ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ"

Transcript

1 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΙΣ:

2 Αδαμόπουλος Λεωνίδας, Δαμιανού Χαράλαμπος Σβέρκος Ανδρέας Επ Σύμβουλος Παιδαγωγικού Ινστιτούτου Αναπλ Καθηγητής Παν/μίου Αθηνών Σχολικός Σύμβουλος ΚΡΙΤΕΣ: Κουνιάς Στρατής Μακρής Κωνσταντίνος Τσικαλουδάκης Γεώργιος Καθηγητής Παν/μίου Αθηνών Σχολικός Σύμβουλος Καθηγητής Β/θμιας Εκπαίδευσης Γλωσσική Επιμέλεια: Μπουσούνη Λία Καθηγήτρια Β/θμιας Εκπαίδευσης Δακτυλογράφηση: Μπολιώτη Πόπη Σχήματα: Μπούτσικας Μιχάλης ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

3 ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΔΑΜΟΠΟΥΛΟΣ ΛΕΩΝΙΔΑΣ ΔΑΜΙΑΝΟΥ ΧΑΡΑΛΑΜΠΟΣ ΣΒΕΡΚΟΣ ΑΝΔΡΕΑΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ

4 ΠΕΡΙΕΧΟΜΕΝΑ Σελίδα ΚΕΦΑΛΑΙΟ ο : Διαφορικός Λογισμός Συναρτήσεις 9 Η Έννοια της Παραγώγου 9 Παράγωγος Συνάρτησης 7 4 Εφαρμογές των Παραγώγων 9 ΚΕΦΑΛΑΙΟ ο : Στατιστική Βασικές Έννοιες 58 Παρουσίαση Στατιστικών Δεδομένων 6 Μέτρα Θέσης και Διασποράς 8 4 Γραμμική Παλινδρόμηση 04 5 Γραμμική Συσχέτιση 7 ΚΕΦΑΛΑΙΟ ο : Πιθανότητες Δειγματικός Χώρος - Ενδεχόμενα 8 Έννοια της Πιθανότητας 46 Συνδυαστική 57 4 Δεσμευμένη Πιθανότητα - Ανεξάρτητα Ενδεχόμενα 65 ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 79

5 ΠΡΟΛΟΓΟΣ Το βιβλίο Μαθηματικά και στοιχεία Στατιστικής περιλαμβάνει την ύλη των Μαθηματικών που προβλέπεται από το πρόγραμμα σπουδών της Γενικής Παιδείας της Γ τάξης του Ενιαίου Λυκείου, του οποίου η εφαρμογή αρχίζει από το σχολικό έτος Απευθύνεται σε όλους τους μαθητές ανεξάρτητα από την κατεύθυνση που ακολουθούν Γι αυτό περιορίσαμε σημαντικά στο βιβλίο τους αυστηρούς ορισμούς και τις αποδείξεις και το εμπλουτίσαμε με πολλές εφαρμογές και παραδείγματα, που ανταποκρίνονται στις δυνατότητες και στα ενδιαφέροντα όλων των μαθητών Επίσης καταβλήθηκε ιδιαίτερη προσπάθεια, ώστε, να είναι δυνατή η ολοκλήρωση της διδασκαλίας του στο χρόνο που προβλέπεται από το εγκεκριμένο ωρολόγιο πρόγραμμα Το βιβλίο αποτελείται από τρία κεφάλαια Στο πρώτο κεφάλαιο εισάγεται η έννοια της παραγώγου Για τον ορισμό της λαμβάνεται υπόψη η ιστορική πορεία της εξέλιξης της έννοιας Έτσι, προηγείται το πρόβλημα του καθορισμού της εφαπτομένης μιας καμπύλης σε ένα σημείο της και του προσδιορισμού της στιγμιαίας ταχύτητας ενός σώματος Οι βασικές ιδιότητες της παραγώγου σχετικά με τη μονοτονία και τα ακρότατα μιας συνάρτησης παρουσιάζονται εποπτικά με τη βοήθεια κατάλληλων παραδειγμάτων Στο δεύτερο κεφάλαιο παρουσιάζονται συστηματικότερα τα στοιχεία Περιγραφικής Στατιστικής που γνώρισαν οι μαθητές στο Γυμνάσιο, τα οποία συμπληρώνονται με μερικές χρήσιμες ιδιότητες της μέσης τιμής και της διασποράς καθώς και με την παλινδρόμηση και τη γραμμική συσχέτιση δύο μεταβλητών Η παρουσίαση των εννοιών και της μεθοδολογίας της Στατιστικής, όπως άλλωστε επιβάλλεται από τη φύση της, είναι πιο αναλυτική από ό,τι στην Άλγεβρα και στη Γεωμετρία Στο τρίτο κεφάλαιο γίνεται μια εισαγωγή στη Θεωρία των Πιθανοτήτων και στις σχετιζόμενες με αυτήν μεθόδους απαρίθμησης Η απόδειξη των ιδιοτήτων της πιθανότητας ενός ενδεχομένου γίνεται μόνο στην περίπτωση που τα απλά ενδεχόμενα είναι ισοπίθανα Η Θεωρία των Πιθανοτήτων ασχολείται με καταστάσεις όπου υπάρχει αβεβαιότητα, και αυτό την κάνει ιδιαίτερα σημαντική στις εφαρμογές της καθημερινής ζωής Τα οποιαδήποτε σχόλια, παρατηρήσεις ή κρίσεις για το βιβλίο από συναδέλφους, από μαθητές και από κάθε πολίτη που ενδιαφέρεται για τα ζητήματα της παιδείας θα είναι ιδιαίτερα ευπρόσδεκτα από τη συγγραφική ομάδα Παρακαλούμε να αποσταλούν στο Παιδαγωγικό Ινστιτούτο, Μεσογείων 96, 50 Αγία Παρασκευή Μάρτιος 999

6 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Εισαγωγή Στο χώρο της επιστήμης το 7ο αιώνα κυριαρχούσε η μελέτη της κίνησης των ουράνιων σωμάτων, καθώς και η μελέτη της κίνησης ενός σώματος πάνω ή κοντά στη Γη Στη μελέτη αυτή προφανώς σημαντικό ρόλο έπαιζε ο προσδιορισμός του μέτρου της ταχύτητας και της διεύθυνσης της κίνησης του σώματος σε μια δεδομένη χρονική στιγμή Όπως θα δούμε στη συνέχεια, αν η θέση του σώματος μια χρονική στιγμή t εκφράζεται με τη συνάρτηση f t, τότε ο προσδιορισμός του μέτρου και της διεύθυνσης της ταχύτητάς του τη χρονική στιγμή t ανάγεται στον προσδιορισμό του ρυθμού μεταβολής της f t ως προς t ή, όπως ονομάστηκε αργότερα, της παραγώγου της f t Έτσι, προβλήματα σχετικά με την κίνηση ενός σώματος, καθώς και άλλα που θα συναντήσουμε αργότερα, οδήγησαν στη γένεση του Διαφορικού Λογισμού Θεμελιωτές του είναι οι Newton και Leibniz , οι οποίοι εισήγαγαν τη γενική έννοια της παραγώγου και του διαφορικού, βελτίωσαν τις μεθόδους του Διαφορικού Λογισμού και τις χρησιμοποίησαν στην επίλυση προβλημάτων της Γεωμετρίας και της Μηχανικής Η ανάπτυξη του Διαφορικού Λογισμού δε σταμάτησε το 7ο αιώνα, αλλά συνεχίστηκε το 8ο αιώνα με τη σημαντική συμβολή των αδελφών Jacob Bernoulli και Johann Bernoulli , του Euler , κορυφαίου μαθηματικού της εποχής, του Lagrange 76-8 και πολλών άλλων Τέλος, η αυστηρή θεμελίωση του Διαφορικού Λογισμού έγινε από τους μαθηματικούς του 9ου αιώνα όπως του Bolzano , του Cauch και του Weierstrass ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός Συνάρτησης Είδαμε σε προηγούμενες τάξεις ότι συνάρτηση function είναι μια διαδικασία με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β

7 0 A f B Στο κεφάλαιο αυτό θα ασχοληθούμε με συναρτήσεις στις οποίες το σύνολο Α, που λέγεται πεδίο ορισμού της συνάρτησης, είναι υποσύνολο του συνόλου R των πραγματικών αριθμών, ενώ το Β συμπίπτει με το R Οι συναρτήσεις αυτές λέγονται πραγματικές συναρτήσεις πραγματικής μεταβλητής και τις οποίες στο εξής θα τις λέμε απλώς συναρτήσεις Η συνάρτηση συμβολίζεται συνήθως με ένα από τα μικρά γράμματα f, g, h, φ, σ κτλ του λατινικού ή του ελληνικού αλφαβήτου Έστω λοιπόν μια συνάρτηση f με πεδίο ορισμού το Α Αν με τη συνάρτηση αυτή το A αντιστοιχίζεται στο B, τότε γράφουμε f και διαβάζουμε ίσον f του Το f λέγεται τιμή της f στο Το γράμμα, που συμβολίζει οποιοδήποτε στοιχείο του Α, ονομάζεται ανεξάρτητη μεταβλητή, ενώ το, που παριστάνει την τιμή της συνάρτησης στο και εξαρτάται από την τιμή του, λέγεται εξαρτημένη μεταβλητή Σε μια συνάρτηση συνήθως η τιμή της εκφράζεται με έναν αλγεβρικό τύπο, για παράδειγμα f Σ αυτή την περίπτωση λέμε: η συνάρτηση f με f ή η συνάρτηση f ή η συνάρτηση ή, απλούστερα, η συνάρτηση Όταν το f εκφράζεται μόνο με έναν αλγεβρικό τύπο, τότε το πεδίο ορισμού της συνάρτησης είναι το ευρύτερο υποσύνολο του R στο οποίο το f έχει νόημα πραγματικού αριθμού Έτσι, η παραπάνω συνάρτηση f έχει ως πεδίο ορισμού το σύνολο λύσεων της ανίσωσης 0, δηλαδή το διάστημα [, ], η συνάρτηση g έχει ως πεδίο ορισμού το σύνολο A R {}, δηλαδή το R χωρίς το, ενώ η συνάρτηση h έχει ως πεδίο ορισμού ολόκληρο το σύνολο R των πραγματικών αριθμών ΣΧΟΛΙΟ Αν και συνήθως χρησιμοποιούμε το γράμμα f για το συμβολισμό μιας συνάρτησης και τα γράμματα και για το συμβολισμό της ανεξάρτητης και της εξαρτημένης μεταβλητής αντιστοίχως, ωστόσο μπορούμε να

8 χρησιμοποιήσουμε και άλλα γράμματα Έτσι, για παράδειγμα, οι τύποι f g και s t gt ορίζουν την ίδια συνάρτηση Πράξεις με Συναρτήσεις Αν δύο συναρτήσεις f, g ορίζονται και οι δύο σε ένα σύνολο Α, τότε ορίζονται και οι συναρτήσεις: Το άθροισμα S f g, με S f g, A Η διαφορά D f g, με D f g, A Το γινόμενο P f g, με P f g, A και Το πηλίκο f R, με g f R, όπου A και g 0 g Για παράδειγμα, αν f και g, τότε S D P f R, όπου g Γραφική Παράσταση Συνάρτησης Έστω μια συνάρτηση f με πεδίο ορισμού ένα σύνολο Α Όπως είδαμε σε προηγούμενες τάξεις γραφική παράσταση ή καμπύλη της f σε ένα καρτεσιανό σύστημα συντεταγμένων O λέγεται το σύνολο των σημείων M, f για όλα τα A Επομένως, ένα σημείο M, του επιπέδου των αξόνων ανήκει στην καμπύλη της f, μόνο όταν f Η εξίσωση λοιπόν f επαληθεύεται μόνο από τα ζεύγη, που είναι συντεταγμένες σημείων της γραφικής παράστασης της f και λέγεται εξίσωση της γραφικής παράστασης της f Είναι πολύ χρήσιμο να σχεδιάζουμε τη γραφική παράσταση μιας συνάρτησης Στα παρακάτω σχήματα φαίνονται οι γραφικές παραστάσεις ορισμένων συναρτήσεων που γνωρίσαμε σε προηγούμενες τάξεις

9 = O = α Η καμπύλη της συνάρτησης f είναι η διχοτόμος της ης και ης γωνίας των αξόνων - - O - - γ Η καμπύλη της συνάρτησης f είναι μια υπερβολή O - =ln ε Η καμπύλη της λογαριθμικής συνάρτησης f ln είναι δεξιά του άξονα, αφού ο λογάριθμος ορίζεται μόνο για O β Η καμπύλη της συνάρτησης f είναι μια παραβολή =e - - O δ Η καμπύλη της εκθετικής συνάρτησης f e είναι πάνω από τον άξονα, αφού e 0 για κάθε R =συν O π π =ημ π O π στ Οι συναρτήσεις f ημ και g συν είναι περιοδικές με περίοδο π

10 Παρατηρούμε ότι στη γραφική παράσταση της f υπάρχει μια διακοπή στο σημείο 0 Αυτό οφείλεται στο γεγονός ότι το πεδίο ορισμού της f δεν περιέχει το μηδέν Μονοτονία - Ακρότατα Συνάρτησης =ημ O π/ π π/ π Από τη γραφική παράσταση της συνάρτησης f ημ, [ 0, π] προκύπτει αμέσως ότι για δύο οποιαδήποτε σημεία, του διαστήματος 0, π με είναι ημ ημ Αυτό το εκφράζουμε λέγοντας ότι η συνάρτηση f ημ είναι γνησίως αύξουσα στο διάστημα 0, π Το ίδιο π συμβαίνει και στο διάστημα, π Όμως για δύο οποιαδήποτε σημεία π π, του διαστήματος, με, παρατηρούμε ότι ημ ημ Λέμε σ αυτή την περίπτωση ότι η συνάρτηση f ημ είναι γνησίως φθίνουσα στο διάστημα π π, Γενικά: Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία, με ισχύει f f, και γνησίως φθίνουσα στο Δ, όταν για οποιαδήποτε σημεία, με ισχύει f f Μια συνάρτηση που είναι γνησίως αύξουσα ή γνησίως φθίνουσα λέγεται γνησίως μονότονη Ακόμη, για την παραπάνω συνάρτηση παρατηρούμε ότι για κάθε

11 4 π π [ 0, π] είναι ημ ημ και ημ ημ Δηλαδή, όπως λέμε, η συνάρτηση π f ημ έχει ολικό μέγιστο maimum για και ολικό π ελάχιστο minimum για 4 Από τη γραφική παράσταση της συνάρτησης g του σχήματος 4 προκύπτει ότι για η τιμή της g είναι =g μικρότερη από τις τιμές της g σε όλα τα που ανήκουν σε ένα ανοικτό διάστημα το οποίο περιέχει το, ή, όπως λέμε σε μια O 4 περιοχή του Στην περίπτωση αυτή λέμε ότι η συνάρτηση g έχει στο σημείο τοπικό ελάχιστο Το ίδιο συμβαίνει και για Οι τιμές g και g λέγονται τοπικά ελάχιστα της συνάρτησης Επίσης, για 4 η τιμή g 4 είναι μεγαλύτερη από τις τιμές της g σε όλα τα που ανήκουν σε μια περιοχή του 4 Λέμε ότι η συνάρτηση g έχει στο σημείο 4 τοπικό μέγιστο Το ίδιο συμβαίνει και για Οι τιμές g και g 4 λέγονται τοπικά μέγιστα της συνάρτησης Παρατηρούμε ότι ένα τοπικό ελάχιστο μπορεί να είναι μεγαλύτερο από ένα τοπικό μέγιστο Για παράδειγμα, το τοπικό ελάχιστο g είναι μεγαλύτερο από το τοπικό μέγιστο g 4 Γενικά: Μια συνάρτηση f με πεδίο ορισμού το Α λέμε ότι παρουσιάζει: Τοπικό μέγιστο στο A, όταν f f για κάθε σε μια περιοχή του, και τοπικό ελάχιστο στο A, όταν f f για κάθε σε μια περιοχή του Τα μέγιστα και τα ελάχιστα μιας συνάρτησης, τοπικά ή ολικά, λέγονται ακρότατα της συνάρτησης Όριο Συνάρτησης Έστω η συνάρτηση f, η οποία δεν ορίζεται για Ας εξετάσουμε όμως τη συμπεριφορά της f για τιμές του κοντά στο

12 5 Ο παρακάτω πίνακας δείχνει τις τιμές του f για τιμές του κοντά στο f f 0,5 0,9 0,99 0,999 0,9999,500000,900000,990000,999000,999900,5,,0,00,000,500000,00000,00000,00000,00000 Από τον παραπάνω πίνακα βλέπουμε ότι όταν το παίρνει τιμές πολύ κοντά στο και από τις δύο πλευρές του, το f παίρνει τιμές πολύ κοντά στο Στο ίδιο συμπέρασμα φτάνουμε, αν παρατηρήσουμε ότι για είναι f, 5 οπότε όταν το παίρνει τιμές που τείνουν στο, τότε το f παίρνει τιμές που τείνουν στο Λέμε λοιπόν ότι η f έχει στο σημείο όριο limit και γράφουμε lim f Με το προηγούμενο παράδειγμα παρουσιάσαμε με απλό τρόπο και χωρίς μαθηματική αυστηρότητα την O έννοια του ορίου μιας συνάρτησης f σε ένα σημείο 0, που δεν ανήκει στο πεδίο ορισμού της, υπάρχουν όμως σημεία του πεδίου ορισμού της πολύ κοντά στο 0 Τίποτα βέβαια δεν αποκλείει την αναζήτηση του ορίου μιας συνάρτησης και σε ένα σημείο 0 που να ανήκει στο πεδίο ορισμού της Για παράδειγμα, έστω η συνάρτηση f, που είναι ορισμένη στο R Παρατηρούμε ότι όταν 0, το f, δηλαδή lim f Ομοίως, lim 0 και lim Ο O = Ο α β γ

13 6 Αν οι συναρτήσεις f και g έχουν στο 0 όρια πραγματικούς αριθμούς, δηλαδή αν lim f και lim g όπου και πραγματικοί αριθμοί, τότε 0 0 αποδεικνύεται ότι: lim f g 0 lim kf k 0 lim f g 0 f lim 0 g lim 0 ν ν f lim ν f ν 0 Έτσι, για παράδειγμα, για την πολυωνυμική συνάρτηση f 9 έχουμε lim f lim 9 lim lim lim Παρατηρούμε ότι για τη συνάρτηση f 9 ισχύει lim f f Αυτό το εκφράζουμε λέγοντας ότι η συνάρτηση f είναι συνεχής στο 0 Γενικά μια συνάρτηση f με πεδίο ορισμού Α λέγεται συνεχής, αν για κάθε 0 A ισχύει lim f f 0 0 Χαρακτηριστικό γνώρισμα μιας συνεχούς συνάρτησης σε ένα κλειστό διάστημα είναι ότι η γραφική της παράσταση είναι μια συνεχής καμπύλη, δηλαδή για το σχεδιασμό της δε χρειάζεται να σηκώσουμε το μολύβι από το χαρτί Αποδεικνύεται ότι οι γνωστές μας συναρτήσεις, πολυωνυμικές, τριγωνομετρικές, εκθετικές, λογαριθμικές, αλλά και όσες προκύπτουν από πράξεις μεταξύ αυτών είναι συνεχείς συναρτήσεις Έτσι ισχύει για παράδειγμα lim ημ ημ 0 0, lim συν συν0 0 και lim εφ εφ0 όταν συν ΕΦΑΡΜΟΓΕΣ Να υπολογιστούν τα όρια: 5 i lim lim ΛΥΣΗ ii iii lim 9

14 i lim ii lim 8 9 iii lim lim lim 6 ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ Αν f, να υπολογίσετε τις τιμές f, f, f Αν φ t t 5t 6, να υπολογίσετε τις τιμές φ 0 και φ Για ποιες τιμές του t είναι φ t 0; π Αν h θ συνθ ημθ, να υπολογίσετε τις τιμές h 0 και h Για ποιες τιμές της γωνίας θ [ 0, π] είναι h θ 0; 4 Αν f ln, να υπολογίσετε τις τιμές f και f e 5 Ποιο είναι το πεδίο ορισμού της συνάρτησης f ; 6 Για ποιες τιμές του είναι αρνητική η συνάρτηση f 7 ; Ποιο είναι το πεδίο ορισμού της συνάρτησης σ 7 ; 7 Αν f και g, να βρείτε τις συναρτήσεις f f g, f g, g 8 Να υπολογίσετε τα όρια:

15 8 i lim 4 0 iv limημ συν 0 ii lim [ 4] v limημ συν π 4 iii lim 4 9 Να υπολογίσετε τα όρια: 4 5 i lim ii lim iv 6 lim 4 4 v 5 lim 5 5 iii lim[ συν] vi 0 lim Β ΟΜΑΔΑΣ Αν f, να δείξετε ότι f f e Έχουμε περιφράξει με συρματόπλεγμα μήκους 00 m, μια ορθογώνια περιοχή από τις τρεις πλευρές της Η τέταρτη πλευρά είναι τοίχος Αν το μήκος του τοίχου που θα χρησιμοποιηθεί είναι, να εκφράσετε το εμβαδόν της περιοχής ως συνάρτηση του Ένα κυλινδρικό φλυτζάνι, ανοικτό από πάνω, κατασκευάζεται έτσι ώστε το ύψος του και το μήκος της βάσης του να έχουν άθροισμα 0 cm Αν το φλυτζάνι έχει ύψος h cm, να εκφράσετε τον όγκο του ως συνάρτηση του h Αν η ακτίνα της βάσης του είναι r, να εκφράσετε το εμβαδόν της επιφάνειάς του ως συνάρτηση του r 4 Σε ένα τρίγωνο ΑΒΓ είναι 0 Αν θ, να εκφράσετε το ύψος υ του τριγώνου από την κορυφή Β, καθώς και το εμβαδόν του ως συνάρτηση του θ 5 Να δείξετε ότι 5 i lim 5 5 ii 5 lim 0 h h h

16 9 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Εφαπτομένη Καμπύλης Από τη Γεωμετρία γνωρίζουμε ότι η εφαπτομένη 7 ενός κύκλου O, R σε ένα σημείο του Α είναι η ευθεία ε που είναι κάθετη στην ακτίνα ΟΑ στο B σημείο Α Έστω Μ ένα άλλο σημείο του κύκλου Επειδή το τρίγωνο ΜΑΒ είναι ορθογώνιο στο Μ, το Μ o άθροισμα των γωνιών του Α και Β είναι 90 Αν υποθέσουμε ότι το Μ κινούμενο πάνω στον κύκλο Ο Μ πλησιάζει το Α, η γωνία Β τείνει να γίνει μηδενική, οπότε η γωνία Α τείνει να γίνει ορθή Δηλαδή η Μ τέμνουσα ΑΜ τείνει να γίνει κάθετη στην ΟΑ που Α ε σημαίνει ότι τείνει να συμπέσει με την εφαπτομένη ε Θα μπορούσαμε επομένως να ορίσουμε ως εφαπτομένη του κύκλου O, R στο σημείο Α, την οριακή θέση της τέμνουσας ΑΜ, καθώς το Μ κινούμενο πάνω στον κύκλο τείνει να συμπέσει με το Α Τον ισοδύναμο αυτό ορισμό της 8 C εφαπτομένης ενός κύκλου θα τον f 0 +h Μ χρησιμοποιήσουμε στη συνέχεια για να ορίσουμε την εφαπτομένη της ε γραφικής παράστασης μιας συνάρτησης σε ένα σημείο της Μ Έστω λοιπόν f μια συνάρτηση και Α f 0 Γ A 0, f 0 ένα σημείο της γραφικής Ο ω φ της παράστασης C 0 0 +h Παίρνουμε και ένα άλλο σημείο M 0 h, f 0 h της C με h 0 Παρατηρούμε ότι καθώς το Μ κινούμενο πάνω στη C πλησιάζει το Α, όταν δηλαδή h 0, τότε η ευθεία ΑΜ φαίνεται να παίρνει μια οριακή θέση ε η οποία λέγεται εφαπτομένη tangent της C στο Α Από το σχήμα έχουμε ότι ο συντελεστής διεύθυνσης της ΑΜ είναι MΓ f 0 h f 0 εφφ, AΓ h οπότε ο συντελεστής διεύθυνσης της εφαπτομένης της C στο Α θα είναι f 0 h f 0 εφω lim h 0 h

17 0 Στιγμιαία Ταχύτητα Όπως έχει διαπιστωθεί πειραματικά από τον Γαλιλαίο πριν από τέσσερις αιώνες, το διάστημα S που διανύεται σε χρόνο t sec s από ένα σώμα που αφήνεται να πέσει στο κενό εκφράζεται από τον τύπο S t gt, όπου g 9,8m/s είναι η σταθερή επιτάχυνση της βαρύτητας Ποια όμως θα είναι η ταχύτητα ενός σώματος που πέφτει ελεύθερα σε ένα οποιοδήποτε σημείο της τροχιάς του, για παράδειγμα όταν t 5 s; Μπορούμε να προσεγγίσουμε το ζητούμενο μέγεθος υπολογίζοντας τη μέση ταχύτητα σε ένα μικρό χρονικό διάστημα για παράδειγμα του ενός δεκάτου του δευτερολέπτου, από t 5 s στο t 5, s Έχουμε: Μέση διανυθέν διάστημα S5, S5 ταχύτητα χρόνος 0, 4,9055, 4, ,5405 m/s 0, Ο πίνακας που ακολουθεί δείχνει τα αποτελέσματα όμοιων υπολογισμών της μέσης ταχύτητας για ολοένα και μικρότερα χρονικά διαστήματα Χρονικό διάστημα 5 t 6 5 t 5, 5 t 5,05 5 t 5,0 5 t 5,00 5 t 5,000 5 t 5,0000 Μέση ταχύτητα 5,955 49, ,955 49, , , , Φαίνεται ότι καθώς μικραίνει το χρονικό διάστημα, η μέση ταχύτητα πλησιάζει ολοένα και περισσότερο στην τιμή 49,05 m/s Η οριακή αυτή τιμή των μέσων ταχυτήτων σε ολοένα και μικρότερα χρονικά διαστήματα με ένα άκρο το t 5 ορίζεται ως η στιγμιαία ταχύτητα του σώματος όταν t 5 s Έτσι η στιγμιαία ταχύτητα του σώματος ύστερα από χρόνο 5 s θα είναι υ 49,05 m/s Γενικότερα, ας υποθέσουμε ότι το σώμα ύστερα από t 0 βρίσκεται στο σημείο Α και ας εξετάσουμε πόσο O A t 0 B t 0 +h 9

18 αυξάνεται το διανυόμενο διάστημα, όταν ο χρόνος αυξηθεί κατά h Το κινητό διανύει σε χρόνο t 0 διάστημα και σε χρόνο t0 h διάστημα S S OA S t0 gt OB S t0 h g t0 h gt0 gt0h h Άρα, η αύξηση του διαστήματος σε χρόνο h είναι 0 S S S AB gt0h h και η μέση ταχύτητα στο χρονικό διάστημα από t 0 σε gt0 h h S υ gt t h t h 0 0 t0 h θα είναι 0 gh Καθώς όμως ελαττώνεται το h πλησιάζοντας το μηδέν, χωρίς ποτέ να γίνεται ίσο με το μηδέν, η μέση ταχύτητα θα πλησιάζει όλο και περισσότερο στο gt 0 Την οριακή αυτή τιμή τη λέμε στιγμιαία ταχύτητα του κινητού στη χρονική στιγμή t 0 ή απλώς ταχύτητα του κινητού στο t 0 Επομένως, η ταχύτητα υ του κινητού τη χρονική στιγμή t 0 θα είναι S t υ lim h0 0 h S t h 0 S lim gt h0 h Προφανώς όταν t 0 5, τότε υ 9,8 5 49,05 m/s, τιμή την οποία προσεγγίσαμε και προηγουμένως με αριθμητικούς υπολογισμούς Την ίδια πορεία μπορούμε να ακολουθήσουμε και για τον υπολογισμό της ταχύτητας ενός κινητού το οποίο εκτελεί ευθύγραμμη κίνηση, στη γενικότερη περίπτωση που η τετμημένη του ή, όπως λέμε στη Φυσική, η θέση του τη χρονική στιγμή t εκφράζεται από τη συνάρτηση f t O t 0 A B t 0 +h 0 0 Για να βρούμε την ταχύτητα του κινητού τη χρονική στιγμή t 0, θεωρούμε το χρονικό διάστημα από t 0 έως t0 h με h 0 Το κινητό σε χρόνο h μετατοπίζεται κατά Δ f t h f Επομένως, η μέση 0 t0

19 ταχύτητα του κινητού στη διάρκεια του χρονικού διαστήματος h θα είναι Δ f t0 h f t0 υ h h Αν σκεφτούμε όπως στην προηγούμενη ειδική περίπτωση, συμπεραίνουμε ότι η ταχύτητα του κινητού τη χρονική στιγμή t 0 θα είναι υ lim lim h0 h h0 f t 0 h h f t0 Δηλαδή θα είναι το όριο του λόγου της μεταβολής της τετμημένης του κινητού προς την αύξηση του χρόνου, καθώς η τελευταία τείνει προς το μηδέν χωρίς στην πραγματικότητα να γίνεται ίση με το μηδέν Παράγωγος της f στο 0 Και τα δύο προηγούμενα προβλήματα, μολονότι αναφέρονται σε διαφορετικούς επιστημονικούς κλάδους, το πρώτο στη Γεωμετρία και το δεύτερο στη Μηχανική, οδηγούν στον υπολογισμό ενός ορίου της μορφής f 0 lim h0 h h f 0 Υπάρχουν όμως και πολλά άλλα προβλήματα διαφορετικής φύσεως, όπως, για παράδειγμα, είναι ο ορισμός της έντασης ενός ρεύματος, της ταχύτητας μιας χημικής αντίδρασης, του οριακού κόστους στην Οικονομία, τα οποία οδηγούν στον υπολογισμό ενός ορίου της ιδίας μορφής Αν το προηγούμενο όριο υπάρχει και είναι πραγματικός αριθμός, τότε λέμε ότι η f είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της Το όριο αυτό ονομάζεται παράγωγος της f στο 0, συμβολίζεται με f 0 και διαβάζεται f τονούμενο του 0 Έχουμε λοιπόν: f 0 lim h0 f 0 h h f 0 Για παράδειγμα, αν θέλουμε να υπολογίσουμε την παράγωγο της συνάρτησης f στο σημείο 4, εργαζόμαστε ως εξής: Βρίσκουμε τη διαφορά f 4 h f 4: f 4 h f 4 4 h 4 4 8h h h8 h 4

20 Για h 0 βρίσκουμε το πηλίκο f 4 h f 4 : h f 4 h h Υπολογίζουμε το όριο lim Άρα, f 4 4 h0 f 4 h lim h0 h f 4 h8 h 4 h h f 4 h f 4 : h f 4 lim4 h 4 h0 Η παράγωγος της f στο 0 εκφράζει το ρυθμό μεταβολής rate of change του f ως προς το, όταν 0 Έτσι, σύμφωνα με όσα εκθέσαμε στην προηγούμενη παράγραφο: Ο συντελεστής διεύθυνσης της εφαπτομένης της καμπύλης που είναι η γραφική παράσταση μιας συνάρτησης f στο σημείο, f θα είναι 0 0 f 0, δηλαδή ο ρυθμός μεταβολής της f ως προς όταν 0 Η ταχύτητα ενός κινητού που κινείται ευθύγραμμα και η θέση του στον άξονα κίνησής του εκφράζεται από τη συνάρτηση f t θα είναι τη χρονική στιγμή t 0 υ f, t0 t0 δηλαδή ο ρυθμός μεταβολής της f t ως προς t όταν t t0 ΣΧΟΛΙΟ Υπάρχουν και συναρτήσεις οι οποίες δεν έχουν παράγωγο σε ένα σημείο Όπως είναι, για παράδειγμα, η συνάρτηση f στο 0 0 Διότι όταν h 0, έχουμε f 0 h f 0 lim h 0 h h lim, h 0 h O = f 0 h f 0 h ενώ όταν h 0, έχουμε lim lim, που σημαίνει ότι δεν h0 h h0 h f 0 h f 0 υπάρχει το lim h 0 h

21 4 ΕΦΑΡΜΟΓΕΣ Η θέση ενός υλικού σημείου που εκτελεί ευθύγραμμη κίνηση εκφράζεται με τη συνάρτηση t t t, όπου το t μετριέται σε δευτερόλεπτα α Να βρεθεί η μέση ταχύτητα στα παρακάτω χρονικά διαστήματα: i [ 0, ] ii [ 0, ] iii [ 0, 0,5] iv [ 0, 0,] β Να βρεθεί η ταχύτητα όταν t 0 γ Να σχεδιαστεί η γραφική παράσταση της συνάρτησης t δ Να σχεδιαστούν οι τέμνουσες από το O 0, 0 της γραφικής παράστασης με συντελεστή διεύθυνσης τις μέσες ταχύτητες του ερωτήματος α Επίσης, να βρεθεί και να σχεδιαστεί η εφαπτομένη της καμπύλης της συνάρτησης t στο σημείο της με t 0 ΛΥΣΗ α Από τον ορισμό της μέσης ταχύτητας έχουμε i υ m/s ii υ m/s iii 0,5 0 0, 0 υ,5 m/s iv υ, m/s 0,5 0, β Η ταχύτητα υ όταν t 0, είναι 0 h 0 h υ lim lim h0 h h0 h lim h m/s h h0 γ Αν σε ένα ορθοκανονικό σύστημα ο οριζόντιος άξονας παριστάνει το χρόνο t και ο κατακόρυφος άξονας το t, τότε η γραφική παράσταση της συνάρτησης t t t t είναι, σύμφωνα με όσα γνωρίζουμε 4 από την Α Λυκείου, μια παραβολή με κορυφή το σημείο, και 4 άξονα συμμετρίας την ευθεία t Έτσι, έχουμε την παρακάτω γραφική παράσταση

22 ,6 =t =t =,5t =t +t =,t =t εφαπτομένη - Ο t δ Επειδή οι τέμνουσες διέρχονται από το σημείο O 0, 0 και έχουν συντελεστές διεύθυνσης,,,5 και,, οι εξισώσεις τους είναι t, t,, 5t και, t αντιστοίχως Οι ευθείες αυτές έχουν σχεδιαστεί στο παραπάνω σχήμα Η εφαπτομένη της καμπύλης στο σημείο της με t 0 θα έχει συντελεστή διεύθυνσης ίσο με τη στιγμιαία ταχύτητα όταν t 0, δηλαδή ίσο με Επειδή η εφαπτομένη αυτή διέρχεται και από την αρχή των αξόνων, η εξίσωσή της είναι t, δηλαδή είναι η διχοτόμος της γωνίας των θετικών ημιαξόνων Δίνεται η συνάρτηση i Να βρεθεί η f f ii Να βρεθεί η εξίσωση της εφαπτομένης της καμπύλης της f στο σημείο της, f και να σχεδιαστεί η εφαπτομένη αυτή ΛΥΣΗ i Έχουμε h h f h f και για h 0 h h h Επομένως f h h h f h h h h h h

23 6 f lim h0 f h h f lim h0 h ii Η εφαπτομένη της καμπύλης της f στο σημείο της με έχει συντελεστή διεύθυνσης ίσο με f Επομένως, η εξίσωσή της είναι β O Επειδή όμως το σημείο, f, ανήκει στην εφαπτομένη, έχουμε β β β Άρα, η εξίσωση της εφαπτομένης είναι ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ Να βρείτε την παράγωγο της συνάρτησης i f στο ii g 5 στο iii σ στο 4 Να βρείτε την παράγωγο της συνάρτησης f t στο t t i Το μήκος L ενός κύκλου ακτίνας r είναι L πr Να βρείτε το ρυθμό μεταβολής του L ως προς r, όταν r ii Το εμβαδόν Ε ενός κύκλου ακτίνας r είναι E πr Να βρείτε το ρυθμό μεταβολής του Ε ως προς r, όταν r

24 7 4 i Να βρείτε το ρυθμό μεταβολής του εμβαδού Ε ενός τετραγώνου πλευράς ως προς όταν 5 ii Να βρείτε το ρυθμό μεταβολής του όγκου ενός κύβου πλευράς ως προς, όταν 0 5 Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της συνάρτησης: i f στο A, f ii f, στο A 4, f 4 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Παραγώγου Έστω μια συνάρτηση f με πεδίο ορισμού το Α, και Β το σύνολο των A στα οποία η f είναι παραγωγίσιμη Τότε ορίζεται μια νέα συνάρτηση, με την f h f οποία κάθε B αντιστοιχίζεται στο f lim Η h0 h συνάρτηση αυτή λέγεται πρώτη παράγωγος derivative της f και συμβολίζεται με f Για παράδειγμα, αν f, τότε έχουμε: f h f h h h h h, και για h 0 f h f h h 6 h h h Επομένως, f lim6 h 6 h0 Έτσι, η παράγωγος μιας συνάρτησης f στο 0 είναι ίση με την τιμή της παραγώγου της συνάρτησης στο σημείο αυτό Για παράδειγμα, η παράγωγος της f στο 0 4 είναι ίση με την τιμή της συνάρτησης f 6 στο 0 4, δηλαδή f Η παράγωγος της συνάρτησης f λέγεται δεύτερη παράγωγος της f και συμβολίζεται με f Σύμφωνα με τα προηγούμενα αν η τετμημένη ενός κινητού που κινείται ευθυγράμμως είναι t τη χρονική στιγμή t, τότε η ταχύτητά του θα είναι υ t t

25 8 Αν η συνάρτηση υ είναι παραγωγίσιμη, τότε η επιτάχυνση του κινητού τη χρονική στιγμή t θα είναι η παράγωγος της ταχύτητας, δηλαδή θα ισχύει α t υ t ή ισοδύναμα α t t Παραγώγιση Βασικών Συναρτήσεων Έως τώρα η παραγώγιση μιας συνάρτησης f γινόταν με τη βοήθεια του τύπου f h f f lim Στη συνέχεια θα γνωρίσουμε μερικούς κανόνες h0 h που διευκολύνουν τον υπολογισμό της παραγώγου πιο πολύπλοκων συναρτήσεων Η παράγωγος της σταθερής συνάρτησης Έχουμε f h f c c 0 και για h 0, f h h f 0, f h f οπότε lim 0 h 0 h Άρα c 0 Η παράγωγος της ταυτοτικής συνάρτησης f c f Έχουμε f h f h h, και για h 0, f h f h α h h f h f Επομένως lim lim h0 h h0 Άρα β Η παράγωγος της συνάρτησης f c O α ρ =c O β O O =0 = = Έστω η συνάρτηση f Έχουμε f h f h h h h h,

26 9 f h f h h και για h 0, h h h Επομένως, lim h0 f h h f lim h h0 Άρα = 4 = O O Αποδεικνύεται ότι α β ν ν ν, όπου ν φυσικός Ο τύπος αυτός ισχύει και στην περίπτωση που ο εκθέτης είναι ρητός αριθμός Για παράδειγμα, Άρα ρ ρ ρ, όπου ρ ρητός αριθμός Η παράγωγος του ημ και του συν Έστω η γραφική παράσταση της συνάρτησης f ημ σχήμα 5 Αν λάβουμε υπόψη ότι η τιμή της f σε ένα σημείο 0 είναι ο συντελεστής διεύθυνσης της εφαπτομένης της καμπύλης της f στο σημείο, f, 0 0 μπορούμε να σχεδιάσουμε προσεγγιστικά τη γραφική παράσταση της f Παρατηρούμε ότι η γραφική παράσταση της f μοιάζει με τη γραφική παράσταση της συνάρτησης συν

27 0 =ημ 5o 45 o 5 o π 45 o Ο π 5 Ο π/ π π =ημ Πράγματι, για τη συνάρτηση f ημ αποδεικνύεται ότι ημ συν Επίσης για τη συνάρτηση g συν αποδεικνύεται ότι Η παράγωγος του e και του συν ημ ln Για την εκθετική και τη λογαριθμική συνάρτηση, με βάση τον αριθμό e, αποδεικνύεται ότι e e και ln Κανόνες Παραγώγισης Η παράγωγος της συνάρτησης cf Έστω η συνάρτηση F cf Έχουμε F h F cf h cf c f h f, και για h 0 Επομένως F h F c f h f f h f c h h h F h F lim lim c h0 h h0 f h h f cf Άρα c f c f

28 Για παράδειγμα , και 6 6 6ln 6ln Η παράγωγος της συνάρτησης g f Έστω η συναρτηση g f F Έχουμε g f h g h f F h F g h g f h f, και για 0 h, h g h g h f h f h F h F Επομένως lim lim lim g f h g h g h f h f h F h F h h h Άρα g f g f Για παράδειγμα και Παράγωγος των συναρτήσεων g f και g f Για το γινόμενο και το πηλίκο συναρτήσεων αποδεικνύεται ότι ισχύουν οι παρακάτω κανόνες παραγώγισης: g f g f g f g g f g f g f

29 Για παράδειγμα και ημ ημ ημ ημ συν 4 4 Η παράγωγος σύνθετης συνάρτησης Γνωρίζουμε ήδη πώς παραγωγίζονται οι συναρτήσεις, ημ, συν, e και ln Επίσης, με τη βοήθεια των κανόνων παραγώγισης αθροίσματος, γινομένου και πηλίκου μπορούμε να παραγωγίσουμε και πολυπλοκότερες συναρτήσεις όπως για παράδειγμα τις έχουμε ν και για τις οποίες 6 και [ ] 6 9 Πώς όμως θα παραγωγίσουμε μια συνάρτηση όπως η F ; Παρατηρούμε ότι η συνάρτηση F προκύπτει αν στην f θέσουμε όπου το g Είναι, δηλαδή, F f g Γι αυτό η συνάρτηση F λέγεται σύνθεση της g με την f Αποδεικνύεται ότι για την παράγωγο μιας σύνθετης συνάρτησης ισχύει: f g f g g Δηλαδή για να παραγωγίσουμε τη συνάρτηση f g, σε πρώτη φάση παραγωγίζουμε την f σαν να έχει ανεξάρτητη μεταβλητή την g και στη συνέχεια πολλαπλασιάζουμε με την παράγωγο της g Επομένως, 9 Επίσης, επειδή όπως είδαμε, είναι, έχουμε:

30 Ομοίως, ημ συν συν Στον παρακάτω πίνακα συνοψίζονται οι βασικοί τύποι και κανόνες παραγώγισης c 0 ρ ρ ρ ημ συν συν ημ e e n cf cf f g f g f g f g f g f g f g f g g f g f g g ΕΦΑΡΜΟΓΕΣ Να υπολογιστεί η παράγωγος των συναρτήσεων i f εφ ii f ημ ΛΥΣΗ i Έχουμε f εφ ημ ημ συν ημσυν συν ημ συν συν συν συν Άρα εφ συν ii Έχουμε

31 4 f [ημ ] ημ ημ ημ συν ημ συν ημ ημ6, όπου χρησιμοποιήθηκε η σχέση ημα ημα συνα Η θέση ενός υλικού σημείου, το οποίο εκτελεί ευθύγραμμη κίνηση δίνεται από τον τύπο t t 6t 9t, όπου το t μετριέται σε δευτερόλεπτα και το σε μέτρα i Να βρεθεί η ταχύτητα του σημείου σε χρόνο t ii Ποια είναι η ταχύτητα του σημείου σε χρόνο s και ποια σε χρόνο 4 s; iii Πότε το σημείο είναι στιγμιαία ακίνητο; iv Πότε το σημείο κινείται στη θετική κατεύθυνση και πότε στην αρνητική κατεύθυνση; v Να βρεθεί το ολικό διάστημα που έχει διανύσει το σημείο στη διάρκεια των πρώτων 5 s ΛΥΣΗ i Η ταχύτητα είναι υ t t t 6t 9t t t 9 ii Η ταχύτητα του σημείου σε χρόνο t s είναι υ 9 m/s και σε χρόνο t 4s είναι υ m/s iii Το σημείο είναι ακίνητο, όταν υ t 0, δηλαδή όταν t t 9 0 t 4t 0 t ή t Άρα, το σημείο είναι ακίνητο ύστερα από s και ύστερα από s iv Το σημείο κινείται στη θετική κατεύθυνση, όταν υ t 0, δηλαδή όταν t t 9 0 t 4t 0 t t 0 t ή t

32 5 Άρα, το σημείο κινείται στη θετική κατεύθυνση στα χρονικά διαστήματα t και t και στην αρνητική κατεύθυνση όταν t Σχηματικά η κίνηση του υλικού σημείου μπορεί να παρασταθεί ως εξής: t= t=0 0 4 t= =t v Η απόσταση που διανύθηκε από το κινούμενο σημείο είναι: Στη διάρκεια του πρώτου δευτερόλεπτου Από t μέχρι t Από t μέχρι t 5 S m S m S m Άρα, το ολικό διάστημα S που διάνυσε το σημείο σε χρόνο 5s είναι S S S S m ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ Να βρείτε τις παραγώγους των συναρτήσεων στις ασκήσεις -8 i f 5 ii 4 f iii 9 f i / f ii f iii 5 f i f ii 5 f, 0

33 6 4 i f ii f iii f, i f 4 ii 5 f 6 iii 0 f 5 6 i 6 f ii f i 4 f ii f 5 iii f 8 i f 8 ημ 5 ii f 6συν i f ii f ημ συν 0 i f συν ii f 4 ημ συν i f ii f iii ημ ημ f συν i f ii συν f i f ii 5 f iii 5 f 5 4 i f ημ ii f ημ iii f ημ4 iv f εφ 5 i f ii f ημ 6 i f e ii f e iii a β f e iv e f e e

34 7 7 i f ln ii f ln iii f ln α β iv f ln 8 i ln f ii f e ln 9 i Να βρείτε το συντελεστή διεύθυνσης της εφαπτομένης της καμπύλης της t συνάρτησης f t στο σημείο της A, f t ημθ ii Ομοίως της καμπύλης της συνάρτησης f θ στο σημείο ημθ συνθ π π της, f 0 Το βάρος Β σε γραμμάρια ενός θηλυκού ποντικιού ύστερα από t εβδομάδες δίνεται προσεγγιστικά από τη συνάρτηση B t t, όπου 4 t 8 Να βρείτε το ρυθμό ανάπτυξης του ποντικιού: i ύστερα από t εβδομάδες και ii ύστερα από, και 8 εβδομάδες A0, Να βρείτε το ρυθμό μεταβολής της απόστασης των σημείων A 0, και B, 0 ως προς όταν 0 O B,0 Να βρείτε την τιμή του α ώστε η εφαπτομένη της γραφικής παράστασης της συνάρτησης f α στο σημείο της O 0, f 0 να σχηματίζει με 0 τον άξονα γωνία 60 Β ΟΜΑΔΑΣ Σε ποιά σημεία της καμπύλης της συνάρτησης της είναι παράλληλη στην ευθεία 5; f η εφαπτομένη Να βρείτε τα σημεία της καμπύλης της συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΥΠOΥΡΓΕIO ΠΑIΔΕIΑΣ ΚΑI ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΔΑΜΟΠΟΥΛΟΣ ΛΕΩΝΙΔΑΣ ΔΑΜΙΑΝΟΥ ΧΑΡΑΛΑΜΠΟΣ ΣΒΕΡΚΟΣ ΑΝΔΡΕΑΣ Η συγγραφή και η επιμέλεια

Διαβάστε περισσότερα

1 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

1 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Εισαγωγή Στο χώρο της επιστήμης το 7ο αιώνα κυριαρχούσε η μελέτη της κίνησης των ουράνιων σωμάτων, καθώς και η μελέτη της κίνησης ενός σώματος πάνω ή κοντά στη Γη Στη μελέτη αυτή προφανώς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΥΠOΥΡΓΕIO ΠΑIΔΕIΑΣ ΚΑI ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΔΑΜΟΠΟΥΛΟΣ ΛΕΩΝΙΔΑΣ ΔΑΜΙΑΝΟΥ ΧΑΡΑΛΑΜΠΟΣ ΣΒΕΡΚΟΣ ΑΝΔΡΕΑΣ Η συγγραφή και η επιμέλεια

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α

Διαβάστε περισσότερα

1.4. Ασκήσεις σχ. βιβλίου σελίδας A ΟΜΑ ΑΣ. Να βρείτε τα ακρότατα των συναρτήσεων i) f(x) = x 2x ii) f(x) = 3 x iii) f(x) = x 2x + 4

1.4. Ασκήσεις σχ. βιβλίου σελίδας A ΟΜΑ ΑΣ. Να βρείτε τα ακρότατα των συναρτήσεων i) f(x) = x 2x ii) f(x) = 3 x iii) f(x) = x 2x + 4 .4 Ασκήσεις σχ. βιβλίου σελίδας 45 47 A ΟΜΑ ΑΣ. Να βρείτε τα ακρότατα των συναρτήσεων i) f() ii) f() + 6 iii) f() i) Πεδίο ορισµού είναι το R f () f () 0 0 f () > 0 > 0 > > + 4 Το πρόσηµο της f και η µονοτονία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

( x)( x) x ( x) 2. 2x< 60 x< 30 και τελικά 0 < x < 30. = x = (παραγώγιση σύνθετης συνάρτησης)

( x)( x) x ( x) 2. 2x< 60 x< 30 και τελικά 0 < x < 30. = x = (παραγώγιση σύνθετης συνάρτησης) Β3. Από ένα φύλλο λαμαρίνας σχήματος τετραγώνου πλευράς 6 cm θα κατασκευαστεί ένα δοχείο, ανοικτό από πάνω, αφού κοπούν από τις γωνίες του τέσσερα ίσα τετράγωνα και στη συνέχεια διπλωθούν προς τα επάνω

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: Αδαμόπουλος Λεωνίδας, Δαμιανού Χαράλαμπος Σβέρκος Ανδρέας Επ Σύμβουλος Παιδαγωγικού Ινστιτούτου Αναπλ Καθηγητής Παν/μίου Αθηνών Σχολικός

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 3 Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΠΑΡΑΓΩΓΙΣΙΜΗ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ Α τάξης Γενικού Λυκείου Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 + Ερωτήσεις ανάπτυξης. ** Έστω η συνάρτηση f () = - 3 +. α) Να βρείτε τις τιμές f (), f (0), f (-3), f () β) Να βρείτε τα σημεία τομής της C f με τους άξονες γ) Να βρείτε τις τιμές f (t), f (t), f ( + h),,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R . ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x = ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 2ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Αν η συνάρτηση f είναι παραγωγίσιμη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β). Σ Λ. * Αν η συνάρτηση

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

1.1 ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ

1.1 ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ . ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ Α. ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΑΡΤΗΣΗ ΠΕΡΙΟΡΙΣΜΟΣ P Q Q v P P ln P P P P, P P, Q P P Ποιο είναι το πεδίο ορισμού των

Διαβάστε περισσότερα

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1 Ερωτήσεις ανάπτυξης. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: α) f () = ( -) 4 - + β) f () = - - + 3 4 - - γ) f () = δ) f () = - + - - 5-3

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 8γ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 8γ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΚΕΦΑΛΑΙΟ ο Διαφορικός Λογισμός (Νο 8γ) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η Ο Κ Ε Φ Α Λ Α Ι Ο ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση

Διαβάστε περισσότερα

1.3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. 1. Ορισµός της παραγώγου συνάρτησης

1.3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. 1. Ορισµός της παραγώγου συνάρτησης . ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ. Ορισµός της παραγώγου συνάρτησης Έστω µια συνάρτηση µε πεδίο ορισµού Α, και Β το σύνολο των Α στα οποία η είναι παραγωγίσιµη. Τότε ορίζεται νέα συνάρτηση µε την οποία κάθε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ Θ Ε Τ Ι Κ Ω Ν Σ Π Ο Υ Δ Ω Ν, Ο Ι Κ Ο Ν Ο Μ Ι Α Σ & Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Γ ΛΥΚΕΙΟΥ

Διαβάστε περισσότερα

5o Φύλλο Ασκήσεων. Γενικής Παιδείας. ΑΣΚΗΣΗ 1η. ΑΣΚΗΣΗ 2η. Να βρείτε τα διαστήματα μονοτονίας και τα ακρότατα των συναρτήσεων :

5o Φύλλο Ασκήσεων. Γενικής Παιδείας. ΑΣΚΗΣΗ 1η. ΑΣΚΗΣΗ 2η. Να βρείτε τα διαστήματα μονοτονίας και τα ακρότατα των συναρτήσεων : ΛΥΚΕΙΟ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Λ Υ Κ Ε Ι Ο Υ Κ E Φ Α Λ Α Ι Ο Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ 1ο Λ Ο Γ Ι Σ Μ Ο Σ ΤΡΙΜΗΣ ΠΑΝΤΕΛΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Γενικής Παιδείας 5o Φύλλο Ασκήσεων ΑΣΚΗΣΗ 1η Να βρείτε τα διαστήματα μονοτονίας

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. και η συνάρτηση f είναι παραγωγίσιμη στο x. την παράγωγο f' ( x. 0 ) (ή και στιγμιαίο ρυθμό μεταβολής).

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. και η συνάρτηση f είναι παραγωγίσιμη στο x. την παράγωγο f' ( x. 0 ) (ή και στιγμιαίο ρυθμό μεταβολής). Ρυθμός μεταβολής Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ i Αν δύο μεταβλητά μεγέθη x, y συνδέονται με τη σχέση y = f( x) και η συνάρτηση f είναι παραγωγίσιμη στο x τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το

Διαβάστε περισσότερα

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ .7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ I. Αν μια συνάρτηση παρουσιάζει τοπικό ακρότατο σε ένα εσωτερικό σημείο του πεδίου ορισμού της και είναι παραγωγισιμη σε αυτό τότε ( ).(Θεώρημα Fermat) II.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ.

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ. Άσκηση. α Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία (,y, Α=(, και Β=(0, β Να βρεθεί η εξίσωση της ευθείας που διέρχεται από το σημείο B(0, και έχει κλίση -0.. Να βρεθούν τα σημεία που

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

lim lim lim f (x) δ) lim lim lim lim 1- x 1- lim lim lim lim lim Ερωτήσεις ανάπτυξης

lim lim lim f (x) δ) lim lim lim lim 1- x 1- lim lim lim lim lim Ερωτήσεις ανάπτυξης Ερωτήσεις ανάπτυξης. ** Η γραφική παράσταση της συνάρτησης f είναι αυτή που φαίνεται στο διπλανό σχήμα. Να βρεθούν τα παρακάτω όρια: α) γ) ε) ζ) - f () β) f () δ) f () f () στ) - - - f () f () f () - y

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2.

Μαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2. Ερωτήσεις ανάπτυξης Β. Να βρεθούν τα πεδία ορισμού των συναρτήσεων: 5 4 i) f() = ii) f()= iii) f()= iv) f()= ln( ) e v) f()= ln( -4) 4 4 vi) f() =, 5. Να βρείτε το πεδίο ορισμού των συναρτήσεων f με τύπο:

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

2. ** ίνεται η συνάρτηση f (x) = logx. α) Να εξετάσετε αν ισχύουν οι προϋποθέσεις του θεωρήµατος µέσης τιµής στο [1, 20] για τη συνάρτηση f.

2. ** ίνεται η συνάρτηση f (x) = logx. α) Να εξετάσετε αν ισχύουν οι προϋποθέσεις του θεωρήµατος µέσης τιµής στο [1, 20] για τη συνάρτηση f. Ερωτήσεις ανάπτυξης. ** Έστω µια συνάρτηση f παραγωγίσιµη στο R, η οποία έχει δύο τουλάχιστον ρίζες. α) Να αποδείξετε ότι µεταξύ δύο ριζών της f περιέχεται τουλάχιστον µια ρίζα της f. β) Αν η f έχει δύο

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f =

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 2016 (version ) είναι: ( ) f = ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ 16 (version 9-6-16) 1. A Να δώσετε τον ορισμό της παραγώγου μιας συνάρτησης σε ένα σημείο x του πεδίο ορισμού της. Απάντηση: Παράγωγος μιας συνάρτησης σε ένα σημείο x του πεδίο

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ. Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΘΕΣΗ ΤΡΟΧΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΙ ΔΙΑΣΤΗΜΑ. Παρατηρώντας τις εικόνες προσπαθήστε να ορίσετε τις θέσεις των διαφόρων ηρώων των κινουμένων σχεδίων. Ερώτηση: Πότε ένα σώμα

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

1 ο ΚΕΦΑΛΑΙΟ Α. ΜΟΝΑΔΕΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΩΝ ΚΡΕΜΑΣΤΑΣ ΙΩΑΝΝΗΣ

1 ο ΚΕΦΑΛΑΙΟ Α. ΜΟΝΑΔΕΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΩΝ ΚΡΕΜΑΣΤΑΣ ΙΩΑΝΝΗΣ Α. ΜΟΝΑΔΕΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΩΝ 1 ΚΕΦΑΛΑΙΟ 1 Ο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ- ΘΕΩΡΙΑ Μετατόπιση (Δx): Είναι η διαφορά μεταξύ της αρχικής και της τελικής θέσης ενός σώματος και έχει μονάδες τα μέτρα (m).

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ 2 5 +32 17 2= 1156 Μαθηματικά Β μέρος 8 9 15 Δ=2 δ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας

Διαβάστε περισσότερα

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) = Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΣΤΙΤΟΥΤΟ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΣΤΙΤΟΥΤΟ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΣΤΙΤΟΥΤΟ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α τάξης Γενικού Λυκείου ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ - ΑΘΗΝΑ ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης

Διαβάστε περισσότερα

Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 1 Κατεύθυνση Κεφάλαιο 2 Κατεύθυνση σχολικές ασκήσεις 287 ασκήσεις και τεχνικές σε 18 σελίδες. Kglykos.

Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 1 Κατεύθυνση Κεφάλαιο 2 Κατεύθυνση σχολικές ασκήσεις 287 ασκήσεις και τεχνικές σε 18 σελίδες. Kglykos. Κώστας Γλυκός Γενικής κεφάλαιο Κατεύθυνση Κεφάλαιο Κατεύθυνση σχολικές ασκήσεις 87 ασκήσεις και τεχνικές σε 8 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7 0 0 8 8 8 8 Kglykosgr / / 0 6 εκδόσεις Καλό

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Σημαντικές παρατηρήσεις

Σημαντικές παρατηρήσεις ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Διαφορικός Λογισμός Σημαντικές παρατηρήσεις Φυλλάδιο Φυλλάδι555 5 ο ο Η έννοια της παραγώγου Να υπάρχει διάστημα της μορφής ή ή α,,β

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ i) Να αποδείξετε την ταυτότητα α β γ αββγγα α β βγ γα ii) Να αποδείξετε ότι για όλους τους αβγ,, ισχύει Πότε ισχύει ισότητα; α β γ αβ βγ γα Λέμε ότι μια τριάδα θετικών ακεραίων β,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΚΥΚΛΟΥ Τ.Ε.Ε - ΟΜΑΔΑ Α ΕΠΑ.Λ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού

ΜΑΘΗΜΑΤΙΚΑ Β ΚΥΚΛΟΥ Τ.Ε.Ε - ΟΜΑΔΑ Α ΕΠΑ.Λ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού ΜΑΘΗΜΑΤΙΚΑ Β ΚΥΚΛΟΥ Τ.Ε.Ε ΟΜΑΔΑ Α ΕΠΑ.Λ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού ΑΣΚΗΣΗ Το βάρος μαθητών σε κιλά είναι : 5, 5, 57, 5, 6, 5, 5, 5, 57, 5 Να υπολογίσετε : α ) τη μέση τιμή

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα

Διαβάστε περισσότερα

. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o

. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o Στις ασκήσεις Κινητικής υπάρχουν αρκετοί τρόποι για να δουλέψουμε. Ένας από αυτούς είναι με τη σωστή χρήση των εξισώσεων θέσης (κίνησης) και ταχύτητας των σωμάτων που περιγράφονται. Τα βήματα που ακολουθούμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την 1 ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ 1) Δίνεται η διπλανή γραφική παράσταση της ταχύτητας με το χρόνο. Να γίνει το διάγραμμα (θέσης χρόνου ), αν όταν o= είναι o =. Υπόδειξη Βρείτε τα εμβαδά μεταξύ της γραφικής παράστασης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. Β ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετική και Τεχνολογική Κατεύθυνση

ΜΑΘΗΜΑΤΙΚΑ. Β ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετική και Τεχνολογική Κατεύθυνση ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετική και Τεχνολογική Κατεύθυνση ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ ΣΥΓΓΡΑΦΕΙΣ: Αδαμόπουλος Λεωνίδας Βισκαδουράκης Βασίλειος Γαβαλάς Δημήτριος Πολύζος Γεώργιος Σβέρκος Ανδρέας

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ ΝΟΕΜΒΡΙΟΥ 5 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο A. Να δώσετε τον ορισμό της συνέχειας μιας συνάρτησης στο πεδίο ορισμού της. ( Μονάδες)

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.1 Ευθύγραμμη κίνηση 1. Να αναφέρετε ποια από τα σώματα που φαίνονται στην εικόνα κινούνται. Α. Ως προς τη Γη B. Ως προς το αυτοκίνητο. Α. Ως προς τη Γη κινούνται το αυτοκίνητο, το αεροπλάνο και ο γλάρος.

Διαβάστε περισσότερα