Φροντιστήριο 2 ο : Εισαγωγή στον διανυσµατικό λογισµό

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Φροντιστήριο 2 ο : Εισαγωγή στον διανυσµατικό λογισµό"

Transcript

1 Φροντιστήριο ο : Εισαγωγή στον διανυσµατικό λογισµό Βαθµωτά ή µονόµτρα µγέθη scls: Για να οριστούν τα µγέθη αυτά απαιτίται να δοθί µόνο το µέτρο τους πριλαµβανοµένης της µονάδας µέτρησης ιανυσµατικά µγέθη vectos: ίναι µγέθη κίνα τα οποία για να οριστούν απαιτίται να δοθί το µέτρο τους και πί πλέον η διύθυνση και φορά του µγέθους, και η µονάδα µέτρησης του µγέθους. Συµβολισµός: â ή â, όπου ίναι το µέτρο του διανύσµατος και â ίναι το µοναδιαίο διάνυσµα, δηλ. µέτρο â. Recittion, Phsics I M. Velgkis

2 Συνιστώσς διανύσµατος - Συστήµατα συντταγµένων Καρτσιανές συντταγµένς:,, Το διάνυσµα θέσης ή πιβατική ακτίνα σώµατος στο σηµίο Ρ: t i j k,, i, j,k ίναι τα µοναδιαία διανύσµατα κατά µήκος των αξόνων,, Η διανυσµατική ποσότης Α: i j k,, Recittion, Phsics I 008-9

3 Πολικές συντταγµένς στο πίπδο -:,θ &, θ Μτασχηµατισµός: cosθ, sinθ, ή θ tn, Μοναδιαία διανύσµατα: ˆ cosθi sinθ j, θ ˆ sinθi cosθ j i cosθˆ sinθθˆ, j sin θˆ cosθθˆ Στοιχιώδης πιφάνια: dv dθ d ddθ Κυλινδρικές συντταγµένς:,α,α &,θ, θ Μτασχηµατισµός: ρcosφ, ρ sinφ, φ tn, ρ Στοιχιώδης όγκος: dv ρdφ dρ d ρdρdφd Recittion, Phsics I

4 Σφαιρικές συντταγµένς:,θ,φ και,α,α Μτασχηµατισµός: sinθcosφ, sinθsinφ, cosθ ή αντίστροφα φ tn /, θ cos /, Μοναδιαία διανύσµατα: ˆ sinθ cosφi sinθ sinφj cosθk, θˆ cosθ cosφi cosθ sinφj sinθk, φˆ sinφi cos φj ή αντίστροφα i sinθ cosφˆ cosθ cos φθˆ sinφφˆ j sin θ sinφˆ cosθ sinφ θˆ cos φφˆ k cosθˆ sinθθˆ Στοιχιώδης όγκος: dv sinθ ddθdφ θ φ,, Πράξις πί των διανυσµάτων: Ισότης διανυσµάτων:, σηµαίνι Α Β, Α Β,... Πρόσθση διανυσµάτων: C, σηµαίνι ότι το άθροισµα C έχι συνιστώσς: C Α Β, C Α Β, C Α Β Recittion, Phsics I

5 Recittion, Phsics I Αριθµητικό ή σωτρικό γινόµνο διανυσµάτων: C, παριστά το µονόµτρο µέγθος C το οποίο έχι µέτρο: CΑ Β Α Β Α Β, ή άλλως Ccosθ, όπου θ ίναι η γωνία µταξύ των και. ιανυσµατικό ή ξωτρικό γινόµνο διανυσµάτων: C, σηµαίνι ότι το διαν. γινόµνο C έχι µέτρο και διύθυνση: nˆ sinθ C, όπου nˆ ίναι το µοναδιαίο διάνυσµα κάθτο στο πίπδο που ορίζουν τα διανύσµατα και. Σ καρτσιανές συντταγµένς: k j i k j i C Για παράδιγµα η συστροφή το cul του διανύσµατος ίναι: k j i k j i Γινόµνο διανύσµατος πί αριθµού: σηµαίνι ότι απλά πολλα/ζται το µέτρο του διανύσµατος: â λα λ ιαίρση διανυσµάτων: απαγορύται.

6 ιαίρση διανύσµατος δια αριθµού: σηµαίνι ότι Α απλά διαιρίται το µέτρο του διανύσµατος: â λ λ d Παραγώγιση διανύσµατος: σηµαίνι: dt d d d d i j k dt dt dt dt Ολοκλήρωση διανύσµατος: dt σηµαίνι: dt i dt j dt k dt Recittion, Phsics I

7 Recittion, Phsics I

8 Recittion, Phsics I

9 Παράδιγµα ο Έργο δύναµη Επικαµπύλιο ολοκλήρωµα: Πλανήτης µάζας m πριφέρται σ λλιπτική τροχιά γύρω από τον ήλιο µάζας Μ, ο οποίος καταλαµβάνι το κέντρο της έλλιψης. Αν και ίναι οι ηµιάξονς της λλιπτικής τροχιάς του πλανήτη >, υπολογίσατ το παραγόµνο έργο για να διαγραφί ένα τταρτηµόριο της έλλιψης. Λύση: Λαµβάνοµ το πίπδο της έλλιψης σαν - πίπδο και το κέντρο της έλλιψης σαν αρχή των αξόνων 0, όπου τοποθτίται ο ήλιος ακίνητος. Το διάνυσµα θέσης του πλανήτη ίναι, t i j,, όπου, δίδονται από τις ακόλουθς παραµτρικές ξισώσις της έλλιψης, cosθ, sinθ. [Πολύ πιθανόν η δδοµένη καµπύλη της τροχιάς να δίδται από µια µαθηµατική σχέση της µορφής: f, π.χ. για την έλλιψη η σχέση αυτή ίναι:, η οποία πράγµατι προκύπτι από τις, απαλίφοντας τη µταβλητή θ]. Η δύναµη που ασκίται στο πλανήτη, σύµφωνα µ το νόµο βαρύτητος του Νύτωνα, έχι τη µορφή Mm Mm Mm Mm G ˆ G ή F G, G 3 3 F 3 3 Recittion, Phsics I

10 Το µίον πρόσηµο στη 3 απλά υποδηλώνι το γγονός ότι η δύναµη ίναι λκτική και κατυθύνται προς την αρχή των αξόνων 0, νώ το µέτρο ισούται µ: sin θ cos θ sin θ sin θ sin θ sin θ, οπου /. Το έργο που παράγται ή δαπανάται κατά τη µταφορά του πλανήτη από το σηµίο-α στο σηµίο-β της τροχιάς του, δίδται από το πικαµπύλιο ολοκλήρωµα, W F d 4 όπου d ίναι το στοιχιώδς βήµα ολοκλήρωσης πάνω στη καµπύλη της τροχιάς, από τo σηµίο: Α Β. Χρησιµοποιώντας τις παραµτρικές ξισώσις, λαµβάνουµ: d sinθi cosθ j dθ. Αν αντί της έλλιψης, ίχαµ πριφέρια κύκλου για τροχιά, τότ θα ίσχυ:, οπότ η προηγούµνη σχέση θα γραφόταν: d sin θi cos θ j dθ θdθ, όπου κάναµ χρήση και των σχέσων µτασχηµατισµού των πολικών συντταγµένων, σλ. 3. Βλέπουµ δηλ. ότι αναπαράγουµ τα αποτλέσµατα της σλ. 6. Μτά από τα παραπάνω, η 4 γράφται W F sinθ dθ GMm GMm GMm 3 / F cosθ dθ cosθ sinθ sinθ cosθ 3 / 3 / sin θ sinθ cosθ dθ 3 / sin θ sinθ cosθ dθ 5 3 / sin θ dθ Recittion, Phsics I

11 Το ολοκλήρωµα υπολογίζται ύκολα φαρµόζουµ το όριο: Α 0 Β π/, και στο τέλος sinθ cosθ dθ Ι 3 / sin θ udu u cos θ 3 / u 3 d u u 3 / 3 u θ π / cos θ θ 0 sinθ dsinθ 3 / sin θ du u 3 / u δηλ. το παραγόµνο έργο για τη διαγραφή νός τταρτηµορίου ίναι: W GMm GMm 0 6 < ο ττ Στη πρίπτωση κυκλικής τροχιάς, δηλ. για, το έργο µηδνίζται: W0! Γιατί όµως; Στη πρίπτωση συντηρητικών δυνάµων, ορίζται ως δυναµική νέργια η συνάρτηση U,,, της οποίας η µταβολή µταξύ των τιµών της στα σηµία Α και Β του Ευκλίδιου χώρου να ισούται µ το αρνητικό έργο της συντηρητικής δύναµης για τη µταφορά νός σώµατος από το σηµίο Α στο Β, δηλ. U -U -W.Συνπώς, U-U-W. Αν τώρα πιλέξουµ το Α να ίναι στο άπιρο δηλ. και υποθέσουµ ότι, U 0, και αν το σηµίο Β βρίσκται σ κάποια απόσταση από τον ήλιο, τότ χρησιµοποιώντας το αποτέλσµα 6, βρίσκοθµ: U -0-W, δηλ. U-GMm/ το γνωστό µας αποτέλσµα. Θα παναλάβουµ τους ίδιους υπολογισµούς, στη πρίπτωση που η καµπύλη ολοκλήρωσης δίδται από µια µαθηµατική σχέση της µορφής: f, πχ. για το παραπάνω πρόβληµα: f ± ±. Για τους υπολογισµούς σας καλό ίναι να χρησιµοποιίτ κάποιο µαθηµατικό τυπολόγιο, όπως το ΜΑΘΗΜΑΤΙΚΟ ΕΓΧΕΙΡΙ ΙΟ ή ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ της σιράς SCHUM. Recittion, Phsics I 008-9

12 Recittion, Phsics I Το παραγόµνο έργο από τη δύναµη F δίδται από το πικαµπύλιο ολοκλήρωµα, d f F F d d F F d d F W 3 3 d f f GMm[ d f d [ GMm όπου, και /. Συνπώς το ολοκλήρωµα ισούται: 3 / 3 / 3 d GMm 3 / 3 / d GMm d GMm 0 3 GMm GMm 3 GMm GMm /, δηλ. αναπαραγάγουµ το αποτέλσµα 6!!

13 Παράδιγµα ο Ώθηση δύναµης: Μια µπάλα του sell 0g ρίχνται µ ταχύτητα.6m/s από τον pitche. Κτυπώντας την ο tte µ το ρόπαλο Β, κτοξύται µ ταχύτητα 4m/s κατά τη διύθυνση που φαίνται στο σχήµα. Αν η διάρκια της παφής της µπάλας µ το ρόπαλο ίναι 0.05s, προσδιορίσατ την µέση δύναµη που ασκίται πάνω στη µπάλα κατά το κτύπηµα. Λύση: Από τον ο νόµο του Νύτωνα, F dp / dt, έχοµ: dp Fdt, και ολοκληρώνοντας από µια αρχική στιγµή tαρχ έως µια στιγµή t τλ, παίρνοµ Η ποσότης Ι p t τλ αρχ t τλ p αρχ Fdt t αρχ t τλ Fdt. 7 καλίται ώθηση impulse της δύναµης F. Η σχέση 7 αναφέρται σαν θώρηµα ώθησης - ορµής. Αν F ίναι µια µέση τιµή της δύναµης για το διάστηµα που φαρµόζται πάνω στο σώµα, δηλ. Ι t αρχ t τλ Fdt F t, όπου t t τλ tαρχ ίναι η διάρκια του φαινοµένου, τότ η 7 γράφται, Recittion, Phsics I

14 p p F t, 8 τλ αρχ από την οποία µπορούµ να υπολογίσουµ τη µέση δύναµη. Πράγµατι, στο -άξονα: F t p τλ, p αρχ, t [ mυ τλ cos40 ο mυ αρχ ] ο 0.0 4cos Nt t ο στο -άξονα: F p p mυ sin40 0 άρα ή τλ, αρχ, ο sin t τλ 0 8.8Nt F Fi F j 4.5i 8.8j Nt, F 8.8 o F Nt, θ tn tn 7. F 4.5 Μπορούµ να υπολογίσουµ το παραγόµνο έργο από τη δύναµη F πάνω στη µπάλα. Πράγµατι, χρησιµοποιώντας το θώρηµα έργου-νέργιας έχοµ: W K τλ αρχ mυ mυ Joules Παράδιγµα 3 ο ιατήρηση ορµής-φαινόµνο Compton: έσµη φωτός µήκους κύµατος λ προσπίπτι πάνω σ νέφος ηρµούντων? σχδόν ηλκτρονίων πχ. µέσα σ µέταλλο. Παρατηρίται ότι κσφνδονίζονται ηλκτρόνια έξω από το νέφος. Να υπολογιστί η µταβολή του µήκους κύµατος του σκδαζόµνου φωτός σχτικιστική θώρηση. Λύση: Κατά την κβαντική θωρία, το φως έχι διπλή υπόσταση, δηλ. µφανίζι κυµατικές ιδιότητς, όπως ανάκλαση, συµβολή κλπ., αλλά και σωµατιδιακές ιδιότητς, δηλ. µπορί να Recittion, Phsics I

15 συγκρουστί µ υλικά σώµατα, κλπ. Όσον αφορά το τλυταίο ισχυρισµό, ο M Plnck γύρω στο 900 υπέθσ ότι το φως αποτλίται από δέσµη φωτονίων, τα οποία ίναι οντότητς που έχουν νέργια ίση µ hν, ορµή ίση µ h/λ, αλλά µάζα m µηδέν. Συνπώς, κατά τη σκέδαση του φωτός από ηλκτρόνια, στην ουσία πρόκιται για σύγκρουση φωτονίων πάνω σ ηλκτρόνια η προσέγγιση αυτή του προβλήµατος οφίλται στον Einstein. Κατά τη σχτικιστική προσέγγιση, η νέργια νός σώµατος ισούται: E cp mc, όπου c η ταχύτης του φωτός, και p,m η ορµή και µάζα του σώµατος. Κατά τη κρούση νός φωτονίου µ ένα ηλκτρόνιο που ηρµί γιατί;, ισχύουν οι ακόλουθοι νόµοι διατήρησης: α Ενέργια πριν τη κρούση νέργια µτά τη κρούση, mc hν' cp mc 9 h ν β Ορµή πριν τη κρούση ορµή µτά τη κρούση, κατά τον -άξονα: κατά τον -άξονα: h λ h 0 cosθ pcosφ 0 λ' h 0 0 sinθ p sinφ λ' Recittion, Phsics I

16 Απαλίφοντας τη γωνία φ µταξύ των 0,, παίρνουµ h λ h h cosθ p λ' λλ' Ισχύι: λνc, άρα νc/λ, και αντικαθιστώντας στην 9, hc λ hc λ' mc cp mc ή cp hc hc mc mc, λ λ' και υψώνοντας στο ττράγωνο, ή cp mc cp h c λ mc h c λ' hc λ mc mc hc λ' h c h c hc hc hc hc mc mc. λ λ' λ λ' λ λ' hc hc λ λ' Αντικαθιστώντας την ορµή p από την παίρνοµ, c h λλ' hc hc cosθ mc, λ λ' οπότ η µταβολή του µήκους κύµατος του σκδαζόµνου φωτός ίναι h mc λ h λ' λ cosθ. mc Η σταθρά λ C Å καλίται µήκος κύµατος Compton. Recittion, Phsics I

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα]

[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα] Παν/μιο Πατρών Τμήμα Φυσικής. Μάθημα : Ηλκτρομαγνητισμός Ι (Υποχρωτικό 3 ου Εξαμήνου) ΠΝΕΠΙΣΤΗΜΙΟ ΠΤΡΩΝ - ΤΜΗΜ ΦΥΣΙΚΗΣ ΜΘΗΜ : HΛΕΚΤΡΟΜΓΝΗΤΙΣΜΟΣ Ι (Υποχρωτικό 3 ου Εξαμήνου) Διδάσκων :Δ.Σκαρλάτος, Επίκουρος

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α. Suies & Publishing ΣΟΛΩΜΟΥ 9 ΠΟΛΥΤΕΧΝΕΙΟ ΤΗΛ.:.38..57 www.arnοs.gr 3 Ο γωµτρικός τόπος των σηµίων που έχουν σταθρή απόσταση από το σηµίο,, του 3 ονοµάζται σφαίρα. Η σφαίρα µ κέντρο το,, και ακτίνα έχι

Διαβάστε περισσότερα

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1. 1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.

Διαβάστε περισσότερα

Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση:

Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση: Νόμος του Gauss 1. Ηλκτρική Ροή ( πλήθος δυναμικών γραμμών). ( a) cosφ ( b) ίναι διάνυσμα μέτρου Α και κατύθυνσης κάθτης στην πιφάνια. Στην γνική πρίπτωση: d d d ( ) (πιφανιακό ολοκλήρωμα) Νόμος του Gauss

Διαβάστε περισσότερα

και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων .

και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων . 80 Σύνολα µέτρου µηδέν στον και ο χαρακτηρισµός του Lebesgue των iema ολοκληρωσίµων συναρτήσων 7. Ορισµός. Έστω για κάθ 0 Α, λέµ ότι το Α έχι διάστατο µέτρο µηδέν αν, > υπάρχι ακολουθία ανοικτών διάστατων

Διαβάστε περισσότερα

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α. Τριγωνομετρικές Ταυτότητες Β. Αναπτύγματα σε σειρές Για

Διαβάστε περισσότερα

ΕΛΑΣΤΙΚΟΤΗΤΑ. ε = = Η ελαστικότητα ζήτησης

ΕΛΑΣΤΙΚΟΤΗΤΑ. ε = = Η ελαστικότητα ζήτησης 1 ΕΛΑΣΤΙΚΟΤΗΤΑ Οι οικονοµολόγοι νδιαφέρονται να µτρσουν ορισµένς µταβλητές για να µπορέσουν να κάνουν προβλέψις και για να κτιµσουν µ σχτικ ακρίβια τι αποτέλσµα θα έχι η µταβολ µιας µταβλητς πί µιας άλλης.

Διαβάστε περισσότερα

Κατοίκον Εργασία 2. (γ) το ολικό φορτίο που βρίσκεται στον κύβο. (sd p.e 4.9 p146)

Κατοίκον Εργασία 2. (γ) το ολικό φορτίο που βρίσκεται στον κύβο. (sd p.e 4.9 p146) Κατοίκον Εργασία. Ένα σημιακό φορτίο (point charge) 5 mc και ένα - mc βρίσκονται στα σημία (,0,4) και (-3,0,5) αντίστοιχα. (α) Υπολογίστ την δύναμη πάνω σ ένα φορτίο (point charge) nc που βρίσκται στο

Διαβάστε περισσότερα

3. ιατήρηση της ενέργειας

3. ιατήρηση της ενέργειας 3. ιατήρηση της ενέργειας Βιβλιογραφία C. Kittl, W. D. Knight, M.. Rudmn,. C. Hlmholz και. J. Moy, Μηχανική. (Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π., 1998). Κεφ. 5. M. R. Spigl, Θεωρητική Μηχανική. (Εκδόσεις

Διαβάστε περισσότερα

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 6 Ολοκληρώµατα διανυσµατικών συναρτήσεων Υπάρχουν διαφόρων ειδών ολοκληρώµατα διανυσµάτων, ανάλογα µε τη µορφή που έχει η ολοκληρωτέα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. 1 β) Σε ένα πεδίο κεντρικών δυνάµεων F =, ένα σώµα, µε µάζα

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά Κυµατική ΦΥΕ4 5/7/8 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 Ιούλιος 8 KYMATIKH ιάρκεια: λεπτά Θέµα ο (Μονάδες:.5) A) Θεωρούµε τις αποστάσεις

Διαβάστε περισσότερα

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ 1 ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ.. Αν δοκιµαστικό φορτίο q βρεθεί κοντά σε αγωγό που διαρρέεται από ρεύµα, υφίσταται δύναµη κάθετη προς την διεύθυνση της ταχύτητάς του και µε µέτρο ανάλογο της ταχύτητάς του, F qυ Β (νόµος

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 3ο Φυλλάδιο - Ορµή / Κρούση

Φυσική Β Λυκειου, Γενικής Παιδείας 3ο Φυλλάδιο - Ορµή / Κρούση Φυσική Β Λυκειου, Γενικής Παιδείας - Ορµή / Κρούση Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com 1 Σύστηµα Σωµάτων - Εσωτερικές & Εξωτερικές υνάµεις ύο ή περισσότερα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΣΚΗΣΕΙΣ ΜΕΡΣ 1ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ 1ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ νακφαλαίωση σημίο άπιρς υθίς από υθύγραμμο τμήμα Δ παράλληλα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ 1 4.1 ΥΙΣ ΚΙ Ι ΣΤΟ ΧΩΡΟ ΩΡΙ 1. Το πίπδο: ίναι έννοια πρωταρχική για τα µαθηµατικά δηλαδή έννοια που δν πιδέχται ορισµό. H ικόνα του πιπέδου ίναι γνωστή από την µπιρία µας. Την έχουµ ταυτίσι µ τη µορφή

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11 ΛΥΣΕΙΣ ΦΥΛΛΔΙΥ 3 Ευθία - Επίπδο ΣΧΛΗ ΠΛΙΤΙΚΩΝ ΜΗΧΝΙΚΩΝ/00-.(α) Τα διανύσματα Β = (,, ), Γ = (,, 3) ίναι μη συγγραμμικά και παράλληλα προς το πίπδο Π, νώ το σημίο (,,3) μ διάνυσμα θέσης r = (,,3) ίναι σημίο

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

Βαρύτητα Βαρύτητα Κεφ. 12

Βαρύτητα Βαρύτητα Κεφ. 12 Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης. Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 8 ο μάθημα 1 Κεφάλαιο 11 Συγκρούσεις 2 Συγκρούσεις Στις συγκρούσεις μεταξύ

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. ιατήρηση ορµής

ΚΕΦΑΛΑΙΟ 4. ιατήρηση ορµής ΚΕΦΑΛΑΙΟ 4 ιατήρηση ορµής Ας θεωρήσοµε δυο υλικά σηµεία και µε µάζες και αντιστοίχως που βρίσκονται την τυχούσα χρονική στιγµή στις αντίστοιχες διανυσµατικές ακτίνες και και έχουν αντίστοιχες ταχύτητες

Διαβάστε περισσότερα

10. Παραγώγιση διανυσµάτων

10. Παραγώγιση διανυσµάτων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 51 10 Παραγώγιση διανυσµάτων 101 Παράγωγος διανυσµατικής συνάρτησης Αν οι συνιστώσες ενός διανύσµατος = είναι συνεχείς συναρτήσεις

Διαβάστε περισσότερα

Διανύσματα 1. Διανύσματα Πρόσθεση Διανυσμάτων Φυσική ποσότητα που περιγράφεται μόνο από ένα αριθμό ονομάζεται βαθμωτή.

Διανύσματα 1. Διανύσματα Πρόσθεση Διανυσμάτων Φυσική ποσότητα που περιγράφεται μόνο από ένα αριθμό ονομάζεται βαθμωτή. Διανύσματα 1. Διανύσματα Πρόσθεση Διανυσμάτων Φυσική ποσότητα που περιγράφεται μόνο από ένα αριθμό ονομάζεται βαθμωτή. Η διανυσματική ποσότητα έχει διεύθυνση, φορά και μέτρο. Δύο διανυσματικές ποσότητες

Διαβάστε περισσότερα

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει το ατοµικό πρότυπο του Bohr καθώς και τα µειονεκτήµατά του. Να υπολογίζει την ενέργεια που εκπέµπεται ή απορροφάται

Διαβάστε περισσότερα

2 1 1+ ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: 2.1 2.2. Γιάννης Ζαµπέλης Μαθηµατικός

2 1 1+ ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: 2.1 2.2. Γιάννης Ζαµπέλης Μαθηµατικός ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 8575 Β (Αναρτήθηκ 8 4 ) ίνονται τα σηµία Α(,) και Β(5,6). α) Να βρίτ την ξίσωση της υθίας που διέρχται από τα σηµία Α και B.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Από το ύψος και τη γωνία που µας δίνεται, έχουµε

Διαβάστε περισσότερα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά

Διαβάστε περισσότερα

Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1

Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1 Ορμή - Κρούσεις, ΦΥΣ 131 - Διαλ.19 1 ΦΥΣ 131 - Διαλ.19 2 Κρούσεις σε 2 διαστάσεις q Για ελαστικές κρούσεις! p 1 + p! 2 = p! 1! + p! 2! όπου p = (p x,p y ) Δηλαδή είναι 2 εξισώσεις, µια για κάθε διεύθυνση

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λωφ. Κηφισίας 56, Απλόκηποι, Αθήνα Τηλ.: 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Λωφ. Κηφισίας 56, Απλόκηποι, Αθήνα Τηλ.: 69 97 985, E-mail: edlag@otenet.gr, www.edlag.gr

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΕΠΝΛΗΠΤΙΚ ΦΥΛΛΙ ΕΠΙΜΕΛΕΙ ΣΙΛΗΣ ΥΕΡΙΝΣ ΕΠΙΜΕΛΕΙ: ΥΕΡΙΝΣ ΣΙΛΗΣ ΘΕΩΡΙ ΜΕΡΣ ο : ΛΕΡ ΚΕΦΛΙ ο ΦΥΣΙΚΙ ΡΙΘΜΙ. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; πάντηση ι

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. HΛEKTPIKO ΦOPTIO: είναι το αίτιο των ηλεκτρικών δυνάµεων (εµπειρική αντίληψη).

ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. HΛEKTPIKO ΦOPTIO: είναι το αίτιο των ηλεκτρικών δυνάµεων (εµπειρική αντίληψη). ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΙ Ι ΑΣΚΩΝ: ΚΑΘΗΓΗΤΗΣ Μ. ΒΕΛΓΑΚΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ / ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ / ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Στη σειρά των φροντιστηρίων αυτών καταβάλλεται µια προσπάθεια να κατανοηθούν και να εµπεδωθούν κάποιες

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών

Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών Τ.Ε.Ι. Θσσαλονίκης Τµήµα Πληροφορικής Αριθµητική Ανάλυση & Προγραµµατισµός Ε ιστηµονικών Εφαρµογών Θωρία Παραδίγµατα και Άλυτς Ασκήσις Γουλιάνας Κώστας Ε ίκουρος Καθηγητής eml : gul@t.tethe.gr Ιστοσλίδα

Διαβάστε περισσότερα

Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης.

Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης. Ο Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δίκτη διάθλασης. 1 Σκοπός Ο δίκτης διάθλασης νός διαφανούς οπτικού μέσου ίναι ένα ιδιαίτρο σημαντικό φυσικό μέγθος στην οπτική. Ο δίκτης διάθλασης όχι μόνο

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ Συζευγμένα ηλεκτρικά και μαγνητικά πεδία τα οποία κινούνται με την ταχύτητα του φωτός και παρουσιάζουν τυπική κυματική συμπεριφορά Αν τα φορτία ταλαντώνονται περιοδικά οι διαταραχές

Διαβάστε περισσότερα

Παράρτημα Ι. 1 Το ισόχρονο της ταλάντωσης επί κυκλοειδούς

Παράρτημα Ι. 1 Το ισόχρονο της ταλάντωσης επί κυκλοειδούς Παράρτημα Ι 1 Το ισόχρονο της ταλάντωσης επί κυκλοειδούς Ας θεωρήσουμε μια κυκλική στεφάνη ακτίνας a η οποία κυλίεται, χωρίς να ολισθαίνει, πάνω σε μια ευθεία (για ευκολία υποθέστε ότι η ευθεία είναι ο

Διαβάστε περισσότερα

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΠΑΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poias.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ 3 Ε_3.ΦλΘΤ(α) ΤΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΘΗΜ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜ Ηµεροµηνία: Κυριακή 8 πριλίου 3 ιάρκεια Εξέτασης: ώρες ΠΝΤΗΣΕΙΣ. δ. γ 3. β 4. γ 5. α. Σωστό, β. Λάθος, γ. Σωστό,

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

Κεφάλαιο M7. Ενέργεια συστήµατος

Κεφάλαιο M7. Ενέργεια συστήµατος Κεφάλαιο M7 Ενέργεια συστήµατος Εισαγωγή στην ενέργεια Οι νόµοι του Νεύτωνα και οι αντίστοιχες αρχές µας επιτρέπουν να λύνουµε µια ποικιλία προβληµάτων. Ωστόσο, µερικά προβλήµατα που θεωρητικά µπορούν

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον

Διαβάστε περισσότερα

3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητες.

3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητες. 32 3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητς. Στην παράγραφο αυτή πρόκιται να ισαγάγουμ μια σημαντική, ίσως την σημαντικότρη, κλάση τοπολογικών γραμμικών χώρων. Αυτή ίναι η κλάση των τοπικά κυρτών χώρων

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓΑΣΤΗΡΙΟ «ΗΛΕΚΤΡΟΝΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ» ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6: ΜΕΤΡΗΣΕΙΣ ΥΛΙΚΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΔΙΑΤΑΞΗΣ ΔΙΗΛΕΚΤΡΙΚΗΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ ΥΨΗΛΩΝ

Διαβάστε περισσότερα

Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών

Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών Παράρτηµα Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 1. ΤΑΣΕΙΣ Οι ξωτρικές δυνάµις που πιβάλλονται ένα ώµα µπορούν να χωριθούν δύο κατηγορίς, τις καθολικές δυνάµις και τις πιφανιακές δυνάµις. Οι καθολικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2003

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2003 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 3 Θέµα 1 (5 µονάδες) Απαντήστε στις ακόλουθες ερωτήσεις µε συντοµία και σαφήνεια Τµήµα Π Ιωάννου & Θ Αποστολάτου (α) Η ταχύτητα ενός

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ

ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ Μάθηµα 1 ο, 30 Σεπτεµβρίου 2008 (9:00-11:00). ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ Ακτινοβολία µέλανος σώµατος (1900) Plank: έδωσε εξήγηση του φάσµατος (κβαντική ερµηνεία*) ΠΑΡΑ ΟΧΗ Το φως δεν είναι µόνο κύµα. Είναι

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ Πριοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ A. ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ ΜΕ ΔΥΟ ΑΓΝΩΣΤΟΥΣ Γραμμική ξίσωση μ δύο αγνώστους ονομάζται κάθ ξίσωση της μορφής: α + βψ = γ (), μ α,β,γ π.χ. ψ =, =, ψ =, κλπ.

Διαβάστε περισσότερα

Κίνηση σε κεντρικό δυναμικό

Κίνηση σε κεντρικό δυναμικό Κίνηση σε κεντρικό δυναμικό ΦΥΣ 211 - Διαλ.13 1 q Έστω ένα σωματίδιο κάτω από την επίδραση μιας κεντρικής δύναμης Ø Δύναμη παράλληλη στο 0 F q Υποθέτουμε ότι η δύναμη είναι συντηρητική: F = V( ) m Ø V

Διαβάστε περισσότερα

U -m g R e + m g y. R e

U -m g R e + m g y. R e 3 η Εργασία Ηµεροµηνία Αποστολής: 1/3/010 Άσκηση 1 Να αποδείξετε ότι η δυναµική ενέργεια της βαρύτητας σώµατος µάζας m που βρίσκεται σε απόσταση y από την επιφάνεια της Γης, είναι U -m g R e + m g y όπου

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις)

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (x+)(x 2 +) (ϐ) Να υπολογισθεί το ολοκλήρωµα f(x) f(x)+f(x+) για κάθε

Διαβάστε περισσότερα

Περιέχει τα κεφάλαια: Στατικός Ηλεκτρισµός Συνεχές ηλεκτρικό ρεύµα Ηλεκτροµαγνητισµός Μηχανικές ταλαντώσεις

Περιέχει τα κεφάλαια: Στατικός Ηλεκτρισµός Συνεχές ηλεκτρικό ρεύµα Ηλεκτροµαγνητισµός Μηχανικές ταλαντώσεις ίας : λαια ς ά φ τα κ κτρισµό ύµα ι χ έ Πρι τικός Ηλ τρικό ρ α κ Στ χές ηλ νητισµός ις ν γ Συ κτροµα λαντώσ α τ λ Η χανικές ουν η χ ρ Μ ά π αιο υ λ ά φ θ κ θωρίας ά κ ογής ς Σ α ι λ ί ι π σ χ ι ς ο κή

Διαβάστε περισσότερα

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις Κεφάλαιο 3 Κίνηση σε και 3 Διαστάσεις Κίνηση υλικού σημείου στο επίπεδο ( -D) και στο χώρο (3 -D). Ορισμός διανυσμάτων για την μελέτη της -D 3-D κίνησης: Θέση, Μετατόπιση Μέση και στιγμιαία ταχύτητα Μέση

Διαβάστε περισσότερα

Έργο µιας χρονικά µεταβαλλόµενης δύναµης

Έργο µιας χρονικά µεταβαλλόµενης δύναµης Έργο µιας χρονικά µεταβαλλόµενης δύναµης Κ. Ι. Παπαχρήστου Τοµέας Φυσικών Επιστηµών, Σχολή Ναυτικών οκίµων papachristou@snd.edu.gr Θα συζητήσουµε µερικά λεπτά σηµεία που αφορούν το έργο ενός χρονικά µεταβαλλόµενου

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Χρήσιμες μαθηματικές έννοιες Νίκος Ν. Αρπατζάνης Παράγωγος ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ y y = f(x) x φ y y y = f(x) x φ y y y = f(x) φ x 1 x 1 + х x x 1 x 1 + х x x 1 x tanϕ = y x tanϕ = dy dx

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ Lab. MEchanics Applied TECHNICAL UNIVERSITY OF CRETE ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ 1 η Συνέχεια διαλέξεων B Μέρος 1 ΒΑΣΙΚΑ ΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ

Διαβάστε περισσότερα

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Καλώς ήλθατε. Καλό ξεκίνημα.

Καλώς ήλθατε. Καλό ξεκίνημα. Καλώς ήλθατε. Καλό ξεκίνημα. Αν. Καθηγητής Γεώργιος Παύλος ( Φυσικός) - ρ.καρκάνης Αναστάσιος (Μηχανολόγος Μηχανικός) Με τι θα ασχοληθούμε στα πλαίσια του μαθήματος: Α. Μαθηματική θεωρία ιανυσματικά μεγέθη,

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις. Θέµα Α. (α) υ 2 = 0

Ενδεικτικές Λύσεις. Θέµα Α. (α) υ 2 = 0 ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.. Σε κάθε κρούση ανάµεσα σε δύο σώµατα µικρών διαστάσεων : (ϐ) η µεταβολή της ορµής του ενός είναι αντίθετη της µεταβολής της ορµής

Διαβάστε περισσότερα

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται 6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση

Διαβάστε περισσότερα

Κεφάλαιο 3 Κίνηση σε 2 και 3 διαστάσεις, Διανύσµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 3 Κίνηση σε 2 και 3 διαστάσεις, Διανύσµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 3 Κίνηση σε και 3 διαστάσεις, Διανύσµατα Copyright 009 Pearson ducation, Inc. Περιεχόµενα 3 Διανύσµατα και Βαθµωτές ποσότητες Πράξεις Διανυσµάτων Γραφικές Παραστάσεις Μοναδιαία διανύσµατα Κινηµατική

Διαβάστε περισσότερα

Κίνηση σε δύο διαστάσεις

Κίνηση σε δύο διαστάσεις ΦΥΣ 131 - Διαλ.07 1 Κίνηση σε δύο διαστάσεις Διαδρομή του σώματος Τελική θέση Αρχική θέση Η κίνηση που κάνει το αυτοκίνητο καθώς στρίβει περιορίζεται σε ένα οριζόντιο επίπεδο - Η αλλαγή στο διάνυσμα θέσης

Διαβάστε περισσότερα

Πόσο απέχουν; Πόση είναι η µετατόπιση του καθενός; O.T.

Πόσο απέχουν; Πόση είναι η µετατόπιση του καθενός; O.T. Πόσο απέχουν; Πόση είναι η µετατόπιση του καθενός; ιανυσµατικό µέγεθος Μέτρο ιεύθυνση Φορά A Μετατόπιση Τελική θέση Αρχική θέση Σύµβολο µέτρου διανύσµατος A ύο διανύσµατα είναι ίσα αν έχουν ίδιο µέτρο

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ)

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ 1. Για το κωνικό

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος /4/05 Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Αν z z 0 δείξτε ότι: z z ( z ) Παραγωγίζουμε την z z 0 ως προς θεωρώντας ότι η z είναι συνάρτηση των και : z z z z z z 0 () z

Διαβάστε περισσότερα

ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-5, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Μάζα που κινείται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης (Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 05 06 06 ΒΑΡΥΤΗΤΑ Νόμος της Βαρύτητας Βαρύτητα στο Εσωτερικό και Πάνω από

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015

ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015 ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2)

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2) 8 Κανόνας της αλυσίδας Από τον Απειροστικό Λογισμό για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι: Αν g : I R R και f : J R R είναι συναρτήσεις ( όπου I, J ανοικτά διαστήματα ώστε, g( τότε η : I g I J

Διαβάστε περισσότερα

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Εξ ορισμού, ένας κύκλος έχει συγκεκριμένη και σταθερή καμπυλότητα σε όλα τα σημεία του ίση με 1/R όπου R η ακτίνα του.

Διαβάστε περισσότερα

Νίκος Σταματόπουλος «Αρχές Διατήρησης» vs «Νόμοι του Νεύτωνα»

Νίκος Σταματόπουλος «Αρχές Διατήρησης» vs «Νόμοι του Νεύτωνα» «Αρχές Διατήρησης» vs «Νόμοι του Νεύτωνα» Ερώτημα 1 ο : Ποιες από αυτές τις «αρχές» είναι όντως αρχές και ποιες δεν είναι; Ερώτημα 2 ο : Ποιο έχει μεγαλύτερη ισχύ; η «αρχή» ή ο «νόμος»; Ερώτημα 3 ο : Ποιο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα 4 θέματα με σαφήνεια συντομία. Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα. Καλή

Διαβάστε περισσότερα

2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική

2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική 2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

2. και 3. Βλέπε τα παρακάτω γραφήματα του G vs. T για διάφορες πιέσεις και για

2. και 3. Βλέπε τα παρακάτω γραφήματα του G vs. T για διάφορες πιέσεις και για ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦ.. και. Βλέπε τα παρακάτω γραφματα του G vs. για διάφορες πιέσεις και για στερεά (σ), υγρ(υ) και αέρια(α) φάση Σε οποιοδποτε σηµείο P, της διαχωριστικς γραµµς µεταξύ της φάσης και της

Διαβάστε περισσότερα

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004)

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004) Άσκηση (Μονάδες ) 4 η Εργασία (Ηµεροµηνία Παράδοσης: -5-4) Α) Αστροναύτης µάζας 6 Κg βρίσκεται µέσα σε διαστηµόπλοιο που κινείται µε σταθερή ταχύτητα προς τον Άρη. Σε κάποιο σηµείο του ταξιδιού βρίσκεται

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΒΙΒΛΙΟΓΡΑΦΙΑ H.D. H.D. Young Πανεπιστημιακή Φυσική Εκδόσεις Παπαζήση Alonso Alonso / Finn Θεμελιώδης Πανεπιστημιακή Φυσική Α. Φίλιππας, Λ. Ρεσβάνης (Μετ.) R. A. Seway Φυσική

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα