττιστών (Δ. Σπινέλλης) Κειμενογράφος/Διορθωτής (Editor): Επιτρέπει τη συγγραφή και την αλλαγή του προγράμματος Προεπεξεργαστής (Preprocessor): Επεξεργάζεται το πρόγραμμα εκτελώντας απλούς συμβολικούς μετασχηματισμούς και παράγει ένα ισοδύναμο πρόγραμμα (αφορά τις C, C++, Fortran) Συμβολομεταφραστής (Assembler): Μετατρέπει τη συμβολική γλώσσα του επεξεργαστή σε γλώσσα μηχανής Μεταγλωττιστής (Compiler): Μεταφράζει μια γλώσσα υψηλού επιπέδου σε γλώσσα επιπέδου μηχανής Διερμηνευτής (Interpreter): Εκτελεί άμεσα ένα πρόγραμμα σε γλώσσα υψηλού επιπέδου Συνδέτης (Linker): Συρράφει τμήματα ενός προγράμματος που έχουν μεταγλωττιστεί ξεχωριστά σε ένα ενιαίο πρόγραμμα Φορτωτής (Loader): Φορτώνει το πρόγραμμα στη μνήμη του επεξεργαστή διορθώνοντας αναφορές σε ϑέσεις μνήμης εντολών και δεδομένων του προγράμματος Αποσφαλματωτής (Debugger): Επιτρέπει την εκτέλεση του προγράμματος βήμα-βήμα με σκοπό την ανίχνευση λαθών που μπορεί να περιέχει το πρόγραμμα

5 Η εργαλειοθήκη του σχεδιαστή μεταγλωττιστών Κειμενογράφος/Διορθωτής: vi, emacs, Geany, Context, Prism Editor, Notepad-++ Λεκτική/συντακτική ανάλυση: lex+yacc, flex+bison, ANTLR (πρώην PCCTS), GOLD Parser Builder Συμβολομεταφραστής-Συνδέτης-Αποσυμβολομεταφραστής: binutils (as, ld, objdump) Μεταγλωττιστής (Compiler): GCC, LCC, LLVM, COINS, Phoenix, PCC, Trimaran, SUIF/Machine-SUIF Πρότυπη βιβλιοθήκη της C: glibc, newlib, uclibc, dietlibc Αποσφαλματωτής (Debugger): GDB Γεννήτορες γεννητόρων κώδικα: BURG, IBURG, LBURG, OLIVE Οπτικοποίηση γράφων: Graphviz, VCG Άλλα εργαλεία: sparse, Aha!, superopt, copt

6 Τύποι IR Η εξαγωγή της IR (ενδιάμεση αναπαράσταση) είναι το αποτέλεσμα της λεκτικής, συντακτικής και σημασιολογικής ανάλυσης του πηγαίου προγράμματος Επίπεδη διαμόρφωση σε μορφή εντολών: κώδικας τριών διευθύνσεων (Three-Address Code, συχνά 3AC ή TAC) Απλή δομή, κατάλληλη για βελτιστοποιήσεις Διαμόρφωση τύπου γράφου: Γράφος Ροής Ελέγχου-Δεδομένων (CDFG: Control-Data Flow Graph) Περισσότερο αποκαλυπτική για τα χαρακτηριστικά του πηγαίου προγράμματος, κατάλληλη για γέννηση κώδικα

7 Σύνοψη του μαθήματος 1 Η οργάνωση του δομημένου μεταγλωττιστή 2 Γέννηση ενδιάμεσης αναπαράστασης 3 Επιλογή κώδικα 4 Καταμερισμός καταχωρητών 5 Βελτιστοποιήσεις ανεξάρτητες από την αρχιτεκτονική 6 Χρονοπρογραμματισμός κώδικα και βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική 7 Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας και ανάδειξη της τοπικότητας 8 Γέννηση τελικού κώδικα 9 Επαναστοχεύσιμοι μεταγλωττιστές

8 Δ1: Οργάνωση του μεταγλωττιστή Στοιχεία από το διαδικαστικό προγραμματισμό (διαγράμματα ροής, ANSI C) Παρουσίαση της οργάνωσης του δομημένου μεταγλωττιστή Η χρησιμότητα της ενδιάμεσης αναπαράστασης Πρακτικοί μεταγλωττιστές Ενδεικτικά ϑέματα 1) Να δοθεί το σχηματικό διάγραμμα του τυπικού σχεδιασμού ενός μεταγλωττιστή, να ονομαστεί κάθε επιμέρους τμήμα του και να δοθεί σύντομη περιγραφή της λειτουργίας του. 2) Ποια η λειτουργία του πίνακα συμβόλων (σύντομα); 3) Ποια τα πλεονεκτήματα της χρήσης ενδιάμεσης αναπαράστασης στο σχεδιασμό ενός επαναστοχεύσιμου μεταγλωττιστή; Να δοθεί αριθμητικό παράδειγμα για την περίπτωση μεταγλωττιστή ο οποίος δέχεται τις πηγαίες γλώσσες ANSI C, C++, και Pascal και παράγει κώδικα στις γλώσσες συμβολομεταφραστή για τις αρχιτεκτονικές x86, MIPS, ARM και PowerPC.

9 Δ2: Γέννηση ενδιάμεσης αναπαράστασης Αποδόμηση σύνθετων εκφράσεων της ANSI C Βασικό μπλοκ - αναπαράσταση DAG Κώδικας τριών διευθύνσεων (three address code) Μεταγλώττιση πηγαίου κώδικα σε TAC Γράφοι εξάρτησης δεδομένων CFG και CDFG Ορισμός της SSA Κατασκευή SSA

10 Δ2: Ενδεικτικά ϑέματα 1) Τι είναι η μορφή Στατικής Απλής Ανάθεσης (SSA) και ποια η κύρια ιδιότητά της; 2) Τι είναι ο γράφος ροής ελέγχου (CFG) και τι αναπαριστά; Τι είναι βασικό μπλοκ σε ένα γράφο ροής ελέγχου και ποια τα χαρακτηριστικά του; Δώστε ένα παράδειγμα βασικού μπλοκ (μέχρι 7 εντολές) με κώδικα τριών διευθύνσεων (TAC). 3) Ο παρακάτω ANSI C κώδικας περιγράφει έναν αλγόριθμο υπολογισμού του παραγοντικού (n!) του μη-αρνητικού ακέραιου αριθμού n. Να παραχθεί ο γράφος ροής ελέγχου-δεδομένων (CDFG) για τον αλγόριθμο. if (n == 0) { res = 1; } else { res = 1; for (i = 1; i <= n; i++) { res = res * i; } }

11 Δ2: CFG από δομημένο πηγαίο κώδικα Κώδικας ANSI C extern int f(int); int main(void) { int i; int *a; } for (i = 0; i < 10; i++) { a[i] = f(i); } Το CFG της συνάρτησης main με δηλώσεις C

12 Δ2: Παράδειγμα 1 στην κατασκευή SSA (από την εργασία των Aycock-Horspool) Πηγαίο πρόγραμμα i = 123; j = i * j; do { PRINT(j); if (j > 5) { i = i + 1; } else { break; } } while (i <= 234); BB3: i = i + 1 BB1: i = 123 j = i * j BB2: PRINT(j) t0 = j > 5 T T F BB4: BB5: t1 = i <= 234 F BB6:

13 Αντιπαράθεση non-ssa και SSA IR ως TAC Non-SSA IR BB1: i = 123; j = i * j; BB2: PRINT(j); t0 = j > 5; if (t0) goto BB3; else goto BB4; BB3: i = i + 1; goto BB5; BB4: goto BB6; BB5: t1 = i <= 234; if (t1) goto BB2; else goto BB6; BB6: SSA IR BB1: i1 = 123; j1 = i1 * j0; BB2: i2 = phi(i1, i4); PRINT(j1); t0 = j1 > 5; if (t0) goto BB3; else goto BB4; BB3: i4 = i2 + 1; goto BB5; BB4: goto BB6; BB5: t1 = i4 <= 234; if (t1) goto BB2; else goto BB5; BB6: i7 = phi(i4, i2);

14 Αντιπαράθεση non-ssa και SSA IR ως CFG Non-SSA CFG SSA CFG BB1: i = 123 j = i * j BB2: PRINT(j) t0 = j > 5 T F BB1: i0 = j0 = i1 = 123 j1 = i1 * j0 BB2: i2 = phi(i1, i4) PRINT(j1) t0 = j1 > 5 BB3: i = i + 1 T T F BB4: BB3: i4 = i2 + 1 T BB4: BB5: t1 = i <= 234 BB5: t1 = i4 <= 234 BB6: F F BB6: i7 = phi(i4, i2)

15 Προτεινόμενα ϑέματα στην κατασκευή SSA (για εξάσκηση) Ακολουθία Fibonacci BB0: x = n; f0 = 0; f1 = 1; res = f0; if (x <= 0) {goto BB4;} else {goto BB1;} BB1: res = f1; if (x == 1) {goto BB4;} else {goto BB2;} BB2: k = 2; goto BB3; BB3: f = f1 + f0; f0 = f1; f1 = f; res = f; k = k + 1; if (k <= x) {goto BB3;} else {goto BB4;} BB4: Απαρίθμηση πληθυσμού BB1: data = inp; count = 0; goto BB2; BB2: temp = data & 1; count = count + temp; data = data >> 1; if (data == 0) {goto BB3;} else {goto BB2;} BB3:

16 Δ3: Επιλογή κώδικα Η έννοια της κοινής υποεκφράσεως Μη βέλτιστη πλακόστρωση δένδρου ροής δεδομένων για την επιλογή κώδικα Σχεδιασμός AST από κειμενική αναπαράσταση DFT Ενδεικτικά ϑέματα 1) Να περιγραφεί η αρχή λειτουργίας της επιλογής κώδικα με κάλυψη δένδρου. 2) Υπάρχουν τεχνικές οι οποίες επιτυγχάνουν βέλτιστη επίλυση του προβλήματος της κάλυψης δένδρου για την επιλογή κώδικα; Αν ναι, αναφέρετε μία τέτοια τεχνική και ένα λογισμικό εργαλείο το οποίο να την χρησιμοποιεί.

17 Δ4: Καταμερισμός καταχωρητών Διαστήματα ζωής: εξαγωγή από κώδικα TAC Καθολικός καταμερισμός καταχωρητών Χρωματισμός γράφου - Γράφοι παρεμβολής Περιοχές ζωής - η διαφορά τους από τα διαστήματα ζωής Ο αλγόριθμος του Chaitin και πως εφαρμόζεται Ο αλγόριθμος γραμμικής σάρωσης: περιγραφή και εφαρμογή Ενδεικτικά ϑέματα (ϑεωρία) 1) Τι γνωρίζετε για την περιοχή ζωής και για το διάστημα ζωής; Ποιες οι διαφορές τους; 2) Αναλύστε την υπολογιστική πολυπλοκότητα του αλγορίθμου γραμμικής σάρωσης για τον καταμερισμό καταχωρητών.

18 Ενδεικτικά ϑέματα: Καταμερισμός καταχωρητών Να πραγματοποιηθεί καταμερισμός καταχωρητών: α) Με τον αλγόριθμο χρωματισμού γράφου (k = 3) για το γράφο παρεμβολής του σχήματος. β) Με τον αλγόριθμο της γραμμικής σάρωσης για τους χρόνους ζωής (A-F). Ο αριθμός των διαθέσιμων φυσικών καταχωρητών είναι R = 3.

19 Παράδειγμα εξαγωγής διαστημάτων χρόνου ζωής μεταβλητών Βασικό μπλοκ του παραδείγματος 1 b = 1; 2 c = 2; 3 a = b + c; 4 d = a * 2; 5 e = b / 3; 6 return (e - d); Υπολογισμός των διαστημάτων ζωής των μεταβλητών a X X b X X X X X c X X d X X X e X X

20 Θέματα εξάσκησης: Ανάλυση χρόνου ζωής Εστω το παρακάτω CFG. Να δοθούν τα σύνολα ζωντανών μεταβλητών στα σημεία 1 ως 5. Απάντηση i Μεταβλητές που μόνο διαβάζονται είναι ζωντανές πριν το σημείο εισόδου i Ελέγξτε όλες τις διαδρομές

21 Παράδειγμα εφαρμογής του αλγορίθμου γραμμικής σάρωσης για τον καταμερισμό καταχωρητών Εστω οι προσωρινές μεταβλητές A, B, C, D, E και τα αντίστοιχα διαστήματα 1 ως 5 του σχήματος και R = 2 Εναρξη I1 active A R0 A Εναρξη I2 active A, B R1 B Εναρξη I3 active A, B R0 A, R1 B, spill C Εναρξη I4 active B, D R0 D, R1 B, C spilled Εναρξη I5 active D, E R0 D, R1 E, C spilled

22 Δ5: Βελτιστοποιήσεις ανεξάρτητες από την αρχιτεκτονική Ο βελτιστοποιητής στο πλαίσιο του δομημένου μεταγλωττιστή Βασικές διαφορές μεταξύ βελτιστοποιήσεων υψηλού και χαμηλού επιπέδου - Παραδείγματα Η εφαρμογή όλων των βαθμωτών βελτιστοποιήσεων Σχεδιασμός δένδρου κυριαρχίας (όχι βέλτιστος αλγόριθμος) Ενδεικτικά ϑέματα (ϑεωρία) 1) Εφαρμόστε διαδοχικά δίπλωση σταθεράς, διάδοση σταθεράς, αλγεβρικές απλοποιήσεις και εξουδετέρωση κοινής υποεκφράσεως στο παρακάτω τμήμα κώδικα. if (k == 0) { a = ; b = a; c = (b + e) * 1024; d = e + b; } else { x = 9 * a + c / 2; }

23 Δ6: Χρονοπρογραμματισμός κώδικα και βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική Εξαρτήσεις εντολών Αρχές στατικού και δυναμικού χρονοπρογραμματισμού Ο αλγόριθμος ASAP Ο αλγόριθμος χρονοπρογραμματισμού λίστας Ενδεικτικά ϑέματα ϑεωρίας 1) Να αναφέρετε τις αρχές που διέπουν και τα χαρακτηριστικά (ομοιότητες, διαφορές) του στατικού και του δυναμικού χρονοπρογραμματισμού. 2) Τι είναι η εξάρτηση εντολής και τι είναι εξάρτηση δεδομένων; Να αναφερθούν τα είδη εξάρτησης δεδομένων.

24 Χρονοπρογραμματισμός κώδικα (ακολουθιακός ή ASAP) Η σχέση eda = MAX((0.875 x y), x) όπου x = MAX( a, b ) και y = MIN( a, b ) αποτελεί μία προσέγγιση της ευκλείδειας απόστασης στο επίπεδο, η ακριβής τιμή της οποίας δίνεται από την έκφραση a2 + b 2. Ζητείται ο σχεδιασμός αρχικά του γράφου ροής a in1 abs b in2 abs δεδομένων που υπολογίζει τη μεταβλητή eda και στη 3 t1 max t1 t2 t2 min 1 συνέχεια το χρονοπρόγραμμα που προκύπτει με την 3 x y 1 τεχνική ASAP (As Soon As Possible). Εχετε στη διάθεσή shr x shr σας τις εξής μονάδες υλικού: αθροιστές (ADD), t3 αφαιρέτες (SUB), εξαγωγείς απόλυτης τιμής (ABS), x sub t4 εξαγωγείς ελαχίστου (MIN) και μεγίστου (MAX), καθώς t5 και αριστερούς (SHL) και δεξιούς (SHR) λογικούς add ολισθητές κατά σταθερή ποσότητα n. Ολες οι μονάδες t6 υλικού απαιτούν 1 κύκλο καθυστέρησης. max t7 eda

25 Άλλα ϑέματα στο χρονοπρογραμματισμό κώδικα 1) Ζητείται να σχεδιαστεί ο γράφος ροής δεδομένων για τον πολλαπλασιασμό μιας εισόδου x με τις σταθερές 5, 17 και 23. Στη συνέχεια να δοθεί το αντίστοιχο χρονοπρόγραμμα που προκύπτει με ακολουθιακή δρομολόγηση ή με δρομολόγηση ASAP και ο αριθμός των απαιτούμενων κύκλων μηχανής για την εκτέλεσή του. Η μονάδα ϑα διαθέτει τις αντίστοιχες εξόδους u, v, w. Εχετε στη διάθεσή σας τις εξής μονάδες υλικού: αθροιστές (ADD), αφαιρέτες (SUB), και αριστερούς (SHL) και δεξιούς (SHR) λογικούς ολισθητές κατά σταθερή ποσότητα n. Ολες οι μονάδες υλικού απαιτούν 1 κύκλο μηχανής. Σημειώνεται ότι η ολίσθηση κατά n ϑέσεις αριστερά ισοδυναμεί με πολλαπλασιασμό με το 2 n και η ολίσθηση κατά n ϑέσεις δεξιά, με διαίρεση με το 2 n.

26 Ασκήσεις προς επίλυση στο χρονοπρογραμματισμό κώδικα Εστω η υποθετική αρχιτεκτονική RISC: Διαμόρφωση Συμπεριφορά Κύκλοι μηχανής ADD/SUB R1, R2, R3 R1 := R2 ± R3 1 MUL R1, R2, R3 R1 := R2 R3 2 DIV R1, R2, R3 R1 := R2 / R3 4 LOAD R1, imm(r2) R1 := MEM(R2 + imm) 1 STORE imm(r2), R1 MEM(R2 + imm) := R1 2 1 Ζητείται ο χρονοπρογραμματισμός ASAP για τους υπολογισμούς Q = (A B) (C/D) και Y = (B C) (D E) ή 2 Ζητείται ο ακολουθιακός/asap χρονοπρογραμματισμός του εξής κώδικα LOAD R1, C LOAD R2, D LOAD R3, B LOAD R4, A DIV R5, R1, R2 MUL R6, R3, R4 SUB R5, R6, R5 STORE X, R5 LOAD R5, E MUL R5, R5, R2 SUB R6, R3, R1 SUB R6, R6, R5 STORE Y, R6

27 Ερώτηση κρίσεως/σύνθεσης γνώσεων: Τι είναι ο βελτιστοποιητής χαμηλού επιπέδου; Ο βελτιστοποιητής χαμηλού επιπέδου χρησιμοποιείται ορισμένες φορές για περαιτέρω βελτίωση του τελικού κώδικα Αξιοποιεί ιδιαίτερα χαρακτηριστικά της στοχευόμενης αρχιτεκτονικής Παραδείγματα βελτιστοποιητών χαμηλού επιπέδου Χρονοπρογραμματιστής εντολών (instruction scheduler): τοποθετεί τις εντολές του επεξεργαστή σε χρονοθυρίδες (time-slots) για την παράλληλη εκτέλεσή τους Υπερβελτιστοποιητής (superoptimizer): βελτιστοποιεί περιοχές του τελικού κώδικα με εφαρμογή ωμής δύναμης Βελτιστοποιητής κλειδαρότρυπας (peephole optimizer): επιβάλλει μακρο-αντικαταστάσεις με ή χωρίς συνθήκη, εξετάζοντας κάθε φορά ένα παράθυρο του τελικού κώδικα

28 Δ7: Βελτιστοποιήσεις για εκμετάλλευση της παραλληλίας και ανάδειξη της τοπικότητας Η διαδικασία της βελτιστοποίησης Γενικευμένη δομή βρόχων και πεδίο επανάληψης Loop unswitching, loop reversal Strip mining Loop tiling Loop unrolling Software pipelining και σύγκριση με loop unrolling

29 Ενδεικτικά ϑέματα από τη βελτιστοποίηση βρόχων 1) Να εφαρμοστεί πλακόστρωση βρόχων (loop tiling) για μέγεθος πλακιδίου ίσο με 16. Οι πίνακες a, b έχουν από n στοιχεία. for (i = 0; i < n-1; i++) { b[i] += (a[i] + a[i+1])/2; } β) Να εφαρμοστεί loop unswitching και loop unrolling (με unroll factor u = 4) στο παρακάτω τμήμα κώδικα. Οι πίνακες a, b, x έχουν από 100 στοιχεία. for (i = 0; i < 100; i = i + 1) { if (c > 10) { x[i] = a[i] + b[i]; } else { x[i] = a[i] - b[i]; } }

30 Δ8: Γέννηση τελικού κώδικα για RISC επεξεργαστές Γενικά στοιχεία για την αρχιτεκτονική επεξεργαστή MIPS Γενικό μοντέλο κλήσης υπορουτινών Κλήση υπορουτινών με σύνδεση Αντίστροφη ερμηνεία (reverse engineering, disassembling) προγραμμάτων MIPS-I, MIPS32 Γέννηση ευθύγραμμου κώδικα και κώδικα με φυσικούς βρόχους

31 Κώδικας συμβολομεταφραστή για τον MIPS: Εύρεση μεγαλύτερου στοιχείου πίνακα # a0: address of element mem[0] # a1: value to match prog: add $t0, $zero, $zero # t0 = 0 add $v0, $zero, $zero # v0 = 0 add $v1, $zero, $zero # v1 = 0 loop: sltu $t2, $t0, $a1 # t2 = (t0 < a1) beq $t2, $zero, fin # if (!t2) goto fin lw $t1, 0($a0) # t1 = mem[a0] sltu $t2, $t1, $v0 # t2 = (t1 < v0) UNSIGNED! bne $t2, $zero, skip # if (t2) goto skip add $v0, $t1, $zero # v0 = t1 add $v1, $t0, $zero # v1 = t0 skip: addi $t0, $t0, 1 # t0 = t0 + 1 addi $a0, $a0, 4 # a0 = a0 + 4 j loop # goto loop fin: # $finish Το πρόγραμμα αυτό βρίσκει το μεγαλύτερο στοιχείο σε έναν πίνακα απρόσημων 32-bit ακεραίων και επιστρέφει το στοιχείο αυτό στον καταχωρητή $v0 και τη ϑέση του στον πίνακα στον $v1

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση ενδιάμεσης αναπαράστασης. 10 Νοεμβρίου 2010. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση ενδιάμεσης αναπαράστασης. 10 Νοεμβρίου 2010. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Γέννηση ενδιάμεσης αναπαράστασης Νικόλαος Καββαδίας nkavv@uop.gr 10 Νοεμβρίου 2010 Η έννοια της ενδιάμεσης αναπαράστασης Ενδιάμεση αναπαράσταση (IR: intermediate representation): απλοποιημένη,

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Καταμερισμός καταχωρητών Νικόλαος Καββαδίας nkavv@uop.gr 01 Δεκεμβρίου 2010 Γενικά για τον καταμερισμό καταχωρητών Καταμερισμός καταχωρητών (register allocation): βελτιστοποίηση μεταγλωττιστή

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Χρονοπρογραμματισμός κώδικα και βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Χρονοπρογραμματισμός κώδικα και βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική Μεταγλωττιστές ΙΙ Χρονοπρογραμματισμός κώδικα και βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική Νικόλαος Καββαδίας nkavv@uop.gr 21 Δεκεμβρίου 2010 Βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική

Διαβάστε περισσότερα

Φόρμα Σχεδιασμού Διάλεξης (ημ/α: 17/03/08, έκδοση: 1.0)

Φόρμα Σχεδιασμού Διάλεξης (ημ/α: 17/03/08, έκδοση: 1.0) 1. Κωδικός Μαθήματος: (Εισαγωγή στον Προγραμματισμό) 2. Α/Α Διάλεξης: 1 1. Τίτλος: Εισαγωγή στους υπολογιστές. 2. Μαθησιακοί Στόχοι: Συνοπτική παρουσίαση της εξέλιξης των γλωσσών προγραμματισμού και των

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση τελικού κώδικα για RISC επεξεργαστές. 12 Ιανουαρίου 2011. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση τελικού κώδικα για RISC επεξεργαστές. 12 Ιανουαρίου 2011. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Γέννηση τελικού κώδικα για RISC επεξεργαστές Νικόλαος Καββαδίας nkavv@uop.gr 12 Ιανουαρίου 2011 Σκιαγράφηση της διάλεξης Η αρχιτεκτονική επεξεργαστή MIPS Γέννηση τελικού κώδικα για τον

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Επαναστοχεύσιμοι μεταγλωττιστές. 19 Ιανουαρίου 2011. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Επαναστοχεύσιμοι μεταγλωττιστές. 19 Ιανουαρίου 2011. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Επαναστοχεύσιμοι μεταγλωττιστές Νικόλαος Καββαδίας nkavv@uop.gr 19 Ιανουαρίου 2011 Σκιαγράφηση της διάλεξης Εισαγωγή στα ενσωματωμένα συστήματα (embedded systems) Η χρησιμότητα των επαναστοχεύσιμων

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος. Περιεχόμενο εξετάσεων

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος. Περιεχόμενο εξετάσεων Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Θέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας nkavv@uop.gr 08 Ιουνίου 2011 Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος Εξεταστική περίοδος Ιουνίου-Ιουλίου

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

nkavv@physics.auth.gr nkavv@uop.gr

nkavv@physics.auth.gr nkavv@uop.gr Γλώσσες Περιγραφής Υλικού Μη προγραμματιζόμενοι επεξεργαστές Νικόλαος Καββαδίας nkavv@physics.auth.gr nkavv@uop.gr 26 Μαΐου 2009 Σκιαγράφηση της διάλεξης Μη προγραμματιζόμενοι επεξεργαστές Υλοποίηση με

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. Γενικά χαρακτηριστικά του επεξεργαστή MU0. nkavv@uop.gr. Προγραμματιζόμενοι επεξεργαστές

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. Γενικά χαρακτηριστικά του επεξεργαστή MU0. nkavv@uop.gr. Προγραμματιζόμενοι επεξεργαστές Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Προγραμματιζόμενοι επεξεργαστές Νικόλαος Καββαδίας nkavv@uop.gr Προγραμματιζόμενοι επεξεργαστές Ρεαλιστικό παράδειγμα: ο επεξεργαστής MU0 (MicroProcessor

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων κώδικας

Σκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων κώδικας Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Μοντελοποίηση συνδυαστικών κυκλωμάτων Νικόλαος Καββαδίας nkavv@uop.gr 06 Μαρτίου 2012 Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

«Εξατομικεύοντας την επιλογή των πόρων των ψηφιακών βιβλιοθηκών για την υποστήριξη της σκόπιμης μάθησης» Άννα Μαρία Ολένογλου

«Εξατομικεύοντας την επιλογή των πόρων των ψηφιακών βιβλιοθηκών για την υποστήριξη της σκόπιμης μάθησης» Άννα Μαρία Ολένογλου ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΥΠΗΡΕΣΙΕΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΕ ΨΗΦΙΑΚΌ ΠΕΡΙΒΑΛΛΟΝ Εργασία στο μάθημα «Ψηφιακές Βιβλιοθήκες» Παρουσίαση του άρθρου (ECDL, 2008, LNCS,

Διαβάστε περισσότερα

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης Συγκέντρωση Κίνησης 6.1. Εισαγωγή Σε ένα οπτικό WDM δίκτυο, οι κόμβοι κορμού επικοινωνούν μεταξύ τους και ανταλλάσουν πληροφορία μέσω των lightpaths. Ένα WDM δίκτυο κορμού είναι υπεύθυνο για την εγκατάσταση

Διαβάστε περισσότερα

Η Πληροφορική στο Δημοτικό Διδακτικές Προσεγγίσεις Αδάμ Κ. Αγγελής Παιδαγωγικό Ινστιτούτο

Η Πληροφορική στο Δημοτικό Διδακτικές Προσεγγίσεις Αδάμ Κ. Αγγελής Παιδαγωγικό Ινστιτούτο Η Πληροφορική στο Δημοτικό Διδακτικές Προσεγγίσεις Αδάμ Κ. Αγγελής Παιδαγωγικό Ινστιτούτο Α) Το γενικό πλαίσιο.ε.π.π.σ. και Α.Π.Σ. Β) Ο Υπολογιστής στην τάξη Γ) Ενδεικτικές ραστηριότητες Α) Το γενικό πλαίσιο.ε.π.π.σ.

Διαβάστε περισσότερα

Α. ΓΙΑ ΟΛΟΥΣ ΤΟΥΣ ΜΑΘΗΤΕΣ ΘΡΗΣΚΕΥΤΙΚΑ. ΙΣΤΟΡΙΑ (Γενικής Παιδείας) ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ (Γενικής Παιδείας) ΛΟΓΟΤΕΧΝΙΑ (Γενικής Παιδείας)

Α. ΓΙΑ ΟΛΟΥΣ ΤΟΥΣ ΜΑΘΗΤΕΣ ΘΡΗΣΚΕΥΤΙΚΑ. ΙΣΤΟΡΙΑ (Γενικής Παιδείας) ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ (Γενικής Παιδείας) ΛΟΓΟΤΕΧΝΙΑ (Γενικής Παιδείας) 2014 15 1 Α. ΓΙΑ ΟΛΟΥΣ ΤΟΥΣ ΜΑΘΗΤΕΣ ΘΡΗΣΚΕΥΤΙΚΑ Διδακτικές ενότητες: 1 6, 10, 11, 12, 15, 16. ΙΣΤΟΡΙΑ (Γενικής Παιδείας) ΚΕΦΑΛΑΙΟ Α Ενότητες : 1, 2, 3 (εκτός από : Επανάσταση στις Ηγεμονίες, Εδραίωση της

Διαβάστε περισσότερα

www.cslab.ece.ntua.gr

www.cslab.ece.ntua.gr Ε ό Μ ό Π ί Σ ή Η ό Μ ώ Μ ώ Η/Υ Τ έ Τ ί Π ή Υ ώ Εργαστήριο Υπολογιστικών Συστημάτων www.cslab.ece.ntua.gr Διπλωματική εργασία Συγκριτική μελέτη μεθόδων αποθήκευσης αραιών πινάκων σε μπλοκ για την βελτιστοποίηση

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95

Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95 Τ Ε Τ Υ Π Κ Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95 Σημειώσεις Διαλέξεων Σ. Σ Ηράκλειο Φεβρουάριος 2015 Copyright c 2006 2015 Σ. Σταματιάδης, (stamatis@materials.uoc.gr) Η στοιχειοθεσία έγινε από

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming)

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 1 Πανεπιστήμιο Κύπρου Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής ΜΜΚ 452: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 2 Εισαγωγή: Η

Διαβάστε περισσότερα

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις» ( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε

Διαβάστε περισσότερα

Επιμέλεια σύνταξης απαντήσεων: Μαρία Πέτρα ΑΠΑΝΤΗΣΕΙΣ

Επιμέλεια σύνταξης απαντήσεων: Μαρία Πέτρα ΑΠΑΝΤΗΣΕΙΣ Κλάδος: ΠΕ 60 ΝΗΠΙΑΓΩΓΩΝ ΕΞΕΤΑΣΗ ΣΤΗ ΔΕΥΤΕΡΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Ειδική Διδακτική και Παιδαγωγικά Γενική Διδακτική) Κυριακή 1-2-2009 ΕΡΩΤΗΜΑ 2ο: Την τελευταία περίπου πενταετία εφαρμόζεται στα νηπιαγωγεία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών

Διαβάστε περισσότερα

Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης

Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης (β) Η απόλυτη υπεραξία Αγορά και πώληση της εργασιακής δύναμης Στο κεφάλαιο για την αγορά και την πώληση της εργατικής δύναμης (ελληνική έκδοση: τόμος

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

Ολοκληρωμένη Χωρική Ανάπτυξη. Ειδική Υπηρεσία Στρατηγικής, Σχεδιασμού Και Αξιολόγησης (ΕΥΣΣΑ) Μονάδα Α Στρατηγικής και Παρακολούθησης Πολιτικών

Ολοκληρωμένη Χωρική Ανάπτυξη. Ειδική Υπηρεσία Στρατηγικής, Σχεδιασμού Και Αξιολόγησης (ΕΥΣΣΑ) Μονάδα Α Στρατηγικής και Παρακολούθησης Πολιτικών Ολοκληρωμένη Χωρική Ανάπτυξη Ειδική Υπηρεσία Στρατηγικής, Σχεδιασμού Και Αξιολόγησης (ΕΥΣΣΑ) Μονάδα Α Στρατηγικής και Παρακολούθησης Πολιτικών Ξάνθη, 12 Μαΐου 2015 Χωρική Συνοχή σύνολο αρχών για την αρμονική,

Διαβάστε περισσότερα

H εφαρμογή των Συστημάτων Γεωγραφικών Πληροφοριών στα Μοντέλα Συγκοινωνιακού Σχεδιασμού

H εφαρμογή των Συστημάτων Γεωγραφικών Πληροφοριών στα Μοντέλα Συγκοινωνιακού Σχεδιασμού H εφαρμογή των Συστημάτων Γεωγραφικών Πληροφοριών στα Μοντέλα Συγκοινωνιακού Σχεδιασμού Γ. Κατσούλης* Μηχανικός Γεωπληροφορικής και Τοπογραφίας Τ.Ε. Διευθ. Κουρμούλη 2, 11145, Αθήνα Α. Μοσχόπουλος Μηχανικός

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΡΧΕΙΑ Ο πιο γνωστός τρόπος οργάνωσης δεδομένων με τη χρήση ηλεκτρονικών υπολογιστών είναι σε αρχεία. Ένα αρχείο μπορούμε να το χαρακτηρίσουμε σαν ένα σύνολο που αποτελείται από οργανωμένα

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη

Υπολογιστική Νοημοσύνη Υπολογιστική Νοημοσύνη Σημερινή Διάλεξη Περιεχόμενο μαθήματος Διαδικαστικά Εργασίες Μαθήματος Εισαγωγή στο αντικείμενο του μαθήματος Εφαρμογές 1 Περιεχόμενο μαθήματος οµή και Χαρακτηριστικά ενός Γενετικού

Διαβάστε περισσότερα

Βελτίωση Εικόνας. Σήμερα!

Βελτίωση Εικόνας. Σήμερα! Βελτίωση Εικόνας Σήμερα! Υποβάθμιση εικόνας Τεχνικές Βελτίωσης Restoration (Αποκατάσταση) Τροποποίηση ιστογράμματος Ολίσθηση ιστογράμματος Διάταση (stretching) Ισοστάθμιση του ιστογράμματος (histogram

Διαβάστε περισσότερα

Γλώσσες Περιγραφής Υλικού Ι. Εισαγωγικά. Οργάνωση των παραδόσεων. nkavv@uop.gr. 1 Εισαγωγή στη Verilog HDL. 28 Φεβρουαρίου 2012

Γλώσσες Περιγραφής Υλικού Ι. Εισαγωγικά. Οργάνωση των παραδόσεων. nkavv@uop.gr. 1 Εισαγωγή στη Verilog HDL. 28 Φεβρουαρίου 2012 Αντικείμενο του μαθήματος CST304: Γλώσσες Περιγραφής Υλικού Ι Γλώσσες Περιγραφής Υλικού Ι Εισαγωγή στη Verilog HDL Νικόλαος Καββαδίας nkavv@uop.gr 28 Φεβρουαρίου 2012 Επιμέρους στόχοι του μαθήματος Σχεδιασμός

Διαβάστε περισσότερα

Σχεδίαση Ψηφιακών Κυκλωμάτων

Σχεδίαση Ψηφιακών Κυκλωμάτων Σχεδίαση Ψηφιακών Κυκλωμάτων Η αρχιτεκτονική οργάνωση των FPGA Νικόλαος Καββαδίας nkavv@uop.gr 21 Δεκεμβρίου 2010 Σκιαγράφηση της διάλεξης Εισαγωγή στις προγραμματιζόμενες συσκευές Η αρχιτεκτονική οργάνωση

Διαβάστε περισσότερα

Opinion Mining. Χριστίνα Αραβαντινού aravantino@ceid.upatras.gr. Χριστίνα Αραβαντινού Opinion Mining Μάιος 2014 1 / 26

Opinion Mining. Χριστίνα Αραβαντινού aravantino@ceid.upatras.gr. Χριστίνα Αραβαντινού Opinion Mining Μάιος 2014 1 / 26 Opinion Mining Χριστίνα Αραβαντινού aravantino@ceid.upatras.gr Μάιος 2014 Χριστίνα Αραβαντινού Opinion Mining Μάιος 2014 1 / 26 Περιεχόμενα Εισαγωγή Εφαρμογές ομή μιας άποψης Είδη απόψεων Προσεγγίσεις

Διαβάστε περισσότερα

Projects για το εργαστήριο. των Βάσεων Δεδομένων

Projects για το εργαστήριο. των Βάσεων Δεδομένων Projects για το εργαστήριο των Βάσεων Δεδομένων Θεσσαλονίκη, Νοέμβριος Δεκέμβριος 2013 1. Το πολυκατάστημα Το πολυκατάστημα έχει ένα σύνολο από εργαζομένους. Κάθε εργαζόμενος χαρακτηρίζεται από έναν κωδικό

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟΔΟΜΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΈΡΓΩΝ & ΑΝΑΠΤΥΞΗΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΣΥΜΒΟΛΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΚΑΙ

Διαβάστε περισσότερα

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή Μητροπολιτικά Οπτικά Δίκτυα 11.1. Εισαγωγή Τα τηλεπικοινωνιακά δίκτυα είναι διαιρεμένα σε μια ιεραρχία τριών επιπέδων: Στα δίκτυα πρόσβασης, τα μητροπολιτικά δίκτυα και τα δίκτυα κορμού. Τα δίκτυα κορμού

Διαβάστε περισσότερα

Περιεχόμενο: Τυπικές τεχνικές αναθεώρησης λογισμικού

Περιεχόμενο: Τυπικές τεχνικές αναθεώρησης λογισμικού Περιεχόμενο: Τυπικές τεχνικές αναθεώρησης λογισμικού ΤΥΠΙΚΕΣ ΤΕΧΝΙΚΕΣ ΑΝΑΘΕΩΡΗΣΗΣ (ΤΤΑ) (FORMAL TECHNICAL REVIEWS) Η ΤΤΑ είναι μια δραστηριότητα εξασφάλισης της ποιότητας του λογισμικού που πραγματοποιείται

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΕΙΚΟΝΑΣ ADOBE PHOTOSHOP CS ΑΝΑΣΤΑΣΙΟΣ Β. ΣΥΜΕΩΝΙ ΗΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Αγρίνιο, 28 06 2012 ΑΓΡΟΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ & ΤΡΟΦΙΜΩΝ Α Ν Α Κ Ο Ι Ν Ω Σ Η

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Αγρίνιο, 28 06 2012 ΑΓΡΟΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ & ΤΡΟΦΙΜΩΝ Α Ν Α Κ Ο Ι Ν Ω Σ Η ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Αγρίνιο, 28 06 2012 ΑΓΡΟΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ & ΤΡΟΦΙΜΩΝ Α Ν Α Κ Ο Ι Ν Ω Σ Η Σχετικά με τις ΚΑΤΑΤΑΞΕΙΣ πτυχιούχων Α.Ε.Ι., Τ.Ε.Ι., ΑΝΩΤΕΡΩΝ ΣΧΟΛΩΝ Υπερδιετούς

Διαβάστε περισσότερα

Α) Ανάλογα με τη φύση των κονδυλίων που περιλαμβάνουν οι προϋπολογισμοί διακρίνονται σε:

Α) Ανάλογα με τη φύση των κονδυλίων που περιλαμβάνουν οι προϋπολογισμοί διακρίνονται σε: Ο διαγωνισμός της Εθνικής Σχολής Δημόσιας Διοίκησης προϋποθέτει, ως γνωστόν, συνδυασμό συνδυαστικής γνώσης της εξεταστέας ύλης και θεμάτων πολιτικής και οικονομικής επικαιρότητας. Tα Πανεπιστημιακά Φροντιστήρια

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΑΣΕΠ ΝΗΠΙΑΓΩΓΩΝ 2009

ΑΠΑΝΤΗΣΕΙΣ ΑΣΕΠ ΝΗΠΙΑΓΩΓΩΝ 2009 Κλάδος: ΠΕ 60 ΝΗΠΙΑΓΩΓΩΝ ΕΞΕΤΑΣΗ ΣΤΗ ΔΕΥΤΕΡΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Ειδική Διδακτική και Παιδαγωγικά Γενική Διδακτική) ΑΠΑΝΤΗΣΕΙΣ ΑΣΕΠ ΝΗΠΙΑΓΩΓΩΝ 2009 Επιμέλεια σύνταξης απαντήσεων: Μαρία Πέτρα ΕΡΩΤΗΜΑ 1ο:

Διαβάστε περισσότερα

2. Δίκτυα Πολυπλεξίας Μήκους Κύματος (WDM Δίκτυα)

2. Δίκτυα Πολυπλεξίας Μήκους Κύματος (WDM Δίκτυα) 2. Δίκτυα Πολυπλεξίας Μήκους Κύματος (WDM Δίκτυα) Η πολυπλεξία μήκους κύματος (WDM πολυπλεξία) παρέχει συμβατότητα μεταξύ του εύρους ζώνης του οπτικού μέσου οπτική ίνα και του εύρους ζώνης του τερματικού

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Σχεδίαση και Ανάλυση Κατανεμημένων Αλγορίθμων σε Ασύρματα

Διαβάστε περισσότερα

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο

Διαβάστε περισσότερα

Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους Εκπαιδευτικούς για τον επικείμενο διαγωνισμό τους,

Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους Εκπαιδευτικούς για τον επικείμενο διαγωνισμό τους, Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους Εκπαιδευτικούς για τον επικείμενο διαγωνισμό τους, και στοχεύοντας στην όσο το δυνατό πληρέστερη προετοιμασία

Διαβάστε περισσότερα

Κεφάλαιο 2.3: Marketing Κοινωνικών Επιχειρήσεων. Στο παρόν κεφάλαιο παρουσιάζονται εν τάχει τα βασικά

Κεφάλαιο 2.3: Marketing Κοινωνικών Επιχειρήσεων. Στο παρόν κεφάλαιο παρουσιάζονται εν τάχει τα βασικά Κεφάλαιο 2.3: Marketing Κοινωνικών Επιχειρήσεων Περίληψη Κεφαλαίου: Στο παρόν κεφάλαιο παρουσιάζονται εν τάχει τα βασικά χαρακτηριστικά του μείγματος Marketing (Μ.Κ.Τ.), στο πλαίσιο της εύρυθμης λειτουργίας

Διαβάστε περισσότερα

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Μάθημα: Ενόργανη Γυμναστική Χρήσιμα θεωρία στο κεφάλαιο της ενόργανης γυμναστικής για το γνωστικό αντικείμενο ΠΕ11 της Φυσικής Αγωγής από τα Πανεπιστημιακά Φροντιστήρια Κολλίντζα.

Διαβάστε περισσότερα

Programmatismìc epilôth 3D exis sewn ro c atriboôc reustoô se domhmèna plègmata, se kˆrtec grafik n

Programmatismìc epilôth 3D exis sewn ro c atriboôc reustoô se domhmèna plègmata, se kˆrtec grafik n Εθνικό Μετσόβιο Πολυτεχνείο Σχολη Μηχανολογων Μηχανικων Τομεας Ρευστων Εργαστηριο Θερμικων Στροβιλομηχανων Μοναδα Παραλληλης Υπολογιστικης Ρευστοδυναμικης και Βελτιστοποιησης Programmatismìc epilôth 3D

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης. Η εντολή ASSERT (2) nkavv@physics.auth.gr nkavv@uop.gr

Σκιαγράφηση της διάλεξης. Η εντολή ASSERT (2) nkavv@physics.auth.gr nkavv@uop.gr Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Δομές ελέγχου/επαλήθευσης λειτουργίας των κυκλωμάτων Νικόλαος Καββαδίας nkavv@physics.auth.gr nkavv@uop.gr Δομές ελέγχου/επαλήθευσης λειτουργίας των κυκλωμάτων

Διαβάστε περισσότερα

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να - 1 - Ο παράξενος πραματευτής Ανθολόγιο Ε & Στ τάξης: 277-279 Οικονομικές έννοιες Ανταλλαγή Αντιπραγματισμός Εμπόριο Ερωτήσεις Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή

Διαβάστε περισσότερα

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης

Διαβάστε περισσότερα

Κεφάλαιο 2.4: Τα βασικά στοιχεία ενός Επιχειρηματικού Σχεδίου (Business Plan) Μέσα από αυτό το κεφάλαιο φαίνεται ότι αφενός η σωστή δημιουργία και

Κεφάλαιο 2.4: Τα βασικά στοιχεία ενός Επιχειρηματικού Σχεδίου (Business Plan) Μέσα από αυτό το κεφάλαιο φαίνεται ότι αφενός η σωστή δημιουργία και Κεφάλαιο 2.4: Τα βασικά στοιχεία ενός Επιχειρηματικού Σχεδίου (Business Plan) Περίληψη Κεφαλαίου: Μέσα από αυτό το κεφάλαιο φαίνεται ότι αφενός η σωστή δημιουργία και αφετέρου η σωστή εφαρμογή του Επιχειρηματικού

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πανεπιστήμιο Πειραιώς Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Παραμετρικά Μοντέλα Επιβίωσης που προκύπτουν από μεταβολές

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα Σπουδών Γεωπληροφορική. Κατεύθυνση: Τοπογραφικές Εφαρμογές Υψηλής Ακρίβειας

Μεταπτυχιακό Πρόγραμμα Σπουδών Γεωπληροφορική. Κατεύθυνση: Τοπογραφικές Εφαρμογές Υψηλής Ακρίβειας Μεταπτυχιακό Πρόγραμμα Σπουδών Γεωπληροφορική Κατεύθυνση: Τοπογραφικές Εφαρμογές Υψηλής Ακρίβειας 1ο εξάμηνο Τεχνολογίες αιχμής στη Γεωδαισία και Τοπογραφία Παγκόσμιο σύστημα εντοπισμού θέσης (GPS), αδρανειακά

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate Κατηγορίες οφέλους και κόστους που προέρχονται από τις δημόσιες δαπάνες Για την αξιολόγηση

Διαβάστε περισσότερα

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ

Διαβάστε περισσότερα

ΠΡΟΒΟΛΗ ΣΥΛΛΟΓΩΝ ΚΑΙ ΔΡΑΣΕΩΝ ΤΟΥ ΜΟΥΣΕΙΟΥ ΜΠΕΝΑΚΗ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ

ΠΡΟΒΟΛΗ ΣΥΛΛΟΓΩΝ ΚΑΙ ΔΡΑΣΕΩΝ ΤΟΥ ΜΟΥΣΕΙΟΥ ΜΠΕΝΑΚΗ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ ΠΡΑΞΗ: ΠΡΟΒΟΛΗ ΣΥΛΛΟΓΩΝ ΚΑΙ ΔΡΑΣΕΩΝ ΤΟΥ ΜΟΥΣΕΙΟΥ ΜΠΕΝΑΚΗ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ ΔΙΑΓΩΝΙΣΜΟΣ: ΑΡΙΘΜΟΣ ΔΙΑΚΗΡΥΞΗΣ: Αναλυτικός σχεδιασμός πράξης, ανάπτυξη περιεχομένου, δημοσιοποίηση αποτελεσμάτων ΨΣ19/1/12

Διαβάστε περισσότερα

Αρχάνες, 10/12/2012 Αρ. Πρωτ: 561

Αρχάνες, 10/12/2012 Αρ. Πρωτ: 561 Αρχάνες, 10/12/2012 Αρ. Πρωτ: 561 ΠΡΟΣΚΛΗΣΗ ΕΚ ΗΛΩΣΗΣ ΕΝ ΙΑΦΕΡΟΝΤΟΣ Η Αναπτυξιακή Ηρακλείου Α.Α.Ε. ΟΤΑ απευθύνει πρόσκληση εκδήλωσης ενδιαφέροντος για την επιλογή Αναδόχου για την κατασκευή ιστοσελίδας

Διαβάστε περισσότερα

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται 1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται από: α) Τη ροπή για αποταμίευση β) Το λόγο κεφαλαίου προϊόντος και τη ροπή για αποταμίευση γ) Το λόγο κεφαλαίου προϊόντος

Διαβάστε περισσότερα

Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους Εκπαιδευτικούς για τον επικείμενο διαγωνισμό τους,

Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους Εκπαιδευτικούς για τον επικείμενο διαγωνισμό τους, Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους Εκπαιδευτικούς για τον επικείμενο διαγωνισμό τους, και στοχεύοντας στην όσο το δυνατό πληρέστερη προετοιμασία

Διαβάστε περισσότερα

α) Το έλλειμμα ή το πλεόνασμα του εμπορικού ισοζυγίου δεν μεταβάλλεται

α) Το έλλειμμα ή το πλεόνασμα του εμπορικού ισοζυγίου δεν μεταβάλλεται 1. Ο πληθωρισμός ορίζεται ως εξής: (Δ= μεταβολή, Ρ= επίπεδο τιμών, Ρ e = προσδοκώμενο επίπεδο τιμών): α) Δ Ρ e /Ρ β) Ρ e / Ρ γ) Δ Ρ/Ρ δ) (Ρ Ρ e )/Ρ 2. Όταν οι εξαγωγές αυξάνονται: α) Το έλλειμμα ή το πλεόνασμα

Διαβάστε περισσότερα

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 A Πανεπιστήμιο Αιγαίου Σχολή Επιστημών της ιοίκησης Τμήμα Μηχανικών Οικονομίας και ιοίκησης Εργαστήριο Στατιστικής Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 26Επιμέλεια:

Διαβάστε περισσότερα

Παραδείγματα απλών προγραμμάτων σε Turbo Pascal

Παραδείγματα απλών προγραμμάτων σε Turbo Pascal Εργαστήριο: Προγραμματισμός Η/Υ Παραδείγματα απλών προγραμμάτων σε Turbo Pascal Β. Ν. Νικολαϊδης Πρόσθετες εκφωνήσεις από: Σ. Οικονομόπουλο, Β. Καψάλη, Μ. Κεσόγλου. Ver.0.2.6 ΑΤΕΙ ΠΑΤΡΑΣ Τμ. Ηλεκτρολογίας

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ. ΜΑΘΗΜΑ: Management. Ερώτημα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ. ΜΑΘΗΜΑ: Management. Ερώτημα ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑ: Management Ερώτημα Στα πλαίσια του Επιστημονικού Management και των βασικών κανόνων της Διοικητικής ολοένα αυξανόμενος αριθμός Δημοσίων Υπηρεσιών κατασκευάζει και χρησιμοποιεί

Διαβάστε περισσότερα

Μαθηματικά Πληροφορικής

Μαθηματικά Πληροφορικής Πανεπιστήμιο Αθηνών Μαθηματικά Πληροφορικής Ηλίας Κουτσουπιάς Αθήνα, Οκτώβριος 2009 Περιεχόμενα Περιεχόμενα 1 Σύνολα... 5 ΆλλαΣύμβολα... 6 1 Υποθέσεις και Θεωρήματα 9 1.1 Παρατήρηση-Υπόθεση-Απόδειξη...

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων

Διαβάστε περισσότερα

1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι:

1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι: 1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι: α) Ανεξάρτητα από το ύψος της τιμής των οσπρίων, ο καταναλωτής θα δαπανά πάντα ένα σταθερό

Διαβάστε περισσότερα

Κεφάλαιο 68 Σχεδιασμός κλινικών μελετών και διαχείριση δεδομένων έρευνας

Κεφάλαιο 68 Σχεδιασμός κλινικών μελετών και διαχείριση δεδομένων έρευνας Κεφάλαιο 68 Σχεδιασμός κλινικών μελετών και διαχείριση δεδομένων έρευνας Γ. Η. Πανάγος 1195 ΟΡΘΗ ΠΡΑΚΤΙΚΗ ΔΙΕΞΑΓΩΓΗΣ ΚΛΙ ΝΙΚΩΝ ΜΕΛΕΤΏΝ Η ορθή πρακτική διεξαγωγής των κλινικών δοκιμών (GCP) είναι ένα διεθνές

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1

ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1 ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1 Ένας χρήστης μιας PDH μισθωμένης γραμμής χρησιμοποιεί μια συσκευή πρόσβασης που υλοποιεί τη στοίβα ΑΤΜ/Ε1. α) Ποιος είναι ο μέγιστος υποστηριζόμενος ρυθμός (σε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ Πάρος 19/11/2008 ΝΟΜΟΣ ΚΥΚΛΑΔΩΝ Αρ.Πρωτ.: 16428 ΔΗΜΟΣ ΠΑΡΟΥ ΓΡΑΦΕΙΟ ΟΡΓΑΝΩΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ Πάρος 19/11/2008 ΝΟΜΟΣ ΚΥΚΛΑΔΩΝ Αρ.Πρωτ.: 16428 ΔΗΜΟΣ ΠΑΡΟΥ ΓΡΑΦΕΙΟ ΟΡΓΑΝΩΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ Πάρος 9//2008 ΝΟΜΟΣ ΚΥΚΛΑΔΩΝ Αρ.Πρωτ.: 6428 ΔΗΜΟΣ ΠΑΡΟΥ ΓΡΑΦΕΙΟ ΟΡΓΑΝΩΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Πληροφορίες :Σκιαδάς Λουκάς Γρ. Πληροφορικής Τηλ. Επικοιν. 228402200

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΙΑ ΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ

ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΙΑ ΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΚΑΛΦΑΚΗ ΕΛΠΙΔΑ Α.Μ:4370 ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΙΑ ΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΧΑΝΙΑ ΙΟΥΝΙΟΣ 2013 Καλφάκη Ελπίδα Σελίδα 1 Καλφάκη Ελπίδα Σελίδα 2 "ΔΗΛΩΝΩ ΥΠΕΥΘΥΝΑ ΟΤΙ

Διαβάστε περισσότερα

1. Η ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΚΑΤΑΧΩΡΗΣΗ 1

1. Η ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΚΑΤΑΧΩΡΗΣΗ 1 1. Η ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΚΑΤΑΧΩΡΗΣΗ 1 1.1 Η ανάγκη για ενιαίο τρόπο παραπομπών Κύριο μέλημά μας, όταν αναφερόμαστε στην παρουσίαση της βιβλιογραφίας, είναι η εξασφάλιση της ομοιομορφίας και της συνέπειας στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 2014 15 ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΡΗΣΚΕΥΤΙΚΑ Δ.Ε. 3. Θρησκεία: ένα πανανθρώπινο φαινόμενο: β, σελ. 28 30 Δ.Ε. 7. «Τίνα με λέγουσιν οι άνθρωποι είναι;»: γ, σελ. 68 70 Δ.Ε. 9. Αρχή και πορεία του κόσμου:

Διαβάστε περισσότερα

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983 20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000

Διαβάστε περισσότερα

ΜΥΥ- 402 Αρχιτεκτονική Υπολογιστών Φροντιστήριο: MIPS assembly

ΜΥΥ- 402 Αρχιτεκτονική Υπολογιστών Φροντιστήριο: MIPS assembly ΜΥΥ- 402 Αρχιτεκτονική Υπολογιστών Φροντιστήριο: MIPS assembly Αρης Ευθυμίου Το σημερινό μάθημα! Σύνταξη εντολών! Θέματα σχετικά με τη προσπέλαση, οργάνωση μνήμης διευθύνση για κάθε byte διευθύνσεις λέξεων

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ

ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ ΘΕΜΑ: Η ΔΙΟΙΚΗΤΙΚΗ ΟΡΓΑΝΩΣΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΚΡΑΤΟΥΣ Ο ΙΕΡΑΡΧΙΚΟΣ ΕΛΕΓΧΟΣ ΚΑΙ Η ΔΙΟΙΚΗΤΙΚΗ ΕΠΟΠΤΕΙΑ Σύνταξη: Ηλίας Κουβαράς, Δικηγόρος L.L.M., Υπ. Διδάκτωρ Δημοσίου Δικαίου

Διαβάστε περισσότερα

Σκιαγράφηση της διάλεξης

Σκιαγράφηση της διάλεξης Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Προχωρημένα στοιχεία της VHDL Νικόλαος Καββαδίας nkavv@physics.auth.gr 31 Μαρτίου 2009 Προχωρημένα στοιχεία της VHDL Τύποι και υποτύποι προκαθορισμένοι

Διαβάστε περισσότερα

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν 1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή

Διαβάστε περισσότερα

Eισηγητής: Μουσουλή Μαρία

Eισηγητής: Μουσουλή Μαρία Eισηγητής: Μουσουλή Μαρία Κινητική Μάθηση Μέρος Πρώτο : Ανθρώπινη απόδοση εκτέλεση 1. Εισαγωγή «Η ικανότητα που έχει κάποιος, να πετυχαίνει ένα τελικό αποτέλεσμα με την μεγαλύτερη δυνατή σιγουριά και τη

Διαβάστε περισσότερα

3. Με βάση τη βραχυχρόνια καμπύλη Phillips η σχέση πληθωρισμού και ανεργίας είναι:

3. Με βάση τη βραχυχρόνια καμπύλη Phillips η σχέση πληθωρισμού και ανεργίας είναι: 1. Σε περίπτωση που το κράτος φορολογεί τους πολίτες το διαθέσιμο εισόδημα του κάθε ατόμου είναι: α) το σύνολο του εισοδήματός του β) το σύνολο του εισοδήματός του, αφού προηγουμένως αφαιρέσουμε τους φόρους

Διαβάστε περισσότερα

Υπουργείο Εσωτερικών Γενική Δ/νση Αναπτυξιακών Προγραμμάτων Δ/νση Μηχανοργάνωσης & Η.Ε.Σ.

Υπουργείο Εσωτερικών Γενική Δ/νση Αναπτυξιακών Προγραμμάτων Δ/νση Μηχανοργάνωσης & Η.Ε.Σ. Υπουργείο Εσωτερικών Γενική Δ/νση Αναπτυξιακών Προγραμμάτων Δ/νση Μηχανοργάνωσης & Η.Ε.Σ. Απρίλιος 2012 ΥΠΕΣ-ΔΜΗΕΣ Β' κ Γ' ΑΝΑΘΕΩΡΗΣΗ 2009 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΒΑΣΙΚΟΙ ΕΚΛΟΓΙΚΟΙ ΚΑΤΑΛΟΓΟΙ ΠΙΝΑΚΕΣ 1 Εκλογείς

Διαβάστε περισσότερα

12/1/2006 Διακριτά Μαθηματικά. Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον)

12/1/2006 Διακριτά Μαθηματικά. Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον) ΣΥΝΔΕΤΙΚΑ ΔΕΝΤΡΑ Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον) δέντρο (spanning tree) του Γ εάν αυτό είναι δέντρο και περιέχει όλες τις κορυφές του Γ. Παράδειγμα. Στο παρακάτω

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ HMEΡΟΜΗΝΙΑ ΔΗΜΟΣΙΕΥΣΗΣ: 4 ΑΠΡΙΛΙΟΥ: ΩΡΑ 10μ.μ Τα παρακάτω θέματα δημοσιεύονται αποκλειστικά και μόνο για όσους υποψήφιους του φροντιστηρίου μας δεν κατάφεραν να προσέλθουν στα επαναληπτικά μαθήματα που

Διαβάστε περισσότερα