Osnove teorije uzoraka
|
|
- Ῥούθ Κούνδουρος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Oove teorije uzoraka
2 Oove teorije uzoraka UZORAK: lučaji, reprezetativi dio oovog kupa populacije Uzorci: 1.uzorak:,, 1 1.uzorak:,, i.uzorak:,, i i
3 Razdioba aritmetičke redie uzorka f ( ) f ( ) razdioba aritmetičke redie uzorka oovi kup oovi kup: N E ( ) ; 0 1, aritm. redia uzorka: N E ( ) ; Rapo oovog kupa
4 Nepritrae procjee parametara oovog kupa Pojam epritrae procjee: eka varijabla epritrao procjejuje parametar oovog kupa Θ ako vrijedi: E( ) E( ) E( ) E( ) E ( ) 0 0 dakle: uzorka epritrao procjejuje očekivaja o. kupa dakle: varijaca uzorka ije epritraa procjea varijace oovog kupa dakle: varijabla epritrao procjejuje 1 varijacu oovog kupa
5 Stadarda pogreška aritmetičke redie uzorka Pomoću varijable određuje e 0 0 tadarda pogreška ar. redie VAŽNO: i1 ( ) i 1 k = ( 1)... broj tupjeva lobode uzorka od podataka
6 f( ) Itervala procjea očekivaja oovog kupa iterval povjereja (vjerodotojoti) f(z) z z z z (1 ) 1 f ( z) e z 1 z varijabla tadardizirae ormale razdiobe
7 Važo: Veliki uzorci: > 30 elemeata, podataka vrijedot varijable z iz tadardizirae ormale razdiobe Mali uzorci: 30 elemeata, podataka korititi Studetovu t-razdiobu f(t) N0,1 Studetova t-razdioba a k = 1 tupaj lobode Studetova t-razdioba imetriča za velike uzorke e e razlikuje od ormale razdiobe t
8 Koačo: Za velike uzorke Korititi tadardizirau (jediiču) ormalu razdiobu Za male uzorke Korititi Studetovu t- razdiobu parametrom k = 1 z z ( ) (1 ) t ( k ; t ) ( k ;1 ) z... varijabla N 0,1 t... varijabla Studetove t-razdiobe
9 Primjer: Podaci utvrđei u ekom proceu: 5.1, 49.0, 51.4, 50.0, 50.3, 49.6, 50.6, 50.8, 51.0, 51.7 Itervalo procijeiti očekivaje oovog kupa iz kojeg potječe uzorak, uz iterval vjerodotojoti 1 = 0,95 (95%) Rezultati dobivei račuajem, iz uzorka: = 10; = 50,65; = 0.96 t( ) t(1 ) uz P 0,95 (95%)
10 Opaka U lučaju kada je pozata tadarda devijacija oovog kupa, ije užo korišteje Studetove t-razdiobe kao i epritrae procjee tadarde pogreške U tom je lučaju: z( ) z(1 ) Za prethodi primjer: ako prihvatimo da je tadarda devijacija oovog kupa uz P 0,95 (95%) 1, lijedi:
11 Itervala procjea proporcija Uzorkovaje ekog dvolojog oovog kupa (populacije) u kojem eki događaj ima proporciju P rezultiralo bi lučajom varijablom p, tj. proporcijom itog događaja ali u uzorku: f( p) N E( p) P; p Vrijedi: p z P p z ( ) p (1 ) uz povjereje (vjerodotojot) procjee (1 ) p 1 P p p1 p
12 Važe pretpotavke: proporcija uzorka p N E( p) P; p p... epritraa procjea tadarde pogreške proporcije p q uzorka: p, q 1 p... veličia uzorka VRIJEDI SAMO ZA VELIKE UZORKE ( 100) ( )
13 Itervala procjea varijace Varijace (oobito malih) uzoraka e raipaju e ormalo oko varijace oovog kupa Vrijedi (K. Pearo, ) f ( ) ( i ) varijabla raipa e prema razdiobi k = 1 tupaj lobode k = 1 k = 5 k = 10 i1 0 i1 0 k = 15 E ( ) k k = 1 ( ) (1 ) 0 uz vjerojatot (1 ) 1 0 ( ) (1 )
14 Koačo:, uz raziu povjereja (1 ) 0 (1 ) ( )
15 Tetiraje tatitičkih hipoteza T.S.H. predtavlja potupak doošeja odluke a bazi uzorka uzorak, podataka: 1,,..., rezultati e uzorka mogu hvatiti kao točka u -dimezioalom protoru protor e može podijeliti a dva međuobo dijukta dijela (koji e iključuju), dio A i dio B dio B (odbacivaje H 0 ) U praki: umjeto -dimezioalog modela lužimo e jedodimezioalim varijablama (uglavom). dio A (prihvaćaje H 0 )
16 Potavimo dvije hipoteze H 0 : ulta hipoteza H 1 : alterativa hipoteza Ako e točka T kao realizacija uzorka ađe u dijelu A, matramo hipotezu H 0 ipravom i prihvaćamo je Ako e točka T kao realizacija uzorka ađe u dijelu B, matramo hipotezu H 0 eipravom i odbacujemo je dio B (odbacivaje H 0 ) dio A (prihvaćaje H 0 )
17 Pogreške pri tetiraju hipoteza Očito: pri uporabi opiaog modela moguće u pogreške Uzrok pogrešaka: lučajot odabira elemeata uzorka! Vrte pogrešaka: Pogreška 1. vrte ataje odbacivajem ulte hipoteze H 0 (i prihvaćajem alterative hipoteze H 1 ) iako je hipoteza H 0 iprava: Vjerojatot pogreške 1. vrte: P T B H 0 POGREŠNO ODBACIVANJE HIPOTEZE Ho Pogreška. vrte ataje prihvaćajem hipoteze H 0 u uvjetima ipravoti alterative hipoteze H 1 Vjerojatot pogreške. vrte: P T A H 1 POGREŠNO PRIHVAĆANJE HIPOTEZE Ho
18 Jakot teta Jakot (moć) teta predtavlja vjerojatot odbacivaja ulte hipoteze kada je uitiu eiprava: p PT B H 1 očito: + p = 1 p = 1 ISPRAVNO ODBACIVANJE H o
19 Hipoteza Ho ISTINITA Staje NEISTINITA O D L Odbaciti Pogreška 1. vrte ISPRAVNO U K A Prihvatiti ISPRAVNO Pogreška. vrte
20 Tetiraje hipoteza za očekivaje Uzorak oovi kup, hipoteze Razdioba aritmetičke redie uzorka f( ) Studetova razdioba k = 1 t. lob. Hipoteze: H H H H : : dvotrai tet : jedotrai : tetovi f() t 1 1 Pogoda jedodimezioala varijabla: t... varijabla Studetove t-razdiobe, k = 1 tup. lobode k = 1 1 t t Ako je rač. 0 odbaciti Ho, uz vjerojatot pogreške 1. vrte t 0 0 t 0 t
21 Primjer: Podaci iz primjera za itervalu procjeu očekivaja = 10; = 50.65; = 0.96; Provjeriti hipotezu da je riječ o podacima kupa čije je očekivaje 51.5 jediica, aprama alterativoj hipotezi Vjerojatot pogreške 1. vrte eka izoi 0.05 ( = 0.05) f() t 51.5 H : 51.5 H : 51.5 ( 51.5) t rač Zaključak: t rač t t t t ODBACITI H rač. 0 0
22 Provjera hipoteza uzorak uzorak 1. kup: očekivaje 1, varijaca uzorak: 1 podataka,. kup: očekivaje, varijaca 0 Hipoteze:. uzorak: podataka, H H H H : 0 1 : 1 1 : 1 1 : 1 1 f( 1 ) f( ),, 1 1 1,, 1 1,
23 aritmetička redia vakog od uzoraka raipat će e oko očekivaja kupa iz kojeg uzorak potječe jihova razlika d 1 raipat će e oko veličie pretpotavimo li da je hipoteza Ho itiita, 1, D 1 varijabla d će e raipati oko 0. f( d) 0 d
24 pri tome je tadarda pogreška varijable d: d za uzorke d ( 1) ( 1) za uzorke 1 + > 30, i ako e 1 i zato razlikuju varijabla pogoda za tetiraje ulte hipoteze: f() t k = 1 + t rač. 1 d... varijabla Studetove t-razdiobe k = Ako trač. t0 odbaciti Ho, uz vjerojatot pogreške 1. vrte. t 0 0 t 0 t
25 Tetiraje hipoteza za proporcije (atributive podatke) lučaj: uzorak o. kup oovi dvoloji kup proporcijom P elemeta a vojtvom A. uzorak elemeata proporcijom p važo: E(p) = P raipaje proporcije p oko proporcije P ima tadardu pogrešku: p p q lučaj: uzorak uzorak oovi kupovi 1. kup, proporcije P 1. kup, proporcije P uzorci 1 pod., proporcija p 1 pod., proporcija p ulta hipoteza: alterativa hip.: H : P P 0 1 H : P P 1 1 H : P P 1 1 H : P P 1
26 varijabla za tetiraje hipoteze Ho : P z p P p var. razdiobe N Vrijedi amo za VELIKE uzorke tj ,1 razlika d = p 1 p raipa e oko E(d) = 0, ako pretpotavimo itiitot ulte hipoteze varijabla pogoda za tetiraje ulte hipoteze: z p 1 d p d p (1 p) p p p Zaključak: Ako zrač. z( ) ODBACITI Ho
27 Uporedba (tetiraje) varijaci 1. Oovi kup: očekivaje 1, varijaca 01 epritraa procjea varijace. Oovi kup: očekivaje, varijaca 0 epritraa procjea varijace Nulta hipoteza: H : aprama alterativoj H : Varijabla F varijabla F-razdiobe k b = i k = 1.. 1
28 f( F) Ako: F rač. > F 0 odbaciti Ho 1 k b ; k Kovecija: 1 Tipičo: = 0.05; 0.01 F 0 F F-razdioba: utemeljio G. Sedecor ( ) Naziv F-razdioba u čat R. Fihera ( ) VAŽNO: Svakom tetu aritmetičkih redia mora prethoditi provjera začajoti razlika među varijacama
Str. 454;139;91.
Str. 454;39;9 Metod uzorka Predavač: Dr Mirko Savić avicmirko@eccf.u.ac.yu www.eccf.u.ac.yu Statitička maa može da e pomatra a jeda od ledeća dva ačia: potpuo pomatraje, delimičo pomatraje (metod uzorka).
Osnove statistike sažetak.
Oove tatitike ažetak.. Uvod Populacija je kup vih etiteta koje razmatramo, a primjer vi tudeti ekog veučilišta čie populaciju. Razmatramo eko tatititičko obilježje populacije, a primjer viiu. Viia je lučaja
nepoznati parametar θ jednak broju θ 0, u oznaci H 0 (θ =θ 0 ), je primer proste hipoteze. Ako hipoteza nije prosta, onda je složena.
Testiraje parametarskih hipoteza Pretpostavka (hipoteza) o parametru raspodele se zove parametarska hipoteza. Postupak jeog potvrđivaja ili odbacivaja a osovu podataka iz uzorka je parametarski test. t
Procjena parametara. Zadatak 4.1 Neka je X 1, X 2,..., X n slučajni uzorak iz populacije s konačnim očekivanjem µ i varijancom σ 2.
4 Procjea parametara Neka je X slučaja varijabla čiju distribuciju proučavamo. Defiicija: Slučaji uzorak duljie za X je iz od ezavisih i jedako distribuiraih slučajih varijabli X 1, X,..., X koje imaju
TESTIRANJE ZNAČAJNOSTI RAZLIKE
//0 TESTIRANJE ZNAČAJNOSTI RAZLIKE Z-TEST I T-TEST Beograd, 0 Ass. dr Zora Bukumirić Z-TEST I T-TEST z-testom i Studetovim t-testom testiramo razliku: jede aritmetičke sredie i pretpostavljee vredosti
3 Populacija i uzorak
3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.
STATISTIKA S M E I M N I AR R 7 : METODE UZORKA
Fakultet za menadžment u turizmu i ugotiteljtvu, Opatija Sveučilišni preddiplomki tudij Polovna ekonomija u turizmu i ugotiteljtvu Noitelj kolegija: Prof. dr. c. Suzana Marković Aitentica: Jelena Komšić
UVOD U STATISTIČKO ZAKLJUČIVANJE
STROJNO UČENJE Uvod u statističko zaključivaje 1/22 STROJNO UČENJE Uvod u statističko zaključivaje 2/22 UVOD U STATISTIČKO ZAKLJUČIVANJE riječ STATISTIKA (lat. status = staje) Statistika deskriptiva iferecijala
PROCJENE PARAMETARA POPULACIJE
PROCJENE PARAMETARA POPULACIJE Iferecijala statistika je skup postupaka kojima se a osovi rezultata iz uzorka doose zaključci o populaciji. INFERENCIJALNA STATISTIKA Procjee parametara Testiraje hipoteza
Sadrˇzaj Sadrˇzaj 12 TEORIJA PROCJENA
Sadrˇzaj Sadrˇzaj 2 TEORIJA PROCJENA 3 2. TOČKASTE PROCJENE......................... 5 2.2 REGRESIJSKA ANALIZA........................ 2.3 ML-PROCJENITELJI tko želi zati više................. 5 2.4 Poovimo.................................
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1
χ 2 test (Hi-kvadrat test) Jedan od prvih statističkih testova je χ 2 -test. Predložio ga je K. Pearson 900. godine, pa je poznat i pod nazivom Pearsonov test. χ 2 test je neparametarski test. Pomoću χ
Sadrˇzaj. Sadrˇzaj MATEMATIČKA STATISTIKA DESKRIPTIVNA STATISTIKA Ponovimo... 15
Sadrˇzaj Sadrˇzaj 1 11 MATEMATIČKA STATISTIKA 3 11.1 DESKRIPTIVNA STATISTIKA..................... 5 11. Poovimo................................. 15 1 Radi materijal Poglavlje 11 MATEMATIČKA STATISTIKA
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće naučnim ili iskustvenim).
Str. 53;76; Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@eccf.su.ac.yu www.eccf.su.ac.yu Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama
4 Testiranje statističkih hipoteza
4 Testiranje statističkih hipoteza 1 4.1. Statistička hipoteza Promatramo statističko obilježje X. Statistička hipoteza je (bilo koja) pretpostavka o (populacijskoj) razdiobi od X. Kažemo da je statistička
Testiranje statističkih hipoteza Materijali za nastavu iz Statistike
Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 39 Uvod Osnovna zadaća Statistike je na temelju uzorka ocijeniti kakvu razdiobu
2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)
2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Počela biostatistike, Poslijediplomski interdisciplinarni doktorski studij Molekularne bioznanosti. Molekularne bioznanosti. Molekularne bioznanosti
Analiza brojčanih podataka Nora Nikolac Klinički zavod za kemiju KB Sestre milosrdnice Kolegij: Počela biostatistike Statistička hipoteza postupak testiranja 1. postavljanje hipoteze: H 0, H 1 2. odabir
Str
Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće
Testiranje statistiqkih hipoteza
Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza je vid statistiqkog zakljuqivanja koji se primenjuje u situacijama: kada se unapred pretpostavlja postojanje određene
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Analiza varijanse sa jednim Posmatra se samo jedna promenljiva
ANOVA Analiza varijanse (ANOVA) Analiza varijanse sa jednim faktorom Proširena ANOVA tabela 2 Tehnike za analizu podataka Analiza varijanse sa jednim faktorom Posmatra se samo jedna promenljiva Posmatra
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
Uvod u neparametarske testove
Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Primjer - aritmetička sredina = M. x s. Primjer - nastavak. amplituda. vremenski indeks n. orginalni signal šum signal + šum
Primjer - aritmetička redia Itereata je utav koji luži za glačaje (uredjavaje) lučajih varijacija u igalu. Nerekurzivi digitali filtri x x+ x + + x -poit movig average ytem [ ] + [ ] + [ ] + + [ + ] u
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
3. OSNOVNI POKAZATELJI TLA
MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
9. TESTIRANJE HIPOTEZA O PARAMETRU. Josipa Perkov, prof., pred. 1
9. TESTIRANJE HIPOTEZA O PARAMETRU Josipa Perkov, prof., pred. 1 na prethodnom predavanju upoznali smo se s metodom i postupcima koji omogućavaju da se iz dijela populacije, koji je slučajno izabran, procijeni
PISMENI ISPIT IZ STATISTIKE
1. a) Trgovina odjeće prodaje odjeću u tri različite veličine: 32% veličine S, 44% veličine M i ostatak veličine L. Pokazalo se da je postotak odjeće s greškom redom 1%, 5% i 2%. Ako je trgovina ustanovila
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
OPISNA STATISTIKA GRAFIČKE METODE. Pravila kolokvija PROMJENE RASPOREDA: Dozvoljene formule s weba (M. Grbić) HISTOGRAMI
PROMJENE RASPOREDA: Kolegij SOM (prvi kolokvij) Opća fizika (predavaje) Numerička matematika Stari termi. ožujka -h. ožujka -h. ožujka -h Novi termi. ožujka -h. ožujka -h. travja - Pravila kolokvija Dozvoljee
SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET U RIJECI. Specijalistički diplomski stručni studij
SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET U RIJECI Specijalistički diplomski stručni studij Test hipoteze o jednakosti aritmetičkih sredina K osnovnih skupova Seminarski rad Kolegij: Odabrana poglavlja
BILJEŠKE ZA PREDAVANJA (za internu uporabu)
1. Statistika - Nazivlje... 2 2. Statistika podjela statističkih analiza... 2 3. Objekti, varijable, mjerne skale... 3 4. Ekstremne i nedostajuće vrijednosti podaci... 4 5. Ciljevi statističke analize...
Postoji nekoliko statidtičkih testova koji koriste t raspodelu, koji se jednim imenom zovu t-testovi.
Postoji nekoliko statidtičkih testova koji koriste t raspodelu, koji se jednim imenom zovu t-testovi. U SPSS-u su obradjeni: t test razlike između aritmetičke sredine osnovnog skupa i uzorka t test razlike
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Zaključivanje o jednakosti distribucija temeljeno na dva uzorka
Zaključivanje o jednakosti distribucija 1 Zaključivanje o jednakosti distribucija temeljeno na dva uzorka Odgovorom na ovako postavljeno pitanje u praksi možemo zaključiti dolazi li do promjene obilježja
( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )
Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija
ANALIZA TABLICA KONTINGENCIJE
TABLICA KONTINGENCIJE tablica koja u retcima i stupcima sadrži frekvencije atributivnih obilježja ANALIZA TABLICA KONTINGENCIJE predstavlja empirijsku razdiobu frekvencija obilježja mjerenih nominalnom
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Neparametarski testovi za dva nezavisna uzorka. Boris Glišić 208/2010 Bojana Ružičić 21/2010
Neparametarski testovi za dva nezavisna uzorka Boris Glišić 208/2010 Bojana Ružičić 21/2010 Neparametarski testovi Hipoteze o raspodeli obeležja se nazivaju neparametarske hipoteze, a odgovarajući testovi
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Statističko zaključivanje jedna varijabla
Poglavlje 5 Statističko zaključivanje jedna varijabla 5.1 Procjena distribucije, očekivanja i varijance U prethodnim poglavljima naučili smo da se veličine promatrane na jedinkama obuhvaćenim nekim istraživanjem
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:
Statističko zaključivanje - testiranje hipoteza. Katedra za medicinsku statistiku i informatiku
Statističko zaključivanje - testiranje hipoteza Statističko zaključivanje Ideja moderne statistike je da na osnovu uzorka (dobijenog uzorkovanjem iz osnovnog skupa) donosimo zaključke o populaciji (statističko
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.
Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,
Statistika sažetak i popis formula
Stattka ažetak pop formula Dekrptva tattka Artmetčka reda brojeva,,, : + + + = + + 3 + 4 + 5 5 Na prmjer, artmetčka reda brojeva,,3,4,5 je broj = = 3 5 5 Frekvecja ekog podatka je broj pojavljvaja tog
Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku
Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
VJEROJATNOST I STATISTIKA 2. kolokvij lipnja 2016.
Broj zadataka: 5 Vrijeme rješavanja: 0 min Ukupan broj bodova: 50 Zadatak.. kolokvij - 0. lipnja 0. (a Ako su X i Y diskretne slučajne varijable, dokažite da vrijedi formula E [X + Y ] = E [X] + E [Y ].
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
GRAĐEVINSKI FAKULTET SVEUČILIŠTE U RIJECI. Specijalistički diplomski stručni studij MANN-WHITNEY-WILCOXONOV TEST ZA NEZAVISNE UZORKE.
GRAĐEVINSKI FAKULTET SVEUČILIŠTE U RIJECI Specijalistički diplomski stručni studij MANN-WHITNEY-WILCOXONOV TEST ZA NEZAVISNE UZORKE Seminarski rad Kolegij: Odabrana poglavlja inžinjerske matematike Akademska
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
1. Pravopis/gramatika Što jest, a što nije dobro?
Uvod u biomedicinska istraživanja Metode medicinske informatike u istraživanju Uvod u biomedicinska istraživanja Metode medicinske informatike u istraživanju Logičke zakonitosti znastvenog rada Prof. dr.
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Uvod u neparametarske testove
Str. 644;1;148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@eccf.su.ac.yu www.eccf.su.ac.yu Hi-kvadrat testovi χ Str. 646;1;149 Koristi se za upoređivanje dve serije frekvencija. Vrste
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.
VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Granične vrednosti realnih nizova
Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se
Izbor statističkih testova Ana-Maria Šimundić
Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog
MATEMATIČKA STATISTIKA
MATEMATIČKA STATISTIKA Bilješke s predavaja (prof. dr. sc. Miljeko Huzak akademske godie 04./05. Natipkao i uredio: Kristija Kilassa Kvaterik Ova skripta služi samo kao pomoć u praćeju predavaja iz istoimeog
GLAZBENA UMJETNOST. Rezultati državne mature 2010.
GLAZBENA UJETNOST Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 112 k 61 72,5 St. pogreška mjerenja 5,06 edijan 76,0 od 86 St. devijacija 15,99 Raspon 66
Metoda najmanjih kvadrata
Metoda ajmajh kvadrata Moday, May 30, 011 Metoda ajmajh kvadrata (MNK) MNK smo već uvel u proučavaju leare korelacje; gdje smo tražl da suma kvadrata odstupaja ekspermetalh točaka od pravca koj h a ajbolj
1. Pravopis/gramatika 2. Logika znanstvenoga rada
Logičke zakonitosti znastvenog rada Logičke zakonitosti znanstvenog rada Mladen Petrovečki Mladen Petrovečki 1. Pravopis/gramatika 2. Logika znanstvenoga rada 1. uporaba logičkih pravilai logike uopće
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa
Slučajne varijable Statistički podaci su distribuirani po odredenoj zakonitosti. Za matematičko (apstraktno) opisivanje te zakonitosti potrebno je definirati slučajnu varijablu kojoj pripada odredena razdioba
Populacija Ciljna/uzoračka populacija
Populacija i uzorak Sadržaj predavanja Šta je populacija, šta je uzorak a šta uzorkovanje? Statističko zaključivanje Klasifikacija uzoraka: sa i bez verovatnoće, sa i bez zamenjivanja Uzoračke raspodele
Edukacijsko-rehabilitacijski fakultet Sveučilišta u Zagreb S T A T I S T I K A. Skripta. Pripremio: Branko Nikolić. Zagreb 2015./2016.
Edukacijsko-rehabilitacijski fakultet Sveučilišta u Zagreb S T A T I S T I K A Skripta Pripremio: Branko Nikolić Zagreb 05./06. LITERATURA: Obvezna:. Petz B., Kolesarić, V., Ivanec, D. (0): Petzova statistika.
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
10. domaća zadaća. 3. Neka je X neprekidna slučajna varijabla takva da je X N(0, 1). S točnošću od odredite:
Napomena: U svim zadacima treba koristiti tablicu standardne normalne razdiobe. 1. Neka je X neprekidna slučajna varijabla takva da je X N(0, 1). S točnošću od 10 5 odredite: a) P(X 1.16), b) P(X 0.59);
Prilagodba modela podacima. Vjeºbe - Statistika Praktikum Statisti ki testovi (2)
Vjeºbe - Statistika Praktikum Statisti ki testovi (2) Prilagodba modela podacima U praksi naj e² e imamo sljede i problem: Raspolaºemo s realizacijom nekog slu ajnog uzorka i htjeli bi utvrditi iz kojeg
MODEL JEDNOSTAVNE LINEARNE REGRESIJE
SVEUČILIŠTE U RIJECI GRAĐEVINSKI FAKULTET U RIJECI Specijalistički diplomski stručni studij građevinarstva Odabrana poglavlja inženjerske matematike MODEL JEDNOSTAVNE LINEARNE REGRESIJE Studenti: Sara
13. TESTIRANJE HIPOTEZE O NEPOZNATIM KARAKTERISTIKAMA POPULACIJE
13. TESTIRANJE HIPOTEZE O NEPOZNATIM KARAKTERISTIKAMA POPULACIJE χ - TEST χ -test je neparametrijski test kojim se vrlo uspješno rješavaju problemi masovnih pojava kao što su: testiranje hipoteze da distribucija
PODSJETNIK sa formulama = 1, 1 = 1
PODSJETNIK a fomulama pocjea matematičkog očekivaja µ x oovog kupa (što je veće to je pocjea tačija): uzoačka (empiijka) aitmetička edia (aitmetička edia uzoka): aglaa cetiaa i ajefikaija ocjea paameta
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja