g{g<g! ye<hkil<!ugh<h! kq{<mijl!yv!hius<osbz<! kq{<mijl!yv!ohvr<gx<xl<! kq{<mijl!leqkk<!ke<jlbx<x!osbz<!

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "g{g<g! ye<hkil<!ugh<h! kq{<mijl!yv!hius<osbz<! kq{<mijl!yv!ohvr<gx<xl<! kq{<mijl!leqkk<!ke<jlbx<x!osbz<!"

Transcript

1 g{g<g ye<hkil<ugh<h kq{<mijlyvhius<osbz< kq{<mijlyvohvr<gx<xl< kq{<mijlleqkk<ke<jlbx<xosbz< klqp<fim<mh< himf~z<gpgl< gz<z~iqs<sijz?ose<je

2 klqp<fimnvs Lkz<hkqh<H.00 kqvk<kqbhkqh<h.004 lxhkqh<h.006 GPk<kjzuI LjeuIsi. dkbhi^<gve< g{qk-j{h<ohvisqiqbi? lifqzg<gz<z~iq (ke<eim<sq), ose<je Olzib<uitIgt< kqvw/nis<see< kqvgq. kr<gouz OkIUfqjzg<g{qkuqiqUjvbitI? LKfqjzg<g{qkuqiqUjvbitI? d/fi/nvsgz<z~iq? hs<jsbh<he<gz<z~iq? ohie<oeiq ose<je NsqiqbIgt< kqv uq. >vil< kqv g. nxqupge< hm<mkiiqnsqiqbi)g{qkl<*? ht<tqdkuqnsqiqbi)g{qkl<*? h/os/g/g/nvsqeiolz<fqjzh<ht<tq? nvsqein{<gt<olz<fqjzh<ht<tq? Ogiml<hig<gl<? ose<je dtf<k~iohm<jm kqvlkq vi. fl<hqg<jgo\bvi\< kqvlkq Os. uq\bi LKfqjzh<hm<mkiiqNsqiqjb)g{qkl<*? LKfqjzh<hm<mkiiqNsqiqjb)g{qkl<*? Heqkne<eit<oh{<gt<Olz<fqjzh<ht<tq? hib<zihqti{<m<oh{<gt<olz<fqjzh<ht<tq? -vibhvl<? ose<je jgzishvl<?kqvs<sq

3 ohivtmg<gl< hg<gr<gt<. w{<ljxgt< -. w{<ljxgt<. olb<ob{<ofig<ogim 8. ntjugt< hvh<hlx<xl<sx<xtu. %m<mdvur<gt< 7. sqzlg<gqbgxqbqm nxquqbz<gxqbqm 49. lmg<jgbqe<gxqbqm 5. g{g<gxqbqm bx<g{qkl< 9-4. hz<zxh<hg<ogijugt< bx<g{qklx<oxivjlgt< giv{qh<hmk<kz< yvhz<zxh<hg<ogijujblx<oxivhz<zxh<hg< Ogijubiz<uGk<kz< 6 5. kqiugt<gi[l<ljxgt< nelier<gt<lx<xl<fq'h{r<gt< 5. g{qklikqiqgt< 6. nxqljxucuqbz< siqhiik<kzg<giqbokx<xr<gt< 5 6. kvg<giqkqbigfq'hqg<gou{<cbokx<xr<gt< hgljxucuqbz< giicsqbe<ns<sk~vljx Ogim<ce<sib<U 7 7. (x, y ) lx<xl<(x, y ) Ngqb-VHt<tqgTg<G -jmobbt<tokijzu 79

4 8. Lg<Ogi{uqbz< Lg<Ogi{uqbz<uqgqkr<gt< Lg<Ogi{uqbz<Lx<oxiVjlgt< fqvh<hg<ogi{r<gtg<gielg<ogi{uqbz<uqgqkr<gt< 0 9. osb<ljxucuqbz< yvlg<ogi{k<kqz<yvht<tqupqg<ogimgt< svisiqgtqe<ucuqbz<uqtg<gl< 0. uquvr<gjtg<jgbitkz< jlbfqjzh<ohig<gntjugt< 9. ujvhmr<gt< OfIg<OgiMujvhmr<gt< 9. OfIg<OgiMujvhmr<gtqe<hbe<hiM lmg<jgh<hm<cbz< 4-4 wkqilmg<jgh<hm<cbz< 4-44

5 . w{<ljxgt< fl< ne<xim uip<uqz< w{<gt< wr<gl< Okie<Xgqe<xe/ njek<kqzl< w{<gt< dt<te we hpl<ohvl< gqovg<g g{qk uz<zfi< hqkigv^< %xqbt<tii</ w{<gjth< hx<xq fqjxb nxqf<k ogi{<omioleqz<, g{qkk<kqje fil< fe<g gx<xuigtiouil</ giiz<h<vm<iqs<gi^<wel<o\ileqfim<jms<siif<kg{qkuz<zfi<, uqr<rier<gtqe< nvsq g{qkl< lx<xl< g{qkr<gtqe< nvsq w{<gtqe< ogit<jg weg< %xqbt<tii</ w{<gt<lqgdbiqbh{<hgjth<ohx<xt<te/njuuqr<riek<kqz<wpl<hz uqeig<gtg<guqjmgi{dkugqe<xe/-f<kqbg<g{qkoljk-vilie\e< w{<gt< wekf{<higt< weg<%xqbt<tii</o\ileqfim<mgoviofg<giwel<uz<zfi -bz< w{<gjt gmut< hjmk<kii; lx<xju leqkeqe< kqxjlbiz< Wx<hm<mju we uqbf<k %xqbt<tii/ Lf<jkb ugh<hgtqz< -bz< w{<gt<, LPg<gt<, uqgqklx w{<gt<, uqgqklxi w{<gt< lx<xl< olb<ob{<gt< Ngqbux<jxh< hx<xq nxqf<k ogi{<omil</ w{<[ukx<g dku -bz< w{<gt< Wx<hm<me/ OkjugTg<Ogx<h lx<x w{<gt< dvuibq<e/-h<himk<kqz<w{<gtqe<h{<hgjth<hx<xqnxqf<kogit<ouil</.. w{<ljxgt<.. -bz<w{<gt< (Natural Numbers),,,. we<he -bz< w{<gtigl</ -ju w{<{qm dkul< w{<gt< weul< njpg<gh<hml</ -bz< w{<gtqe< okigkqjb N weg< Gxqh<Ohil</ N e< dxh<hgt< njek<jkbl<hm<cbzqmlcbiuqm<mizl<, N {,,, } wewpkouil</-r<g " " wel< GxqbQM N e< lx<x dxh<hgt<,,, e< Ljxjb yx<xq hm<cbzqmh<hmgqe<xe we<hjkd{i<k<kgqe<xk/-r<g,, 5, we<heyx<jxh<hjm-bz<w{<gt<weul<,, 4, 6, we<he -vm<jmh<hjm -bz< w{<gt<weul<njpg<gh<ohxl</ x 9 0, x 6 0, x 54 0 Ohie<x sle<himgtg<gk< kqiu okigh<h N zqvf<k ohxzil</ Neiz<? x + 5 5, x Ngqb sle<himgtqe< kqiugt<< N z< -z<jz/ Woeeqz<? -s<sle<himgt< Nz<-z<zikw{<0 Nz<fqjxUosb<bh<hMgqe<xe/.. LPw{<gt< (Whole Numbers) 0,,, we<he LP w{<gtigl</ LP w{<gtqe< okigkqjb W weg< Gxqh<Ohil</NgOuW {0,,, }. -h<ohik, x + 5 5, x Ohie<xsle<gtqe< kqiu?w{<0 NGl<; -KW z<dt<tk/-bz<w{<gt<njek<kl<lpw{<gtigl<; Neiz<, 0 wel<lpw{<-bz<w{<nz<z/nokofvk<kqz< x + 5 5, x + 9

6 we<he W-z<kQIUgjtg<ogi{<cvi/Woeeqz<?nux<xqe<kQIUgtie 0 lx<xl< we<helpw{<gtigi... LPg<gt< (Integers) 0,,,,, we<hju LPg<gtiGl</ -ux<xqz<,,, we<he lqjg LPg<gt<;,,, we<hegjxlpg<gtigl</ LPg<gtqe< okigh<h Z weg< Gxqh<hqmh<hMgqe<xK/NgOu, Z {,,,, 0,,,, }. njek<klpw{<gtl< LPg<gtiGl</ Neiz< Gjx LPg<gtie,,, we<he LP w{<gtigi/ -h<ohik x + 5 5, x + 9 wel<sle<gtqe<kqiugtie 0 lx<xl< we<he Z z< dt<tkiz<, ns<sle<himgt< Z z<kqiugjth<ohx<xt<te/neiz<? x + 5, x NgqbeZ z<kqiugjth<ohx<xqvg<gik/woeeqz<?-ux<xqe<kqiugtie lx<xl< Z z<njlbik/..4 uqgqklxw{<gt< (Rational Numbers) p, q LPg<gtigUl<, q 0 weul<ogi{<m q p wel<ucuqz<wpkh<hml<w{<gt< uqgqklx w{<gtigl</ uqgqklx w{<gtqe< okigkqjb Q weg<gxqh<ohil<. q p wel< uqgqklx w{<{qz<, q lqjg LP w{<{igul<, p lx<xl< q gtg<g -Jk< kuqik<k Ouoxf<k ohikg< giv{qblqz<jz weqz<, q p NeK OfIucU nz<zk kqm<mucuqz< -Vg<gqe<xK we<ohil</ wmk<kg<gim<mig, w{<gtigl</ lixig, 5 lx<xl< 4 7, 5 we<he OfIucuqZt<t uqgqklx we<he OfIucuqz< -z<zik uqgqklx w{<gtigl</neiz<yu<ouivuqgqklxw{<[l<keqk<kyvsllieofiucu njlh<jhh< ohx<xqvg<gl</ wmk<kg<gim<mig, lx<xl< 4 we<he OfIucuk<kqz<njlgqe<xe/yu<ouiVLPUl<uqgqkLXw{<NGl</wMk<Kg<gim<mig, 9 9 we<x LPju we wpkzil<; -r<g 9, Ngqb w{<gt< Z z< dt<te lx<xl< 0. weou 9 NeKuqgqkLXw{<NGl</weOunjek<KLPg<gTl<

7 uqgqklx w{<gtigl</ Neiz< LPg<gtx<x uqgqklx w{<gtl< d{<m/ wmk<kg<gim<mig? 5 4 NeKuqgqkLXw{<; Neiz<, -KLPnz<z/..5 N, W, Z lx<xl< Q okigh<hgtqz< +,,, Ngqbux<xqe<sqzh{<Hgt< %m<mz< + lx<xl< ohvg<gz< Ngqb -v{<ml< Q z< hqe<uvl< h{<hgjth< ohx<xqvh<hjkw{<gtme<dt<tflknehuk<jkg<ogi{<mnxqbzil</. x, y Ngqbe uqgqklx w{<gt< weqz<, x + y l< uqgqklx w{<{igl</ wmk<kg<gim<mig, lx<xl< -v{<ml< Qz<dt<te/nux<xqe<%Mkzie + + ( ) +. -KUl< Q z<dt<tk/-h<h{<h Q z<%m<mzg<gienjmuh<h{<hweh<hml</. x, y NgqbeuqgqkLXw{<gt<weqz<, x + y y + x. wmk<kg<gim<mig, 4 ( ) + ( ) 4 lx<xl< 4 ( ) + ( ) 4 +. weou K%m<mZg<giehiqlix<Xh<h{<Hwenjpg<gh<hMl</. x, y, z NgqbeuqgqkLXw{<gt<weqz<, x + (y + z) (x + y) + z. wmk<kg<gim<mig, 4 Ngqbju Q z<dt<te;,, ( 8) + ( 0) ( 4) 44, ( ) ( 4) + ( 0) K Q-z<%m<mZg<gieOsIh<Hh<h{<Hwenjpg<gh<hMl</ 4.0NeKuqgqkLXw{</OlZl< 0 + x x + 0 x. wz<ziuqgqklxw{< x-g<gl<-kohivf<kl</wmk<kg<gim<mig, lx<xl< uqgqklxw{<0 ju Q z<%m<mzqe<lx<oxivjldxh<hwe<gqoxil</ 5. yu<ouiv uqgqklx w{; x g<gl< x wel< uqgqklx w{<{qje x + ( x) ( x) + x 0 we njlblix gi{zil</ x J x e< Gjx nz<zk x-e< %m<mzqe<ofilixweg<%xouil</wmk<kg<gim<mig, we<gqxuqgqklxw{<{qx<g, 0

8 ( ) + 0 we<x uqgqklx w{<{qje + 0 LcgqxK/weOu NeK e<%m<mzqe<ofilixigl</ we -Vg<GliX gi{ 6. x, y NgqbeuqgqkLXw{<gt<weqz<, x y uqgqklxw{<{igl</x y J xy we<oxwpkouil</wmk<kg<gim<mig, 5, we<heuqgqklxw{<gt</olzl<, 5 ( 5) ( 5) ohvg<gzg<gienjmuh<h{<hweg<%xouil</ 0, yvuqgqklxw{</-f<kh<h{<hqjeq z< 7. x, y Ngqbe uqgqklx w{<gt< weqz<, xy yx NGl</ wmk<kg<gim<mig,, we<heuqgqklxw{<gt</ ( ), ( ) weou? ( ) ( ). -f<kh<h{<hqjeq z<ohvg<gzg<giehiqlix<xh<h{<h 7 7 wenjph<ohil</ 8. x, y, z we<he uqgqklxw{<gt<weqz< x(yz) (xy)z. wmk<kg<gim<mig,,, 7 we<heuqgqklxw{<gt</ 7 4 ( ) ( ) (), [() ( )] ( 6). weou 7 7 ( ) ( ) [()( ) ] f<kh<h{<hqjeq z<ohvg<gzg<gieosih<hh<h{<hwenjph<ohil</ 9. w{< NeK uqgqklx w{<{igl</ x x x we<hk njek<k uqgqklx x-g<gl< d{<jlbigl</wmk<kg<gim<mig, (). fil<gueqh<hk? ( x) y [( )(x)] y ( )xy xy; ( x) ( )[( )x] [( )( )x] x x. 0. yu<ouivh,s<sqblqz<zikuqgqklxw{< x-g<gl<, NeKuqgqkLXw{<NGl</ x OlZl<? x x. x x wmk<kg<gim<mig, x, yvuqgqklxw{</-r<g, x 0, 4 4 4, yvuqgqklxw{<ngl</olzl< x 4 x w{< J Q z< x e<kjzgqpqnz<zkohvg<gzqe<gqp< x 4 84 x OfIliXwe<gqOxil</ 5 7 4

9 . x, y, z we<heuqgqklxw{<gt<weqz<? x(y + z) xy + xz, (x+y) z xz+ yz NGl</ wmk<kg<gim<mig, x, y, z 5 weqz<, x (y + z) + 5, 0 ( ) xy + xz + (5) +. weou, x(y+z) xy + xz. 4 + ( ) 5 -u<uiox, (x + y)z , ( 5) 5 xz + yz NgOu, (x+y) z xz + yz f<kh<h{<hqje Q z<ohvg<gzg<gie%m<mzqe<hr<gqm<mh<h{<hwenjph<ohil</,,, 6, 7, 8 lx<xl< Nl< h{<hgt< Q z< dt<t Gxqh<hqm<m dxh<hg<gjts< siif<kqvg<guqz<jz/ weou? OlOz osie<e h{<hgt< N, W lx<xl< Z gtqe< dxh<hgtg<gl< d{<jlbigl</ Neiz<h{<H 4 NeK0 jus<siif<kt<tk/0 we<xw{<n z<-z<jzbikziz<, h{<h 4, N z<d{<jlbz<z/lixig 0 we<xw{< W lx<xl< Zz<dt<tkiz<, h{<h 4 NeK W, Z gtqz<d{<jlbigl</ h{<h 5, Gjx w{<gjts< siif<kt<tk/ weou N lx<xl< W gtqz< -K d{<jlbz<z/neiz<?-h<h{<h Z z<ohivf<kl</ h{<h 9 NeKw{<-Js<siIf<kqVh<hkiZl<, N, W, Z gtqz<, dxh<hwe<hkizl< N, W, Z gtqz<h{<h 9d{<jlbigqxK/ h{<h 0 NeK, H,s<sqblx<x w{<gtqe< kjzgqp< w{<gjth< ohivk<k njlukizl<, N, W, lx<xl< Z gtqz< dt<t H,s<sqblx<x dxh<hg<gtqe< kjzgqpqgt< nux<xqz<-vg<gikwe<hkizl<n, W, Z gtqz<h{<h0 d{<jlbigik/ gpqk<kz<, wel< osbzqjb %m<mz< + &zl< ujvbxg<gzil</ Q z< x, y dt<teoueqz<, x y x + ( y) NGl</ osbzq, Q z< hiqlix<xh< h{<hqje fqjxu osb<bik/ wmk<kg<gim<mig, 4 5, 5 4. weou? ugk<kz< wel<osbzqjbohvg<gz<gxq &zl<hqe<uvlixujvbxg<gzil</ Q z<x, y dt<telx<xl< y 0 weqz<, x y x. osbzq NeK Q z<hiqlix<xh< y h{<hqjefqjxuosb<bik/wmk<kg<gim<mig, , weou gpqk<kz<osbzq NeK Q z<osih<hh<h{<hqjefqjxuosb<bik/wmk<kg<gim<mig,,, we<x Q uqzt<tw{<gjtg<gvkg/ ( ) 9 40 ( ) ( ), 5

10 ( 4) 44 [( ) ] ( 4). weou, ( ) [( ) ]. -u<uiox, ( ) ( ) ( ), [( ) ] 9. weou, ( ) [( ) ]. gpqk<kz< osbzq NeK N z<, njmuh<h{<hqjefqjxuosb<bik/woeeqz<, 5, 7 we<x N e<dxh<hgjtg<gvkg/ 5 7, N e<dxh<hz<z/-u<uioxosbzq NeK N z<njmuh<h{<hqjefqjxuosb<bik/woeeqz<, , N e<dxh<hz<z. N, W, Z lx<xl< Q gtqe< h{<hgjth< hbe<hmk<kq yv sleqe< kqiu Gxqh<hqm<m w{<gtqe< okigkqbqz< dt<tki we nxqbzil</ wmk<kg<gim<mig, sle< 5x 0 0 e< kqiu x NGl<., N e<dxh<hikziz<, 5x 0 0 we<xsleqe<kqiun z<dt<tk/ 5x 0 we<xsleqe<kqiu x 0NGl</w{< 0NeK N z<-z<jz/neiz<?w{< 0 NeK W z<dt<tk/weou? 5x 0 wel<sle<nek N z< kqiu ogi{<cvg<guqz<jz/ lixig,nke<kqiu W z<dt<tk/ 5x we<xsljeg<gvkouil</-ke<kqiu x. w{< NeK N lx<xl< W -v{<czl<-z<jz;neiz?< NeK Z z<dt<tk/ weou, 5x we<xsleqe< kqiu N lx<xl< W uqz<-z<jz;neiz<, Z z<dt<tk/ 5 x we<xlx<oxivsljeg<gvkouil</-ke< kqiu x. w{< NeK Nz< z<jz, NeK W uqzl<-z<jz lx<xl< NeK Z zqzl<-z<jz/weou, N, W lx<xl< ZNgqbw{<okiGkqgtqz<sle< x NeKkQIuqjeh<ohx<xqVg<guqz<jz/ 5 Neiz<? w{< NeK Q uqz< -Vh<hkiz<, sle< x NeK Q uqz< kqiuqjeh< ohx<xqvg<gqxk/ -Vh<hqEl<,, π, we<he uqgqklxi w{<gt< we nxqf<kqvh<hkiz<, x 0, x 0, x π 0 Ohie<xsle<hiMgt< Qz<kQIUgjth< 6

11 ohx<xqvg<gik/ uqgqklxi w{<gjth< hx<xq nxqf<k ogit<ukx<g Le<hig uqgqklx w{<gjtksl ucuqz<wpkl<ljxjblq{<ml<nvib<ouil</..6 uqgqklxw{<gjtkslucuk<kqz<gxqk<kz< fqt<ugk<kz< Ljxbqz< uqgqklx w{<gjt kslg< GxqbQm<cz< wpkl< 5 5 LjxbqjenxqOuil</wMk<Kg<gim<mig, lx<xl< gtqe<kslhqe<enjlh<hgt< 7 LjxOb Olx<Gxqh<hqm<Mt<t fqt< ugljxbqz< hqe<hx<xqb uqkqjb fil< nxqf<k ogit<ouil</ -kx<g LPg<gjt wu<uix Gxqg<gqOxil< we<hjkg< gi{<ohil</ wmk<kg<gim<mig 4 J F~Xgt<, hk<kgt<, 4 ye<xgt< Ngqbeux<xqe< %Mkzigg< gi{zil</nkiuk, u<uiox weou 0,,,, 9 wel< w{< -zg<gr<gjtg< ogi{<m nux<xqe< Lglkqh<Hg<gjt, 0 0, 0, 0, gtqe< lmr<ggtig LcU osb<k wpkgqe<oxil</ -K OhizOu hqe<er<gjtbl<, 0,,,, 9 Jg< ogi{<m, 0 -, 0 -, 0 -, Ngqbeux<xqe< lmr<ggtigh<ohxzil</wmk<kg<gim<mig, weou? 8 5 J0.65 weg<gxqh<ohil</-r<ght<tqbqe<uzkhg<gk<kqz<lkz<w{<{ie 6 6 e< Lglkqh<H, -v{<miuk w{< e< Lglkqh<H 0 00 we nxqbzil</ Ht<tqjb hkqe<lieh< Ht<tq nz<zk kslh<ht<tq we njph<hi/ kslh<ht<tqbqe< -mh<hxk<kqz< dt<t 0 e<lkqh<h NGl</weOukslh<Ht<tqNeKkslucuk<kqz< J 8 wpkl<ohik LPjlh< hgkq, hqe<eh<hgkq nz<zk kslh<hgkq -ux<jxh< hqiqk<k wpkqmh<hbe<hmk<kh<hmgqxk/ 7

12 Olx<%xqbGxqbQm<cz<,.05e<ohiVt< h<ohipk, we<xhqe<ek<jkwmk<kg<ogit<ouil</-kqz<? (osb<ljxlx<xh<ohxgqxk) nmk<k, hqe<uvl<osb<ljxjbg<gvkouil</ (A)

13 gi{zil< (B) osb<ljxbiek(a)-zqvf<k lq{<ml<nvl<hligqxk/ 5 e< ksl ucul< wpkl<ohik fqt<ugk<kz< Ljx Lx<Xh<ohXujkg< (lqkq 0 uvgqe<xhcbiz<). weou 5 Lx<Xh<ohXl< ksl uqiqjuh< ohx<xt<tk/ Neiz< 7 5 e< kslucug< Gxqk<kzqz<? fqt<ugk<kz< Ljx wf<fqjzbqzl< Lx<Xh<ohxuqz<jz (lqkq 0 we wf<k fqjzbqzl< dt<tk). nok Ofvk<kqz< (B) gm<mk<kqz< ohxh<hml< lqkll< (A) gm<mk<kqzt<t lqkll< ye<ox we nxqg/ weou? gm<ml< (A), gm<ml< (B) -ux<xqx<gqjmob uvgqe<x -zg<gr<gt<, 8, 5, 7,, 4 uiqjs lixilz<kqvl<hk<kqvl<h gqjmg<gl</weou 7 5 e<kslucug<gxqk<kjzlx<xh<ohxi lx<xl<lqt<okimi<ljx (Non-terminating and Recurring)we<Ohil</-kje , 7 we wpkouil</ -r<g 8574 e< lqk -mh<hm<mt<t OgiM (bar)? 7 5 e< fqt<ug Ljxbqz< 8574 kqvl<hk< kqvl<h nok uiqjsbqz< -ml<ohxujkg< Gxqg<Gl</ 5 g<gie Lx<Xh<ohXl< ksl uqiquie J Lx<Xh<ohxik lqt< okimvigul< gvkzil</woeeqz<, OlZl<nOk g<g, 9

14 ( 4 + ) ( 0) ( 9 + ) ( 0) ( 9 + ) NgOu, yu<ouiv uqgqklx w{<[l< Lx<Xh<ohXl< nz<zk Lx<Xh<ohxik lqt< okimv< Ljxbqz< ksl uqiquig njlgqxk/ fqt< ugljxbqz< ohxh<hml< lqkr<gt< Gjxbqz<zi LPg<gtigUl<? ug w{<gjt uqm GjxuigUl< -Vh<hkiz<kie<, uqgqklx w{<gt< -k<kjgb sqxh<hh< h{<hqjeh< ohx<xt<te/ Lf<jkb fqjzbqz< ohxh<hm<m lqkliek OuoxiV fqjzbqz< lqklig lxhcbl<< uvujkg< gi{zil</ weou? uqz< dt<t -zg<gr<gt< kqvl<hul< uv Nvl<hqg<gqe<xe/ -ke< lxkjz d{<jlbiwenvib<ouil</lx<xh<ohxl<nz<zklx<xh<ohxikokimiujgksl uqiqugt<wkjeg<gxqg<gqe<xe@-f<kuqeijuwmk<kg<gim<mgt<&zl<nvib<ouil<. (i) ksluqiqu 0.45 Jg<gVKg (ii) ksluqiqu Jg<gVKg/ x we<g/weou 00x x x ( ) ( ) nz<zk 99x 45 nz<zkx (iii) ksluqiqu 0.49 Jg<gVKg/ x we<g/ngou00x x x 00x ( ) ( ) x 5 nz<zk x

15 weou, yu<ouivlx<xh<ohxl<nz<zklx<xh<ohxiklqt<okimiujgksluqiqu,yv uqgqklx w{<{qjeg< Gxqg<Gl</ nkiuk, yvlx<xh<ohxl<nz<zklx<xh<ohxik lqt<okimiujgksluqiqju LPuqe<gQp<LP we<xucuk<kqz<njlg<g-bzl</..7 uqgqklxiw{<gt< Lx<Xh<ohxik Neiz< okimi uiqjsbx<x ksl uqiqugjtg< gvkouil</ wmk<kg<gim<mig, u<uqiquqz< 0 lx<xl< got dt<te/ OlZl< gt< NeK H,s<sqbl<, H,s<sqbr<gt<, H,s<sqbr<gt<, 4 H,s<sqbr<gt<, Ngqbeux<xiz< hqiqg<gh<hm<mt<tjk nxqg/ -kqz< kqvl<hk< kqvl<h uvl< okimi ujg nmg<ggt<-z<jz/weou?-k<kjgbksluqiqugt<uqgqklxw{<gjtg<gxqg<gik/ nk<kjgb ksl uqiqugt< uqgqklxi w{<gjtg< Gxqg<Gl< we<gqoxil</ uqgqklx lx<xl< uqgqklxi w{<gjtob olb<ob{<gt< we<hv</ yv ksl uqiquiek hqe<uvueux<xt<wokel<yvucuqz<lm<mol-vg<gl</ (i) Lx<Xh<ohXl<ucuqz<-Vg<Gl</ (ii) Lx<Xh<ohxikNeiz<kqVl<hk<kqVl<huVl<okimIujgksluqiqU/ (iii) Lx<Xh<ohxiklx<Xl<kqVl<hk<kqVl<huvikokimIujgksluqiqU/ NgOuyu<ouiVksluqiqUl<yVolb<w{<{iGl</yu<ouiVolb<w{<{qx<Gl<ksl uqiqud{<mwefil<%xzil</yvolb<ob{< x-e<ksluqiquqz<0 n e<g{gr<gtqz< Gjxf<khm<sl<ye<xiuKlqjgLPw{<Ng-Vf<kiz<? nkjelqjgolb<w{< we<ohil</ -u<uiox, olb<ob{< x NeK lqjgbigoui nz<zk h,s<sqbligoui -z<zikqvh<hqe<nkgjxolb<ob{<weh<hml</wmk<kg<gim<mig, we<hklqjgolb<ob{</neiz<, Gjxolb<ob{<{iGl</ olb<ob{<gtqe< okigkqjb R weg<gxqh<ohil</ NgOu R NeK uqgqklx lx<xl< uqgqklxi w{<gtqe< okigh<higl</ -bz< w{<gt<, LP w{<gt<, LPg<gt<, uqgqklx lx<xl< uqgqklxi w{<gt< njek<kl< olb<ob{<gtigl</ wf<kouiv uqgqklx w{<[l< uqgqklxi w{<{igik/ -jkh<ohizou? wf<kouiv uqgqklxi w{<[l< uqgqklx w{< NgiK/ R z< upg<glie %m<mz<, gpqk<kz<, ohvg<gz< lx<xl< ugk<kz< uqkqgt< biul< d{<jlbigl</ Gxqh<hig, R z< dt<t hiqlix<x lx<xl< hr<gqm<mh< h{<hgtiue;x, y lx<xl< z WOkEl<&e<Xolb<ob{<gTg<G? (i) x + y y + x, xy y x; (ii) x(y + z) xy + xz; (iii) (x + y)z xz + yz,

16 Olx<%xqBt<th{<HgtqzqVf<Khqe<uVueux<jxg<gi{zil</ (i) x (y z)x [y + ( z)]xy + x( z) xy xz. (ii) (x + y) (x + y)(x + y) (x + y) z, -r<g z x + y weh<hqvkqbqm xz + yz x (x + y) + y (x + y) xx + xy + yx +yy x + xy + xy + y x + xy + y. (iii) (x y) (x y)(x y) (x y) z, -r<g z x y weh<hqvkqbqm xz yz x (x y) y (x y) xx xy (yx yy) x xy xy + y x xy + y. (iv) (x + y) (x y) (x + y) z -r<g z x yweh<hqvkqbqm xz + yz x (x y) + y (x y) xx xy + yx yy x y. wmk<kg<gim<m : Nz<Gxqg<gh<hMl<uqgqkLXw{<{qjeg<gi{<g/ kqiu: x we<g/ x x x x ( ) ( ) x 75 nz<zk x. 99 wmk<kg<gim<m : we<hjkfqbibh<hmk<kul</ 9 9 kqiu: -r<g. 0 (0) (9 + ) + ( 0) ( 0) OlOzdt<tLjxbieKLcuqe<xqose<Xogi{<OmbqVg<Gl</NgOu, nz<zk ( 9 + ) + ( + ) wmk<kg<gim<m : JLPuqe<gQp<LPucuqz<gi{<g/ kqiu: x. 5 we<g/ x x x x nz<zk 99x 50 nz<zk x. 99 y.5 we<g/ y.5.. 0y 5.

17 00y y 0y nz<zk 90y 7 nz<zk y weou? wmk<kg<gim<m 4: lx<xl< Ngqb uqgqklxi w{<gjtg< %m<mg/ uqjm yv uqgqklx w{<{ig -Vg<Glieiz<,nkjeLPuqe< gqp<lpucuqz<gi{<g/ kqiu: x lx<xl< y we<g/ x + y r<g x + y e<ksluqiqulx<xh<ohxikneiz<kqvl<hk<kqvl<huvl<okimiujgjbs< siv<f<kk/ weou, x + y yvuqgqklxw{</a 0. we<g/hqe<h0a. 0a a nz<zk 9a nz<zk a 9. x + y 9. Gxqh<H; Olx<g{<m wmk<kg<gim<czqvf<k, -V uqgqklxi w{<gtqe< %Mkz< yv uqgqklxi w{<{ig-vg<gou{<cbnusqblqz<jz/-jkh<ohizou, -VuqgqkLxi w{<gtqe< ohvg<gx<hzel< yv uqgqklxi w{<{ig -Vg<gOu{<cb nusqblqz<jz/ ( yvuqgqklxi w{</neiz<, yvuqgqklxw{<). we<x uqgqklxi w{<j{g< gvkouil</ -uqe< ksl uqiqju gi[l< LjxjbfqjeUogit<Ouil</ weou filxquk? e< ksluqiqu Lx<Xh<ohxilZl<, kqvl<hk< kqvl<huvl<okimiujg-z<zilzl<dt<tk/weou yvuqgqklxiw{<{igl</ -u<uiox,, 5, 7, uqgqklxiw{<gt<wefqxuzil</

18 g{qkk<kqz< π lx<xl< e wel< keqs<sqxh<hlqg<g -V uqgqklxi w{<gt< -ml<ohxgqe<xe/ wf<kouiv um<mk<kqzl< nke< Sx<xtU lx<xl< uqm<ml< Ngqbux<xqx<gqjmOb dt<t uqgqkl< yv lixqzq NGl</ -l<lixqzqjb gqovg<g wpk<kie π Nz< Gxqh<Ohil</ π e< ksl uqiqu.4596 we<hkigl</ -K Lx<Xh<ohxik, kqvl<hk< kqvl<h uvik okimvig dt<tk/ wel< uqgqklx 7 w{<{qjeπ e<okiviblkqh<higg<g{g<gqmzqz<hbe<hmk<kqbt<otil</-f<kqbg<g{qk Oljk -vilie\e< π J dt<tmg<gqb hz $k<kqvr<gjt dvuig<gqbt<tii/ 97 l< N{<Mujvbqz<, π g<gieksluqiquqz<,000,000 -zg<gr<gt<-ml<ohxgqxujgbqz< gi{h<hm<mt<tk/ hz Ogic -mk< kqvk<kk<kme< π e< uqiqjug< gi{<hk we<hk kx<ohik fjmohx<x uvgqx gcelie Neiz< uqbk<kg h{qbigl</ nmk<kkig? ,,,, we<x Ljxob{<gtqe< lkqh<hgjtg< g{g<gqmjgbqz< 4 5 -jubjek<kl< yv Gxqh<hqm<<m olb<ob{<{qx<g lqg lqg nvgijlbqz< njlujk nxqbzil</ nf<k w{<{qje e weg< Gxqh<Ohil</ e e< ksluqiqu e KUl< Lx<Xh<ohxik lx<xl< kqvl<hk< kqvl<h uvik okimvig dt<tk/ -f<k uqgqklxiw{< ejh<hx<xqolzl<dbiugh<hgtqz<fqr<gt<hck<kxqbzil</..8 R-z<uiqjsdxU sqz ohivm<gjt njugtqe< h{<hgtg<ogx<h uiqjs hmk<kl<ohik, nju uiqjsh<hmk<kh<hm<mju weh<hmgqe<xe/ wmk<kg<gim<mig, li{uigjt nuvui dbvk<kqx<ogx<h, lqgg< Gjxf<k dbvk<kqzqvf<k lqg nkqghm<s dbvl< wel< nch<hjmbqz<fqx<gs< osb<kiz<, nl<li{uigt<uiqjsbqz<fqx<hkigg<%xgqe<oxil</ x lx<xl< y olb<ob{<gt< we<g/ y x NeK lqjg w{< weqz<, xnek y-j uqmg< Gjxf<kw{< nz<zky NeK x Juqmh<ohiqbw{<weh<hMl</ xnek y Juqmg< GjxuieK we<hjkg<gxqg<g x < y we<xgxqbqm<jmbl<, y NeK x Juqmh<ohiqbK we<hjkg<gxqg<g y > x we<x GxqbQm<jmBl<hbe<hMk<KOuil</NgOu, x < y lx<xl< y > x we<he y x yv lqjg w{< we<x yov ohivt< kvue/ y x Gjxw{<weqz<, (y x) x y lqjgbigl</ weou? y < x nz<zk x > y/wmk<kg<gim<mig, 9 lx<xl< 7 we<x-vw{<gjtwmk<kg<ogit<ouil</9 7 NeKlqjgwe<hkiz<, 7 < 9 nz<zk 9 > 7 weg< gqjmg<gqxk/ nmk<k, 9 lx<xl< 7 gjtg< gvkouil</ filxquk? ( 9) ( 7) 9 + 7, yvgjxw{</weou, 9 < 7 nz<zk 7 > 9. x lx<xl< y we<heolb<ob{<gt<we<g/hqe<uvl<&e<xqz<wokel<ye<xlm<mol d{<jl/ (i) x y yvgjxw{<; nkiuk, x < y (ii) x y yvlqjgw{<; nkiuk, x > y (iii) x y 0; nkiuk, x y. x < y nz<zk x y we<hjk xnek y J uqms<sqxqb nz<zkslw{<we<ohil</-kje x y wewpkouil</-k?xnekyjuqm 4

19 lqjgbz<z we<x Gxqh<hjk nxqf<k ogit<g/ -u<uiox, x > y nz<zk x y weqz<, x NeK y Juqmh<ohiqbnz<zKslw{<we<Ohil</-kjex ywewpkouil</ -K?xNeKyJuqmGjxf<kkz<zwe<XGxqh<hjknxqf<Kogit<g/ x NeKlqjg w{<weqz<? x > 0 NGl<. x NeKGjxnz<zweqz<? x 0 NGl</ x Gjxw{<weqz<, x < 0 NGl</ x NeK lqjg w{< nz<z weqz<? x 0 NGl</NgOu wu<uqv olb<ob{<gt< x lx<xl< y gtg<g, hqe<uvl<&e<xqz<ye<xlm<mold{<jlbigl</ x < y, x y, x > y. -kjeolb<ob{<gtg<gielh<hqvqh<h (trichotomy) uqkqwe<ohil</ x, y lx<xl< z we<he x < y lx<xl< y < z, welix dt<t WOkEl< &e<x olb<ob{<gt< weqz<, y x lx<xl< z y gt<lqjgw{<gtigl</weou, (y x) + (z y) lqjgngl</nkiuk, z x lqjg NGl</ weou? x < z. x < y lx<xl< y < z weqz<, x < z d{<jlbigl</ -h<h{<hqje lix<xh<h{<hwe<ohil</ x < y lx<xl< y < zwe<hjk x < y < zweg<gxqh<ohil</-r<g y NeK x lx<xl< zgtg<g-jms<osvgzigdt<tkwe<ohil</ olb<ob{< x lx<xl< 0 Jg< gvkg/ hqe<uvhjugtqz< ye<x lm<mol d{<jlbigl</ x < 0, x 0, x > 0. x < 0 weqz<, x x x Gjxw{< Gjxw{< lqjgw{</ x 0 weqz<, x x x x > 0 weqz<, x x x lqjgw{< lqjgw{< lqjgw{</ weou wf<kouiv olb<ob{< x-g<gl< x 0/ Gxqh<hig H,s<sqblqz<zi wu<ouiv olb<ob{<x (> 0 nz<zk < 0)-g<Gl<x > 0. WOkEoliVolb<ob{<x Jg<gVKg/x 0 we<xohipk?x e<lm<mlkqh<hx we<xl<;x < 0 we<xohipk?x e<lm<mlkqh<h x we<xl< ujvbxg<gh<hmgqxk/ x e< lm<mlkqh<hqje x we<x GxqbQm<ceiz< Gxqh<Ohil</ weou? x x, x 0 we<xohipk; x x, x < 0 we<xohipk/ filxquk? x 0, x x lx<xl< x x. wmk<kg<gim<m 5: π lx<xl< -ux<jxuiqjsh<hmk<k/ 7 kqiu: π.458, π π NeKlqjgw{</ π < 7. wmk<kg<gim<m 6: uqgqklx w{<gt<.0 lx<xl<.0 -ux<xqx<g -jmbqz< WOkEl< fie<gw{<gjt-jms<osvgzigs<osig<gul</ 5

20 kqiu: -r<g > 0 weou.0 <.0..0,.0,.0,.04 Ngqb w{<gjtg< gvkg/ -jugt< Lx<Xh<ohXl< ksl uqiqu ucuqzt<tkiz<, njek<kl<uqgqklxw{<gtigl</ > 0. weou.0 < > 0, we<hkiz<.0 < > 0,we<hkiz<.0 < > 0, we<hkiz<.0 < > 0, we<hkiz<.04 <.0..0 <.0 <.0 <.0 <.04 <.0. wmk<kg<gim<m 7:.0 lx<xl<.0 gtg<gqjmob fie<g uqgqklxi w{<gjt -jms<osvgzigs<osig<gul</ kqiu: > 0. weou?.0 <.0. a , b , c , d , wel< fie<g w{<gjtg< gvkg/ -jubiul< Lx<Xh<ohxik, kqvl<hk< kqvl<h uvl< okimiujgjbs<sivikouu<ouxieksluqiqugjtg<ogi{<mt<tkiz<?ouu<ouxie uqgqklxiw{<gtigl</olzl<, a > 0, b a > 0, c b > 0, d c > 0,.0 d > 0..0 < a < b < c < d <.0. wmk<kg<gim<m 8:. 00 lx<xl<. 00 uqgqklxi w{<gtg<gqjmob WOkEl< -V uqgqklxw{<gjt-jms<osvgzigs<osig<gul</ kqiu: lx<xl< (Okiviblig*> 0. 6

21 . 00 < lx<xl<.446 Ngqb w{<gjtg< gvkg/ Lx<Xh<ohXl< ksl uqiqjug< ogi{<mt<tkiz<,-jubqv{<ml<uqgqklxw{<gtigl</olzl< > < > < > < <.446 <.446 <.00. Olx<%xqBt<t wmk<kg<gim<mg<gtqzqvf<k, a, b wel< wu<uqv ouu<oux olb<ob{<gt< a < b we -Vh<hqe<, r we<x uqgqklx w{<{qje a < r < b welix gi{zil<. a lx<xl< b ye<xg<ogie<x lqg nvgijlbqz< -Vh<hqEl<,OlOz%xqBt<t h{<h d{<jl/ -h<h{<hqje R z< Q uqe< nmik<kqh< h{<h we<gqoxil</ yv OfIg<Ogim<cz< njlf<k -V ouu<oux Ht<tqgTg<gqjmOb OuoxiV keqk<kh< Ht<tq -Vg<Gl<< we<x d{<jlbme< R e< nmik<kqh< h{<hqje yh<hqmzil</ -k<kjgb yh<hqm? olb<ob{<gjtofig<ogimye<xqeiz<gxqg<gupqugg<gqxk/ njek<kuqgqklxw{<gtl<olb<ob{<gotwe<hjkfqjeuqz<ogit<g/ Neiz<? uqgqklx nz<zik olb<ob{<gtl< d{<m we<hjk nxqouil</ wmk<kg<gim<mig,,, π, Ngqbe olb<ob{<gt<;neiz<uqgqklxw{<gt< nz<z/-h<ohik, sle<gt< x 0, x 0, x π 0, R z<kqijuh<ohx<xt<te/ Neiz<? x + 0 we<xsleqx<g R z<kqiu-z<jz/woeeqz<? x wewf<kouiv olb<ob{< x JBl< ohx -bzik/ -k<kjgb sle<himgjt flk ugh<hqz< gvkh< Ohiukqz<jz/ hbqx<sq.. hqe<uvueux<xqx<gksluqiquqjeg<gi{<g. 7 (i) (ii) (iii) hqe<uvl<uqgqklxw{<gjtlpuqe<gqp<lpucuqz<gi{<g: (i) (ii) 0. 7 (iii) 0.5 (iv) 0.5 (v) siqbinz<zkkuxiweg<%xg/ (i) we<hkyvlpw{<. 7 (ii) we<hkyvlp/ (iv) 4 7

22 (iii) we<hkyvuqgqklxw{</ (iv) 0.6 we<hkyvuqgqklxw{</ (v) yu<ouivksluqiqul<yvolb<ob{<ngl</ (vi) yu<ouivolb<ob{<[l<yvuqgqklxw{<ngl</ (vii) 0. yvuqgqklxw{</. olb<ob{<ofig<ogim Le< ugh<hgtqz< olb<ob{< OfIg<Ogim<cje nxqouil</ olb<ob{<gt< wu<uix OfIg<Ogim<ce< Ht<tqgtigg< Gxqg<gh<hMgqe<xe we<hjk lq{<ml< nxqf<k ogit<ouil</ yvofig<ogim<cz<wokel<yvht<tqjbg<gvkg/-h<ht<tqjb O weh<ohbiqmouil</ w{< 0 J -h<ht<tq Gxqh<hkigg< ogit<ouil</ Ht<tq O-g<G uzh<hxlig w{< Jg< Gxqg<Gl<Ht<tqbigOfIg<Ogim<cz< A Ht<tqjbg<gVKg/OfIg<Ogim<Mk<K{<M OA NeK YvzG fqtljmbk we<g/ Ht<tq A-jbh< ohivk<k fqtl< OA -Vg<Gl<< we<hjk fqjeuqz<ogit<g/ht<tq A,w{< Jg<Gxqg<gqxKwe<Xogi{<mhqe<H A fqjzbie Ht<tqbiGl<; OAe< fqtl< nzgigl</ OA J ntuogizigg< ogi{<m yu<ouiv olb<ob{<{qjebl< ng<ogim<cz< yv Ht<tqbigg< Gxqg<gzil</ -k<kjgb OfIg<Ogim<jm olb<ob{< OfIg<OgiMnz<zKolb<g<OgiM (Real Number Line) we njph<ohil</ olb<g<ogim<cz< wu<uix lqjg LPg<gt< Ht<tqgtigg< Gxqg<gh<hMgqe<xe we<hjklq{<ml<fqjeuogit<ouil</ O lx<xl< A LjxObw{<gt< 0 lx<xl< gjtg< Gxqg<gqe<xe/ O g<g uzh<hg<gk<kqz< nzgk< okijzuqzt<t Ht<tq (OA-uqe< fqtk<jkh< Ohiz lmr<g), nzgk< okijzuqz< dt<t Ht<tq,, -ju LjxOb w{<gt<,, Ngqbux<jxg<Gxqg<Gl<(hml<. Jh<hiIg<gUl<). hml<. -u<uiox, O-g<G-mh<Hxlig,,, w{<gjtg<gxqg<gl<ht<tqgjtljxob nzg, nzggt<<, nzggt<, okijzugtqz<gxqg<gzil</ uqgqklx w{<gjt olb<g<ogim<cz< Gxqg<Gl< Ljxjb kx<ohik okiqf<kogit<ouil</ wmk<kg<gim<cx<gig, uqgqklx w{< Jg< gvkouil</ uqgqklx w{< e< hgkqbqzt<t (Denominator of ) -Jg< Gxqg<Gl< Ht<tq P we<g/ OP-g<G 8

23 osr<gk<kig PQ we<el< Ogim<cje e< okigkq (numerator of ) nzg fqtk<kqz< ujvg/oq-jus<osig<g/ PQ-g<G-j{big A-upqs<osz<Zl<Ofi<g<Ogim<cje ujvg/-g<ogim OQ J R we<xht<tqbqz< sf<kqg<gqxk we<g/ AR nzggt< NGl</ Woeeqz<? OAR lx<xl< OPQ we<he ucouik<k Lg<Ogi{r<gt</ weou, PQ OP nz< zk nz< zk AR. AR OA AR O-ju jlbligul<> AR-g<G sllie fqtk<jk NvligUl< ogi{<m yv um<ml< ujvg/ -u<um<ml< olb<g<ogim<jm O-g<G hml<. uzh<hxk<kqz<yvht<tqbqz<oum<mgqe<xk/ -h<ht<tqbiek uqgqklx w{< Jg< Gxqg<gqe<xK (hml<.jh<hii<g<gul<*/nok um<ml< O-g<G -mh<hxlig olb<g<ogim<jm oum<ml< Ht<tpbieK wel< uqgqklx w{<{qjeg< Gxqg<gqe<xK/ -Ok Ljxbqz<? wf<kouiv uqgqklx w{<{qjebl< olb<g<ogim<cz< Gxqg<gzil</ olb<g<ogim<cz< P, Q we<he ouu<oux, nvgijlh< Ht<tqgt< weqz< nux<xqx<gqjmbqz<, P lx<xl< Q gjtk< kuqv OuoxiV Ht<tqbqjeBl< gi{zil</ nkiuk olb<g<ogim<cz< wf<kuqv Ht<tqgTg<Gl< -jmobbl< -jmoutq -z<jz we<hjk nxqgqe<oxil</ weou? olb<g<ogim okimis<sqh< Ht<tqgtiz< (continuum of points) NeK/yu<ouiVuqgqkLXw{<{qx<Gl<olb<g<Ogim<cz<yV keqk<k Ht<tq d{<m we<hjk -Kujvbqz< hiik<okil</ Neiz< olb<g<ogim<czt<t njek<kh<ht<tqgtl< uqgqklx w{<gjt lm<mol Gxqg<Gli we uqei wph<houil</ -kx<giqb uqjm -z<jz we<hkkie</ wmk<kg<gim<mig, we<x uqgqklxi w{<j{g<gvkouil</ hml<. hg<gl< OA weg<ogi{<mskvl< OABC ujvg/hqkigv^<okx<xh<hc? OB OA + AB +. weouob. O-jujlbligUl< OB JNvligUl<ogi{<M yvum<ml<ujvg )hml<. Jh< hiig<gul<*/ -u<um<ml<, olb<ob{< Ogim<cje O g<g -mh<hxl< Ht<tq Q uqzl<, O-g<Guzh<Hxl<Ht<tqP-bqZl<sf<kqg<Gl</ OP OB, OQ OB we<hkiz<ht<tqgt< P, Q uqgqklxw{<gjtg<gxqg<gik/ngouht<tq P, uqgqklxiw{<{qjebl<, Ht<tq Q, wel< wel<uqgqklxiw{<{qjebl<gxqg<gl</ 9

24 wmk<kg<gim<m 9:, 5,, 5 Ngqb uqgqklxi w{<gjt olb<ob{< Ogim<cz< Gxqg<gUl</ kqiu: olb<ob{< g<giqb Ht<tq P-J olb<g<ogim<cz<gxqg<gul<. lx<xl< hqe<uvlix gi{zil<; OP lx<xl< PD welix osu<ugl< OPDC (hml<.4 Jh< hiig<gul<* ujvg/ hqkigv^<okx<xh<hc, OD OP + PD ( ) +. hml<.4 weou OD. O-jujlbligUl<, OD J NvligUl<ogi{<MyVum<ml<ujvg/ -u<um<ml< olb<g<ogim<cje Q lx<xl< Q gtqz< sf<kqg<gm<ml</ hmk<kqzqvf<k filxquk? OQ OQ OD. Q lx<xl< Q wel; Ht<tqgt< O-g<Guzlx<Xl<-mh<Hxr<gtqz< LjxOb njlukiz<, Ht<tq Q NeK JBl<? Ht<tq Q NeK JBl< Gxqg<gqe<xe/ 5, 5 -ux<xqx<g{<mie Ht<tqgjtg< Gxqg<g Olx<%xqb dk<kqjbg< jgbit<ouil</ olb<ob{< Ogim<ce<lQKO uqzqvf<k nzggt< okijzuq<z<o uqx<guzh<hg<gk<kqz<r we<x Ht<tqjbg< Gxqg<gUl< (Wx<geOu uqgqklx w{<gtg<g d{<mie Ht<tqgjt olb<ob{< Ogim<cz< wu<uix gi{<hk we<hjkg< hml<.5 g{<cvg<gqe<oxil<)/osu<ugl< ORFC J fqtl<or, ngzl<rf we<xuixujvg ( hml<.5 Jh<hiIg<gUl<). hqkigv^<okx<xh<hc, OF OR + RF weou? OF 5. O J jlbliul<, OF J NvligUl< ogi{<m yv um<ml< ujvg/ nu<um<ml< olb<ob{<ogim<cje O uqx<guzh<hg<gk<kqz<s we<xht<tqbqzl<, O uqx<g -mh<hg<gk<kqz< S we<xht<tqbqzl<oum<mgqe<xk/ -r<gos OS OF 5 we<hkiz<, S NeK 5 JBl<?S NeK 5 JBl<Gxqg<gqe<xe/ Olx<gi[l< Nvib<uqzqVf<K, wf<kouiv olb<ob{<[l<, olb<ob{< Ogim<ce< lqk keqk<k yv Ht<tqBme< ohivk<kh<hmgqxk we nxqgqe<oxil</ lxkjzbig? olb<ob{< Ogim<ce< lqkt<tyu<ouivht<tqbl<keqk<kyvolb<ob{<{qjeg<gxqg<gl<weul< nxqgqe<oxil</ O uqx<g uzh<hg<gk<kqz< dt<t Ht<tqgt< lqjg olb<ob{<gjtbl<? O uqx<g -mh<hg<gk<kqzt<t Ht<tqgt< Gjx olb<ob{<gjtbl< Gxqg<gqe<xe/ 0

25 olb<ob{<gt< a lx<xl< b -ux<xqx<gie olb<ob{< Ogim<ce< Ht<tqgt< LjxOb P lx<xl<q we<g/a < b weqz<p NeKQ e<-mh<hg<glig-vh<hjknxqf<kogit<tul</ nkiuk? Q uiek P g<g uzh<hg<gk<kqz< njlf<k Ht<tq we nxqf<k ogit<tul< )hml<.6 Jh< hiig<gul<*/ OlZl<? a < x < b we<xuixt<t x we<x olb<ob{<{qx<g olb<ob{< hml<.6 Ogim<ce< lqk ohivk<kh<hm<m Ht<tq R weqz<? R NeK P g<gl< Q g<gl< -jmh<hm<m Ht<tqbig-Vh<hjknxqgqe<Oxil</.. uqgqklxiw{<gtqz<g{g<gqmz<,, 5, Ohie<xuqgqkLxiw{<gt<wu<uiXdVuibqewe<hjkfqjeU %IOuil</ fil< x 0 we<x sle<him<cjek< kqiu gi{ uqjpouioleqz<? flg<g x kqiuigg<gqjmk<kk/-jkh<ohizoux n r we<xsle<him<cx<golb<lkqh<h x kqiuigh<ohxuqjpgqoxil<we<g/-r<gr yvuqgqklxw{<?n yvlqjglpuigl</ ujg: r < 0, n, 4, 6, weqz<? x n r we<xuixyvlqjgolb<ob{<x gi{ LcbiK/Woeeqz<?yVolb<ob{< x x<g? x x x > 0, x 4 x x > 0,, x n > 0; Neiz< r < 0. ujg: r > 0, n, 4, 6, weqz<?x n r we<xuixyvlqjgolb<ob{<x gi{ -bzl</wmk<kg<gim<mig? x 4 65 g<gx 5 gi{zil</ ujg: r > 0, n,, 5, weqz<?x n r we<xuixyvlqjgolb<ob{<x gi{ LcBl</wMk<Kg<gim<mig? x 64 g<gx 4 gi{zil</ ujg4: r < 0, n,, 5, weqz<?x n r we<xuixyvlqjgolb<ob{<x gi{ LcbiK/Woeeqz<?yVlqjgolb<ob{<x g<gx > 0, x x x > 0, x x x > 0, x n > 0; Neiz<r < 0. Olx<gi[l< Nvib<uqzqVf<K? fil< nxquk? n yv lqjg LP (n,,, ) lx<xl< ryvlqjguqgqklxw{<weqz<?x n r we<xuix yv lqjg olb<ob{< x gi{ -bzl</ -f<fqjzbqz< ohxh<hml< lqjg olb<ob{< x J n r we wpkgqoxil<; nkiuk?x n r x n r ; OlZl<x Jr e<n uk&zl<we<gqoxil</-r<g n r yv uqgqklx w{<{igoui nz<zk uqgqklxi w{<{igoui -Vg<Gl</ wmk<kg<gim<mig? 64 4, 4 4. Gxqh<hig?fil<gueqh<hK?

26 ujg : r NeK q p we<xyvlqjguqgqklxw{<{qe<n uk &zlig n p p -Vh<hqe<, nkiuk? r weqz<? n r yvuqgqklxw{<{igl</ q q ujg : r NeK wf<kouiv lqjg uqgqklx w{<{qe< n uk nmg<gig -z<jzobeqz<? n r yv uqgqklx w{<{ig -Vg<g LcbiK; Woeeqz<? n r yv n p p uqgqklx w{< weqz<? r? yv uqgqklx w{<o{e Lv{<himig q q gqjmg<gqxk/ weou? yv lqjg uqgqklx w{< r NeK OuX wf<k yv uqgqklx w{<{q<e<n NuKnMg<gig-Vg<guqz<jzobeqz<? n r NeKyVuqgqkLXw{<{ig -Vg<giK; nkiuk? n r yvuqgqklxiw{<ngl</ r yvlqjguqgqklxw{<{ig-vf<k? n r we<x lqjg olb<ob{<? yv uqgqklxi w{<{ig -Vh<hqe<? n r J yv LVm<om{< )surd) nz<zk yv uqgqklxi &zl<we<gqoxil</ Gxqh<H: yv LVm<om{< we<hk Gxqh<hqm<m ucuqz< njlf<k uqgqklxi w{<{igl</ r NeKwf<kouiVuqgqkLXw{<{qe<nNuKnMg<gig-z<jzwe<xOhiK? n r yv uqgqklxi&zligl</-r<gnwe<hkuqgqklxi&zl< n r e<gxqob{<we<gqoxil</ n we<xgxqbiek&zg<gxq (Radical) we<gqoxil</gxqob{<n weqz<, r Jr e< uig<g&zl<we<xjpk<knkjes<svg<glig r Jre<ge&zl<we<gqOxil</ r we<ox wpkgqe<oxil</ n weqz<, LVm<om{<gt<olb<ob{<gt<we<hkiz<?nux<Xme<-bx<g{qkosbzqgt<+,,, -ux<jxs< osbz<hmk<kzil</ -V uqgqklxi &zr<gjtg< %m<m yv uqgqklxi w{< gqjmh<hqe<? nf<k uqgqklxi w{<{qjebl< yv LVm<om{< we<ox njpg<gqe<oxil</-u<uiox?yvlvm<om{<{qje?yvuqgqklxw{<{qeiz<ohvg<g yv uqgqklxi w{< gqjmh<hqe<? nf<k uqgqklxi w{<{qjebl<? yv LVm<om{< we<ohil</ wmk<kg<gim<mig?? 5 5 7? we<he LVm<om{<gt</ + 7, we<heuqgqklxiw{<gt</-ux<jxbl<fil<lvm<om{<gt<we<xjpg<gqe<oxil</ a lx<xl< b we<he -V ouu<ouxie uqgqklx w{<gt< we<g/ a, b -v{<moluqgqklxi&zr<gt<)uig<g&zr<gt<*we<g/a + b, a b, a + b, a b Ngqbju uqgqklxi &zr<gtigl</ -r<g a b NeK a + b e< Kj{bqbuqgqkLxi&zl<we<gqOxil</-u<uiOx? a + b NeK a b e<kj{bqb &zl<, a + b NeK a b e<kj{bqb&zl<? a b NeK a + b e< Kj{bqb&zl<wenxqgqe<Oxil</

27 uqgqklxi &zk<jkbl<? nke< Kj{bqb uqgqklxi &zk<jkbl< ohvg<gg< gqjmh<hkyvuqgqklxw{<{igl</wmk<kg<gim<mig? ( )( ) ( ) + ( ) 4 ( + 5)( 5) ( ) ( 5) 5. + lx<xl< uqgqklxi&zr<gjtg<jgbit<ukx<ghqe<uvl<uqkqgjth<hbe<hmk<kouil</ a, b we<helqjguqgqklxw{<gt<<;m, n we<helqjglpg<gt<weqz<? n (i) ( ) a. a n n n n (ii) ( a ) ( b ) ab. n a a (iii) n. n b b (iv) p n r + q n r ( p + q) n r, -r<gp lx<xl< q -v{<mololb<ob{<gt</ (v) n m mn a a. (vi) n n m m a a. (vii) a < b weqz<, n a < n b NGl</ fil<gueqh<hk?uqkqgt< (ii), (iii) lx<xl< (iv) z<, uqgqklxi&zr<gt<njek<kl< sllie Gxqob{< ogi{<mjubigl</ weou? ouu<oux Gxqob{<gt< ogi{<m uqgqklxi &zr<gt< kvh<hm<m nux<jxg< ogi{<m fie<g nch<hjms< osbzqgjt fqgp<k<k Ou{<Moleqz<? nf<k uqgqklxi &zr<gjt sl Gxqob{< djmb &zr<gtig,uqkq(vi) Jg<<ogi{<Mlix<xqbhqxGosbz<hmOu{<Ml</uqkq(vi) NeK uqkq(i), uqkq)v*-ux<xqe<-j{h<ohbigl<we<hjkhqe<uvlixnxqbzil<: uqkq(i) e<hc?a m a m n n m m. a a. uqkq (vii) Jg<ogi{<M?sllieGxqob{<djmbuqgqkLxi&zr<gjtyh<hqmzil</ Gxqh<H: n a J a n weg<gxqh<ohil</ wmk<kg<gim<m 0: hqe<uvueuqgqklxi&zr<gti?-z<jzbiwe<hjkgiv{r<gtme< uqjmbtqg<gul</ kqiu: (a) (d) (b) (e) (c) 7 5 (f) 4 6 (a), yv uqgqklx w{</ &zle<x/, yv uqgqklxi 5

28 (b), yv uqgqklx w{</ &zle<x/ 7 (c) yv uqgqklxi &zligl</ Woeeqz<? 5 w{<{qekuig<glz<z/ 44 (d) yvuqgqklxi&zligl</ 7 (e) , yv uqgqklxi 5 7 NeK yv uqgqklx 5 yvuqgqklxiw{<we<hkiz<, yvuqgqklxi&zligl</ 6 (f) , yvuqgqklxw{<. 4 6 yvuqgqklxi&zlz<z/ uqgqklxi &zr<gjt? +,,, ogi{<m jgbitl<ohipk gqjmg<gl< uqjtuiekyvuqgqklxw{<{ig-vg<gzil</ wmk<kg<gim<m : hqe<uvueuqgqklxi&zr<gti?-z<jzbiwe<hjkgiv{r<gtme< uqjmbtq: kqiu: (i) ( 5 + ) ( ) (ii) ( + ) ( + ) (iii) ( + 4 )( ) (iv) (i) ( 5 + ) ( ) (5 + 4) + ( ) ( ) 9 + ( ) 9. -K yv uqgqklx w{<? nkiuk? , 4 Ngqb -v{<ml< uqgqklxi &zr<gtig-vh<hqel<nux<xqe< %Mkz<yVuqgqkLxi&zlz<z/weOuuqgqkLxi &zr<gt<%m<mjzh<ohivk<knjmuh<h{<hqjefqjxuosb<buqz<jz/ (ii) ( + ) ( + ) ( ) + ( ) + 0, yvuqgqklxw{</ kvh<hm<mogijuyvuqgqklxi&zlz<z/ (iii) ( + 4 )( ) ( + 4 ) ( 6 ) ( + 4 ) ( 4 ) KyVuqgqkLXw{</weOu?kvh<hm<mOgijubieKyVuqgqkLxi&zle<X/ 4

29 (iv) KyVuqgqkLXw{</weOu?kvh<hm<mOgijubieKyVuqgqkLxi&zlz<z/ wmk<kg<gim<m : hqe<uvueux<xt< yu<ouie<jxbl< yv keqk<k uqgqklxi &zlig wpkul<; (i) (ii) 40 5 (iii) (iv) kqiu: (i) , , (ii) lx<xl< ( 6) (iii) 6 7 lx<xl< (iv) ( 4 ) 0 4 lx<xl< ( 0). wmk<kg<gim<m : hqe<uvueux<xt< yu<ouie<jxbl< yv keqk<k uqgqklxi &zlig wpkul<: (i) 7 6 (ii) 5 4. (iii) (iv) 8 ( ) kqiu: (i) -r<g 7 NeKGxqob{<djmbK/ 6 NeKGxqob{<djmbK/, -ux<xqe< lq/ohi/l 6. weou? 7, 6 Ngqb -v{<jmbl< Gxqob{< 6 djmb uqgqklxi&zr<gtigwpkouil</-r<g , 5

30 weou, (ii) (iii) (iv) 8 ( 5 0) wmk<kg<gim<m 4: 4, 0, 5 we<heux<jx nux<xqe< lkqh<hgtqe< WXuiqjsbqz< njlg<gul</ kqiu: Lkzqz<? kvh<hm<m uqgqklxi w{<gtg<gie ohikuie Gxqob{< gi{<ohil</ kvh<hm<m uqgqklxi &zr<gtqe< Gxqob{<gt< 4, 6,. -ux<xqe< lq/ohi/l NGl</ weou kvh<hm<m uqgqklxi &zr<gjt Gxqob{< dt<t uqgqklxi &zr<gtig lix<xou{<ml</. kvh<hm<muqgqklxi&zr<gt<. -h<ohipkuqkq(vii) Jh<hbe<hMk<k? 6 nkiuk? , 00, 5 5 < 7 < < < 0. sqzslbr<gtqz<?uqgqkl< y x z<dt<thgkqy NeK yvuqgqklxi&zlig -Vg<gzil</nh<hch<hm<muqgqkr<gtqz<?yVkGf<kLjxjbg<ogi{<MhGkqjbyV uqgqklx w{<{ig lix<xzil</ -l<ljxjb? hgkqjbuqgqklx w{<{ig<gl<ljx we<xjpg<gqe<oxil</-l<ljxjbhqe<uvlixkvgqe<oxil<: (i) hgkq y NeK a we<x njlh<hqz<-vf<k? a yv uqgqklx w{< weqz<? okigkq?hgkq-v{<jmbl< a Nz<ohVg<gUl</wMk<Kg<gim<mig, (ii) hgkq y NeK a + b we<x njlh<hqz< -Vf<K? a lx<xl< b uqgqklx w{<gt<weqz<?okigkq?hgkq-v{<jmbl< a b Nz<ohVg<gOu{<Ml</-h<ohiPK? hgkq (a + b ) (a b ) a a b a b ( b ) a b +, yv uqgqklx w{</ wmk<kg<gim<mig, ( ) ( + )( ) ( ) 9 7 (iii) hgkq y NeK a b we<x njlh<hqz< -Vf<K? a lx<xl< b uqgqklx w{<gt<weqz<?okigkq?hgkq-v{<jmbl<a + b Nz<ohVg<gOu{<Ml</-h<ohiPK? hgkq (a b ) (a + b ) a a b a b ( b ) a b +., yvuqgqklxw{</ 6

31 + wmk<kg<gim<mig? (iv) hgkq y NeK ( + ) ( + ( )( + weqz<?okigkq?hgkq-v{<jmbl< + + ( ) ) ( + ) ) ( ) a + b we-vf<k?a lx<xl< b -juuqgqklxw{<gt< a b Nz<ohVg<gOu{<Ml</-h<ohiPK? hgkq ( a + b)( a b) ( a) ( b) a b, yvuqgqklxw{</ wmk<kg<gim<mig? ( 5) ( 5) + 5 ( + 5)( 5) (v) hgkq y NeK ( ) ( ) 5 a b we<x njlh<hqz< -Vf<K? a, b -ju uqgqklx ( ) ( ) ( 5) 5. w{<gt< weqz<? okigkq? hgkq -v{<jmbl< a + b Nz< ohvg<g Ou{<Ml</ -h<ohipk? hgkq ( a b)( a + b) ( a) ( b) a b, yv uqgqklx w{</ wmk<kg<gim<mig? wmk<kg<gim<m 5: kqiu: Gxqh<H: ( ) ( 5 7 )( ) ( 5) ( 5 + 5) ( 5) ( 7 ) 5 7 e<hgkqjbuqgqklxw{<{iglix<xul</ ( 5 + 4)( 5 4) ( 5) ( 4) ( ) ( 4 5) x we<x uqgqkk<kqe< okigkq x NeK a nz<zk a + b nz<zk a b y nz<zk a + b nz<zk a b we<x njlh<hqz< dt<tk/ x J uqgqklx w{<{ig lix<x Ou{<Moleqz<? okigkqbqe< Kj{bqb w{<{qeiz< okigkq, hgkq -v{<jmbl<ohvg<gou{<ml</ wmk<kg<gim<m 6: kqiu: 4 e<okigkqjbuqgqklxw{<{ig<gg/ ( + ) ( ) ( ( ) 4 + ) ( ) ( ) ( ) ( ). 7

32 wmk<kg<gim<m 7: + a + b + c 6 weqz<, a + b + c Jg<g{<Mhqcg<gUl</ kqiu: + ( ) ( )( ) + ( ) ( ) ( ) ( ) ( ) + ( ) ( ) c b a.. 4, 4, c b a c b a Gxqh<H; p, q uqgqklx w{<gt<? n a yv uqgqklxi &zl< weqz<? p+ n a q we<x uqgqklxi&zk<kqz<, p JuqgqkLXw{<hGkqwe<Xl<? n a q JuqgqkLxiw{<hGkq we<xl< njpg<gqe<oxil</ -V uqgqklxi &zr<gt< sllibqvg<g? nux<xqe< uqgqklx w{< hgkqgt< sllibqvg<g Ou{<Ml< lx<xl< nux<xqe< uqgqklxi w{< hgkqgt< sllibqvg<gou{<ml</ wmk<kg<gim<m 8: y x weqz<?x + y Jg<g{<Mhqc/ kqiu: ( )( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

33 y x x 4, y 0 x + y wmk<kg<gim<m 9: x + weqz<? x x + Jg<g{<Mhqcg<gUl</ kqiu: x + ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) + + x ( ) ( ) ( ) ( ) ( ) ( ) x x wmk<kg<gim<m 0: a + weqz<?a (a 6) e<lkqh<hqjeg<g{<mhqc/ kqiu: a ( ) ( ) ( ) ( ) ( ) ( ) a ( ) a (a ( ) ( ) ) ( )( ) [ ] + ( ) ( ). 9 8 wmk<kg<gim<m :.44 weqz<? + e<okiviblkqh<hqjeg<g{<mhqcg<gul</ kqiu: ( ) ( ) + ( ) ( ) ( )

34 hbqx<sq.. hqe<uvueuqgqklxi&zr<gti-z<jzbiwe<hjkgiv{r<gtme<uqjmbtq/ (i) 6 (ii) 4 (iii) 5 79 (iv) 4 4 (v) 50. hqe<uvueyu<ouie<jxbl<svg<gucuqz<wpkul<; (i) 5 + (ii) 0 40 (iii) ( 5 ) ( 4 + ) (iv) ( 0 ) ( ) (v) 5 5 (vi) 6 (vii) (viii) 5. WXuiqjsbqz<njlg<gUl<; (ix) 5 5 (i), 5, 6 (ii) 5, 7, 4 9 (iii), 5, 4 4. hqe<uvue yu<ouie<xqe<hgkqjbuqgqklxw{<{iglix<xul<: (i) (ii) (iii) (iv) (v) (vi) hqe<uvueyu<ouie<xqzl<x lx<xl<y -ux<jxg<gi{<g/ (i) x + y (ii) x + y (iii) x + y 5 (iv) x + y a + weqz<?a (a 4) e<lkqh<jhg<g{<mhqcg<gul</ + 7. a weqz<?a + e<lkqh<jhg<g{<mhqcg<gul</ a weqz<? e<okiviblkqh<jhg<g{<mhqcg<gul</ 9..44,.7 weqz<? e<okiviblkqh<jhg<g{<mhqcg<gul</ + 0

35 uqjmgt< hbqx<sq.. (i) 0.85 (ii).8 (iii) 0.5 (iv) (i) (ii) (iii) (iv) (i) kux (ii) siq (iii) siq (iv) siq (v) siq (vi) kux (vii) kux hbqx<sq. (v) 9. (i) LVm<om{< (ii) LVm<om{<nz<z (iii) LVm<om{< (iv) LVm<om{< (v) LVm<om{<nz<z. (i) 9 (ii) 5 (iii) (iv) 4 5 (v) 6 5. (i) (vi) (vii) 5 7 (viii) 65 6, 5, (ii) 4 9, 7, 5 (iii) (ix) 6 5, 4, 5. 4 (ii) ( ) (iii) ( + 5) 4. (i) 6 (iv) ( 5 ) (v) (i) x 7, y 4 (ii) x, y 59 (iii) x 7, y 0 (iv) x 0, y 9 (vi) ( 6 0) 6. a (a 4)

36 . ntjugt< fl<ne<ximuip<uqz<hz<ouxfqjzjlgtqz<fil<ntjugt<osb<gqe<oxil</ wmk<kg<gim<mig? fil< K{q jkh<hkx<gig fqtk<jkbl<? out<jtbch<hkx<gig Sux<xqe< hvh<htuqjebl<? OuzqbqMukx<gigfqzk<kqe<Sx<xtuqjeBl<? fqvh<hukx<gighik<kqvk<kqe< ogit<ttuqjebl< ntg<gqe<oxil</ ntjugjt nch<hjmbigg< ogi{<m fl< Okjug<Ogx<h OlZl< g{g<gqmgt< osb<gqe<oxil</ kt lx<xl< ge dvur<gtqe< fqtr<gt<? Ogi{r<gt<? hvh<htugt< Sx<xtUgt< lx<xl< ge ntugt< hx<xqb g{qkh< hqiquqje ntuqbz< we<xjpg<gqe<oxil</ Lf<jkb ugh<hgtqz< fil<? Lg<Ogi{r<gt<? fix<gvr<gt< lx<xl< um<mr<gt< Ohie<x sqz kt ucu dvur<gjth< hx<xq gx<xxqf<kt<otil< )wz<zi ucu dvur<gtl< ktk<kqz< ujvbh<hm<mjubigg< ogit<ouil<*/ -f<k nk<kqbibk<kqz<? -v{<m nz<zk nkx<g Olx<hm<m Lg<Ogi{r<gt<? fix<gvr<gt< nz<zk um<mr<gt< -ux<jx ye<xe<olz< ye<xig fqxk<kq gqjmg<gh<ohxl< sqz kt %m<m dvur<gjth< hx<xq gx<ohil</ fil< gvkl< njek<k dvur<gtl< ktk<kqz<njlf<kjuwe<hkiz<?ktdvuk<jkdvul<we<xnjph<ohil<.. hvh<hlx<xl<sx<xtu fil<?ktucuqbz<dvur<gtqe<sx<xtugt<lx<xl<hvh<hgtqe<uib<h<himgjt lqt<hiijubqmouil</.. osu<ugl;: hvh<h l bskvnzggt< Sx<xtU (l + b) nzggt< d l + b nzggt< hml<... -j{gvl;: hvh<h b h skvnzggt< Sx<xtU (a + b) nzggt< hml<... ogimg<gh<hm<mnch<hg<gl<lx<xl<dbvk<jkbjmblg<ogi{l<; hvh<h b h skvnzggt<. hml<.

37 ..4 osr<ogi{lg<ogi{l<; hvh<h b h skvnzggt< hml<.4 Sx<xtU b + h + dnzggt< d b + h nzggt<..5 slhg<glg<ogi{l<; dbvl< h anzggt< hvh<h a skvnzggt< 4 Sx<xtU anzggt< hml< Vslhg<gLg<Ogi{l<: hvh<h h a Sx<xtU ( a a h ) h skvnzggt< + nzggt< hml<.6..7 nslhg<glg<ogi{l;: hvh<h s( s a)( s b)( s c) s/n a + b + c -r<g s nzggt< hml<.7 Sx<xtU a + b + c nzggt<..8 siqugl<; hml<.8 hvh<h (a + b) h skvnzggt<..9 fix<gvl<; hvh<h d (h + h ). skvnzggt< hml<.9..0sib<skvl<; hvh<h d d s/nzggt< hml<.0 Sx<xtU d d + 4a nzggt<

38 ..um<ml<: um<mk<kqe<hvh<h πr skvnzggt< um<mk<kqe<sx<xtu πrnzggt< njvum<mk<kqe<hvh<h πr skvnzggt< njvum<muqz<zqe<fqtl< πrnzggt< giz<um<mk<kqe<hvh<h 4 πr skvnzggt< hml<. giz<um<muqz<zqe<fqtl< πrnzggt< Gxqh<H: A lx<xl< B Ht<tqgjt -j{g<gl< Ofi<g<Ogim<Mk< K{<cje AB nz<zkab weg<gxqg<gqe<oxil</olzl< ABwe<Ox AB e<fqtk<jkbl<gxqg<gqe<oxil</ wmk<kg<gim<m : yv osu<ug ucu SuI? nch<hg<g fqtl< 6lQ weul< dbvl< lq weul< ogi{<mt<tk/ ns<sux<xqx<g u{<{l< H,s skv lqm<mvg<g '/7 oszuigoleqz<? olik<ksux<xqx<gl<u{<{l<h,sngl<oszjug<g{<mhqc/ kqiu: b 5? h 0NGl</ osu<ugh<hvh<h b h s/lq. s/lqu{<{l<h,soszu '/ 6 50 s/lqu{<{l<h,soszu 6 50 ' hml<. wmk<kg<gim<m : yv osu<ugk< kgm<ce< ntugt< 5lQ 4lQ/nk<kgm<cje5os/lQ hg<g fqtl< ogi{<m skvk< kgmgtig oum<m Ou{<Ml</ skvk< kgmgtqe< w{<{qg<jgjbg<g{<mhqc/ kqiu: osu<ugk<kgm<ce<hvh<h ?0000os/lQ. yvskvk<kgm<ce<hvh<h os/lq.,0000 skvk<kgmgtqe<w{<{qg<jg hml<. wmk<kg<gim<m ; 40os/lQ hvh<hjmb -j{gvk<kqe< dbvl< 5 os/lq weqz<? nke< nch<hg<gl<g{<mhqc/ kqiu:hvh<h b h. 40 b b. 5 nch<hg<gl< 8 os/lq. hml<.4 4

39 wmk<kg<gim<m 4: os/lq? 60 os/lq lx<xl< 7 os/lq hg<g fqtr<gt< ogi{<m yv Lg<Ogi{k<kqe<hvh<jhBl<? Sx<xtjuBl<g{<Mhqc/ kqiu:hvh<h s( s a)( s b)( s c). -r<g s a + b + c s 66? s a 66 55? s b ? s c hvh<h s/os/lQ. Sx<xtU a + b + c os/lq. hml<.5 wmk<kg<gim<m 5: hml<.6 z< ogimg<gh<hm<mt<t fix<gvl< ABCD e< hvh<hqjeg< g{<mhqc/ kqiu:hvh<h d ( h + h ) 50 (0 + 0) lq / hml<.6 wmk<kg<gim<m 6:hml</8z<ogiMg<gh<hm<Mt<tsiqugl<ABCDe<hvh<Hg{<Mhqc/ kqiu: hvh<h ( a + b) h ( + 5) 4 4 skvnzggt</ hml<.7 wmk<kg<gim<m 7: fqzk<jk slh<hmk<k skv lqm<mvg<g '/ oszuigl</ siqug ucu fqzk<kqe< -j{ hg<gr<gtqe< fqtr<gt< 8lQ lx<xl< lq/ lx<x -V hg<gr<gt< yu<ouie<xl< 6lQ fqtljmbk weqz<? olik<k fqzk<jk slh<hmk<k NGl< oszjug< g{<mhqc/ kqiu: ABCD ogimg<gh<hm<m siqugl</ -r<g AB 8lQ? CD lq? AD BC 5 lq/ DA g<g -j{bigce J ujvg)hml<.8 Jh< hii<g<gul<*/ EBC YI-Vslhg<g Lg<Ogi{l</nke<dbvl<h siqugl<abcdbqe<hvh<h 5 6 4lQ/ (a + b) h (8 + ) s/lq/ s/lqslh<hmk<kngl<oszu '/. olik<kfqzk<jkslh<hmk<kngl<oszu 60 '. 70. hml<.8 5

40 wmk<kg<gim<m8: yvsib<skvk<kqe<sx<xtuos/lq/nke<yv&jzuqm<mk<kqe<fqtl< 9os/lQ/nke<lx<oxiV&jzuqm<mk<kqe<fQtk<jkBl<hvh<jhBl<g{<Mhqc/ kqiu: d? d we<he&jzuqm<mr<gt<weg<ogit<g/ Sx<xtU d + d /Neiz< Sx<xtU os/lq weg<ogimg<gh<hm<mt<tk/ d + d 0 os/lqnz<zk d d -r<gyv&jzuqm<mk<kqe<fqtl<8os/lq/ d 8 we<g/ 64 + d 00 nz<zkd 6. d 6os/lQ/ hml<.9 sib<skvk<kqe<hvh<h d d os/lq. wmk<kg<gim<m 9: 64 os/lq fqtlt<t gl<hq -V sl higr<gtigh< hqiqg<gh<hmgqxk/ yv higk<jk um<mligul< lx<oxie<jx slhg<g Lg<Ogi{ligUl< ujtk<k osb<bh<hmgqxk/njudt<tmg<gl<hvh<hgtqe<uqgqkk<kqjeg<g{<mhqc (π 7 we<x hbe<hmk<k). 64 kqiu: um<mk<kqe<sx<xtu os/lq/ Neiz<um<mk<kqe<Sx<xtU πr. 7 r nz<zk r os/lq/ um<mk<kqe<hvh<h πr 7 86 os/lq. hml<.0 slhg<glg<ogi{k<kqe<sx<xtu a Neiz<Sx<xtU os/lq/ a nz<zka 44os/lQ/ slhg<glg<ogi{k<kqe<hvh<h a os/lq um<ml< lx<xl< slhg<g Lg<Ogi{k<kqe< hvh<hgtqe< uqgqkl< 86 : 484 : hbqx<sq. hml<.. gqp<g<g{<mlg<ogi{r<gtqe<hvh<hgjtg<gi{<g/ (i) nch<hg<gl< 8os/lQ?dbvl< os/lq/ (ii) Lg<Ogi{k<kqe<&e<Xhg<gr<gtqe<fQtr<gt<os/lQ? 48os/lQ?6os/lQ/ (iii) slhg<glg<ogi{k<kqe<hg<gfqtl<9os/lq/ 6

41 . ABCD we<xfix<gvk<kqe<&jzuqm<ml< AC e<fqtl; 44 os/lqlx<xl<b? DzqVf<K ACg<G ujvbh<hml< Gk<Kbvr<gt< LjxOb os/lqlx<xl< os/lq weqz<? nf<fix<gvk<kqe<hvh<hg{<mhqc.. yv fix<gvk<kqe< yv &jzuqm<mk<kqe< fqtl< 6 os/lq lx<xl< nl<&jzuqm<mk<kqx<g ujvbh<hml< osr<gk<kg<ogimgtqe< fqtr<gt< 4 os/lq lx<xl<6os/lqweqz<?nf<fix<gvk<kqe<hvh<hg{<mhqc/ 4. 60lQ Sx<xtUt<t yv sib<skvk<kqe< yv &jzuqm<ml< 66lQ/ lx<oxiv &jzuqm<mk<kqe<fqtl<gi{<g/olzl<ns<sib<skvk<kqe<hvh<hgi{<g/ 5. yv-j{gvk<kqe<hvh<h7os/lq lx<xl<nke<dbvl<9os/lqweqz<?nke< nch<hg<gk<jkg<g{<mhqc/ 6. 8 os/lq lx<xl< 8 os/lq -j{ hg<gr<gtigg< ogi{<m siqugk<kqe< hvh<h 4 os/lq. -j{hg<gr<gtg<gqjmh<hm<mk~vl<g{<mhqc/ 7. yvsiqugk<kqe<-j{hg<gr<gtg<g-jmh<hm<mk~vl<5os/lqlx<xl< yv -j{h<hg<g fqtl< 8 os/lq/ns<siqugk<kqe< hvh<h 45 os/lq weqz<? lx<oxiv -j{hg<gk<kqe<fqtl<gi{<g/ 8. os/lq 4 os/lq ntut<tyvosu<ugfqzk<kqe<hvh<hqx<gs<sllie hvh<hjmbyvum<mfqzk<kqe<sx<xtugi{<g/. %m<m dvur<gt< yv fix<gvl< ABCD Jg< gvkg (hml<. Jh< hii<g<gul<*/ BD jb -j{g<gul</ kx<ohipk fix<gvliek ABD lx<xl< BCD we -v{<m Lg<Ogi{r<gtigh<hqiqg<gh<hMgqe<xK/-v{<MLg<Ogi{r<gTg<Gl< BD hg<gl< ohikuiek/hqe<oeig<gqh< hii<g<gl<ohik? Lg<Ogi{r<gt< ABD lx<xl< BCDJ BD Jh< ohikh<hg<gligg< ogi{<m ye<xe< Olz< ye<xig jug<g fix<gvl< ABCD ohxh<hmgqe<xk/weou?fix<gvl< ABCD NeK-V Lg<Ogi{r<gtqe<Osi<g<jgbiGl< hml<. hml<. nz<zk ABCD yv%m<mdvuligl</-u<uiox?siqugl<yv%m<mdvuligl<<nk yv osu<ugk<kqe< -V hg<gr<gtqz< -V osr<ogi{ Lg<Ogi{r<gt< Osi<k<K dvuig<gh<hm<mk)hml<. Jh<hiIg<gUl<*/fil<nxqf<Kogi{<mK we<eoueqz<?-v dvur<gjt ye<xe< hg<gk<kqz< ye<jx juk<k yv %m<m dvul< dvuig<g Ou{<Moleqz< Lkz< dvuk<kqe< WkiuokiV hg<gl< -v{<miuk dvuk<kqe< 7

42 WkiuokiVhg<gk<kqx<Gh<ohiVf<Kukig-Vg<gOu{<Ml</sqz%m<MdVur<gt<? hml<.4lkz<hml<.5 ujv ogimg<gh<hm<mt<te/ hml<.4 hml<.5 hml<.6 hml<.9 hml<.7 hml<.8 hml<.0 hml<. hml<. hml<. 8

43 hml<.4 hml<.5 ye<xqe< Olz< ye<xig -Vg<Gl< hg<gr<gjt Ht<tqg< OgiMgtiz< gim<cbqvg<gqe<oxil</ hml<.4 zqvf<k hml<.5 ujvbt<t %m<m dvur<gjt wtqkig nxqbzil</ wmk<kg<gim<mig? hml<.5 NeKyVLg<Ogi{l<? Yi<njvum<ml<Ngqbux<xqe<%m<M dvuligl</nkyvhl<hvk<kqe<fqjzg<gk<kgxg<goum<mk<okix<xligk<okiqgqxk/ hml<.7 NeKyVosu<ugl<lx<Xl<Yi<njvum<ml<Ngqbux<xqe<%m<MdVuliGl</ -u<uvul<? Yi< njvum<mk<kqje Olz< Wx<Gl< osu<ug se<ez< Ohiz< Okix<xltqg<gqe<xK/ hml<.9 NeK yv osu<ugl< lx<xl< -V sllie giz<um<mr<gjtg< ogi{<m %m<m dvuligl<. hml<. NeK yv osu<ugl<? yv Lg<Ogi{l<? yv siqugl< Ngqbux<jxg< ogi{<m %m<m dvuligl<; -K YI WUgj{bqjeh< Ohiz< okiqgqxk/ %m<m dvur<gtiue? Lg<Ogi{r<gt<? fix<gvr<gt<? um<mr<gt< Ngqbux<xqe< %m<mig -Vh<hkiz<? nux<xqe< Sx<xtUgt<? hvh<hgt< Ngqbux<jx Lf<jkbuGh<hqz<gx<x$k<kqvr<gjtg<ogi{<Mg{g<gqmzil</ %m<mk<ktdvur<gtiesiqugr<gt<lx<<xl<hz<ogi{r<gjth<hx<xq-h<ohik fil<hii<g<gzil</.. siqugl< siqugl< we<hk fie<g hg<gr<gjtbjmb yv kt dvul</ -kqz< -V hg<gr<gt<-j{bieju)hml<.6 Jh<hii<g<gUl<*/ ABCD we<xsiqugk<kqz< AB Bl< DC Bl<-j{bieju/ AB a? CD bwe<g/ -j{ogimgtg<g -jmh<hm<m K~vl< h we<g/ fil< siqugl< ABCD J Lg<Ogi{r<gt< ABC lx<xl< ACD gtqe< %m<m dvuligg< ogit<tzil</ Lg<Ogi{l< ABC z< nch<hg<gl< AB?Gk<Kbvl< h. NgOu? glk;.6 ABC bqe<hvh<h a h ACD bqe<hvh<h b h siqugk<kqe<hvh<h a h + b h (a + b)h skvnzggt</ 9

44 .. hz<ogi{l< hz<ogi{l< we<hk n Ofi<g<Ogim<Mk< K{<Mgtiz< ucujlg<gh<hm<m kt dvul< NGl</hzLg<Ogi{r<gtqe<%m<MdVuOlhz<Ogi{l<we<hjkfil<nxqgqOxil</ hz<ogi{k<kqe<hg<gr<gt<slligul<? Ogi{r<gt< slligul< -Vh<hqe<? nh<hz<ogi{l< Yi< ypr<g hz<ogi{l< weh<hml</ NX hg<gr<gjtg< ogi{<m ypr<g hz<ogi{l< Yi< ypr<g nxogi{l< weh<hml</ Yi< ypr<g nxogi{k<kqz< njek<k hg<gr<gtl< slligul<? dm<ogi{r<gt< yu<ouie<xl< 0 g<gs< slligul< -Vg<Gl< (hml<.7 Jh< hii<g<gul<). -f<k Gxqh<hqm<m ypr<g hz<ogi{l< ncg<gc hbe<hmk<kh<hmukiz<? nke< Sx<xtU lx<xl<hvh<htuhx<xqg<gi{<ohil</ ABCDEF< glk;.7 we<hkyi<ypr<gnxogi{l<we<g/hg<gr<gt< AB? BC? CD? DE? EF lx<xl< FA sllie ntujmbju/yu<ouivhg<gk<kqe<fqtll<a nzggt<we<g/ypr<gnxogi{k<kqe< Sx<xtuieK a + a + a + a + a + a 6a nzggt</ fil< -h<ohik ypr<g nxogi{k<kqe<hvh<hgi[l<$k<kqvk<kqjeuvuqh<ohil</&jzuqm<mr<gt< AD? BE? CF sf<kqg<gl<ht<tqbqje? O we<g/lg<ogi{r<gt< OAB? OBC? OCD? ODE? OEF? OFA slhg<g Lg<Ogi{r<gt< NGl</ weou? yu<ouiv Lg<Ogi{k<kqe< hvh<h a weou? ypr<gnxogi{k<kqe<hvh<h 6 4 wmk<kg<gim<m0:hml<.8e<hvh<hqjeg<g{<mhqc/ kqiu;hml<abcde NeKhg<gl< BD bqjeh< ohikfqjzbigg<ogi{<m ABDE lx<xl< BCD e<%m<migl</ ABDE we<xsiqugk<kqz< -j{hg<gr<gtie AE? BD gtqe< fqtr<gt<ljxob 0 os/lq?6 os/lqngl</ -j{hg<gr<gtg<g-jmh<hm<mk~vl<9 os/lq/ NgOu? siqugl; ABDEe<hvh<H ( a + b) h (0 + 6) 9 7os/lP. a skv nzggt</ hml<.8 a NGl</ 4 BCD yvlg<ogi{l</-ke<nch<hgkq BD bqe<fqtl<6os/lq? Gk<Kbvl< 8 os.lq. NgOu-ke<hvh<H b h nrkP. 40

45 %m<mdvul< ABCDEe<hvh<H ABDE e<hvh<h + BCD e<hvh<h os/lq. wmk<kg<gim<m : yv fqzl< nth<hui yv fqzk<kqe< ntugjth< hqe<uvlix Gxqk<Kt<tii/fqzk<kqe<hvh<hqjeg<g{<Mhqc/ hml<.9 kqiu: A bqzqvf<k D ujv dt<t fqzlth<huiqe< Gxqgt< P? Q? R? S we<g/ hqe<h AP 5 lq? AQ 7 lq? AR lq? AS 5 lq? AD 7 lq? BP 0 lq? FQ 8 lq? CR 8 lq? ES 9 lq. ogimg<gh<hm<m fqzliek siqugr<gt< PRCB? FESQ lx<xl< Lg<Ogi{r<gt< AQF? APB? DSE? CRD -ux<xqe<%m<migl< )hml<.40 Jh<hiIg<gUl<). siqugl< PRCB e< hvh<h : BP? CR -j{ hg<gr<gt</gk<kbvl< PR. fil<nxquk? BP 0 lq? CR 8 lq?lx<xl< PR AR AP 5 7lQ. NgOu? PRCB e<hvh<h (BP + CR) PR (0 + 8) 7 6 lq hml<.40 siqugl< QFES e< hvh<h; ES? FQ -j{ hg<gr<gt</ Gk<Kbvl< QS. fil<nxquk ES 9 lq? FQ 8 lq? QS AS AQ 5 7 8lQ/NgOu? QFES e<hvh<h (ES + FQ) QS (9 + 8) lq Lg<Ogi{l<AQFe<hvh<H AQ FQ lq Lg<Ogi{l< DSE e<hvh<h DS ES (AD AS) 9 (7 5) lq. Lg<Ogi{l< CRD e<hvh<h RD CR (AD AR) 8 4 (7 ) lq. Lg<Ogi{l<APB e<hvh<h AP BP 5 0 5lQ fqzk<kqe<hvh<h lq. 4

46 wmk<kg<gim<m : hml<.4 z<gi{<hqg<gh<hm<mucuk<kqe<hvh<hg{<mhqcg<gul<(π weh<hbe<hmk<kul<). 7 hml<. 4 kqiu;osu<ugl< ABDE? njvum<ml< AFE lx<xl<slhg<glg<ogi{l< BCD Ngqbux<xqe< -j{h<ohogimg<gh<hm<mljewefil<nxqgqoxil</ osu<ugl< ABDE e<hvh<h os/lq. njvum<ml< AFE e<hvh<h π r os/lq slhg<glg<ogi{l<bcde<hvh<h 7 a os/lq. 4 ljebqe<hvh<h os.lq wmk<kg<gim<m : hml<.4 z<gi{<hqg<gh<hm<mucuk<kqe<hvh<hg{<mhqcg<gul< (π weh<hbe<hmk<kul<*/ 7 glk;.4 kqiu; osu<ugl< ABCD? njvum<ml< CDE lx<xl< giz< um<mh< hgkqgt< AFD? BCG e< -j{h<oh ogimg<gh<hm<mljewefil<nxqgqoxil</ osu<ugl<abcde<hvh<h 4 48os/lQ. njvum<ml< CDEe<hvh<H π os/lq giz<um<mh<hgkq AFD e<hvh<h π giz<um<mh<hgkq BCG e<hvh<h 7 4 os.lq. 4 7 ljebqe<hvh<h os.lq os.lq

47 wmk<kg<gim<m 4:hml<.4 Nz<$ph<hm<Mt<thvh<Hg{<Mhqcg<gUl</ hml<.4 kqiu; -h<hml<? osu<ugl< CDFG? njvum<ml< DEF lx<xl< siqugl< ABCG Ngqbux<xqe< Osi<g<jgbiGl</ osu<ugl< CDFG e<hvh<h 8 64 os.lq. siqugl< ABCGe<hvh<H (6 + 8) os.lq. njvum<ml< DEF e<hvh<h os.lq 7 ogimg<gh<hm<mnjlh<hqe<hvh<h os.lq. sqz slbr<gtqz< fil< ohiqb kt dvur<gtqzqvf<k oum<c fqg<gqb lqkq dvur<gjtg< gvk Ou{<cBt<tK/ nux<xqe< hvh<hgjtg< gi{ Olx<g{<muiX hvh<hgjt%m<mukx<ghkqzigkvh<hm<mdvuk<kqe<hvh<hqzqvf<k?oum<cwmg<gh<hm<m dvur<gtqe<hvh<hgjtg<gpqk<klqkqdt<tdvur<gtqe<hvh<jhg<gi{zil</ um<mucuujtbk<kqe<hvh<h yv um<m ujtbl< we<hk ohik jlbk<jkbjmb -V um<mr<gtg<g -jmh<hm<mhgkqbigl<)hml<.44 Jh<hii<g<gUl<*/um<mujtbk<kqe<hvh<hieKoutq um<mh<hvh<hqzqvf<kdt<um<mk<kqe<hvh<jhg<gpqk<kkx<gs<slligl</nkiuk? ujtbhvh<h π R π r π (R r ). hml<.44 njvum<mujtbk<kqe<hvh<h π (R r ) skvnzggt</ 4

48 wmk<kg<gim<m5: hml<.45 z<fqpzqmh<hm<mhgkqbqe<hvh<hg{<mhqcg<gul</-f<khgkq giz<um<mr<gtiz<$ph<hm<mt<tk(π weg<ogit<tul<). 7 hml<.45 kqiu; ogimg<gh<hm<m fqpzqmh<hm<mh< hgkq? 8 os/lq hg<glt<t skvk<kqz< fie<g &jzgtqzl<4 os.lq NvLt<tgiz<um<mh<hGkqgjtfQg<gqbkx<Gs<slliGl</ skvk<kqe<hvh<h os.lq. yvgiz<um<mk<kqe<hvh<h π os.lq Okjubiehvh<H 784 4(54) sKvos/lQ/ wmk<kg<gim<m 6: 7lQ ngzlt<t YMhijk hml<.46 z< gim<cbuix njlg<gh<hm<mt<tk/ -ke< dt<um<ms< Sx<xtU 70lQ lx<xl< yu<ouiv OfIg<OgiMh< hgkqbqe< fqtl< 40lQ. ujtuh< hgkqgt< njvum<m ucuk<kqz< dt<te/ YMhijkbqe< hvh<jhg<g{<mhqc (π weh<hbe<hmk<kul<). 7 glk;.46 kqiu;dt<njvum<mk<kqe<nvl<r we<g/weoudt<sx<xtu 40 + (π r) nz<zk 80 + πr.neiz<-ke<lkqh<h 70lQweogiMg<gh<hm<Mt<tK πr 70 nz<zkπr 440 nz<zkr lq. π weoudt<njvum<mk<kqe<nvl< r 70lQ. outqnjvum<mk<kqe<nvl< R lQ. -h<ohipk YM hijkbqe< hvh<hiek njvum<m ujtbr<gtqe< hvh<h lx<xl< osu<ug ucuhijkbqe<hvh<hgtqe<%mkzg<gs<slligl</neiz<?yvnjvum<mhijkbqe< hvh<h π (R r ) (77 70 ) skv lq/

49 yvosu<ugucuhijkbqe<hvh<h skv lq. hijkbqe<hvh<h skv lq. wmk<kg<gim<m 7: 4.lQ/hg<gntUt<tyVsKvucugm<cmk<kqe<yVoutqh<Hx &jzbqz< yv hs gm<mh<hm<mt<tk/ gbqx<xqe< fqtl< 4.9 lq weqz<? hs Olbg<%cb hgkqbqe<hvh<hg{<mhqc(π weh<hbe<hmk<kul<). 7 kqiu;skvk<kqe<awe<xljebqz<hsgm<mh<hm<mdt<tk (hml<.47 Jh<hii<g<gUl<*/ gbqx<xqe< fqtl< 4.9lQ lx<xl< Sux<xqe< fqtl< 4.lQ/ hsuiek Sux<jxg< gmg<g -bzikkiz<?nke<gbqxskvk<kqe<b lx<xl< ELjegjtk<ki{<c Dlx<Xl< G ujv fqt<gqxk/ weou? hsuiek 4.9lQ NvLt<t Lg<giz< um<mh<hgkq lx<xl< lQNvLt<t-Vgiz<um<mh<hGkqgt<Ngqbux<jxOlbLcBl</ hsolbg<%cbhvh<h π π lQ. hml<.47 wmk<kg<gim<m 8: hml<.48 z< fqpzqmh<hm<m hgkqbqe< hvh<hqjeg< g{<mhqc (π weg<ogit<tul<*/ 7 hml<.48 kqiu;fqpzqmh<hm<mhgkqbqe<hvh<h (4 os.lq NvLt<tnjvum<mk<kqe<hvh<H) (7 os.lq. NvLt<tnjvum<mk<kqe<hvh<H* π (4) π (7) os.lq. 7 45

50 hbqx<sq.. fqzlth<huiqe< Ofim<Mh< Hk<kgk<kqZt<t hqe<uvl< Gxqh<HgtqzqVf<K dkuqh<hml< ujvf<knux<xqe<hvh<hgjtg<g{<mhqc; (i) (ii) (iii) hml<.49 hml<.50 hml<.5. yv uqjtbim<m jlkiel< hml<.5 z< gim<cbuix -V OfIOgim<Mk< K{<Mgt< lx<xl< -V njvum<m uqz<gtiz< dvuig<gh<hmou{<ml</ yu<ouiv njv um<mk<kqe< Nvl< lq. yu<ouiv glk;.5 Ofi<g<Ogim<Mk<K{<ce<fQtl< 85lQ. uqjtbim<mk<kqmzqe<hvh<jhg{<mhqc (π weg<ogit<tul</). 7. yvsiqugk<kqe<-v-j{hg<gr<gtqe<fqtr<gt< os.lq lx<xl< os.lq. nke< lx<x-vhg<gr<gt<yu<ouie<xl<0 os.lq fqtl<weqz<?nke<hvh<hgi{<g/ 4. YIyPr<GnXr<Ogi{k<kqe<hvh<H50 os.lq weqz<?nke<hg<gk<jkg< g{<mhqcg<gul</ 5. hml<.5 z<fqpzqm<mh<hgkqbqe<hvh<hqjeg<g{<mhqc/ hml<.5 46

51 6. gqp<g<gi[l<hmr<gtqe<fqpzqm<mh<hgkqgtqe<hvh<hgjtg<g{<mhqcg<gul</ (i) (ii) hml<.54 (iii) (iv) hml<.55 hml<.56 hml< yvum<mk<kqe<uqm<ml< 54 os.lq.> nke<yvuqm<ml< AB OfIOgim<Mk<K{<M AB e< lqk C we<x Ht<tq? BC 0 os.lq we<xuix dt<tk/ AC Juqm<mligg< ogi{<m yv um<ml< ujvbh<hmgqxk/ nu<um<mr<gtg<gqjmh<hm<m hvh<jhg< g{<mhqcg<gul</ π weg<ogit<tul</ 7 8. hml<.58 z<fqpzqm<mhgkqbqe<hvh<hlx<xl<sx<xtjug<g{<mhqc/ hml< lq hg<glt<t skv ucu ubzqe< fie<g &jzgtqzl< fie<g hsg<gt< gm<mh<hm<mt<te/ yu<ouiv hsul< lx<x -V hsg<gjt sf<kqg<gqe<x ntuqx<gg< gm<mh<hm<mt<tk/ -h<hsg<gt<? nux<xqe< wz<jzg<gm<hm<m fqzh<hgkqbqe< Hz<jz Olb<gqe<xe/hSg<gt<Olbikfqzh<hGkqbqe<hvh<hqjeg<g{<Mhqcg<gUl</π weg<ogit<tul</ 0. ABCD? 6lQ 4lQ ntut<tyvosu<ugucufqzligl</fie<g&jzgtqzl< fie<g Gkqjvgt< yu<ouie<xl< 0lQ. fqtg< gbqx<xqeiz< gm<mh<hm<mt<te/ yu<ouiv GkqjvBl< nkx<g wm<cb ujvbqz< Olb<gqxK/ Gkqjvgt< Olbik fqzh<hgkqbqe<hvh<hqjeg<g{<mhqc. π weg<ogit<tul</

52 uqjmgt; hbqx<sq.. (i) 7 os.lq (ii) 480 os.lq (iii) 7.7 os.lq. 704 os.lq. 60os.lQ 4. lq? 696 lq 5. 4 os.lq 6. 4 os.lq 7. 0 os.lq 8. 6.os.lQ hbqx<sq.. (i) 7?00 s/lq (ii) 5?00 s/lq (iii) 7?55 s/lq. 4?956s/lQ. 47. os.lq 4. 0 os.lq lq 6. (i) 6.9s/os.lQ (ii) 5 lq (iii) 7.7 os.lq (iv) 40.8 os.lq os.lq os.lq? 94 os.lq 9. 4 lq lQ 48

53 . sqzlg<gqbgxqbqm. nxquqbz<gxqbqm uieqbz<? -bx<hqbz<? Oukqbqbz<? dbqiqbz< lx<xl< ohixqbqbz< Ohie<x himr<gtqz< fil< lqgh<ohiqb w{<gjtbl<? lqgs< sqxqb w{<gjtbl< g{<cvg<gqe<oxil</ wmk<kg<gim<mig? (i) H,lqbqzqVf<Kgkqvue<dt<tokijzU9,900,000 jlz<gt</ (ii) yvsvisiqbieosz<ziek00, 000,000,000,000 &zg<%xgjtogi{<cvg<gqxk/ (iii) nch<hjmk<kgt<ye<xqe<uip<fitiek uqficgt</ (iv) yvlqe<e[uqe<uqm<ml<slivig ose<clQm<mviGl</ -jkh<ohie<x w{<gjt nh<hc wpkkzl<? jgbitkzl< nu<utu wtqkz<z/ -Vh<hqEl<? nux<jx nmg<gg< Gxq uqkqgjth< hbe<hmk<kq wpkq jgbit LcBl</ nmg<gg<gxquqkqgjtfqjeu%i<ouil</-bz<w{< m, olb<ob{< a -ux<xqx<g a m a a. m giv{qgt</wmk<kg<gim<mig?a 5 a a a a a. -r<ga we<hk ncliel< we<xl<? m NeK hc nz<zk nmg<g we<xl< njpg<gh<hmgqe<xe. a m we<x GxqbQm<cjea e<nmg<g m nz<zk m hcdbi<k<kqb aweh<hcg<gqe<oxil</ nmg<gg<gxquqkqgt<hqe<uvlixkvh<hmgqe<xe: (i) a m a n a m+ n (ohvg<gz<uqkq) m a (ii) a m n, a 0, m > n (ugk<kz<uqkq) n a (iii) (a m ) n a mn (nmg<guqkq) (iv) a m b m (a b) m (Osi<g<jguqkq) a 0 -Vg<Gl< OhiK J a m weg< Gxqh<hqMgqe<Oxil</ a 0 we m a ujvbxg<gqe<oxil</ nmg<gg<gxq uqkqgjth< hbe<hmk<kq? wf<kouiv lqjg olb<ob{<{qjebl< a 0 n we<xnjlh<hqz<wpklcbl<a-r<g a < 0, n yvlp NGl</wMk<Kg<gim<mig? (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

54 -eq?w{<we<xiz<lqjgw{<j{lm<molgxqg<gl</yvw{<{qjea 0 n wenxquqbz<gxqbqm<cz<wpkqeiz<? a e<ksluqiquqz<uvl<lph<hgkqbieknek zqvf<k 9 ujvbqzie w{<{ig -Vg<Gl</ OlZl< n yv LPuiGl</ OlZl< kvh<hm<m Yi<w{<{qjenxquqbz<GxqbQm<cz<lix<xqwPKl<OhiK?fil<kvh<hm<mw{<{qz<dt<t kslh<ht<tqbqje-mkhg<guig<gqz<r -mr<gt<fgi<k<kqeiz<njkmosb<b0 r Nz< ohvg<ggqoxil</ nu<uiox? kslh< Ht<tqjb uzkhg<guig<gqz< r -mr<gt< fgik<kqeiz< njkmosb<b0 r Nz<ohVg<GgqOxil</ wmk<kg<gim<mig? lqgh< ohiqb nz<zk lqgs< sqxqb w{<gjtnxquqbz<gxqbqm<cz<njlg<g?nux<jx nf<knjlh<hqz<ohvg<gouinz<zkugg<gouiwtqjlbig-vg<gl</ wmk<kg<gim<m : hqe<uvl<w{<gjtnxquqbz<gxqbqm<cz<wpkg; (i) 749 (ii) 0500 (iii) (iv) (v) (vi) kqi<u: wmk<kg<gim<m : hqe<uvl<w{<gjtkslucuqz<wpkg; (i) (ii) (iii) (iv) (v) (vi)

55 kqi<u: (i) (ii) (iii) (iv) (v) (vi) wmk<kg<gim<m : g{g<gqmjz fqgp<k<kq hqe<uvueux<xqe< uqjmbqje nxquqbz< GxqbQm<cz<wPKg; (i) (000000) (ii) (4000) 5 (00) (iii) ( ) 4 (iv) (000) (0.000) 4 kqi<u : (i) (000000) ( ) (.0) (0 6 ) (ii) , (4000) 5 (00) (4.0 0 ) 5 (.0 0 ) (4.0) 5 (0 ) 5 (.0) (0 ) (iii) ( ) 4 ( ) 4 (5.0) 4 (0 5 ) (iv) , (000) (0.000) 4 (. 0 0 ( ) ) (. 0) (0). (0 (0 ) ) ( 6)

56 hbqx<sq.. hqe<uvl<w{<gjtnxquqbz<gxqbqm<cz<njlg<gul<; (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) hqe<uvl<w{<gjtksluqiquqz<wpkul<; (i) (ii) (iii) (iv).4 0 (v) (vi) (vii) (viii).4 0. hqe<uvueux<xqe<lkqh<hgjtnxquqbz<gxqbqm<cz<g{<mhqcg<gul<; (i) (00) (40) 5 (ii) (000) (0.00) 4 (iii) (8000) 4 (0000) (iv) (0.00) 8 (0.000) (0.0) 4 (v) (0000) (0.0005) (400000). lmg<jgbqe<gxqbqm \ie< Ofh<hqbi< we<el< Nr<gqOzb g{qk Oljkbieui< g{g<gqmjz wtqjlbigul<? uqjvuigul< osb<k Lcg<g lmg<jgbqe< GxqbQm<cje nxqlgh<hmk<kqeii</ lmg<jg jbg<gxqg<gl<nr<gqzs<osiz< logarithm NeK logos lx<xl< arithmos we<x -V gqovg<gs< osix<gtqzqvf<k uvuqg<gh<hm<mkigl</ logos we<xiz< Äg{g<gQMosb<kz<} lx<xl< arithmos we<xiz< w{< we<x ohivt<hml</ NgOu logarithm we<xiz< w{< g{g<gqm osb<kz< NGl</ lmg<jgbqe< GxqbQm<cje nxqlgh<hmk<k?lkx<g{<{ignmg<gg<gxqbqm<jmh<hx<xqnxqouil</.. nmg<gg<gxqbqm a we<hk yv lqjg w{< we<g/ x yv LP weqz< a x we<x GxqbQm<cje Wx<geOunxqLgh<hMk<kqBt<Otil</x yvuqgqklxw{</nkiuk x q p, -r<gp yvlp? qyvlqjglpweqz<?a x NeKhqe<uVliXujvbXg<gh<hMgqxK/ q p x a a. wmk<kg<gim<mig, ( ) 5 8, 7 ( 7 ) 4. x we<hk yv uqgqklxi w{< we<xohipk? a x we<hjk yv olb<ob{<{qjeg< Gxqh<hkigujvbXg<gzil</Neiz<-f<k ujvbjx osb<ukx<g flg<g dbi<g{qk 5

57 gvk<kg<gt< Okjuh<hMgqe<xe/ -Vh<hqEl<? a > 0 we<xuixt<t wf<kouiv olb<ob{<{qjeg<ogi{<mxwel<yu<ouivolb<ob{<{qx<gl<?a x we<xkeqk<kyv olb<ob{<{qje ujvbxk<k u a x we wpkgqoxil</ -f<fqjzbqz< u NeK nmg<g njlh<hqz< nz<zk nmg<gg< GxqbQm<cz< wpkh<hm<mt<tk we<ohil</ -r<g a J ncliel<we<xl<?x JnMg<Gnz<zKhcwe<Xl<njph<Ohil</LPg<gTg<GwPkqb nmg<gg<gxq uqkqgjt njek<k olb<ob{< nmg<ggtg<gh< ohivf<kukigg< ogit<ouil</-u<uqkqgjt-r<ghqe<uvlixwpkgqe<oxil</ (i) (ii) (iii) x a a x y a y a x a x y a + y (iv) a x a x (v) a b ( a b) x y x xy a a (vi) a 0 x x Olx<%xqb uqkqgjt nmg<gg<gxq uqkqgt< we<xjpg<gqe<oxil</ -h<ohipk lmg<jggxqbqm<cjeujvbxg<glx<hmouil</.. lmg<jgg<gxqbqm b we<xuixb we<hkyvlqjgw{<we<g/xwe<xyvolb<ob{<{qx<gl< b x NeKkeqk<kyVolb<ob{<a Jg<Gxqg<Gl<weWx<geOunxqf<Kt<Otil</a b x we wpk? -r<gt<t nmg<g x J b ncliel< ogi{<m a e< lmg<jg we<x njpg<gqe<oxil<. -kjex log awewpkgqe<oxil</weoux log a we<hk b b a b x we<hke<sllienjlh<higl</olzl<?x log a we<xlmg<jgnjlh<hiek b x a b we<xnmg<gg<gxqnjlh<hqe<sllienjlh<hwe<gqoxil</-v{<m njlh<hqzl<ncliel<)b)ye<ox/ x log a we<xgxqbqm?lmg<jgg<gxqbqmweh<hml</ b -K a b x JGxqg<gqe<xK/ wmk<kg<gim<mig? (i) log 9 79 we<hk 9 79e<sllienjlh<H; (ii) log8 we<hk 8 e<sllienjlh<ha (iii) log we<hk e<sllienjlh<H; (iv) log 7 49 we<hk 7 49e<sllienjlh<H; (v) log 9 e<sllienjlh<h 9 nz< zk 9 ; (vi) log 4 we<hk 4 e<sllienjlh<h/ 8 8 5

58 Gxqh<H: lmg<jgg< GxqbQm<cz< ncliel< Gxqh<hqm Ou{<Ml</ y log x we<x wpkuk ohivtx<xk; Woeeqz< nkx<gs< sllie nmg<gg<gxq njlh<ohpk ncliel< okiqf<kiz<kie< LcBl</ -Vh<hqEl<? sqz fqjzgtqz<? ncliek<kqjeg< Gxqh<hqmilz< lmg<jggjt wpkl<ohik? nr<g njek<k lmg<jggtl< yov ncliek<jkh< ohikuigg<ogi{<mt<tewe<xogit<tou{<ml</ wmk<kg<gim<m 4: hqe<uvl<lmg<jgnjlh<hqjenmg<gg<gxqnjlh<higlix<xul<; (i) log 5 5 (ii) log (iii) log 6 6 (iv) log 4 9 kqi<u: ncliel<-v{<mjlh<hgtqzl<slliekigl</weou NeK ( ) 5 (i) log g<gs<slliekigl</ (ii) log NeK ( ) 4 4 g<gs<slliekigl</ (iii) log 6 6 NeK ( 6) 6 g<gs<slliekigl</ (iv) log NeK () g<gs<slliekigl</ 9 9 wmk<kg<gim<m 5: hqe<uvl<nmg<gg<gxqnjlh<hqjelmg<jgnjlh<higlix<xul<; 6 (i) 64 (ii) 9 (iii) kqi<u: -v{<mjlh<hgtqzl<ncliel<ye<xig-vh<hkiz<? 6 (i) 64 NeK log 64 g<gs<slliekigl</ 6 (ii) 9 79 (iii) (iv) 8 4 NeK NeK log 9 79 g<gs<slliekigl</ log g<gs<slliekigl</ 4 7 NeK log 7 g<gs<slliekigl</ (iv) 7 7 wmk<kg<gim<m 6: lkqh<hqmg; (i) log 9 79 (ii) log 4 8 (iii) log 9 (iv) log (4). 7 kqi<u : (i) x log 9 79 we<g/hqe<h 9 x x. (ii) x log 4 8 we<g/hqe<h 4 x 8. Neiz< 4 x ( ) x x. x. x nz<zk x 54

59 (iii) x log 9 we<g/hqe<h 9 x 7 x, x nz<zk x.. Neiz<9 x ( ) x x. 7 (iv) x log (4) we<g/ hqe<h x (4) nz<zk x 5 nz<zk x 5. wmk<kg<gim<m 7: hqe<uvl<sle<himgjtk<kqi<g<gul<; (i) log x (ii) log b 00 (iii) x log 5 (iv) x + log kqi<u: (i) log x. x nz<zk x. 9 (ii) log b 00. b b 0. (iii) x log x 8 x nz<zk x. 5 8 nz<zk (8 ) x 8 nz<zk 8 x 8. x (iv) x + log x log 7 9 nz<zk log 7 9 x x x x ( 7) 9 nz<zk ( ) nz<zk ( ). nz<zk x 4. -h<ohipk lqjg w{<gtqe< lmg<jggtqe< h{<hgjtg< %xq fq'h{l< osb<ouil</jk<kuqvnjek<klqjgw{<gjtg<gvkgqe<oxil</ (i) ohvg<gz<uqkq: a, m, n we<helqjgw{<gt<? a weqz<? log ( mn) log m + log n. a a a fq'h{l<: log m x, log n y we<g/ a a hqe<h m a x, n a y. m n a x a y nz<zk mn a x+y. -f<knmg<gg<gxqnjlh<hqjelmg<jgnjlh<hqx<glix<xqwpk? log ( mn) x + y log m + log n. a a a uig<gqbk<kqz<? Olx<%xqb uqkq %XuK? -V lqjg w{<gtqe< ohvg<gx<hzeqe< lmg<jgbiek?nu<uqvw{<gtqe<lmg<jggtqe<%mkzg<gs<slligl</ (ii) ugk<kz<uqkq: m, n, a we<helqjgw{<gt<lx<xl< a weqz<? 55

60 m log log m log n a. n a a fq'h{l<: log m x, log n y we<g/hqe<h a a m a x, n a y. x m a n a y a x y. -KnMg<Gnjlh<hqz<dt<tK/-jklmg<jgnjlh<hqz<lix<x? m log x y log m log n. a n a a uig<gqbk<kqz<? ugk<kz< uqkq %XukiuK? n m wel< uqgqkk<kqe< lmg<jgbiek log m log n we<xuqk<kqbisk<kqx<gs<slligl</ a a (iii) hcuqkq: a, m we<he lqjgw{<gt<? a lx<xl< n yvolb<ob{<weqz<? log m n n log m. a a fq'h{l<: log m x we<g/hqe<h m a x NGl</-VHxl<n nmg<gwmg<g? a m n (a x ) n a xn. -KnMg<Gnjlh<hqz<-Vg<gqe<xK/-kjelmg<jgnjlh<hqz< wpk? log m n nx nlog m. a a (iv) a lqjgw{<weqz<? fq'h{l<: log a x log 0. a we<g/hqe<h a x a 0. x 0. nkiuk)n.k* log a (v) a yvlqjgw{<weqz<? log a a. fq'h{l<: x log a we<g/hqe<h a x a a. x n.k a 0. log a. a (vi) nclielix<xz<uqkq: m, n, p lqjgw{<gt<?n lx<xl< p weqz<? log m log m ( log p) n p. n fq'h{l<: x log m, y log p we<g/ p n 56

61 hqe<hp x m, n y y xy p.-ux<xqz< p JfQg<g? ( n ) m n. K n m. -KnMg<Gucuqz<dt<tK/-kjelmg<jgnjlh<hqx<Glix<x? log m xy n.k n x ( log m) ( log p). log n m p (vi) kjzgqp<uqkq: m, n we<he fqr<gzielqjgw{<gt<weqz<? fq'h{l<: log n x we<g/hqe<h m log n m x m. log m n n n x x n n x m n. -KnMg<Gnjlh<hqz<dt<tK/-kjelmg<jgnjlh<hqx<Glix<x? x x. log m nz<zk n x log n m. log n m log a (viii) a, b we<he-vlqjgw{<gt<? b weqz< b b a. fq'h{l<: x log a we<g/hqe<hb x angl</-kqz<x x<gh<hkqzig log a Jh< b b hqvkqbqm log a b b a. (ix) m, n lx<xl< a lqjgw{<gt<? a we<g/ log m log n, weqz< m nngl</ a a fq'h{l<: x log m we<g/hqe<h x log n. a a log m a x n n.k a a n n.k m n (uqkq (viii)e<hc). Gxqh<H: njek<klmg<jggtqzl<ncliek<jkwe<xqz<zilz<hii<k<kg<ogit<gqe<oxil</ Woeeqz<? ncliel< djmb lmg<jgjbg< gvkqoeioleqz<? wmk<kg<gim<mig? log 9 Jg< gvk, -ke< lkqh<h xweqz<x log 9 nz<zk x 9 weg< gqjmg<gqxk/ Neiz<?wf<kolb<ob{<xx<Gl< x 9weg<gqjmg<giK/ ws<siqg<jg: ohikuighqe<uvl<kuxgt<fqgpuib<h<hd{<m/ m log m () log a. a n log n a () log ( m + n) log m + log n. a a a 57

62 () NeK kuxigl</ Woeeqz<? -mk hg<gk<kqz< dt<tkl< uzk hg<gk<kqz< log m dt<tkl<slliglcbik/nkiuk? log m log n a. a a log n a () NeK kux/ Woeeqz<? uzk hg<gk<kqz< dt<tkl< -mk hg<gk<kqz< dt<tkl<sllqz<jz/nkiuk? log ( mn) log ( m + n). a a wmk<kg<gim<m 8: SVg<Gg; (i) log 7 + log 79 (ii) log log kqi<u: (i) kvh<hm<m Ogiju -v{<m lmg<jggtqe< %Mkz< lx<xl< -f<k lmg<jggtqe< nclier<gt<sllibqvg<gqe<xe/weouohvg<gz<uqkqjbh<hbe<hmk<kzil</ log 7 + log 79 log (7 79) 6 log ( ) 9 log 9 log 9 9. (ii) log log 5 log log 5 5 log 5 log 5 ( 5 ) 5 ( ) log 5 ( ). 5 wmk<kg<gim<m 9: SVg<Gg: (i) log 7 98 log 7 4 (ii) log log 9 4 log kqi<u: (i) log 7 98 log 7 4 log 7 log (ii) log log 9 4 log 9 4 log log 9 4 log 9 4 log9 6 + log9 6 log9 64 log9 (6 6) log9 64 log9 96 log log 9 log wmk<kg<gim<m 0: fq'hqg<g; (i) log log0 (ii) log log 5 6 log log. kqi<u: (i) uzkhg<gl< log 4 log

63 4 log 0 log0 8 4 log0 0 log0 8 log log log0 log050 -mkhg<gl</ 8 0 (ii) uzkhg<gl< log 5 6 log log log 5 (6) log 5 (8) + 4 5log 5 log 6 log + 4log log 5 + 4log log log + 4log 5 log + log log log 5 65 log 5 ( 65) log mkhg<gl</ wmk<kg<gim<m : fq'hqg<g; log 4 log 4 5 log5 6 log 6 7 log 7 8 log8 9. kqi<u: -mkhg<gl< ( log 4 log 4 5) ( log5 6 log 6 7) ( log 7 8 log8 9) log 5 log5 7 log7 9 log 5 ( log 5 7 log 7 9) log 5 log 5 9 log 9 log log uzkhg<gl</ wmk<kg<gim<m : log 0 (x + 50) Jk<kQi<g<gUl</ kqi<u: sle<him<cjenmg<gnjlh<hqz<wpk? x nz<zk x nz<zk x 475. log 9 wmk<kg<gim<m : 8 e<lkqh<jhg<g{<mhqc/ log log 9 kqi<u: log 9 log log b a. ( Woeeqz< b a ) wmk<kg<gim<m 4: log 6 x log 6 ( x + ) 0. Jk<kQi<g<gUl</ x kqi<u: ugk<kz< uqkqjbh< hbe<hmk<k? kvh<hm<m sle<him<cje log 6 0 x + wpkzil</-kjenmg<gucuqz<wpk? x 6 0 x + nz<zk x x + nz<zk x. we 59

64 wmk<kg<gim<m 5: log (7 x) log( x) Jk<kQi<g<gUl</ 7 x kqi<u: ugk<kz<uqkqjbh<hbe<hmk<k?kvh<hm<msle<him<cje log x wewpkzil</-kjenmg<gucuqz<wpk? 7 x x nz<zk 7 x ( x) nz<zk 7 x x nz<zk x 4 nz<zk x. wmk<kg<gim<m 6: log ( log x ) Jk<kQi<g<gUl</ kqi<u: y log x we<g/ hqe<h kvh<hm<m sle<himiek log y we<xigqxk/ -kje nmg<g njlh<hqz< wpk? y 4 nz<zk log x 4. -kjebl<? nmg<g ucuqz< wpk? x 4 nz<zk x 8. wmk<kg<gim<m 7: log5 log9 x + log5 Jk<kQi<g<gUl</ kqi<u: kvh<hm<msle<him<cjelix<xqwpk? log 5 log 9 x log 5 nz<zk log 5 9 log 9 x log 5 log 5 5 log mkhg<gk<kqz<nclielix<xuqkqjbh<hbe<hmk<k? log x 5 log5 5. x. 5 hbqx<sq... hqe<uvue siqbi nz<zk kuxi we<xuqjmbtqg<gul<: (i) log 4 5. (ii) log 7. (iii) 6 6 log 4 log log 4. (iv) log (8 4) log 8 log 4. (v) log a. (vi) log a ( m + n) log a m + log a n. a. hqe<uvueux<xqx<gs<sllielmg<jgnjlh<hqjeg<gi{<g: (i) (iv) (ii) (v) (iii) (vi) hqe<uvueux<xqe<lkqh<hgi{<g: (i) log (ii) log 6 6. (iii) log 9. (iv) log 9. (v) log 8. (vi) log 4. 60

65 log (vii) 0. (viii) 5. (ix) okiqbikjkk<kqi<g<gul<: (i) log x (vi) log x. c (ii) log x 7. (vii) log (iii) log 00. (viii) x log 4 (iv) log 5. (ix) log 8 N a b log (v) log 5. (x) log 9 N. x 5. hqe<uvl< yu<ouie<xqx<gl< kvh<hm<m lix<xgtqz< siqbie uqjmjbk< Oki<f<okMk<K wpkg: (i) log x 5, weqz< x NeK (A) 5 (B) 5 (C) 5 (D) 65 (ii) log4 + log (A) 0 (B) (C) (D) (iii) log 4 04 (A) 0 (B) 8 (C) 7 (D) 5 (iv) log a 4 log a x, weqz< x (A) 0 (B) (C) (D) (v) log6 x, weqz< x (A) 4 (B) 8 (C) 6 (D) (vi) log 5 x weqz< x (A) 5 (B) 5 (C) 5 (D) hqe<uvl<yu<ouie<xqz<dt<togijujbyovlmg<jgbigs<svg<gqwpkg: (i) log0 + log0 9. (ii) log + 4log 8. (iii) 5 log + log 4 + log 6. (iv) log4 + log 5 log 5 + log 7. (v) 5log0 + log0 6log (vi) log0 5 + log0 0 log0 4 + log log a x,log a y,log a 5 z lx<xl< log a 7 t, weqz<? hqe<uvl< yu<ouie<xqe< lkqh<hqjebl<x, y, z lx<xl< t-ux<xiz<g{<mhqcg<gul</ (i) log a 6 (ii) log a 4 (iii) log a. 5 (iv) log a 7.. log 6

66 8 (v) log a (vi) log a 600 (vii) log a (viii) log a (ix) log a 5 (x) log a (xi) log a 4. 9 (xii) log a 5 8. hqe<uvl<yu<ouivsle<him<cjebl<kqi<g<gul<: (i) log5 x log5 (ii) log x + log 7 log (iii) x log (iv) log4 x log4 6 log4 56 (v) log4 ( x + ) + log4 (vi) log (x + ) log (x ) log 4 (vii) log 0x log( x + ) (viii) log (7x + ) log (5x ) log (ix) log5 (0 + x ) log5 ( + 4x) (x) log5 (5log x ) (xi) log 0x + 5 log x + 9. hqe<uvl<yu<ouie<xqz<dt<tsle<him<cjefq'hq: (i) log 5 + log 5 (ii) log log0 (iii) log log0 5 (iv) log0 5 log0 (v) log0 5 log0 (vi) log log 0 (vii) log log w{< fqr<gzie lqjg w{<gt< a, b, c weqz<? log b a log c b log a c we fq'hqg<gul</.. ohiklmg<jggt< lmg<jggjt ujvbxk<kohipk? lqjg w{<gtqe< lmg<jg ujvbxg<gh<hm Ou{<Moleqz<? nl<lmg<jgbqe< ncliel< w{< fqr<gzig lx<x wf<kouiv lqjg w{<{ig -Vg<gzil< we uzqbxk<kqbt<otil</ ncliek<jk e we<x uqgqklxi w{<{ig Oki<f<okMk<kiz<? nh<hch<hm<m lmg<jggt< -bz< lmg<jggt< NGl<. ncliek<kqje w{< 0 Ngg< ogi{<miz<? nk<kg lmg<jggt< ohik lmg<jggt< weh<hml</ -bz< lmg<jggjt \ie< Ofh<hqbi< we<hui< nxqlgh<hmk<kqeii</ ohik lmg<jggjt Ofh<hqbvK f{<hi< oae<xq hqiqg<^< we<x Nr<gqOzb g{qk uz<zfi< nxqlgh<hmk<kqeii</ -bz< lmg<jg log e x J? \ie<ofh<hqbvg<gh<ohvjlosig< <Gl< uqklig ln x we<x SVg<glig wpkouil</ ln x Jh< hx<xq uqiquig Olz< ugh<hgtqz< hcg<gzil</ -h<ohipk? ohik lmg<jggtqe< hbe<him hx<xq nxqf<kogit<t Lx<hMOuil</ ohik lmg<jg log 0 x J SVg<glig log x we<x ncliel< 0 Gxqh<hqmilz< wpkouil</ weou? log x y we<xiz< log x y we<x ohivt< ogit<t Ou{<Ml<;-Kx 0 y g<gslliekigl</ y log xz< x weh<hqvkqbqm?

67 y log log jkh<ohizou, for x,,, 0, 00, 000, weg<ogi{<miz<? nkx<ogx<xix<ohiz< 00 0 y,, 0,,,,.weh<ohXgqe<Oxil</-ux<jxh<hm<cbzqmflg<Gg<gqjmh<hK x log x 0 0 fil< gueqh<hk? x NeK olb<ob{< Ogim<ce< lqjg ns<sh< Ohig<gqz< nkqgiqg<gl< OhiK? log 0 x l< nkqgiqg<gqe<xk/ OlZl< fil< gueqh<hk? x > njlf<k njek<k x lkqh<hgtg<g log 0 x NeK lqjg w{<{ig -Vg<gqe<xK? 0 < x < we<xqvg<gl< xe<lkqh<hgtg<g log 0 x e<lkqh<hgjtg<gqp<g{<muixnm<muj{h<hmk<kzil<: xe<uqs<s log x e<-vh<hqml< log x e<lkqh<h < x < < log0 x < a a 0 4 < x < 0 4 < log0 x < b b 0 < x < 0 < log 0 x < + 0.c c 0 < x < 0 < log0 x < + 0.d d 0 < x < 0 0 < log0 x < e e 0 0 < x < 0 0 < log x < f f 0 0 < x < 0 < log x < + 0.g g 0 0 < x < 0 < log x < + 0.h h 0 < x < 0 4 < log x < i i 0 4 < x < < log x < j j Olx<gi[l<nm<muj{bqzqVf<Kfil<gueqh<hK?ohiKlmg<jg log 0 x e<lkqh<h (yvlp) + (0.r r r r 4 ) we<xwpklcbl</-f<knjlh<hqz<?lph<hgkqjb log 0 x e< Ofi<g<%X weul< kslhqe<eh<hgkqjb log 0 x e< hkqe<lieg<%x weul< njph<ohil</ ohikuig hkqe<lieg<%xqje fie<g hkqe<lier<gtqz< )kslk<kiek<kqz<* wpkouil</ log 0 x e< hkqe<lieg< %xiek 0 g<gl< g<gl< -jmh<hm<m lqjg w{< we<hjk nxqgqe<oxil</ log 0 x e<ofig<<%xiek x e<lkqh<jhh<ohivk<kyvlqjglpuigouinz<zkgjx LPuigOuinz<zKH,s<sqbligOui-Vg<Gl</x < weqz<? log 0 x e<ofi<g<%xiek yvgjxlpuig-vg<gl<ax >0 weqz<? log 0 x e< Ofi<g<%xieK yv lqjg LPuig-Vg<Gl<A < x < 0weqz<? log 0 x e<ofi<g<%xiekh,s<sqblig-vg<gl</ 0 6

68 wmk<kg<gim<m 8: hqe<uvl< w{<gtqe< ohik lmg<jggtqe< Ofi<g<%Xgjtg< g{<mhqcg<gul</ (i) 00 (ii) 00. (iii) 0.0 (iv).00 (v) 0.00 (vi) (vii) (viii) (ix) (x) kqi<u: (i) 00 NeK 0 g<gl< 0 4 g<gl<-jmbqz<-vh<hkiz<? log 0 00 e<lkqh<hiek +0. dd d d 4 we<xqvg<gl</weou log 0 00 e<ofi<g<%x; hkqe<lieg<%x 0. dd d d 4 NGl</OuXupqbig?00Jnxquqbz<GxqbQm<cz<wPk? log0 00 log0 (.00 0 ) log log0 0 log log0 0 + log dd dd 4. 0 log 0 00 e<ofig<%x. [x wel< lqjg olb<ob{<{qje a 0 n we<xuix nxquqbz< GxqbQm<cz< wpkqeiz<? -r<ggqjmg<gh<ohxl<lpnnek log0 x e<ofi<g<%xigl<a log 0 a e<lkqh<hiek log 0 x e<hkqe<lieg<%xigl</] (ii) log 00. e<ofi<g<%x ; lx<xl< log 00. e< hkqe<lieg<%x log 0.00 ( log 00. e< hkqe<lieg<%xl<? log 00 e<hkqe<lieg<%xl<sll<we<hjknxqg/* (iii) log 0.0 e<ofi<g<%x; lx<xl<log 0.0 e<hkqe<lieg<%x log.00. (iv) log.00 e<ofi<g<%x 0; log.00 e<hkqe<lieg<%x log.00. (v) log 0.00 e<ofi<g<%x ; log 0.00 e<hkqe<lieg<%x log.00. (vi) log e<ofi<g<%x ; log e<hkqe<lieg<%xlog.00. (vii) log e<ofi<g<%x ; log e<hkqe<lieg<%xlog.00. (viii) log e<ofi<g<%x 4; log e<hkqe<lieg<%xlog.00. (ix) log e<ofi<g<%x 5; log e<hkqe<lieg<%x log.00 (x) log e<ofi<g<%x 6; log e<hkqe<lieg<%x log.00. Olx<gi[l<wMk<Kg<gim<MgtqzqVf<K?fil<nxquK? 64

69 (i) lqjg w{< x e< LP w{< hgkq n -zg<gr<gt< ogi{<m w{< weqz<? log 0 x e< Ofi<g<%X n. (ii) lqjgw{< x e<lpw{<hgkq0lx<xl<xe<hkqe<lie)kslk<kie*hgkqbqz< hkqe<lie Ht<tqg<G uzh<hxk<kqz< dt<t Lkz< H,s<sqblx<x -zg<gk<kqx<g Le< n H,s<sqbr<gt<ohx<xqVh<hqe<? log 0 x e<ofi<g<%x (n + ). (iii) 00000, 00, 00.,, jubjek<kl< yov hkqe<lieg<%xqjeh< ohx<xt<te/ NgOu? kvh<hm<m uiqjsbqz< njlf<k sllie lkqh<hjmb -zg<gr<gjth<ohx<xnjek<kw{<gtg<gl<yovhkqe<lieg<%xkie<-vg<gl</ wmk<kg<gim<m 9: log kvh<hce<?hqe<uvueux<jxg<g{<mhqcg<gul<; (i) log 60 (ii) log 6. (iii) log.6 (iv) log 0.6 (v) log 0.06 (vi) log kqi<u: log (i) log (ii) log (iii) log (iv) log (v) log (vi) log Gxqh<H: JSVg<glig.095wewPKOuil<. -jkh<ohizou J 5.0 we wpkouil</ g{g<gqml<ohipk? yv ohik lmg<jgg<g Gjx w{< gqjmg<gzil</ kgf<k lqjg LPju nf<k Gjx w{<[me< %m<c gpqg<g? Gjx w{<{igg< gqjmk<k lmg<jgbqje )Gjx LP* + 0.d d d d 4 we<x njlh<hqz< wpk LcBl</ wmk<kg<gim<m 0: log lx<xl< log we<x kvh<hce<? hqe<uvueux<jxg<g{<mhqcg<gul</ 5.00 (i) log 0.05 (ii) log (iii) log (iv) log kqi<u: log log 0.5 e< hkqe<lieg< %X NGl</ -jkh<ohizou?log log 00 e<hkqe<lieg<%x (i) log (ii) log (iii) log log 5 log

70 .00 (iv) log 500 log.00 log lmg<jggtqe<nm<muj{.000 Lkz< ( hkqe<lieh< hgkqbme<) ujvbqzie lqjg w{<gtqe< ohik lmg<jggtqe< lkqh<hg<gjtg< g{g<gqm<m nm<muj{ njlh<hqz< hm<cbz< hmk<kq dt<tei</ )-f<f~zqe< gjmsq fie<g hg<gr<gjth< hii<g<gul<*/ -u<um<muj{jb lmg<jgnm<muj{ we<ohil</-f<knm<muj{jbh<hbe<hmk<kq?wf<kouivlqjg w{<{qx<gl< ohik lmg<jgbqjeg< g{g<gqmzil</ lmg<jgbqe< hbe<himgjth< hx<xq nxqf<k ogit<ukx<g Le< lmg<jg nm<muj{jb hck<kxqbl< Ljxbqjeh< hpg<gh<hmk<kqg<ogit<ouil</ wmk<kg<gim<m : log 6.78 Jg<g{<Mhqc/ kqi<u: Ofi<g<%X. hkqe<lieg<%xqjeh<ohxukx<g?.678 Jg<gVKg/lmg<jg nm<muj{bqe<-mh<hg<guqtql<hfqvzqz< (column).6 e<-mk<jknxqbul</ Mean differences (svisiquqk<kqbisl<) dt<t fqjx (row) upqbig hck<kg<ogi{<om ose<xiz< 7 e< fqvzg<gg< gqp< g< gi{<ohil</ OlZl< nok fqjxbqz< okimi<f<k ose<x svisiq uqk<kqbisk<kqz< 8 e< fqvzqe< gqp< w{<0jg< gi{zil</ -f<k w{< 0 J dme< %m<m gqjmg<gl</ -KOu.678e<ohiKlmg<jgbiGl<)hkqe<lieg<%xiGl<*/weOu? log wmk<kg<gim<m : log Jg<g{<Mhqcg<gUl</ kqi<u: Ofi<g< %X, hkqe<lieg< %X log h<ohipk.006 Jg< gvkg/ -kqz< 5 hkqe<lier<gt< dt<te/ Neiz< ohik lmg<jgbqz< hkqe<lier<gt<dt<tw{<gtg<gh<hm<cbz<-mh<hm<mt<te/weou we Okivibh<hMk<kqg<ogit<Ouil< )4uK hkqe<lie -mk<kqz< 5J uqmg< Gjxuie -Vh<hkiz<*/ -h<ohipk? lmg<jg nm<muj{jbg< ogi{<m log we nxqbzil</weou? log wmk<kg<gim<m : log 70.9Jg<g{<Mhqcg<gUl</ kqi<u:

71 0Ofi<g<%X. hkqe<lieg<%x log (Woeeqz< 4 uk hkqe<liel< 9. -K5 J uqms< sqxqbkz<z). weou lmg<jgh< hm<cbzqz< -Vf<K log log wkqi<lmg<jgnm<muj{ log x y weqz< x Jye< wkqi<lmg<jgwe<gqoxil</nkiuk? log 0 x yweqz<? x 0 y NeK y e< wkqi<lmg<jgbigl</ weou? y e< wkqi<lmg<jg 0 y. wkqi<lmg<jg ohxuk lmg<jgh< ohxukx<g Ofi<lixiGl</ wmk<kg<gim<mig? log 0.00 weqz<.00 e<wkqi<lmg<jg 0NGl</ zqvf<k (fie<g -zg<gr<gt< dt<t hkqe<lieh< hgkq) dt<t w{<gtqe<wkqi<lmg<jggtg<gienm<muj{-f<f~zqe<gjmsq-v{<mh<hg<gr<gtqz< ogimg<gh<hm<cvg<gqe<xk/ -u<um<muj{jbh< hbe<hmk<kq ogimg<gh<hm<m wf<kouiv w{<{qe<wkqi<lmg<jgbqjebl<ohxzil</ wmk<kg<gim<m 4: hqe<uvueux<xqe<wkqilmg<jgbqjeg<g{<mhqcg<gul</ (i).05 (ii).469 (iii).8658 (iv).0578 kqiu: ( y e< wkqilmg<jgjbg< g{<mhqcg<g Lkx<g{< y e< hkqe<lieg< %xqje lm<ml< gvkg/ hqe<h hkqe<lieg< %xqe< Lke< &e<x -zg<gr<gtg<g Wx<x wkqi< lmg<jgbqjeg< g{<m nkeme< svisiq uqk<kqbisk<kqz< dt<t 4 uk-zg<gk<kqx<gie lkqh<hqjeg<%m<mg<gqjmh<hkokjubiewkqilmg<jgbigl</) (i).05 e<wkqilmg<jg wkqv<lmg<jgh<hm<cbzqzqvf<k svisiquqk<kqbisl< 5 g<gwx<xk (ii).469 e<wkqilmg<jg (iii).8658 e<wkqilmg<jg

72 (iv).0578 e<wkqilmg<jg Gxqh<H: Olx<gi[l<wMk<Kg<gim<czqVf<K?fil<nxquK (i) log x e<ofig<%xiek n wel<gjxbz<zilpweqz<?log x e<wkqilmg<jgbqz< dt<thkqe<lieh<ht<tqbiek ( n + ) uk-zg<gk<kqx<gh<hqe<-mh<hmgqe<xk/ OfIg<%X hkqe<lieh<ht<tqbqe<fqjz 0 uk-zg<gk<kqx<gnmk<k uk-zg<gk<kqx<gnmk<k uk-zg<gk<kqx<gnmk<k 4 uk-zg<gk<kqx<gnmk<k 4 5 uk-zg<gk<kqx<gnmk<k (ii) log x e<ofig<%x n we<xgjxw{<weqz<?log x e<wkqilmg<jgbqz<?hkqe<lieh< Ht<tqbieK? hkqe<lieh< Ht<tqg<G nmk<kt<t n -mr<gtqz< H,s<sqbLl<? n uk -mk<kqz<h,s<sqblqz<ziw{<uvlix-mh<hmgqe<xk/ OfIg<%X hkqe<lieh<ht<tqbqe<fqjz 0.d d d d 4 0.0d d d d d d d d d d d d d d d d 4 Olx<gi[l<nm<muj{bqz<, d. d d d 4 we<hkkvh<hm<mlmg<jgbqz<dt<thkqe<lieg< %xqekwkqilmg<jgbigl</..6 lmg<jgbqjeh<hbe<hmk<kqg<g{g<gqmz< -e<jxb dzgqeqz<? g{g<gqmjz lqgougligul<? lqgk< Kz<zqbligUl< ohx lqe<e[ g{g<gqmuie< )calculator) lx<xl< g{qeq (computer) -jubqv{<ml< dt<te/ Neiz<-s<siker<gt<Wx<hMukx<GLe<eIleqkNx<xjzg<ogi{<Mg{g<gqm<Omil</ g{g<gqmjz lqg Ouglig leqk Nx<xjzg< ogi{<m g{g<gqm lmg<jggt< nxqlgh<hmk<kh<hm<me/ -kx<gig lmg<jg? wkqilmg<jg Ngqbux<xqx<gie nm<muj{gt<kbiiqg<gh<hm<me/-h<ohipk?g{g<gqmzqz<lmg<jgbqe<hbjeg<gim<m sqz wmk<kg<gim<mgjtg< gi{ Lbx<sqh<Ohil</ hqe<uvl< uib<h<himgt< Okjuh<hMgqe<xe/ 68

73 (i) log ( mn) log m + log n a a a (ii) m log log m log n a n a a (iii) log m n nlog m. a a wmk<kg<gim<m 5: gi{<g (i) (ii) kqiu; (i) x we<g/ hqe<h log x log ( ).4456 log log x.854 e<wkqilmg<jg (ii) x we<g/hqe<h log x log log log x. 7 e<wkqilmg<jg0.07. wmk<kg<gim<m 6: lkqh<hqmg; (i) (ii) kqv<u: (i) x we<g/hqe<h log x log 00 log x.09 e<wkqilmg<jg (ii) x we<g/hqe<h log x log 0.4 log ( +0.54) ( ) x e<wkqilmg<jg

74 wmk<kg<gim<m 7: hqe<uvueux<xqe<lkqh<hgjtg<g{g<gqmg/ (i) (9.76) 5 (ii) (0.749) 7 kqiu: (i) x (9.76) 5 we<g/hqe<h log x log (9.76) 5 5 log (9.76) x e<wkqilmg<jg (ii) x (0.749) 7 we<g/hqe<h log x 7 log( 0.749) ( ) x.07 e<wkqilmg<jg wmk<kg<gim<m 8: e<lkqh<hgi{<g/ kqiu: x (0.7) 5 we<g/hqe<h log x log (0.7) log x.8867e<wkqilmg<jg wmk<kg<gim<m 9: e<lkqh<hqjeg<gi{ul</ kqiu: x we<g/hqe<h log x log log.59 log Lkz< (&e<x hkqlie hqe<eh< hgkqbme<) ujvbqzie w{<gtqe< ohik lmg<jgh< hm<cbziek kbii osb<k kvh<hm<mt<tkiz<? fil< hqe<uvl< Okivibr<gjt osb<bou{<cbqvg<gqxk/ log x x 0.69e<wkqIlmg<jg.. 70

75 (76.5).98 wmk<kg<gim<m 0: e<lkqh<hg{<mhqc/ 5 (4.75) kqiu: kvh<hm<mogijubqjex we<g/hqe<h log x log (76.5) + log. 98 [log (4.75) 5 + log 0.046] log log.98 [5 log log 0.046] [ ] [ ] ( ) x.995 e<wkqilmg<jg wmk<kg<gim<m : log 4.56 e<lkqh<hgi{<g/ kqiu: -r<g ncliel< we dt<tk/ lmg<jg nm<muj{jbh< hbe<hmk<k lmg<jgbqe< ncliel< 0 we -Vg<g Ou{<Ml</ ncliek<jk lix<xl< uqkqjbh< hbe<hmk<k? log 4.56 log log 0 log log 0.69 x (0.0) + ( ) + (0.775).775 x.775 e<wkqilmg<jg we<g/hqe<h log x log.079 hbqx<sq... hqe<uvl<w{<gtqe<ohiklmg<jggtqe<ofig<%xgjtg<gi{<g; (i) 4 (ii) 7.6 (iii).65 (iv) (v) (vi) (vii) (viii) hqe<uvlix ohik lmg<jggt< ohx<xt<t w{<gtqe< LPh< hgkqbqz< dt<t -zg<gr<gtqe<w{<{q<g<jgbqjeg<g{<mhqcg<gul<; (i).45 (ii).456 (iii).4567 (iv) 0.4 (v) (vi)

76 . w{<gtqe< ohik lmg<jggt< gqop kvh<hm<mt<te/ w{<gtqe< hkqe<lieh< Ht<tqg<G nh<hiz< Lkz< H,s<sqblqz<zik -zg<gk<kqx<g Le<uVl< H,s<sqbr<gtqe< w{<{qg<jgjbg<g{<mhqc/ (i). 456 (ii).45 (iii). (iv) (v) (vi) e<ohiklmg<jgbqe<hkqe<lieg<%x 0.55 NGl</hqe<uVl<w{<gtqe< ohiklmg<jggjtwpkg; (i) 740 (ii) 74 (iii) 7.4 (iv).74 (v).74 (vi) 0.74 (vii) (viii) lmg<jgnm<muj{jbh<hbe<hmk<kqhqe<uvl<w{<gtqe<ohiklmg<jggjtg< g{<mhqcg<gul</ (i) 87 (ii) 8450 (iii) (iv) (v) (vi) hqe<uvl<ohiklmg<jggtqe<wkqilmg<jggjtg<g{<mhqcg<gul</ (i).890 (ii) 0.4 (iii).458 (iv). 46 (v) 5.50 (vi) hqe<uvlixx e<ohiklmg<jg-vf<kiz<?x e<lkqh<jhg<gi{<g/ (i) 5.07 (ii).968 (iii).04 (iv).77 (v) 0.96 (vi) 4.08 (vii). +. (viii) 5.4. (ix). 5.4 (x). (xi).4 (xii) hq<e<uvueux<jxlkqh<hqmosb<g/ (i) (ii) (iii) (iv) (v) (0.075) (vi) (50.49) 5 (vii) (55.9) 8 (viii) (ix) (x) (xi) ( 4.) (xii) (.4) (xiii) log 5.6 (xiv) log

77 . g{g<gxqbqm fuqeg{qkk<kqe<sikjeobg{g<gxqbqmigl</njek<kg{qkh<hqiqugtqzl< g{g<gxqbqmokie<xgqe<xk/g{qkk<kqjencogit<ki<g<giqkqbqz<dvuig<gg{qk uz<zfi<gt< Lbx<sqk<kke< uibqzig g{g<gxqbqmgt< Okie<xqe/ o\i<le< g{qk Oljk \ii<<\< Oge<mi< (845 98) dvuig<gqb g{r<gtqe< ogit<jgob g{qk uti<s<sqg<g jlz<gz<zig njlf<kk/ g{k<kqe< gvk<kvuqjebl<? g{g<ogit<jg hx<xqbnch<hjmg<gvk<kg<gjtbl<nxqlgh<hmk<k-h<ohipklbz<ouil</.. yvg{k<kqe<gvk<kv fe<g ujvbjx osb<bh<hm<m dxh<hgtiz< Ne okigkqjb g{l< we<ohil</ wmk<kg<gim<mig? njek<k -bz< w{<gtqe< okigh<h? yv ktk<kqzt<t njek<k slhg<g Lg<Ogi{r<gtqe< okigh<h? kqvk<k{q nvsqei< N{<gt< Olz< fqjzh< ht<tqbqe< njek<k ye<hkil< ugh<h li{ui<gtqe< okigh<h? njek<k olb<ob{<gtqe<okigh<h?nr<gqzwpk<kg<gtqzt<tnjek<k vowels.gtqe<okigh<h Ohie<xjugt< g{r<gtg<gs< sqz wmk<kg<gim<mg<gt< NGl</ OlOz Gxqh<hqm<Mt<t okigh<hg<gtqz< dt<t dxh<hg<gt<? fl<liz< wju we<x dxkqbqm<mg< %x Lcukiz<kie<njug{r<gt<Ngqe<xe/hqe<uVl<wMk<Kg<gim<Mgjtg<gVKOuil<; (i) de<ejmbugh<hqzt<tdbvlieli{ui<gtqe<g{l</ (ii) fqhck<kfz<zhk<kgr<gtqe<g{l</ dbvl<? fz<z Ohie<xosix<gTg<Gsiqbientuqz<ohiVt<ogit<tLcbikkiz< Olx<Gxqh<hqm<mwMk<Kg<gim<Mgt<fe<GujvbXg<gh<hm<mjunz<z/weOunux<xqe< dxh<hgjtfl<liz<siqbigg<%xlcbuqz<jz/weounjug{r<gt<ngik/ Gxqh<H: yvg{k<kqzt<tdxh<hgt<keqk<kjubigl</ yv g{k<kqe< ohivtqje yv keqll< nz<zk Yi< dxh<h nz<zk Yi< nr<gk<kqei<wenjph<ohil</ g{r<gjtg<gxqg<ga nz<zk B Ohie<xohiqbNr<gqz wpk<kg<gjtbl<? nux<xqe< dxh<hgjtg< Gxqg<g x,y,a,b Ohie<x sqxqb Nr<gqz wpk<kg<gjtbl<hbe<hmk<kouil</x NeKg{l<A z<yi<dxh<hwe<hjkg<gxqg<g x AwewPKOuil</ we<xgxqbqm dt<tk weh<ohivt<hml</ keqll< x NeK Az< dxh<hz<z we<hjkg< Gxqg<g? x A we wpkouil</ wmk<kg<gim<mig? A we<x g{k<kqe<keqlr<gt<,, 4, 5weqz<?-kje A, A, 4 A, 5 A. Neiz< 6 A, A, 9 A, Glii< A. yvg{k<kqjenjlg<g?hqe<uvl<-vljxgjth<hqe<hx<xouil<: () nm<muj{nz<zkuiqjsh<hm<cbz<ljx () g{g<gm<mjlh<hnz<zkuqkqljx 7

78 .. nm<muj{ nz<zk uiqjsh<hm<cbz<ljxbqz<g{k<kqjeg<gxqk<kz< njmh<hgt< { } -ux<xqx<gt< yv g{k<kqzt<t njek<k dxh<hg<gjtbl<? wel< Gxq ogi{<mh< hqiqk<kh< hm<cbzqm<m ng<g{k<kqje wpkouil</ wmk<kg<gim<mig? mathematics we<el< osiz<zqzt<t njek<k dbqi< wpk<kg<gtqe< g{l< {a, e, i}ngl</ -r<g a wel<wpk<k-vljx mathematics we<el<osiz<zqz< uf<kizl< g{k<kqz< Gxqh<hqm<omPKl<OhiK yovobiv Ljx lm<mol dxh<hig wpkouil</ Woeeqz< g{k<kqz< dt<t dxh<hgt< keqk<kjugtig -Vk<kz< Ou{<Ml</ -u<uix dxh<hgjt { } wel< njmh<hg<gt< wpkl< Ljxbqje nm<muj{ nz<zkuiqjsh<hm<cbz< Ljx we<ohil</nm<muj{ljxbqz<sqz g{r<gjthqe<uvlixwpkgqoxil<: (i) Juqmg<Gjxuiehgiw{<gtqe<g{l<{,, 5, 7, }NGl</ (ii) FOOTBALL we<el<osiz<zqzt<twpk<kgjtg<ogi{<mg{l< {F, O, T, B, A, L} (iii) njek<k -bz< w{<gtqe< g{l< {,,, }. -r<g we<x GxqbQM? okimi<f<k uvl< njek<k dxh<hgjtbl< ye<xqjebl< uqmik Gxqh<hkiGl</ -g<g{k<kqje NwEl<sqxh<ohPk<kiz<Gxqh<Ohil<AN {,,, } (iv) njek<k LP w{<gt< 0,,,, Ngqbeux<jx dxh<hg<gjtg< ogi{<mg{k<kqje W we<xsqxh<ohpk<kiz<gxqh<ohil<aw {0,,,, }. (v) njek<k LPg<gtie 0,,,,,,, Ngqbeux<jx dxh<hqei<gtigg< ogi{<m g{l< Z we<x sqxh<ohpk<kiz< Gxqg<gh<hMgqe<xKA Z{0,,,,,,, }. wmk<kg<gim<m : 5 e<lmr<ggt<?neiz< 50g<Gg<Gjxuienjek<K-bz<-vm<jmh< hjmw{<gjtg<ogi{<mg{k<kqjenm<muj{ljxbqz<wpkg/ kqi<u: 5 Nz<uGhMl<-vm<jmh<hjm-bz<w{<gt< 0, 0, 0, 40, 50, NGl</ 50g<Gg<Gjxuie5Nz<uGhMl<njek<K-vm<jmh<hjmw{<gtqe<g{l< {0, 0, 0, 40}... g{g<gm<mjlh<h nz<zkuqkqljxbqz<g{k<kqjenjlk<kz< g{k<kqjeg< g{g<gm<mjlh<h we<el< hqxqokiv LjxbqZl< wpkzil</ -l<ljxbqz<g{k<kqjewpk?lkzqz<nke<dxh<hgtg<gqjmobdt<tohikuie h{<hqje nxqb Ou{<Ml</ -h<h{<h? ng<g{k<kqz< dt<t dxh<hgtg<g lik<kqvol d{<jlbigou{<ml</wmk<kg<gim<cx<g?{6, 6, 6}we<xg{k<kqjeg<gVKOuil</ -ke< dxh<hgt< 6, 6, 6 we<he 6e<nMg<Ggt<wEl<h{<hqjeh<ohx<Xt<te/ weou x 6 n, -r<g n,, wel< fqhf<kje 6, 6, 6Ngqbw{<gjtlm<MOl kvgqe<xk/ -f<k fqhf<kjeg<gm<hm<m Ouoxf<k w{<j{bl< ohx -bzik/ NgOu? g{l< {6, 6, 6} NeK x 6 n, n,, wel<fqhf<kjejbfqjxuosb<bl< njek<kdxh<hgt<xnz<nekwe<xnxqbzil</-kje { x x 6 n, n,, } wewpkouil</-l<ljxbqz<?{}we<xnjmh<hg<gxq -ux<jxg<ogi{<mt<tg{l< we<hjkg< Gxqg<gh< hbe<hmgqxk/ we<el< (vertical bar) Ofi<Gk<Kg<Ogim<Mg<Gxq 74

79 hqe<uvueux<jxk<kvuz<z (such that)we<xohivtqz<hbe<hmk<kh<hmgqxk/ohikh< h{<hie x 6 n, n,,. we<hk g{k<kqje dvuig<gl< uqkqbig -Vh<hkiz< -l<ljx uqkqljx nz<zk g{g<gm<mjlh<h Ljx weh<hmgqe<xk/ Ouoxf<k dxh<hqx<ge<xq ogimg<gh<hm<m g{l< Ae< dxh<hqx<g lm<mol h{<h P ohivk<klx<xiz<? g{l< A JA { x h{<hp Jx ohx<xt<tk} wewpkouil</-kje?h{<hp J ohx<xt<tnjek<kdxh<hgt<x gtqe<g{l< Aweh<hch<Ohil</ wmk<kg<gim<m : hqe<uvueux<jxuqkqljxbqz<g{ligg<gxqg<gul<: (i) 6Juqmg<Gjxuienjek<K-bz<w{<gtqe<g{l</ (ii) Nr<gqzwPk<Kg<gtqZt<tnjek<Kdbqi<wPk<Kg<gtqe<g{l</ (iii), 4, 6,.Ngqbw{<gjtg<ogi{<mg{l</ kqi<u: (i) x N, x < 6 we<hkxyv-bz<w{<lx<xl<6 Juqmg<GjxUwe<hjk uquiqg<gl<%x<xigl</ { x x N, x < 6}we<hKOkjubieg{k<kqjeg<Gxqh<hkiGl</ (ii) GxqbQM x we<hkyi<nr<gqzdbqi<wpk<kqjeg<gxqh<hkigg<ogi{<miz<? {x x yvnr<gqzdbqi<wpk<k}we<hokokjubieg{ligl</ -g<g{k<kqje{ x x a, e, i, o, u} nz<zk{a, e, i, o, u} wewpkzil</ (iii), 4, 6, we<xucuqzt<tyi<w{<j{ x n, n N we<x %x<xqeiz< uquiqg<gzil</ { x x n, n N}we<hKOkjubieg{liGl</ Gxqh<H: dxh<hgjth< hm<cbzqmilz< nux<xqe< h{<hgjtg< ogi{<m g{g<gm<mjlh<h Ljxbqz< Gxqh<hqmh<hMukiz< g{g<gm<mjlh<h Ljxbqje uquiqk<kz< Ljx weul< njpg<gzil</ wmk<kg<gim<m 4: g{l< A {x x + 5 7, x N}Jnm<muj{Ljxbqz<wPKg/ kqi<u: x x r<g N. w{<jk< kuqvouoxf<kw{<[l< x + 5 7, x N we<xh{<hqjefqjxu osb<bik/ A {}. wmk<kg<gim<m 5: g{l< A,,,,,, Jg{g<gm<mjlh<HLjxbqz<wPKg/ kqi<u: g{l< Ae<dXh<Hg<gt<Lkz<WP-bz<w{<gtqe<kjzgQpqgtiGl</weOu A x x, n N lx< Xl< n 7. n Gxqh<H: x, y we<hk x lx<xl< y weg<gxqg<gl</..4 LcUXlx<Xl<Lcuqzqg{r<gt< g{l< Ae<dXh<Hg<gjtye<xe<hqe<ye<xigw{<{qmk<okimr<gq?ns<osbz< LcUohXlieiz<?g{l<AJLcUXg{l<wenjpg<gqOxil</ 75

80 nu<uixw{<[l<ljxlcuohxuqz<jzobeqz<a J Lcuqzqg{l< we<ohil</ g{l<a e<dxh<hg<gtqe<w{<{qg<jg?nkqw{<we<xnjpg<gh<hml</-kjen(a) weg<gxqh<ohil</ngoun(a) we<hkg{l< Ae<dXh<Hg<gtqe<w{<{qg<jgbiGl</A yvlcuxg{l<weqz<n(a) yvlpw{<ngl</ wmk<kg<gim<m 6: hqe<uvueux<xqzqvf<k LcUX lx<xl< Lcuqzq g{r<gjtg< Gxqh<hqMg: (i) A {x x W, x < 5}. (ii) {klqpgk<kqzt<tnjek<kh<ht<tqgt<}. (iii) {dekht<tqbqzt<tnjek<kye<hkil<ugh<hli{ui<gt<}. (iv) N. (v) W. (vi) Z. (vii) njek<khgiw{<gt<. kqi<u: (i) x W, x < 5 x 0,,,, 4. A {0,,,, 4}. A e<dxh<hg<gt<0,,,, 4 gjtljxoblkzil<?-v{<mil<? &e<xil<? fie<gil< lx<xl< Jf<kil< dxh<hg<gt< we w{<{qml< osbz< LcUXgqxK/ weou n(a) 5 lx<xl< A yvlcuxg{l<. (ii) klqpgk<kqzt<t njek<kh< ht<tqgjtbl< yu<ouie<xig w{<{qm Nvl<hqk<kiz<? ns<osbz< yv gm<mk<kqz< LcUXl</ weou {klqpgk<kqzt<t njek<kh< ht<tqgt<} wel<g{l<lcuxg{ligl<. (iii) dek ht<tqbqzt<t ye<hkil< ugh<h li{ui<gt< njeujvbl< w{<{qml< osbz< LcUXl</ weou {dek ht<tqbqzt<t njek<k ye<hkil< ugh<h li{ui<gt<} g{l<lcuxg{ligl<. (iv) N {,,, }.-g<g{k<kqe<dxh<hg<gjtyu<ouie<xigw{<{qmnvl<hqk<kiz<? -s<osbz<ljxlx<xh<ohxik/weou N yvlcuqzqg{ligl</ (v) W {0,,,, }. W e< dxh<hgjt yu<ouie<xig Lkz< dxh<h? -v{<mil< dxh<h?////wew{<[l<ljxlx<xh<ohxik/weouwyvlcuqzqg{ligl</ (vi) Z {0,,,,, } e< dxh<hg<gtie 0,,,,. J LjxOb Lkzil< dxh<h?-v{<mil<dxh<h////wew{<[l<ljxlx<xh<ohxik/ngou Z l<lcuqzq g{ligl</ (vii) hgi w{<gt<,, 5, 7,,, 7 gjt w{<[l< Ljx Lx<Xh<ohxikkiz<? njek<kh<hgiw{<gtqe<g{l<lcuqzqg{ligl<...5 oux<xg<g{l<nz<zkdxh<hqzqg{l< dxh<hgt< nx<x yv g{k<kqje oux<xg<g{l< nz<zk dxh<hqzqg{l< we njph<ohil</oux<xg<g{k<jkøweg<gxqh<ohil</ Ø { }lx<xl< n(ø) 0. wmk<kg<gim<m 7: hqe<uvueux<xt<oux<xg<g{r<gt<biju@ (i) {Nz<uGhMl<yx<jxh<hjm-bz<w{<gt<} (ii) {4JyVgiv{qbigh<ohx<xhgiw{<gt<} (iii) {x x W, x N}. (iv) {Ø}. 76

81 kqi<u: (i) Nz<uGhMl<yx<jxh<hjm-bz<w{<gt<wKUlqz<jzwe<hkiz<? { Nz<uGhMl<yx<jxh<hjm-bz<w{<gt<} Ø NGl</ (ii) Yi< w{<{qe< ug w{<gt< lx<xl< nok w{< we lm<mol -Vh<hqe<? nf<k w{<j{h<hgiw{<we<ohil</weou?4 Jgiv{qbigg<ogi{<mhgiw{<wKlqz<jz/ {4JyVgiv{qbigh<ohx<xhgiw{<gt<} ØNGl</ (iii) W g<gdxh<higul<neiz< Ng<GdXh<hig-z<zikyOvdXh<HNGl</ nkiuk? x W, x N x 0. {x x W, x N} {0}. -KYVXh<Hg{l<NGl</ weou-kyvoux<xx<xg{l<ngl</ (iv) {Ø} z<oux<xg<g{l<ø Yi<dXh<hiGl</weOu {Ø} oux<xg<g{lz<z/nkiuk {Ø} Ø. 0{Ø} YIYVXh<Hg{liGl</..6 slieg{r<gt< g{r<gt< A, B we<he yov w{<{qg<jgbqz< dxh<hg<gjtg< ogi{<cvh<hqe< njugt< slie g{r<gt<weh<hml</g{l< A NeK g{l< Bg<G slie g{lig -Vh<hqe<n(A) n(b) NGl</-kje A BwewPKOuil</wMk<Kg<gim<mig? A {,, }, B {, 9, }, n(a), n(b). weou A B...7 slg{r<gt< -V g{r<gt< A, B we<he nok dxh<hgjth< ohx<xqvh<hqe<? nux<jxs< sl g{r<gt<we<gqoxil</-u<uixibqe< A B we wpkgqe<oxil</ wmk<kg<gim<mig? A {,,, 4}, B {x x N, x < 5}weqz< A B. Woeeqz<? Bz<dt<tuqkq x N, x < 5 x,,, 4. fil< nxquk? A, B -v{<czl< nok dxh<hgt< -Vh<hOk A, B -ju sllibqvk<kjzdxkqosb<ukigl</weouyvg{k<kqz<dt<tdxh<hgjtwf<k uiqjsbqzl<uqvh<hl<ohiz<wpkzil</wmk<kg<gim<mig? {,,, 4} {4,,, } {,,, 4} {, 4,, } Gxqh<H: -V g{r<gt< sloleqz<? nju yov w{<{qg<jgbqzie dxh<hgjtg< ogi{<mt<te/weounjuslieg{r<gt</wmk<kg<gim<mig?{,,, } lx<xl< {,,, } -v{<ml<slg<g{r<gtibqvk<kozimslieg{r<gtigul< -Vg<gqe<xe/ Neiz<slieg{r<gt<slg{r<gtig-Vg<gOu{<Ml<we<hkqz<jz/wMk<Kg<gim<mig? {,,, } lx<xl< {,,, 4} we<el<g{r<gt<yovw{<{qg<jgbqziedxh<hgjtg< ogi{<mt<tkiz< nju slie g{r<gt</ Neiz< nju sl g{r<gtigik/ Woeeqz<?, {,,, } lx<xl<, {,,, 4}...8 YVXh<Hg<g{l< Yi< dxh<h lm<mol ogi{<m g{k<kqje Yi< YVXh<Hg< g{l< we<gqoxil</ wmk<kg<gim<mig? -vm<jmh< hjm hgi w{<gtqe< g{l< Yi< YVXh<Hg< g{ligl</ 77

82 Woeeqz<?hgiw{<gtqz<-vm<jmh<hjmw{<{ig-Vh<hKlm<MOlNGl</weOu {njek<k-vm<jmh<hjmhgiw{<gt<} {} lx<xl< n(a)...9 njek<kg<g{l< yv g{qk Nb<uqz< Okie<Xl< g{r<gt< njek<kqe< dxh<hgt< yv g{k<kqz< dxh<hgtig -Vg<Gl</ -g<g{k<kqje njek<kg< g{l< (universal set) we<xjpg<gqe<oxil</ njek<kg< g{k<kqje U nz<zk E we<x Gxqbiz< Gxqh<hqMgqe<Oxil</ wmk<kg<gim<mig? yv g{qk Nb<uqz< gvkl< g{r<gt< A {,, 4, 5}, B {,, 7, }weqz<?njek<kg<g{l<u uqje U {,,, 4, 5, 7,,} nz<zk U N nz<zk U W nz<zk U Zweg<ogit<tzil</..0 dm<g{l< A lx<xl< B we<he -V g{r<gt< we<g/ A e<yu<ouivdxh<hl< B e< dxh<hieiz<? A bqje B e< Yi< dm<g{l< (subset) we<xjpg<gqe<oxil</ -kjeob B NeKA e< lqjgg<g{l< (superset) we<xjpg<gqe<oxil</ -u<u{<jljb A B nz<zk B A we<xgxqbiz<wpkgqoxil</-r<g we<x Gxq dm<g{l<nz<zk dt<tmr<gqbk we<hjkg< Gxqg<gqe<xK/-u<uiOx we<x Gxq lqjgg<g{l< nz<zk ogi{<mt<tk we<hjkg< Gxqg<gqxK/ wmk<kg<gim<mig? A {,,,, }, B {,,,,, } we<xg{r<gjtg<gvkg/-r<gaz<dt<tdxh<hgtie,,,, Ngqbju B bqzl<-vg<gqe<xe/weouanekb e<dm<g{ligl<a nkiuk? A B. -r<g B, A. weou B NeK A e< dm<g{lz<za -f<k d{<jljb B A we<x Gxqbiz< Gxqh<hqMOuil</-r<G we<x GxqbieK dm<g{lz<znz<zkdt<tmr<gikkwe<xohivt<hml</ Gxqh<H: X we<xg{l< Y we<xg{k<kqe<dm<g{ligul<?g{l< Y NeKg{l< X x<g dm<g{ligul< njlf<kiz<? X l< Y l< nok dxh<hgjth< ohx<xt<te/ weou? -f<fqjzbqz<x l<y l<slg<g{r<gtigl</x Y weqz<?xe<yu<ouivdxh<hl<y e< dxh<hig-vg<gl<;olzl<y e<yu<ouivdxh<hl<x e<dxh<hig-vg<gl</x l<? Y l< g{r<gt<<<a w{<gt< nz<z/ -Vh<hqEl< w{<gtg<gqjmob hbe<hmk<kl< Gxqjb slg<g{r<gjtg< Gxqg<gh< hbe<hmk<kgqe<oxil</ Gxqjb -Vg{r<gt< X, Y -ux<xqx<gqjmob hbe<hmk<kl< OhiK? fil< nxquk? X e< dxh<hgt< njek<kl< Y z< dt<teaolzl<y e<dxh<hgt<njek<kl<x z<dt<tewe<hokankiuk?x l<y l< nokdxh<hgjtg<ogi{<mt<te/ Gxqh<H: yu<ouiv g{l< A l< A g<og dm<g{lig -Vg<gqe<xK/ Woeeqz< A e< dxh<hgt< A z< dt<te/ oux<xg<g{l< Ø NeK yu<ouiv g{l< A g<gl< dm<g{lig -Vg<gqe<xKA Woeeqz< Ø NeK A g<g dm<g{lig njlbuqz<jzobeqz<? oux<xg<g{l< Ø z< A -z< -z<zik Yi< dxh<h -Vg<g Ou{<Ml<A-KLv{<himz<zui@weOuA A lx<xl< Ø A. 78

83 4/4/ kgdm<g{l< X lx<xl< Y we<he-vg{r<gt<we<g/g{l< X NeKg{l< Y e<dm<g{lig -Vf<K? u X we<xuix Yi< dxh<h u Y weqz<? X we<x g{liek Y e< yv kg g{l< )proper subset) we<xjpg<gh<hmgqe<xk/ -kje X Y we<x Gxqh<hqMgqe<Oxil</ -f<fqjzbqz<? -kje Y X we<xl< wpkgqe<oxil</ wmk<kg<gim<mig? A {,,, 4}, B {0,,,, 4, 5} we<g/ A z< dt<t njek<k dxh<hgtl< B z< dt<tea nkiuk A NeK B e< dm<g{ligl</ Neiz< A z< -z<zik 5 we<x dxh<ohie<x B z< dt<tka nkiuk 5 A, 5 B. weou A NeK B e<kgdm<g{ligl<ankiuka B. Gxqh<H: A NeK A g<og dm<g{l< we<x Wx<geOu g{<cvf<okil</ Neiz< A NeK A g<gkgdm<g{lz<zwe<hjknxqf<kogit<g/weoua JA e<kgidm<g{l< (improper subset) we<xjpg<gqe<oxil</.. nmg<gg<g{l< yv kvh<hm<m g{l< A e< njek<k dm<g{r<gtqe< okigh<hqje A e< nmg<gg<g{l<(power set)we<gqoxil</a e<nmg<gg<g{k<kqje p(a)we<xgxqbiz< Gxqh<hqMgqe<Oxil</ wmk<kg<gim<mig? A {a, b} weqz<? A e< dm<g{r<gt< {},{ a },{ b},{ a,b}. weoup(a) {{},{ a},{ b},{ a,b}. -r<ga z< dxh<hgt<dt<te; p(a) z<4 dxh<hgt< dt<te/ weou A e< Nkq w{< A p(a) e<nkqw{< 4; nkiukn(a) ; n[p(a)] 4. -jkh<ohizou?a {a, b, c} weqz<? p(a) {{},{ a},{ b},{ c},{ a,b},{ b,c},{ c,a},{ a, b,c} }. -r<ga e<nkqw{<n(a) ; p(a)e<nkqw{<n[p(a)] 8. -kqzqvf<kfil< nxquk?n(a) mweqz< n[p(a)] m. $k<kqvl<;n[p(a)] n(a). hbqx<sq... hm<cbz<njlh<hqjeg<ogi{<mhqe<uvl<g{r<gjtlq{<ml<wpkg: (i) A { SUNDAY we<xosiz<zqz<dt<tdbqovpk<kg<gt<}. (ii) B {N{<ce<hVugizr<gt<}. (iii) C { MATHEMATICSwe<xosiz<zqz<dt<twPk<Kg<gt<}. (iv) D { TAMILNADUwe<xosiz<zqz<dt<twPk<Kg<gt<}.. hm<cbz<njlh<hqz<hqe<uvl<g{r<gjtwpkg: (i) P {x x we<hk TAMILNADUwe<xosiz<zqz<dt<twPk<K}. (ii) Q {x x yvlpw{<lx<xl< x < 7}. (iii) R {x x NeKke<-zg<gr<gtqe<%Mkz<9we<xuiXt<tYi<iqzg<gw{<}. 79

84 . g{g<gm<mjlh<hnjlh<hqz<hqe<uvl<g{r<gjtwpkg: (i) {, 6, 9, } (ii) {5, 5, 5, 65} (iii) {,, 5, } (iv) {, 4, 9, 6, 5, 6, 49, 64, 8, 00}. 4. -mkhg<gl< hm<cbz< njlh<hqz< uquiqk<kt<t g{l< yu<ouie<jxbl< nok uzh<hg<gl<g{g<gm<mjlh<hnjlh<hqz<uquiqk<kt<tnokg{k<kme<ohivk<kul<. (i) {,,, 6} (a) {x x yvhgiw{<lx<xl<nk6e<yvugh<hie<}. (ii) {, } (b) {x x NeK0 Juqmg<GjxuieYi<yx<jxh<hjm-bz< w{<}. (iii) {, 4, 6, 8} (c) {x x yvlqjglpw{<lx<xl<6e<ugh<hie<}. (iv) {,, 5, 7, 9} (d) {x x NeK0Juqmg<GjxuieYi<-vm<jmh<hjm-bz< w{<}. 5. hqe<uvl<g{r<gtqe<nkqw{<gjtg<g{<mhqcg<gul<: (i) Nr<gqzwPk<Kg<gtqz<dt<tnjek<Kdbqi<wPk<Kg<gtqe<g{l</ (ii) 00Juqmg<Gjxuienjek<Kui<g<gw{<gt<g{l</ (iii) A { x x NeK mathematics we<xosiz<zqz<dt<twpk<k}. (iv) B {x x < 0, x W}. (v) C {x x < 4, x Z}. (vi) 0 g<gl< 0g<Gl<-jmh<hm<mhgiw{<gtqe<g{l</ 6. hqe<uvl<lcuxg{r<gtqe<uqmhm<mdxh<hgjtwpkul<: (i) A {, 0, 00,,,,00,000}. (ii) B {, 5, 8,,,, 0, }. 7. hqe<uvl<lcuqzig<g{r<gtqz<nmk<k&e<xdxh<hgjtwpkul<; (i) C {, 6,, 4,,,,.}. (ii) D { 4,,,,,,, }. 8. hqe<uvl<g{r<gt<oux<xg<g{r<gtiwe<hjkg<%xg: (i) A {Nz<uGhMl<-vm<jmh<hjm-bz<w{<gt<}. (ii) B { x x R, x + 0}. (iii) C {fie<ghg<gr<gt<ogi{<mhz<ogi{r<gt<}. (iv) D {Jf<Khg<gr<gt<ogi{<mfix<gvr<gt<}. 9. A {p, q, r, s}, B {,, 5, 7}, C {q, r}, D {8, 4, 6, }, E {r, q, s, p} F {, 6, 4, 8}we<g/hqe<uVuesiqbinz<zKkuxiwewPKg: (i) A lx<xl< C slieg{r<gt</ (ii) A lx<xl< E slg{r<gt</ (iii) F lx<xl< B slieg{r<gt</ (iv) A lx<xl< B slg{r<gt</ (v) F lx<xl< D slg{r<gt</ 0. hqe<uvl<yu<ouivg{k<kqe<nmg<gg<g{k<kqjewpkg: (i) A {, } (ii) B { x, y, z} (iii) C {a, b, c, d} 80

85 . (i) n(a) 5 weqz<? n[p(a)]jg<gi{<g/ (ii) n[p(a)] 8weqz<? n(a) Jg<gi{<g/.. g{s<osbzqgt< -h<ohipk? (i) -Vg{r<gtqe<Osi<h<H (ii) -Vg{r<gtqe<oum<M (iii) yvg{k<kqe<lqjgfqvh<h Ngqbux<jxg<gx<xxqOuil</ (i) -Vg{r<gtqe<Osi<h<H A lx<xl< B we<he-vg{r<gt<we<g/a bqozinz<zk B bqozinz<zk -v{<czoli-vg<gl<njek<kdxh<hgjtbl<ogi{<mg{k<kqjea lx<xl<b e< Osi<h<H (union) we<gqoxil</a, B-ux<xqe<Osi<h<Hg{k<kqjeA U Bweg< Gxqh<hqMgqe<Oxil</weOu A U B { x x A nz<zk x B nz<zk x A lx<xl< B}. -kjea U B {x x A nz<zk x B} wes<svg<gligwpkouil</-r<gänz<zk} we<x osiz< Ängh<hMk<kq -j{f<k} we<x ohivtqz< ogit<th<hmgqe<xka nkiuk x A nz<zk x B we<hk x A nz<zk x B nz<zk x A lx<xl< B we<hjkg< Gxqh<hkiGl</ wmk<kg<gim<m 8: A {,,, 4}, B {, 4, 6} weqz<a U BJg<g{<Mhqc/ kqi<u: A lx<xl< B -ux<xqe< njek<k dxh<hgjtbl< hm<cbzqm<m? lq{<ml< uvkjz uqzg<g?,,, 4,, 4, 6. weou?a U B {,,, 4, 6}. (ii) -Vg{r<gtqe<oum<M A, B we<he -Vg{r<gt< we<g/ A, B -ju -v{<cx<gl< ohikuig njlf<k dxh<hgtiz< njlbh< ohx<x g{k<kqje A lx<xl< B -ux<xqe< oum<m (intersection) we<gqoxil</-u<oum<mg<g{k<kqjea I Bwe<xGxqbiz<Gxqh<hqMgqe<Oxil</ weou? A I B {x x A lx<xl< x B}. I B Jg<g{<Mhqc/ wmk<kg<gim<m 9: A {,, }, B {,, 4} weqz< A kqi<u: A, B-ux<xqz<dt<tnjek<KdXh<Hgt<;,,,,, 4 A, B-ux<xqe<ohiKdXh<Hgt<;,. A I B {, }...4 -j{h<hge<xg{r<gt< A lx<xl< B -jubqv{<cx<gl< ohikuie dxh<h -z<jzobeqz<? nu<uqv g{r<gjt -j{h<hge<x g{r<gt< (disjoint sets)we<gqoxil</nkiuk?a I B Ø nz<zk { } weqz<? A Bl< B Bl< -j{h<hge<x g{r<gtigl</ wmk<kg<gim<mig? A {,,, 7}, B {4, 5, 6}weqz<? A I B { }. weou ABl< B Bl< -j{h<hge<x g{r<gt</ 8

86 ..5 uqk<kqbisg<g{l< A lx<xl<< B we<he-vg{r<gt<we<g. B z< -z<zik A e<dxh<hgt< njek<jkbl< ogi{<m g{k<kqje yv uqk<kqbisg{l< (difference set) we<gqoxil</ -kje A Bweg<Gxqh<hqMgqOxil</weOu? A B {x x A, x B}. Gxqh<H: B A {x x B, x A}. wmk<kg<gim<m 40: A {,,, 4, 5, 6}, B {,, 7} weqz<? A B lx<xl< B A-ux<jxg< g{<mhqcg<gul</ kqi<u: A B {, 4, 5, 6}. B A {7}. Gxqh<H: A B B A...6 yvg{k<kqe<fqvh<hq A we<hkkvh<hm<myvg{l<? U we<hknjek<kg<g{l<we<g/a z<-z<zik U e< dxh<hgjtg< ogi{<m g{k<kqje g{l< A e< fqvh<hq )complement) we<gqoxil</ -g<g{k<kqje A nz<zk A c nz<zk A we<xgxqbqeiz<gxqh<hqmgqe<oxil</ Gxqh<H: A c U A. A:,,, 4, 5, 6 B:,, 7 wmk<kg<gim<m 4: U {,,, 4, 5}, A {, 4} weqz<? A c Jg<gi{<g/ kqi<u: A c {,, 5}. U:,,, 4, 5 A :, 4..7 g{g<ogit<jgbqz<yvlx<oxivjl g{g<ogit<jgbqz<? g{r<gtqe< Osi<h<Hg< g{k<kqz< dt<t dxh<hgtqe< w{<{qg<jgjbg< g{g<gqml< hbet<t Lx<oxiVjl dt<tk/ nk hqe<uvlix %xh<hmgqe<xk; A, B we<he-vg{r<gt<weqz<? n(a U B) n(a) + n(b) n(a I B). wmk<kg<gim<m 4: A {,, 4, 5, 6, 7, 8, 9}, B {,,, 5, 7}weqz< n(a), n(b), n(a U B) lx<xl< n(a I B) Ngqbux<jxg<gi{<g/OlZl< n(a U B) n(a) + n(b) n(a I B)we<x Lx<oxiVjljbs<siqhii<g<gUl</ kqi<u: fil<nxquk? A U B {,,, 4, 5, 6, 7, 8, 9} A I B {,, 5, 7}. n(a) 8, n(b) 5, n(a U B) 9 lx<xl< n(a I B) 4. weou n(a) + n(b) n(a I B) r<g n(a U B) 9. weou n(a U B) n(a) + n(b) n(a I B) we<x Lx<oxiVjl siqhii<g<gh<hmgqe<xk/ 8

87 hbqx<sq... A U B lx<xl< A I B -ux<jxhqe<uvl<g{r<gtg<ggi{<g: (i) A {a, e, i, o, u} lx<xl< B {a, b}. (ii) A {,, 5} lx<xl< B {,, }. (iii) A {x x Yi<-bz<w{<lx<Xl< < x 6} lx<xl< B {x x Yi<-bz<w{<lx<Xl< 6 < x < 0}. (iv) A {p, q, r} lx<xl< B Ø.. hqe<uvl<g{r<gtg<g A B, A C lx<xl< B A Ngqbux<jxg<g{<Mhqcg<gUl<: (i) A {a, b, c, d, e, f, i, o, u}, B {a, b, c, d} lx<xl< C {a, e, i, o, u}. (ii) A {, 4, 5}, B {5, 6, 7, 8} lx<xl< C {7, 8, 9}.. U {a, b, c, d, e, f, g, h}, A {a, c, g} lx<xl< B {a, b, c, d, e, f}weqz<? hqe<uvueux<jxg<g{<mhqcg<gul<; (i) A c (ii) B c (iii) (A U B) c (iv) (A c I B) c (v) A c I B c (vi) A c U B c...8 oue<hml< g{k<kqe< lqk fqgp<k<kh<hml< osbzqgjt )Osi<h<Hg< g{l<? oum<mg<g{l<? fqvh<hg<g{l<ngqbux<jxnjlk<kz<*g{<upqg<gi{<hkx<gdkuqosb<bl<ujgbqz<? \ie< oue< (John Venn) we<x Nr<gqOzb g{qk uz<zfi< g{r<gjt ujvhmr<gt< &zl< njlg<gl< upqbqje nxqlgh<hmk<kqeii</ -u<uix g{r<gjtg< Gxqh<hqMl< ujvhmr<gjt oue<hmr<gt< (Venn diagrams) we<xjpg<gqe<oxil</ -l<ljxbqz< njek<kg<g{liekyvosu<ugk<kqeiz<gxqg<gh<hml<<anke<kgdm<g{r<gt<ns< osu<ugk<kqet< um<mr<gtiz< Gxqg<gh<hMl</ -h<ohipk oue<hmk<kqz< hz<oux g{r<gtqe<njlh<hqjek<kvouil</ njek<kg{l< hml<. A U B hml<. A I B hml<. 8

88 A c hml<.4 B c hml<.5 (A U B) c hml<.6 (A I B) c hml<.7 A B hml<.8 B A hml<.9 wmk<kg<gim<m 4: gqop (hml<.0jh< hii<g<gul<) kvh<hm<mt<t hmk<kqzqvf<k? hqe<uvueux<jxg<gi{<g; (i) A U B (ii) A I B (iii) (A U B) kqi<u: -r<g U {,,, 4, 5, 6, 7}. (i) A U B {,,, 4, 5, 6}. (ii) A I B {, 5}. (iii) (A U B) c {7}. hml<.0 84

89 wmk<kg<gim<m 44: oue<hmk<jkh<hbe<hmk<kq? A {,, 5, 7} lx<xl< B {, 9, } Ngqbg{r<gjtg<gim<Mg/OlZl<n(A U B) n(a) + n(b) n(a I B) we<x $k<kqvk<jks<siqhii<g<gul</ kqi<u: A U B {,, 5, 7} U {, 9, } {,, 5, 7, 9, } n(a U B) 6. () A I B {,, 5, 7} I {, 9, } {} n(a I B). fil<ohx<xqvh<hk n(a) 4, n(b). n(a) + n(b) hml<. n(a) + n(b) n(a I B) 7 6. () (), () -ux<xqzqvf<k (A U B) n(a) + n(b) n(a I B). Gxqh<H; A lx<xl< B -u<uqv{<ml<-j{h<hge<xqvh<hqe<?a I B Ø. OlZl< n(a I B) 0. weou n(a U B) n(a) + n(b). wmk<kg<gim<m 45 : Yi<Diqz<?jkbz<uGh<hqx<Gs<osz<Zl<oh{<gtqe<w{<{qg<jg45? Okim<mOujzuGh<hqx<Gs<osz<Zl<oh{<gtqe<w{<{qg<jg70/-ui<gtqz<0Ohi< -v{<m ugh<hgtg<gl< osz<gqxii<gt< weqz<? oue<hmk<kqjeg< ogi{<m? hqe< uvueux<jxg<g{<mhqcg<gul<; (i) yvgxqh<hqm<mugh<hqx<glm<ml<ose<xui<gt<wk<kjeohi<@ (ii) wk<kje Ohi< olik<kk<kqz< -u<uqv{<m ugh<hgtqz< WOkEl< ye<xqx<giuk ose<xui<gt<@ kqi<u: A, B we<he LjxOb jkbz< ugh<h? Okim<m Oujz ugh<h -ux<xqx<gs< osz<zl< oh{<gtqe< g{r<gt<weqz<? n(a) 45, n(b) 70. kvh<hm<mt<t uquvk<kqe<hc? n(a I B) 0. weououe<hmk<kqzqvf<k? (i) (a) jkbz< ugh<hqx<g lm<ml< ose<x oh{<gtqe< w{<{qg<jgn(a B) , hml<. (i) (b) Okim<m Oujz ugh<hqx<g lm<ml< ose<x oh{<gtqe<w{<{qg<jg n(b A) (ii) -u<uqv{<mugh<hgtqz<wokel<yvugh<hqx<giukose<xoh{<gtqe<w{<{qg<jg? n(a U B) kjeouxuqkligul<ohxzil<; n(a U B) n(a) + n(b) n(a I B) wmk<kg<gim<m 46: Yi< Diqz< dt<t 45 uqmgtqz<? 5 uqmgtqz<okijzg<gim<sqh<ohm<c -Vg<gqe<xKA 0 uqmgtqz<uioeizqh<ohm<c-vg<gqe<xk. wk<kje uqmgtqz< -v{<ml< -Vg<gqe<xe/ kqi<u: A {okijzg<gim<sqh<ohm<cgt<dt<tuqmgt<} 85

90 B {uioeizqh<ohm<cgt<dt<tuqmgt<} A I B {okijzg<gim<sqh<ohm<clx<xl<uioeizqh<ohm<c-v{<ml<dt<tuqmgt<}. n(a I B) x we<g/hqe<houe<hmk<kqzqvf<k? 5 x + x + 0 x 45 n.k 55 x 45 n.k x n.k x 0 n.k x 0. okijzg<gim<sqh<ohm<clx<xl<uioeizqh<ohm<c -v{<jmbl<ogi{<muqmgtqe<w{<{qg<jg 0. hml<. wmk<kg<gim<m 47: 5 li{ig<gi<gt< ogi{<m ugh<hqz<? 8 Ohi< uvzix himk<kqz< Oki<s<sqBx<xei<; g{g<gh< himk<kqz< Ohi< Oki<s<sqBx<xei<A 8 Ohi< -v{<m himr<gtqzl< Oki<s<sqBx<xei</ wk<kje li{ig<gi<gt< -v{<m himr<gtqzl< Okiz<uq ohx<xei<@ oue< hmk<jkg< ogi{<m (i) uvzix<xh< himk<kqz< lm<ml< Oki<s<sq ohx<xui<gt<wk<kjeohi< (ii) g{g<gh<himk<kqz<lm<ml<oki<s<sqohx<xui<gt<wk<kje Ohi<we<hjkg<g{<Mhqcg<gUl</ kqi<u: H, M we<he LjxOb uvzix? g{g<g himr<gtqz< Oki<s<sq ohx<x li{ui<gtqe< g{r<gt<weqz<? n(h) 8, n(m), n(h I M) 8 we<x kvh<hm<mt<tk/ H U M we<x g{l<? uvzix nz<zk g{g<g -ux<xqz< Oki<s<sqBx<x li{ui<gtqe<g{k<kqjeg<gxqg<gqxk/weou? uvzix nz<zk g{g<g -ux<xqz< ye<xqz< hml<.4 Oki<s<sqBx<xli{ui<gtqe<w{<{qg<jg? n(h U M) n(h) + n(m) n(h I M) nkiuk? n(h U M) ugh<hqz< olik<kl< 5 Ohi< -Vg<gqe<xei</ weou -v{<m himr<gtqzl< Okiz<uqBx<xui<gtqe< w{<{qg<jg 5 NGl</ oue< hmk<jkg<ogi{<m? fil< gi{<hk? )i*uvzixhimk<kqz<lm<ml<oki<s<sqbx<xui<gtqe<w{<{qg<jg n(h ) n(h I M) (ii) g{g<gh<himk<kqz<lm<ml<oki<s<sqbx<xui<gtqe<w{<{qg<jg n(m) n(h I M)

91 hbqx<sq... A {,, 5, 8, 0}, B {, 7, 8, 9}, C {,, 5, 8, }kvh<hce<? (i) n(a U B) (ii) n(b I C) (iii) n(a B) (iv) n(c B) Ngqbux<jxg<gi{<g/. n(a) 0, n(b) 4 lx<xl< n(a I B) weqz<? n(a U B)Jgi{<g/. ye<hkil< ugh<h li{ui<gt< A, B Ngqb -V Oki<Ugtqz< ye<jxobel< wpk Ou{<Ml</ Oki<U A uqje 40 OhVl<? Oki<U B bqje 0 li{ui<gtl<? -v{<jmbl< 0 OhVl< wpkgqe<xei</ nu<ugh<hqz< dt<t li{ig<gi<gtqe< w{<{qg<jgjbg<g{<mhqcg<gul</ 4. yvgcbqvh<hhgkqbqz<dt<t400 uqmgtqz<wmg<gh<hm<mgvk<kg<g{qh<hqe<hc? 50 Ohi<Nr<gqzosb<kqk<kit<gjtBl<, 70 Ohi<klqp<osb<kqk<kit<gjtBl<? 65 Ohi< -v{<cjebl< uir<ggqe<xii<gt</ wk<kjeohi< wf<kuqklie osb<kqk< kijtbl<uir<gukqz<jzwe<hjkg<g{g<gqmul</ 5. Yi< Diqz< 00 GMl<hr<gt< dt<te/ nr<g A, B we<x -V Osih<H ujggt< lg<gtqjmobhvuqbt<te/60 GMl<hr<gt<A ujgosih<jhbl<? 40 GMl<hr<gt< B ujg Osih<jhBl< hbe<hmk<kgqe<xei</ njek<k GMl<hr<gTl< -u<uqv ujg Osih<Hgtqz< WOkEl< ye<xqjeh< hbe<hmk<khui<gtibqvh<hqe<? -v{<m ujg Osih<HgjtBl< hbe<hmk<kl< GMl<hr<gt< wk<kje we<hjkg< g{<mhqcg<gul</ Ohi< gzf<kogi{<m yv uqvf<kqz<? 0 Ohi< gihqbl<? 50 Ohi< CBl<? sqzi< -v{<cjebl<hvgqei</0 Ohi<gihqnz<zKC-ux<jxnVf<kuqz<jzweqz<? gihq lx<xl< C -v{<jmbl< hvgqbui<gt< wk<kje Ohi< we<hjkg< g{<mhqcg<gul</ 7. yv gz<z~iq-kpqz<?-bx<hqbz< GP? g{g<gg< GP?-jubqv{<cZl<%m<mig 50 li{ui<gt<dxh<hqei<gtig dt<tei</g{g<gg<gpuqz<70 li{ui<gt< dxh<hqei<gtib< -Vg<gqe<xei< lx<xl< 50 li{ui<gt< -v{<m GPuqZl< dxh<hqei<gtig -Vg<gqe<xei< weqz<? -bx<hqbz< GPuqz< dxh<hqevib< -Vh<hui<gtqe<w{<{qg<jgjbg<g{<Mhqc/ 8. 0 li{uqbi< dt<t ugh<hqz<? 0 li{uqbi< him<mh<ohim<cbqz< hr<ogx<xei<a 0 li{uqbi< him<m? fim<cbl< -v{<czl< hr<ogx<xei</ 5 li{uqbi< -v{<cz< 87

92 ye<xqzl<%mh< hr<ogx<guqz<jz/ wk<kjeohi< fim<cbk<kqz< lm<ml< hr<ogx<xei< we<hjkg<g{<mhqcg<gul</ 9. Ogijmgiz uqmljxbqe< OhiK? XII ugh<h li{ui<gtqz< 5 Ohi< g{q{q ugh<hgtg<gs< osz<gqe<xei<a 5 Ohi< FjpUk< Oki<uqx<gie hbqx<sq ugh<hgtg<gs< osz<gqe<xei<a 5 li{ui<gt< -v{<m ugh<hgtg<gl< osz<gqe<xei</ ugh<hqz< li{ui<gtqe< olik<k w{<{qg<jg 50 weqz<? wf<k ugh<hqzl<hr<ogx<gikli{ui<gtqe<w{<{qg<jgwe<eoue<xg{<mhqcg<gul</ uqjmgt< hbqx<sq.. (i) (ii). 0 (iii).08 0 (iv) (v) (vi) (vii).7 0 (viii) (ix) (x) (xi). 0 0 (xii) 9 0. (i) (ii) (iii) (iv) (v) (vi) (vii) 40 (viii) 4. (i) (ii) (iii) (iv) (v) hbqx<sq... (i) siq (ii) kux (iii) kux (iv) kux (v) siq (vi) kux. (i) log (ii) log 4 (iii) log (iv) log 79 6 (v) log 6 6 (vi) log (i) 4 (ii) (iii) 4 (iv) (v) 4 5 (vi) (vii) 6 (viii) 64 (ix) 4 4. (i) 0 (ii) 7 (iii) (iv) 5 (v) 0 (vi) 5 (vii) (viii) 6 (ix) (x) 5. (i) C (ii) A (iii) D (iv) C (v) A (vi) D 88

93 6. (i) log 0 8 (ii) 8 50 log (iii) (iv) log 8 (v) 7 5 log 0 (vi) log (i) x + y (ii) x (iii) y x (iv) y (v) t y (vi) x + y + z (vii) (x y) (viii) y + z (ix) z + t (x) x + y (xi) t x z (xii) x y z + t 4 (iii) (iv) (vii) 9 (viii) 9 (ix) (x) 4 hbqx<sq.. 8. (i) (ii). (i) (ii) (iii) 0 (iv) (v) (vi) (vii) 5 (viii). (i) (ii) (iii) 4 (iv) (v) (vi). (i) 0 (ii) (iii) (iv) (v) 4 (vi) 4. (i) 4.55 (ii).55 (iii).55 (iv).55 (v) 0.55 (vi).55 (vii) 4.55 (viii) (i) (ii) 5.96 (iii).58 (iv) (v)..670 (vi).7 (v) (xi) 6. (i) (ii).705 (iii) 0.87 (iv) (v) (vi) (i) (ii) 8.56 (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) (i) 04 (ii) 0550 (iii) (iv) 80 (v) (vi) (vii) (viii) (ix) 0.64 (x) 4. (xi) 0.06 (xii) 0.89 (xiii) 0.75 (xiv) (vi)

94 hbqx<sq... (i) A {U, A} (ii) B { Ogijmgizl<?GtqIgizl<?-tOueqx<gizl<?-jzBkqIgizl< } (iii) C { M, A, T, H, I, C, S, E.} (iv) D { T, A, M, I, L, N, D, U}. (i) P { T, A, M, I, L, N, D, U} (ii) Q {,,, 0,,,, 4, 5, 6} (iii) R { 8, 7, 6, 45, 54, 6, 7, 8, 90}. (i) A {x x n, n,,, 4} (ii) B {x x 5 n, n,,, 4} (iii) C {x x N, x NeKyx<jxh<hjmw{<<} (iv) D {x x N, x n, 0 < n 0} 4. (i) (c) ; (ii) (a); (iii) (d); (iv) (b) 5. (i) 5 (ii) 9 (iii) 8 (iv) 0 (v) 7 (vi) 4 6. (i) 000, 0000 (ii) 4, 7 7. (i) 48, 96, 9 (ii) 0,, 8. (i) -z<jz (ii) oux<xg<g{l< (iii) -z<jz (iv) oux<xg<g{l< 9. (i) kux (ii) siq (iii) siq (iv) kux (v) siq,,,, 0. (i) p(a) {{}{ }{ }{ } (ii) p(b) {{}{ x, y}{}{, z, x, y}{, x, z}, { y, z}, { x, y, z}, { }} (iii) p(c) {{a},{b},{c},{d},{a, b}, {a, c}, {a, d}, {b, c},{b, d},{c, d}, {a, b, d}, {b, c, d},{c, d, a}, {a, b, c},{a, b, c, d},{}}. (i) (ii) 7 hbqx<sq... (i) A U B {a, e, i, o, u, b}, A I B {a} (ii) A U B {,,, 5}, A I B {, } (iii) A U B {,, 4, 5, 6, 7, 8, 9}, A I B Ø (iv) A U B {p, q, r}, A I B Ø. (i) A B {e, f, i, o, u }, A C {b, c, d, f }, B A Ø (ii) A B {, 4}, A C {, 4, 5}, B A {6, 7, 8}. (i) A c {b, d, e, f, h} (ii) B c {g, h} (iii) (A U B) c {h} (iv) (A c I B) c {a, c, g, h} (v) A c I B c {h} (vi) A c U B c {b, d, e, f, g, h } hbqx<sq... (i) 7 (ii) (iii) (iv)

95 4. -bx<g{qkl< -bx<g{qkk<jkg< Gxqg<Gl< Nr<gqzs< osiz< Algebra NeK al jabr we<x nvihqbs< osiz<zqzqvf<k uvuqg<gh<hm<mkigl</ nvihqb olipqbqz< al we<hk nf<k we<xl<? jabr we<hk djmf<k hgkqgtqe< ye<xqj{h<h we<xl< ohivt<hml</ -s<osiz<zqe< hbe<him<cje YI wmk<kg<gim<ce< &zl< Hiqf<K ogit<tzil</ x we<xsle<him<cz<-mkhg<gliekx lx<xl< 5 -u<uqv{<mhgkqgtqe<%mkzigl</fil< ( 5) Jsle<him<ce<-Vhg<gr<gtqZl<%m<ceiz<)OsIk<kiz<*?flg<G (x + 5) + ( 5) 9 + ( 5) nz<zk x + [5 + ( 5)] 9 5 nz<zk x nz<zk x 4 weg< gqjmg<gqxk/ -r<g 9 lx<xl< 5 wel< -v{<m hgkqgt< -j{g<gh<hm<m 4 ohxh<hm<mk/-u<ujgg{qkol-bx<g{qkl< weh<hmgqe<xk/-f<kqbg{qkoljkgt< NIbhm<mI? hqvl<lgh<ki? laiuqvi? >kvi lx<xl< hi^<gvi II Ohie<xuIgt< -h<himh<hqiqju ohvltuqz< utik<kt<tei/ gqovg<g g{qk Oljk cobihi{<m^< we<hui -bx<g{qkk<kqz< liohvl< utis<sqjb dvuig<gqbt<tkiz< -ujv -bx<g{qkk<kqe<kf<jkwe<xjpg<gqe<oxil</ g{qkk<kqe<-h<himh<hqiquqz<?a, b, x, y Ohie<xwPk<Kg<gjtw{<gjtg<Gxqg<gh< hbe<hmk<kouil</-g<gxqgt<?w{<gt<-ux<jxg<ogi{<m%m<mz<?gpqk<kz<?ohvg<gz<? ugk<kz<? uig<g&zl< wmk<kz< Ngqb osbx<himgtqeiz< -bx<g{qkg< Ogijugt< weh<hmujkh<ohxgqe<oxil</-bx<g{qkg<ogijugt<sqzgqopogimg<gh<hm<mt<te; 5 x + x +, (a + b)(x y),, 4 x + 9 y. 9 x + 7 -V -bx<g{qkg< Ogijugjts< slh<hmk<kukiz<? -bx<g{qks< sle<him gqjmg<gqe<xk/ -bx<g{qks< sle<himgtg<g sqz wmk<kg<gim<mgt< gqop 7 x ogimg<gh<hm<mt<te; x + x + 6, 5 x +, x x -bx<g{qkg< Ogijubqz< dt<t wpk<kg<gt< ng<ogijubqe< lixqgt< weh<hml</ wmk<kg<gim<mig? ax + b we<x Ogijubqz<? a lx<xl< b Gxqh<hqm<m w{<gt<? x Gxqh<hqmh<hmuqz<jzweqz<?ax + b g<gx lixqbigl</-u<uioxx + xy + y z< x lx<xl< y lixqgt</ yv Ogijubqz< dt<t lixqgtg<g Gxqh<hqm<m lkqh<hgt< M osb<b? ng<ogijubiek yv w{<{qjek< kvgqe<xk/ -f<k w{<{qje? ng<ogijubqe< lkqh<h we<gqoxil</wmk<kg<gim<mig?x + y we<hkyi-bx<g{qkg<ogiju?x lx<xl< y -g<ogijubqe<lixqgt</ x x<g l<?y x<g l<hqvkqbqm?x + y e<lkqh<h () + 9. x x<g l<?y x<g l< hqvkqbqm<miz<?x + y ( ) + 4. yvogijubqe<lixqbqe< sqz olb<ob{< lkqh<hgtg<g ng<ogijubiek olb<ob{< lkqh<hqjek< kvilx< Ohigzil</ wmk<kg<gim<mig? x we<x Ogijubqz< x weh<hqvkqbqce< 9

96 ?-KyVolb<ob{<nz<z; Woeeqz<?yVolb<ob{<{qe<uIg<gl<Gjx w{<{ig-vg<gik; weou?yvgjxob{<{qe<uig<g&zl<olb<ob{<{ig-vg<g LcbiK/ -f<k nk<kqbibk<kqz<? ye<x nz<zk hz lixqgjtg< ogi{<mjlf<k -bx<g{qkg< Ogijugjth< hx<xqh< hch<<ohil</ lixqgtl<? OgijugTl< olb<ob{< lkqh<hgjtlm<molgxqh<hkigg<ogit<ouil</-eqw{<we<xiozolb<ob{<{qje lm<molgxqh<hkigg<ogit<ouil</ 4. hz<zxh<hg<ogijugt< ax n we<xnjlh<hqz<dt<tyi-bx<g{qkg<ogijujbx z< njlf<k YI YVXh<Hg<Ogiju we<gqoxil</ -r<g a yv Gxqh<hqm<m w{<? x yv lixq lx<xl< n yv Gjxbz<zi LPuiGl</ w{< a ju x n e< ogp we<xl<? n J YVXh<Hg< Ogijubqe< nmg<gwe<xl<njpg<gqe<oxil</wmk<kg<gim<mig? 7x we<hknmg<g djmbx z< njlf<kyiyvxh<hg<ogiju; -r<g7, x e<ogp/-vyvxh<hg<ogijugtqe<%mkz< YI VXh<Hg<Ogiju weh<hml</ -u<uiox &e<x YVXh<Hg<Ogijugtqe< %Mkz< &UXh<Hg<Ogiju weh<hml</ wmk<kg<gim<mig? x + x we<hk YI VXh<Hg<Ogiju; x 5 x + we<hk yv &UXh<Hg<Ogiju/ LcUX w{<{qg<jgbqz<? x z< njlf<k YVXh<Hg<Ogijugtqe<%Mkz<x z<njlf<kyvhz<zxh<hg<ogiju we<xjpg<gh<hml</ hz<zxh<hg<ogijubqz< dt<t YVXh<Hg<Ogijugtqe< ogpg<gt< hz<zxh<hg<ogijubqe< ogpg<gt< we<xjpg<gh<hml</ hz<zxh<hg< Ogijubqz< dt<t njek<k ogpg<gtl< H,s<sqb w{<{ig -Vh<hqe<? nh<hz<zxh<hg<ogiju H,s<sqb hz<zxh<hg<ogiju we<xjpg<gh<hml</ -eq? hz<zxh<hg<ogiju yu<ouie<jxbl< H,s<sqblz<zik hz<zxh<hg<ogijubigg< ogit<ouil<; nkiuk -equvl< hz<zxh<hg<ogiju yu<ouie<xqzl< Gjxf<khm<sl< yv ogpuigqzl< H,s<sqblx<xkig -Vg<Gl</ hz<zxh<hg<ogijubqz< dt<t YVXh<Hg<Ogijugt< nh<hz<zxh<hg< Ogijubqe< dxh<hgt<weh<hml<; dxh<hgtqe<lqgdbif<knmg<g?hz<zxh<hg<ogijubqe<nmg<g nz<zkhcweh<hml</ yvhz<zxh<hg<ogijubqe<lqgdbif<knmg<gjmbdxh<hqe< ogpju? nh<hz<zxh<hg< Ogijubqe< kjzbibogp nz<zkupqfmk<kqs< osz<zl< ogp we<gqoxil</ wmk<kg<gim<mig? x 6 + x x 5 4x we<hk 5 hcbjmb hz<zxh<hg<ogiju; x, 6, x, x 5, 4x we<hedxh<hgt<; kjzbibogp NGl</ yv hz<zxh<hg<ogijubqe< ogpg<gt< olb<ob{<gt< we<hkiz<? nux<jx olb<ob{<gtqe< h{<hgjtg< ogi{<m x e< nmg<ggt< -xr<glglig uvlix lix<xqbjlg<gzil</ wmk<kg<gim<mig? x 5x x we<x hz<zxh<hg<ogijujb x + x 5x we nmg<ggt< -xr<glglig lix<xqbjlg<gzil</ yv hz<zxh<hg<ogiju? nke< dxh<hgtqe< nmg<ggt< -xr<glglig -Vg<GliX lix<xqbjlk<k wpkh<ohx<xiz<? nk kqm<m ucuqz< -Vh<hkigs< osiz<ouil</ yv hz<zxh<hg<ogijubqz<?x -z<zikdxh<hqje(nmg<g0 Ngdt<tdXh<hqje*keq dxh<hnz<zklixqzqdxh<hwe<gqoxil</wmk<kg<gim<mig?x 6 + x x 5 4x z< lixqzq dxh<h 6 NGl</ kip<f<k nmg<gjmb hz<zxh<hg<ogijugtg<gs< sqxh<hh< ohbigt< dt<te/ Lkx<hc hz<zxh<hg<ogijujb Ofiqb hz<zxh<hg<ogiju 9

97 we<gqoxil</ -v{<m hcbjmb hz<zxh<hg<ogijujb -Vhch< hz<zxh<hg<ogiju we<gqoxil</ &e<x hcbjmb hz<zxh<hg<ogijujb Lh<hch< hz<zxh<hg<ogiju we<gqoxil</ fie<g hcbjmb hz<zxh<hg<ogijujb fix<hch< hz<zxh<hg<ogiju we<gqoxil</ f(x) we<x yv hz<zxh<hg<ogijujbh< ohikuigg< Gxqk<kiz<? f(x)e< hcbqje deg(f(x)) we<xgxqbiz<gxqh<hqmouil</wmk<kg<gim<mig? x + 5x x we<x hz<zxh<hg<ogijujb f(x) weg< Gxqh<hqm<miz<? deg(f(x)) NGl</ yv hz<zxh<hg<ogijubqe< dxh<hgt< w{<gt< we<hkiz<? njek<k hz<zxh<hg< OgijugTl<w{<gjtg<Gxqg<gqe<xe/weOu?fil<-ux<jxg<ogi{<M%m<m?gpqg<g? ohvg<g lx<xl< ugg<g LcBl</ yv hz<zxh<hg<ogijujb lx<oxiv hz<zxh<hg< Ogijubqeiz< ugh<hjkh< hx<xq hqe<ei hch<ohil</ -h<ohipk hz<zxh<hg<ogijugjtg<%m<mujkh<hx<xqh<hch<ohil</ 4.. hz<zxh<hg<ogijugtqe<%m<mz< yk<k nmg<ggtqe< ogpg<gjtg< %m<mukeiz<? flg<g -v{<m hz<zxh<hg< Ogijugtqe<%Mkz<gqjmg<gqe<xK/ wmk<kg<gim<m : x 4 x + 5x +, 4x + 6x 6x -ux<xqe<%mkz<gi{<g/ kqiu; olb<ob{<gtqe< OsIh<Hh< h{<h? hr<gqm<mh< h{<h Ngqbux<jxh< hbe<hmk<kouil</ (x 4 x + 5x + ) + (6x 6x + 4x ) x 4 + 6x x 6x + 5x + 4x + x 4 + 6x (+6)x + (5+4)x + x 4 + 6x 9x + 9x +. gqopogimg<gh<hm<mkqm<ml<-v{<mhz<zxh<hg<ogijugjtg<%m<mukqz<dkuqosb<bl</ x 4 + 0x x + 5x + 0x 4 + 6x 6x + 4x x 4 + 6x 9x + 9x hz<zxh<hg<ogijugtqe<gpqk<kz< hz<zxh<hg<ogijugjtg<%m<mukohie<oxgpqk<kjzbl<osb<gqoxil</ wmk<kg<gim<m : x + 5x 4x 6 zqvf<kx x Jg<gpqg<gUl</ kqiu; olb<ob{<gtqe<osih<hh<h{<h?hr<gqm<mh<h{<hngqbux<jxh<hbe<hmk<kqeiz< (x + 5x 4x 6) (x x ) x + 5x 4x 6 x + x + x x + 5x + x 4x 6 + (x x ) + (5x + x ) + ( 4x) + ( 6+) x + 8x 4x 5. gqopogimg<gh<hmgqe<xljxbqzl<gpqk<kjzs<osb<bzil</ uiq (): x + 5x 4x 6. uiq (): x x. uiq () z<dt<thz<zxh<hg<ogijubqe<gxqgjtlix<xg<gqjmh<hk, uiq (): x + x +. uiq (), uiq () gtqz<dt<thz<zxh<hg<ogijugjtg<%m<mg<gqjmh<hk, x + 8x 4x 5. Olx<g{<mLjxgQp<g<gi[liXwPkh<hMl</ 9

98 x + 5x 4x 6 x x + + x + 8x 4x Vhz<ZXh<Hg<Ogijugtqe<ohVg<gz< -Vhz<ZXh<Hg<Ogijugtqe<ohVg<gz<nz<zK ohvg<gx<hze<gi{?hr<gqm<mh< h{<jhbl<?nmg<gg<gxquqkqgjtbl<hbe<hmk<kgqoxil</ wmk<kg<gim<m : x x 4 lx<xl< x + x -ux<xqe<ohvg<gx<hze<gi{<g/ kqiu; (x x 4) (x + x ) x (x + x ) + ( x ) (x + x ) + ( 4) (x + x ) (x 5 + x 4 x ) + ( 4x 4 6x + x ) + ( 8x x + 4) x 5 + x 4 x 4x 4 6x + x 8x x + 4 x 5 + (x 4 4x 4 ) + ( x 6x ) + (x 8x ) + ( x) +4 x 5 x 4 7x 6x x V hz<zxh<hg< Ogijugtqe< ohvg<gx<hze< gi[l<ohik yv hz<zxh<hg< OgijubqEjmb yu<ouii dxh<jhbl< lx<oxiv hz<zxh<hg< Ogijubqe< yu<ouii dxh<hizl< ohvg<gq hqe<ei? nu<uqv ohvg<gx<hze<gtl< %m<mh<hmgqe<xe/ gqop ogimg<gh<hm<mljxhkqkigg<gx<xg<ogit<huigtg<gdkuqbig-vg<gl</ x x 4 x + x x (x + x ) : x 5 + x 4 x x (x + x ) : 4x 4 6x + x 4(x + x ) : 8x x + 4 x 5 x 4 7x 6x x + 4 sqz Oujtgtqz< hz<zxh<hg< Ogijugtqe< ohvg<gx<hzeqz< sqz Gxqh<hqm<m dxh<hgtqe< ogpg<gt< Okjubig -Vg<Gl</ Ofvk<jkBl<? -mk<jkbl<sqg<geh<hmk<k fil< hz<zxh<hg< Ogijugjt LPuKl< ohvg<gilozob ogpg<gjtg< gi{zil</ wmk<kg<gim<mig? A, B we<x -v{<m hz<zxh<hg< Ogijugtqe< ohvg<gx<hzeqz< x e< ogpjuh< ohx Ou{<Ml< weqz< gqop uvgqe<x upqljx? Hkqkigg< gx<xg< ogit<huigtg<gdkuqbig-vg<gl</ hc gqopogimg<gh<hm<mjugtqe<ohvg<gx<hze<gi{<g: A bqz<dt<tx dxh<hqe<ogp B bqz<dt<tlixqzqdxh<h(keqdxh<h* A bqz<dt<t x dxh<hqe<ogp B bqz<dt<tx dxh<hqe<ogp A bqz<dt<tx dxh<hqe<ogp B bqz<dt<t x dxh<hqe<ogp A bqz<dt<tlixqzqdxh<h B bqz<dt<tx dxh<hqe<ogp 94

99 hc : OlOzhc z<dt<twz<zih<ohvg<gx<hze<gjtbl<%m<mg/gqjmg<gl<lkqh<h A, B Ngqb-Vhz<ZXh<Hg<Ogijugtqe<ohVg<gx<hzeqz<x e<ogpuigl</ wmk<kg<gim<m 4: x 4, x, x, x NgqbdXh<Hgtqe<ogPju7x 6x 9x + 8 lx<xl< 5x x + 5 gtqe<ohvg<gx<hzeqzqvf<klpukl<ohvg<gilozobg{<mhqc/ kqiu; A 7x 6x 9x + 8 lx<xl<b 5x x + 5 we<g/ dxh<h x 4 e<ogpjug<gi{z<; A bqz<dt<t x 4 dxh<hqe<ogp B bqz<dt<tlixqzqdxh<h A bqz<dt<t x dxh<hqe<ogp B bqz<dt<t x dxh<hqe<ogp 7. A bqz<dt<t x dxh<hqe<ogp B bqz<dt<t x dxh<hqe<ogp A bqz<dt<t x dxh<hqe<ogp B bqz<dt<t x dxh<hqe<ogp A bqz<dt<tlixqzq dxh<h B bqz<dt<t x 4 dxh<hqe<ogp weoua B z<x 4 e<ogp 0 + ( ) + ( 0) dxh<h x e<ogpjug<gi{z<; A bqz<dt<t x dxh<hqe<ogp B bqz<dt<tlixqzq dxh<h A bqz<dt<t x dxh<hqe<ogp B bqz<dt<t x dxh<hqe<ogp 6 8. A bqz<dt<t x dxh<hqe<ogp B bqz<dt<t x dxh<hqe<ogp A bqz<dt<tlixqzqdxh<h B bqz<dt<t x dxh<hqe<ogp Njgbiz< A B z<x e<ogp ( 45) dxh<h x e<ogpjug<gi{z<; A bqz<dt<t x dxh<hqe<ogp B bqz<dt<tlixqzq dxh<h A bqz<dt<t x dxh<hqe<ogp B bqz<dt<t x dxh<hqe<ogp 9 7. A bqz<dt<tlixqzqdxh<h B bqz<dt<t x dxh<hqe<ogp Njgbiz< A B z<x e<ogp ( 0) x dxh<hqe<ogpjug<gi{z<: A bqz<dt<t x dxh<hqe<ogp B bqz<dt<tlixqzq dxh<h A bqz<dt<tlixqzq dxh<h B bqz<dt<t x dxh<hqe<ogp 8 4. Njgbiz< A B z<x e<ogp ( 45) + ( 4) hzlixqgtqz<njlf<khz<zxh<hg<ogijugt< x, y z<njlf<kyiyvxh<hg<ogiju ax n y m weqz<?nkqz<a yvolb<ob{<; x, y we<hju lixqgt<; n lx<xl< m we<he lqjglpg<gt</ wmk<kg<gim<mig? 5x y we<hk x, y z< YI YVXh<Hg< Ogiju/ x, y z<njlf<klcuxw{<{qg<jgbqzieyvxh<hg< Ogijugtqe< %m<mx< hze<? x, y z< njlf<k yv hz<zxh<hg< Ogiju weh<hml</ wmk<kg<gim<mig? 5x y + x + y, x 8y, x + xy + y Ngqbju x, y z< njlf<k hz<zxh<hg< Ogijugt</ -OkOhie<X hz lixqgtqz< njlf<k hz<zxh<hg< Ogijugt< d{<m/ yv lixqbqz< njlf<k hz<zxh<hg< Ogijugtqz< %m<mz<? gpqk<kz<? ohvg<gz< osb<kkohie<oxhzlixqgtqz<njlf<khz<zxh<hg<ogijugtqzl<osb<bzil</ 95

100 wmk<kg<gim<m 5: x y + x y xy, x x y + y + 4xy Ngqbhz<ZXh<Hg<Ogijugtqe< %Mkz<gi{<g/ kqiu; (x y + x y xy ) + (x x y + y + 4xy ) x y + x y xy + x x y + y + 4xy (x y x y) + (x y ) + ( xy + 4xy ) + (x ) + (y ) x y + x y + xy + x + y. wmk<kg<gim<m 6: x + y, x xy + y Ngqbux<xqe<ohVg<gx<hze<gi{<g/ kqiu; x + y nz<zk (x + y) (x xy + y ) x xy + y x (x xy + y ) + y (x xy + y ) x(x xy + y ) : x x y + xy x x y + xy + x y xy + y y(x xy + y ) : x y xy + y x + x y xy + y x + ( x y + x y) + (xy xy ) + y x + x y xy + y. yvhz<zxh<hg<ogijujblx<oxivhz<zxh<hg<ogijubiz<ugg<gl<osbz<?hgkq 4.4 z<nvibh<hmgqxk/ hbqx<sq 4.. siqnz<zkkuxwehkqz<ogim: (i) x + x we<hkyvhz<zxh<hg<ogiju/ (ii) x + x + we<hkyi-v{<mil<hchz<zxh<hg<ogiju/ (iii) 5 x x + x z<x e<ogp. (iv) 5xy we<hkyivxh<hg<ogiju/ (v) x + y + 5z we<hkyv&uxh<hg<ogiju/ 4 ujvbqzt<tyu<ouivg{g<gqzl<%mkz<g{<mkqm<mucuqz<wpkg/. (x + x ) + (x 4x + 5). (x 4 + x + x) + (x 4 x + 7x 8) 4. (6 0x + 5x + x ) + (x x 4) 5 7 ujvbqzt<t yu<ouiv g{g<ggtqz< gpqk<kz< osbz< osb<k? kqm<m ucuqz< wpkg/ 5. (x + 5x 0x + 6) (x x 4) 6. (x 4 x + 7x 8) (x 4 + x + x) 7. (x 5 5x + 4x 7) ( x + x x ) 8 0 ujvbqz<dt<tg{g<ggtqe<ohvg<gx<hze<gi{<g/njkkqm<mucuqz<wpkg/ 8. (x 6x + ) (x 4x + 9) 9. (x 4x + 5x 7) (x x + 4) 0. (7 x x ) (x 5x + x) 96

101 Lkz< ujvbqzt<t g{g<ggtqz< LPuKl< ohvg<gilozob x, x, x Ngqb dxh<hgtqe<ogpg<gjtg<gi{<g/. (x 4x + 4) (x + x ). (x x ) ( + x x ). (7x 6x 9x ) (x x ) 4 Lkz<6 ujvbqzt<tg{g<ggtqz<ohvg<gx<hzjek<kqm<mucuqz<gi{<g/ 4. (ax + by) (cx + dy) 5. (x + y) (x xy y ) 6. (x xy + y ) (x + xy + y ) 7. (x px + 9x ), (x x x + ) Ngqbjugtqe<ohVg<gx<hzeqz< x e<ogp weqz<, pbqe<lkqh<hgi{</ 8. (x x + 5) (a x x ) e<ohvg<gx<hzeqz<x e<ogpuiek? (x + x ) (x x ) e<ohvg<gx<hzeqz<x e<ogpuqx<gs<sll<weqz<?a bqe< lkqh<hgi{<g/ 9. ( x x ) (x mx + ) we<gqxohvg<gx<hzeqz<x e<ogp?x e<ogp-ux<xqe< %Mkz< 5 weqz<, m e<lkqh<jhg<gi{<g/ 4.. -bx<g{qklx<oxivjlgt< -bx<g{qk Lx<oxiVjlgt< weg<%xh<hml<? -bx<g{qk sle<himgjth< hx<xq -r<g hch<ohil</ -bx<g{qk sle<himgjt Wx<geOu gx<xt<otil</ YI -bx<g{qk sle<himiekye<xnz<zknkx<golx<hm<mlixqgjtg<ogi{<mk/wmk<kg<gim<mig x + 6 x z< x we<hklixq/x g<ghkqzig Jh<hqvkqbqmsle<himieK 5 5 we<el< d{<jl uig<gqblig dt<tk/ x g<g OuX wf<k lkqh<hgt< ogimk<kizl<, wmk<kg<gim<mig x weg< ogi{<miz< sle<himiek 7 4 we<el< kuxie uig<gqbligl</ lixqg<gigh< hqvkqbqmh<hm<m YI w{< nf<k sle<him<jm d{<jlbie uig<gqblig<gqeiz<nf<kw{<, sle<him<ce<kqiu nz<zk&zl< we<x%xh<hml</yiw{< yvsle<him<ce<kqiuweqz<?nknf<ksle<him<jmfqjxuosb<bl</wmk<kg<gim<mig? x + 6 x we<hjk fqjxuosb<gqxk/neiz< fqjxu osb<buqz<jz/ x (x + )(x ) we<el< sle<him wf<k w{<{izl< fqjxujmgqxk/ -u<uix wz<zi w{<gtizl< fqjxu ohxl< YI -bx<g{qk sle<him? -bx<g{qklx<oxivjl weh<hml</ A B we<el< YI -bx<g{qk sle<him? -bx<g{qk Lx<oxiVjlbieiz<? fil< -kje A B wewpkouil</hg<gr<gjtlix<xg{qklx<oxivjljb? B A we<xl<wpkzil</fil<-h<ohipksqz-bx<g{qklx<oxivjlgjtg<ogi{iouil</ 4.. (x + a)(x + b) g<gie-bx<g{qklx<oxivjl w{<gtqe<hr<gqm<mh<h{<jhh<hbe<hmk<k? (x + a )(x + b ) x(x + b) + a(x + b) x + xb + ax + ab x + ax + bx + ab x + (a + b)x + ab. fil<ohxuk (x + a)(x + b) x + (a + b) x + ab 97

102 Olx<gi[l< Lx<oxiVjlg<G yv ucuqbz<uqtg<gl<kvouil</ ABCD we<gqx osu<ugk<kqe< hvh<htuiek? AHFE we<x skvk<kqe< hvh<htu? HBGF, FGCI lx<xl< EFID Ngqb osu<ugr<gtqe< hvh<htu -ux<xqe< %MkZg<Gs< sll< (hml< 4.. Jh< hiig<gul<). Njgbiz<fil<ohXuK (x + a)(x + b) x + ax + ab + xb x + (a+b)x + ab. hml< 4.. OlOz dt<t Lx<oxiVjljbh< hbe<hmk<kq sqz Lg<gqblie Lx<oxiVjlgjtg<ogi{IOuil</ (i) (x a)(x + b) [x + ( a)] (x + b) x + [( a) + b]x + ( a)b x + (b a)x ab. (ii) (x + a)(x b) (x + a) [x + ( b)] x + [a + ( b)]x + a( b) x + (a b)x ab. (iii) (x a)(x b) [x + ( a)] [x + ( b)] x + [( a) + ( b)] x + ( a) ( b) x (a + b)x + ab. (iv) (a + b) (a + b)(a + b) a + (b + b)a + b a + ab + b. (v) (a b) (a b)(a b) [a + ( b)] [a + ( b)] a + [( b) + ( b)]a + ( b) ( b) a ab + b. (vi) (a + b)(a b) a + [b + ( b)]a + (b)( b) a + 0 a b a b. weou?fil<ohxuk (x + a)(x + b) x + (a + b)x + ab (x a)(x + b) x + (b a)x ab (x + a)(x b) x + (a b)x ab (x a)(x b) x (a + b)x + ab (a + b) a + ab + b (a b) a ab + b (a + b)(a b) a b (x a)(x b) we<hke<lx<oxivjl x (a + b)x + ab. nk Nl<hchz<ZXh<Hg< OgijubiGl</ nke< x e<ogp?keqdxh<hngqbjuljxob (a + b) lx<xl< ab NGl</ OlOz ogimg<gh<hm<mt<t Lx<oxiVjlgt<? (x + a)(x + b) we<hke< ohvg<gx<hzeqe< uqiqju nch<hjmbigg< ogi{<cvh<hkiz<? -ju ohvg<gx<hze< $k<kqvr<gt< we<xl< %xh<hml</ -v{<m VXh<Hg< Ogijugtqe< ohvg<gx<hzjeg< g{<mxqbul<-f<k$k<kqvr<gt<hbe<hml</ 98

103 wmk<kg<gim<m 7: hqe<uvueux<xqe<ohvg<gx<hze<gt<gi{<g; (a) (x + ) (x + 5) (b) (p + 9) (p ) (c) (z 7) (z 5) (d) (x 8) (x + ) kqiu; (a) (x + ) (x + 5) x + ( + 5) x + 5 x + 8x + 5. (b) (p + 9) (p ) p + (9 ) p 9 p + 7p 8. (c) (z 7) (z 5) z (7 + 5) z z z + 5. (d) (x 8) (x + ) x + ( 8)x 8 x 6x 6. wmk<kg<gim<m 8: ohvg<gx<hze< $k<kqvk<jkh< hbe<hmk<kq hqe<uvueux<xqe< ohvg<gx< hze<gtqe<lkqh<hgt<gi{<g/ (a) 07 0 (b) kqiu; (a) 07 0 (00 + 7) (00 + ) 00 + (7 + ) (b) (50 + 6) (50 ) 50 + (6 ) wmk<kg<gim<m 9: hqe<uvueux<jxuqiquig<gg; (i) (x + 7y) (ii) (a 7b) (iii) (p + 5q)(p 5q) kqiu; (i) (x + 7y) (x) + (x)(7y) + (7y) 9x + 4xy + 49y. (ii) (a 7b) (a) (a) (7b) + (7b) a 54ab + 49b. (iii) (p + 5q)(p 5q) (p) (5q) 4p 5q. wmk<kg<gim<m 0: ohvg<gx<hze< $k<kqvr<gjth< hbe<hmk<kq hqe<uvueux<xqe< lkqh<h gi{<g/ (i) 0 (ii) 98 (iii) kqiu; (i) 0 (00 + ) 00 + (00)() (ii) 98 (00 ) 00 (00)() (iii) (00 + 4) (00 4) ohvg<gx<hze<$k<kqvk<kqeqe<xolzl<sqzhbet<tlx<oxivjlgjtg<ogi{<m uvouil</ (i) (a + b) + (a b) (a + ab + b ) + (a ab + b ) (a + a ) + (ab ab) + (b + b ) a + b. [(a + b) + (a b) ] [(a + b )] a + b. (ii) (a + b) (a b) (a + ab + b ) (a ab + b ) a + ab + b a + ab b 4ab. 4 [(a + b) (a b) ] 4 [4ab] ab. (iii) (a + b) ab (a + ab + b ) ab a + ab + b ab a + b. 99

104 (iv) (a + b) 4ab (a + ab + b ) 4ab a + ab + b 4ab a ab + b (a b). (v) (a b) + ab (a ab + b ) + ab a ab + b + ab a + b. (vi) (a b) + 4ab (a ab + b ) + 4ab a ab + b + 4ab a + ab + b (a + b). -u<uixflg<ghqe<uvl<hbet<tlx<oxivjlgt<gqjmk<kt<te; [(a + b) + (a b) ] a + b 4 [(a + b) (a b) ] ab (a + b) ab a + b (a + b) 4ab (a b) (a b) + ab a + b (a b) + 4ab (a + b) OlOzogiMg<gh<hm<Mt<tLx<oxiVjlgtqe<hg<gr<gjtlix<xqwPk?fil<ohXuK a + b [(a + b) + (a b) ] ab 4 [(a + b) (a b) ] a + b (a + b) ab (a b) (a + b) 4ab a + b (a b) + ab (a + b) (a b) + 4ab wmk<kg<gim<m : a + b, a b Ngqbux<xqe<lkqh<Hgt<LjxOb7, 4 weqz<? a + b, ab Ngqbux<xqe<lkqh<Hgjtg<gi{</ kqiu: a + b [(a + b) + (a b) ] ab 4 [(a + b) (a b) ] [(7) + (4) ] (49 + 6) [(7) (4) ] (49 6). 4 4 wmk<kg<gim<m : a + b, ab Ngqbux<xqe< lkqh<hgt< LjxOb, weqz<, a + b, (a b) e<lkqh<hgjtg<gi{<g/ kqiu: a + b (a + b) ab (a b) (a + b) 4 ab () () () 4() wmk<kg<gim<m : a b, ab Ngqbux<xqe< lkqh<hgt< LjxOb 6, 40 weqz<? a + b, (a + b) Ngqbux<xqe<lkqh<Hgjtg<gi{<g/ kqiu: a + b (a b) + ab (a + b) (a b) + 4ab 6 + (40) (40)

105 wmk<kg<gim<m 4: (x + p)(x + q) x 5x 00 weqz<?p + q e<lkqh<hgi{<g/ kqiu: ohvg<gx<hze<$k<kqvk<kqe<hc, (x + p) (x + q) x + (p + q)x + pq. yh<hqmjgbqz<fil<nxquk? p + q 5, pq 00. -h<ohipk? p + q (p + q) pq ( 5) ( 00) fil<-eq(a + b + c) g<gieg{qklx<oxivjljbg<g{<mxqouil</ (a + b + c) [(a + b) + c] (a + b) + (a + b) c + c (a + ab + b ) + ac + bc + c a + b + c + ab + bc + ca a + b + c + (ab + bc + ca). Njgbiz<fil<ohXl<Lx<oxiVjl (a + b + c) a + b + c + (ab + bc + ca) hg<gr<gjtlix<xqwpkqeiz<fil<ohxuk a + b + c + (ab + bc + ca) (a + b + c) OlZl<fil<gi{<hK (a + b + c) (ab + bc + ca) a + b + c + (ab + bc + ca) (ab + bc + ca) a + b + c. weou?lx<oxivg{qklx<oxivjljbh<ohxgqoxil</ (a + b + c) (ab + bc + ca) a + b + c hg<gr<gjtlix<xqwpkqeiz<fil<ohxuk a + b + c (a + b + c) (ab + bc + ca) wmk<kg<gim<m 5: hqe<uvueux<jxuqiquhmk<kg/ (i) (x + y + z) (ii) (x y + z) (iii) (p q r) (iv) (a + b c) kqiu: (i) (x + y + z) [(x) + y + (z)] (x) + y + (z) + (x)y + y(z) + (z)(x) 4x + y + 4z + 4xy + 4yz + 8zx. (ii) (x y + z) [x + ( y) + z] x + ( y) + z + x( y) + ( y)z + zx x + 4y + z 4xy 4yz + zx. (iii) (p q r) [(p) + ( q) + ( r)] (p) + ( q) + ( r) + (p) ( q) + ( q) ( r) + ( r)(p). 4p + 9q + r pq + 6qr 4rp. (iv) (a + b c) [(a) + (b) + ( c)] (a) + (b) + ( c) + (a)(b) + (b)( c) + ( c)(a) 4a + 9b + 4c + ab bc 8ca. 4.. (x + a) (x + b) (x + c) g<gie-bx<g{qklx<oxivjl (x + a)(x + b)(x + c) (x + a)[(x + b)(x + c)] (x + a)[x + (b + c)x + bc] (x + a)(x + bx + cx + bc) x(x + bx + cx + bc) + a(x + bx + cx + bc) x + bx + cx + bcx + ax + abx + acx + abc x + (a + b + c)x + (ab + bc + ca)x + abc. weou? (x + a)(x + b)(x + c) x + (a + b + c)x + (ab + bc + ca)x + abc 0

106 OlOz ogimg<gh<hm<mt<t Lx<oxiVjlbqz< a, b, c -ux<xqx<g hkqzig a, b, c Jh< hqvkqbqmflg<gg<gqjmh<hk (x a)(x b)(x c) [x + ( a)][x + ( b)][x + ( c)] x + [( a) + ( b) + ( c)]x + [( a) ( b) + ( b) ( c) + ( c) ( a)]x + ( a) ( b) ( c) x (a + b + c)x + (ab + bc + ca)x abc. -u<uix (x a)(x b)(x c) x (a + b + c)x + (ab + bc + ca)x abc. -kqz<, x e<ogp (a + b + c), x e<ogp ab + bc + ca, lixqzqdxh<h abc. -jkh<ohizou?(x + a)(x + b)(x + c) z< x e<ogp a + b + c, x e<ogp ab + bc + ca, lixqzqdxh<h abc. wmk<kg<gim<m 6 : uqiqugi{<g/ (i) (x + 4)(x + )(x + 5) (ii) (x + )(x )(x + 5) (iii) ( x)(x + 7)(x + ) (iv) (x a)(x a)(x a) kqiu: (i) (x + 4)(x + )(x + 5) x + ( )x + [ ]x x + x + [ ]x + 60 x + x + 47x (ii) (x + )(x )(x + 5) (x + )[x + ( )](x + 5) (x) + [ + ( ) + 5](x) + [ ( ) + ( ) ](x) + ( ) 5 8x + (4x ) + [ 5 + 5](x) 5 8x + x 6x 5. (iii) ( x)(x + 7)(x + ) [ (x )](x +7 )(x + ) [x + ( )](x + 7)(x + ) [(x) + {( ) }(x) + {( ) ( )}(x) + ( ) 7 ] [8x + (5)(4x ) + ( + 7 )(x) ] [8x + 0x 4x ] + 4x 0x 8x. (iv) (x a)(x a)(x a) [x+( a)][x+( a)][x+( a)] x + {( a) + ( a)+( a)}x +{( a) ( a) + ( a) ( a) + ( a) ( a)}x + ( a) ( a) ( a) x + { 6a}x + {a + 6a + a }x 6a x 6ax + a x 6a. wmk<kg<gim<m 7 : ohvg<gx<hze< $k<kqvr<gjth< hbe<hmk<kq? x dxh<hqe< ogp? x dxh<hqe<ogp?lixqzqdxh<hngqbux<jxg<gi{<g/ (i) (x + )(x + 5)(x + 6) (ii) (x 7)(x + )(x + 4) (iii) (x 5)(x )(x + 4) (iv) (x )(x 5)(7 x) kqiu: (i) (x + )(x + 5)(x + 6) J (x + a)(x + b)(x +c ) Bme<yh<hqMjgbqz<? a, b 5, c 6. x e<ogp a + b + c , x e< ogp ab + bc + ca ( 5) + (5 6) + (6 ) , lixqzqdxh<h abc (ii) (x 7)(x + )(x + 4) [x + ( 7)](x + )(x + 4) -jk(x + a)(x + b)(x + c) Bme<yh<hqMjgbqz<? a 7, b, c 4. x e<ogp a + b + c ( 7)

107 x e<ogp ab + bc + ca ( 7) ( 7) ( 4) ( 8) ( 4) + 8 4, lixqzqdxh<h abc ( 7) (iii) (x 5)(x )(x + 4) [x + ( 5)][x + ( )](x + 4) -jk (x + a)(x + b)(x + c) Bme<yh<hqMjgbqz<?a 5, b, c 4. x e<ogp a + b + c ( 5) + ( ) + 4 ( 7) + 4, x e<ogp ab + bc + ca ( 5) ( ) +( ) ( 5) , lixqzqdxh<h abc ( 5) ( )4 40. (iv) (x )(x 5)(7 x) we<hkawe<gqx-bx<g{qkogijuwe<g/-kqz< yx weg<ogi{<miz<, A (y )(y 5)(7 y) (y )(y 5) [ (y 7)] [(y )(y 5 )(y 7)] [y + {( ) + ( 5) + ( 7)}y + {( )( 5) + ( 5)( 7) + ( 7)( )}y + ( )( 5)( 7)] [y 5y + ( )y 05] y + 5y 7y + 05 (x) + 5(x) 7(x) x + 60x 4x + 05 x e<ogp 60, x e<ogp 4, lixqzqdxh<h 05 lx<oxivljx;(x )(x 5)(7 x) 5 7 x x x x + x + x + x e<ogp 8(a + b + c) , x e<ogp 8( ab + bc + ca) ( ) (7) 4, 4 lixqzqdxh<h 8(abc) wmk<kg<gim<m 8 : (x + a)(x + b)(x + c) x 6x + x 6 weqz<?a + b + c e<lkqh<h gi{<g/ kqiu; ohvg<gx<hze<$k<kqvk<kqzqvf<kfil<nxquk? (x + a)(x + b)(x + c) x + (a + b + c)x + (ab + bc + ca)x + abc. yh<hqmjgbqz<flg<gg<gqjmh<hk?a + b + c 6, ab + bc + ca, abc 6. a + b + c (a + b + c) (ab + bc + ca) ( 6) () 6 4. (x + a)(x + b)(x + c) e<lx<oxivjlbqzqvf<ksqzlx<oxivjlgjtk<kvuqh<ohil</ (i) (a + b) g<gielx<oxivjl (a + b) (a + b)(a + b)(a + b) a + (b + b + b)a + (b b + b b + b b)a + b b b a + a b + ab + b (a + b) a + a b + ab + b 0

108 hg<gr<gjtlix<xqobpk? a + a b + ab + b (a + b) (ii) (a b) g<gielx<oxivjl (a b) [a + ( b)] a + a ( b) + a( b) + ( b) a a b + ab b hg<gr<gjtlix<x? (a b) a a b + ab b a a b + ab b (a b) (a + b), (a b) we<x Lx<oxiVjlgtqe< nch<hjmbqz< hqe<uvl< Lx<oxiVjlgjtk< kvuqh<ohil</ (i) (a + b) ab(a + b) a + a b + ab + b a b ab a +b. (a + b) ab(a + b) a + b hg<gr<gjtlix<x? a + b (a + b) ab(a + b) (ii) (a b) +ab(a b) a a b + ab b + a b ab a b. hg<gr<gjtlix<x? (a b) + ab(a b) a b a b (a b) + ab(a b) (iii) a + b (a + b) ab(a + b) (a + b)(a + b) ab(a + b) (a + b)[(a + b) ab] (a + b)[(a + ab + b ) ab] (a + b)(a ab + b ). a + b (a + b)(a ab + b ) hg<gr<gjtlix<x? (a + b)(a ab + b ) a + b (iv) a b (a b) + ab(a b) (a b)(a b) + ab(a b) (a b)[(a b) + ab] (a b)[(a ab + b ) + ab] (a b)(a + ab + b ). hg<gr<gjtlix<x? a b (a b)(a + ab + b ) (a b)(a + ab + b ) a b 04

109 a + b + c ab bc ca g<gielx<oxivjl fil<ohxuk? a + b + c ab bc ca (a + b + c ab bc ca) [( a ab + b ) + ( b bc + c ) + ( c ca + a )] [( a b) + ( b c) + ( c a) ]. -u<uix?fil<hqe<uvl<lx<oxivjljbh<ohxgqoxil<; a + b + c ab bc ca [( a b) + ( b c) + ( c a) ] hg<gr<gjtlix<xqobpk? [( a b) + ( b c) + ( c a) ] a + b + c ab bc ca (a + b + c) (a + b + c ab bc ca) uqx<gielx<oxivjl hr<gqm<mh<h{<jhh<hbe<hmk<kqfil<njmuk? (a + b + c) (a + b + c ab bc ca) a (a + b + c ab bc ca) + b (a + b + c ab bc ca) + c (a + b + c ab bc ca) a + ab + c a a b abc ca + a b + b + bc ab b c abc +ca + b c + c abc bc c a a + b + c abc. -u<uixfil<ohxuk? hg<gr<gjtlix<x? (a + b + c) (a + b + c ab bc ca) a + b + c abc a + b + c abc (a + b + c) (a + b + c ab bc ca). wmk<kg<gim<m 9 : hqe<uvueux<jxuqiqk<okpkg; (i) (x + y) (ii) (x y) kqiu; (i) (x + y) (x) + (x) (y) + (x)(y) + (y) 7x + (9x )(y) + (x)(4y ) + 8y 7x + 54x y + 6xy + 8y. 05

110 (ii) (x y) (x ) (x ) (y) + (x ) (y) (y) 8x 6 (4x 4 )(y) + (x )(9y ) 7y 8x 6 6x 4 y + 54x y 7y wmk<kg<gim<m 0 : a + b, ab Ngqbux<xqe<lkqh<Hg<gt<LjxOb4, weqz<? a + b e< lkqh<hgi{<g/ kqiu; a + b (a + b) ab(a + b) (4) ()(4) wmk<kg<gim<m : a b 4 lx<xl< ab weqz<? a b e<lkqh<hgi{<g/ kqiu; a b (a b) + ab(a b) (4) + ()(4) wmk<kg<gim<m : a + b, a + b 8 weqz<? a + b, a 4 + b 4 lkqh<hgi{<g/ kqiu; a + ab + b (a + b) ab (a + b) (a + b ) () (8) ab (ab) ( 4). a + b (a + b) ab(a + b) () ( )() 8 ( 4) lix<xupq; a + b (a + b)(a ab + b ) (a + b)(a + b ab) () [8 ( )] (0) 0. a 4 + b 4 (a ) + (b ) [(a ) + (b )] (a )(b ) (a + b ) a b (a + b ) (ab) (8) ( ) 64 (4) hbqx<sq 4.. ohvg<gx<hze<$k<kqvk<jkh<hbe<hmk<kqhqe<uvueux<jxg<gi{<g; (i) (x + 9) (x + ) (ii) (x + 8) (x ) (iii) (t )(t + 6) (iv) (p 4)(p ) (v) 0 06 (vi) 59 6 (vii) 4 6 (viii) ohvg<gx<hze<$k<kqvk<jkh<hbe<hmk<kqg<gi{<g; (i) (5x + 8y) (ii) (s 4t) (iii) (4p + 7q)(4p 7q) (iv) (0) (v) (98) (vi) a + b 5, a b 4 weqz<? a + b lx<xl< ab bqe<lkqh<hg<gi{<g/ 4. a + b 0, ab 0 weqz<? a + b, (a b) Jg<gi{<g/ 5. (x + l)(x + m) x + 4x + weqz<? l + m, (l m) Jg<gi{<g/ 6. hqe<uvueux<jxuqiqk<okpkg; (i) (x + y + z) (ii) (4x y + z) (iii) (p + q r) (iv) (a b c) 06

111 7. a + b + c, ab + bc + ca 8 weqz<? a + b + c gi{<g/ 8. ohvg<gx<hze<$k<kqvk<jkh<hbe<hmk<kqh<hqe<uvueux<xqe<uqiqugi{<g/ (i) (x + )(x + )(x + 4) (ii) (x + )(x + )(x 4) (iii) (x + )(x )(x + 4) (iv) (x + )(x )(x 4) (v) (x )(x )(x 4) 9. ohvg<gx<hze< $k<kqvk<jkh< hbe<hmk<kqh< hqe<uvueux<xqz< x dxh<h? x dxh<h Ngqbux<xqe<ogPg<gjtBl<?lixqzqdXh<jhBl<gi{<g; (i) (x + 0)(x )(x + ) (ii) (x )(x + 4)(x ) (iii) (6x + )(6x 5)(7 6x) 0. (x + a)(x + b)(x + c) x 9x + x 5 weqz<? a + b + c, + +, a + b + c Ngqbux<jxg<gi{<g/. ohvg<gx<hze<$k<kqvk<jkh<hbe<hmk<kquqiquig<gg; (i) (x + y ) (ii) (u 7v) (iii) x (iv) (x y + ) x. a b, ab 6 weqz<?8a 7b e<lkqh<hgi{<g/ a b c. x + weqz<? x + x x, x + x Jg<gi{<g/ 4. x + y 6, xy 8 weqz<?x + y, x + y Jg<gi{<g/ 5. p + q 6, p + q weqz<?pq, p + q, p 4 + q 4 Jg<gi{<g/ 4.. giv{qh<hmk<kz< Lf<jkb hgkqbqz< -v{<m nz<zk nkx<g Olx<hm<m hz<zxh<hg< Ogijugjt ohvg<gq? lx<oxiv hz<zxh<hg< Ogijujb wu<uix ohxzil< weg< g{<mxqf<okil</ -h<ohipk yv hz<zxh<hg< Ogijujb wu<uix -v{<m nz<zk nkx<g Olx<hm<m hz<zxh<hg< Ogijugtqe< ohvg<gzig wpkzil< weg< gx<ohil</ yv hz<zxh<hg< Ogijujb -v{<m nz<zk nkx<g Olx<hm<m wtqb hz<zxh<hg< Ogijugtqe< ohvg<gzigwpkukgiv{qh<hmk<kz< weg< %xh<hml</ ohvg<gzqz< dt<t yu<ouiv wtqb hz<zxh<hg< OgijuBl< ogimg<gh<hm<m hz<zxh<hg< Ogijubqe< yv giv{q weh<hml</wmk<kg<gim<mig? x +, x we<hju x 9 e<giv{qgtigl</ x 9 (x + )(x ) we<hkiz<?-r<gx 9 we<hk-vhchz<zxh<hg<ogiju/ x +, x we<hjuyvhc hz<zxh<hg< Ogijugt</ -u<uix giv{qh<hmk<kkz< Ogijugjts< SVg<Gukx<G dkugqxk/ giv{qh<hmk<kkz< we<el< -f<ks< osbz<? giv{qgtigh< hgk<kz< we<xl< %xh<hml</ 4... giv{qh<hmk<kz<upqljx upq : (ohikuieg<giv{qjbg<g{<mhqck<kz<) A we<gqxyi-bx<g{qkg<ogijubqe< dxh<hgtqz< B we<gqx ohikg<giv{q -Vf<kiz<? fil< A bqe<yu<ouivdxh<jhbl< B 07

112 biz<ugg<gc we<gqxogijugqjmg<gl</-h<ohipka JB C weg<giv{qh<hmk<kq wpkzil</ wmk<kg<gim<m : giv{qh<hmk<kg; 6x 4 y 4x y + 0xy. kqiu; xy NeKohiKg<giv{qwe<hjkg<gi{<gqOxil</ 6x 4 y 4x y + 0xy xy 4 6x y 4x y 0xy + xy xy xy xy (x y x + 5y). upq : (dxh<hgjtg< GPh<hMk<Kkz<) YI -bx<g{qkg< Ogijubqe< dxh<hgtg<gh< ohikuie giv{q -z<jzobeqz< nf<k dxh<hgjtk<kgf<kljxbqz<gph<hmk<kq yvohikuiegiv{qkqilieqg<gh<hml</ wmk<kg<gim<m 4 : giv{qh<hmk<kg; x xy x + y. kqiu; Ogijubqe<dXh<HgTg<Gh<ohiKuieg<giv{q-z<jz/weqEl<dXh<Hgt<gQOp g{<muixgph<hmk<kh<hmzil<weg<gi{<gqoxil</ x xy x + y (x xy) (x y) x(x y) + ( ) (x y) (x y) [x + ( )] (x y) (x ). wmk<kg<gim<m 5 : giv{qh<hmk<kg; 6x 5 y + 6x 4 y + 9x y 4 + 9xy 5. kqiu;lkz<upq? l<upq-v{<jmbl<hbe<hmk<k?fil<gi{<hk? 6x 5 y + 6x 4 y + 9x y 4 + 9xy 5 xy (x 4 + x y + xy + y ) xy [(x 4 + xy ) + (x y + y )] xy [x(x + y ) + y(x + y )] xy (x + y ) (x + y). hbqx<sq 4.. ohikuieyvgiv{qjbg<g{<mhqck<kgiv{qgtigh<hgg<gul<;. 9m n. 4a 8a + 6a. x 5 + 4x 4. 6x 5 y 5 + x y + 4xy 5. 7pq p q ohikuie yv giv{qjbg< g{<mhqck<oki nz<zk GPh<hMk<kz< Ljxjbh< hbe<hmk<kqobi?giv{qgtigh<hgg<gul<; 6. mn p pn + m 7. x x x x x ax + a 9. p p + p 0. 8x + 4x + 4x giv{qh<hmk<kz<$k<kqvr<gjth<hbe<hmk<kq?giv{qh<hmk<kz< sqz Ofvr<gtqz< yv Ogijujbg< giv{qh<hmk<kl<ohik giv{qh<hmk<kz< $k<kqvr<gjth< hbe<hmk<kouil</ -s<$k<kqvr<gt< ohvg<gz< $k<kqvr<gtqzqvf<k ohxh<hm<mjubigl</ohvg<gz<$k<kqvr<gtiue; (i) (X + Y) X + XY + Y (ii) (X Y) X XY + Y (iii) (X + Y)(X Y) X Y (iv) ( X + Y) (X XY + Y ) X + Y (v) (X Y)(X + XY + Y ) X Y (vi) (X + Y) X + Y + X Y + XY X + Y + X Y (X +Y ) (vii) (X Y) X Y X Y + XY X Y X Y (X Y ) 08

113 (viii) (X + Y + Z) X + Y + Z + XY + YZ + ZX (ix) (X + Y + Z) (X + Y +Z XY YZ ZX) X + Y + Z XYZ OlOz ogimg<gh<hm<mt<t $k<kqvr<gjt uzk hg<gk<kqzqvf<k -mkhg<glig hck<okiole<xiz< flg<g gqop ogimg<gh<hm<mt<t giv{qh<hmk<kz< $k<kqvr<gt< gqjmg<gl</ (i) X + XY + Y (X +Y) (ii) X XY + Y (X Y) (iii) X Y (X + Y) (X Y) (iv) X + Y ( X + Y) (X XY + Y ) (v) X Y (X Y) (X + XY + Y ) (vi) X + Y + X Y+ XY (X + Y) (vii) X Y X Y + XY (X Y) (viii) X + Y + Z + XY + YZ + ZX ( X + Y + Z) (ix) X +Y +Z XYZ (X + Y + Z) (X + Y + Z XY YZ ZX) X + XY + Y (X + Y) Jh<hbe<hMk<kqgiv{qh<hMk<kz< wmk<kg<gim<m 6: giv{qgtigh<hgg<gul<; 4x + xy + 9y. kqiu; ogimg<gh<hm<mogijujbh<hqe<uvlixlix<xqbjlg<gzil</ 4x + xy + 9y (x) + (x)(y) + (y) X x, Y y wewmk<kg<ogi{<miz< uzkhg<gl< X + XY + Y. weou?nk (X + Y) weg<giv{qh<hmk<kh<hml</weoufil<ohxuk 4x + xy + 9y (x + y). X XY + Y (X Y) Jh<hbe<hMk<kqgiv{qh<hMk<kz< wmk<kg<gim<m 7 : giv{qh<hmk<kg; p 8pq + 8q. kqiu; ogimg<gh<hm<mogijujbhqe<uvlixwpkzil</ p 8pq + 8q p (p)(9q) + (9q) X p, Y 9q wewmk<kg<ogi{<miz<uzkhg<gl<x XY + Y NGl</Njgbiz<nK (X Y) wegiv{qh<hmk<kh<hml</weou?fil<ohxuk p 8pq + 8q (p 9q). X Y (X + Y) (X Y) Jh<hbe<hMk<kqgiv{qh<hMk<kz< wmk<kg<gim<m 8: giv{qh<hmk<kg; 6x 4 y 5. kqiu; 6x 4 y (4x y), 5 (5), we<hkiz< 6x 4 y 5 (4x y) (5) (4x y + 5) (4x y 5). X + Y (X + Y) (X XY + Y ) Jh<hbe<hMk<kqgiv{qh<hMk<kz< wmk<kg<gim<m 9: giv{qgtigh<hg; 5a + 64b. kqiu; 5a (5a), 64b (4b) we<hkiz<?fil< X 5a, Y 4b wewmk<kg<ogit<ouil</ hqe<ei5a + 64b (5a) + (4b) X + Y (X + Y) (X XY + Y ) (5a + 4b) [(5a) (5a)(4b) + (4b) ] (5a + 4b) (5a 0ab + 6b ). 09

114 X Y (X Y) (X + XY + Y ) Jh<hbe<hMk<kqgiv{qh<hMk<kz< wmk<kg<gim<m 0 : giv{qh<hmk<kg; 6p 8q. kqiu; 6p (6p), 8q (q) wewpkzil</njgbiz<? X 6p, Y q wewmk<kg< ogi{<omilieiz< 6p 8q (6p) (q) X Y (X Y) (X + XY + Y ) (6p q) [(6p) +(6p)(q) +(q) ] (6p q)(6p +pq+4q ). X + Y + X Y + XY (X + Y) Jh<hbe<hMk<kqgiv{qh<hMk<kz< wmk<kg<gim<m : giv{qh<hmk<kg; 8x + y + x y + 6xy. kqiu; 8x + y + x y + 6xy (x) + y + (x) y + (x)y [(x) + y] (x + y). X Y X Y + XY (X Y) Jh<hbe<hMk<kqgiv{qh<hMk<kz< wmk<kg<gim<m : giv{qh<hmk<kg; 8x 7y 6x y + 54xy. kqiu; 8x 7y 6x y + 54xy (x) (y) (x) (y) + (x)(y) (x y). X + Y + Z + XY + YZ + ZX (X + Y + Z) Jh<hbe<hMk<kqgiv{qh<hMk<kz< wmk<kg<gim<m : giv{qh<hmk<kg; x + 9y 6xy + 4x y + 4. kqiu; Ogiju x + 9y + 4 we<x%mkjzg<ogi{<mt<tk/-k&e<xuig<gr<gtqe< %Mkz</Njgbiz<?fil<wPKuK x + 9y 6xy + 4x y + 4 x + (y) + + x ( y) + x() + ()( y) [x + ( y) + ] (x y + ). X + Y + Z XYZ (X + Y + Z) (X + Y + Z XY YZ ZX) Jh< hbe<hmk<kq giv{qh<hmk<kz< wmk<kg<gim<m 4: giv{qh<hmk<kg; x 8y + 7z + 8xyz. kqiu; 8y ( y), 7z (z) we<hkiz<ogimg<gh<hm<mogijujbp we<g/-k&e<x g{r<gtqe<%mkjzg<ogi{<mt<tk/weoufil<wpkuk P (x) + ( y) + (z) (x)( y)(z) [(x) + ( y) + (z)] [(x) + ( y) + (z) (x) ( y) ( y)(z) (z)(x)] (x y + z) (x + 4y + 9z + xy + 6yz zx). X + Y + Z 0 wel<ohikx + Y + Z Jg<giv{qh<hMk<kz< X + Y + Z (X + Y + Z XYZ) + XYZ (X + Y + Z) (X + Y + Z XY YZ ZX) + XYZ (0) (X + Y + Z XY YZ ZX) + XYZ XYZ. Gxqh<H; X + Y + Z 0 weqz<, X + Y Z. (X + Y) ( Z) Z. n-k X + Y + XY(X +Y ) Z. n-k, X + Y + Z + XY( Z) 0. X + Y + Z XY Z. 0

115 wmk<kg<gim<m 5: giv{qh<hmk<kg; (x y) + (y z) + (z x). kqiu; X x y, Y y z, Z z x we<g/ hqe<ei X + Y + Z (x y) + (y z) + (z x) x y + y z + z x 0. X + Y + Z XYZ X, Y, Z Ngqbux<xqx<Ghqvkqbqm<miz< (x y) + (y z) + (z x) (x y) (y z) (z x). GPF[g<gk<jkh<hbe<hMk<kqg<giv{qh<hMk<kz< wmk<kg<gim<m 6: giv{qh<hmk<kg; 4x + 0xy + 5y 0x 5y. kqiu; ogimg<gh<hm<mogiju4x + 0xy + 5y 0x 5y (x) + (x)(5y) + (5y) 5(x) 5(5y) [(x) + (5y)] 5[(x) + (5y)] (x + 5y) 5(x + 5y) (x + 5y) (x + 5y 5). wmk<kg<gim<m 7: giv{qh<hmk<kg; 4a 4ab + b a + b. kqiu; ogimg<gh<hm<mhz<zxh<hg<ogiju 4a 4ab + b a + b (a) (a)(b) + (b) (a b) (a b) (a b) (a b) (a b ). wmk<kg<gim<m 8: giv{qh<hmk<kg; 8x 8x + 5y. kqiu; dxh<hgjtg<gph<hmk<k 8x 8x + 5y [(9x) (9x)() + () ] (5y) [(9x) ()] (5y) (9x ) (5y) [(9x ) + (5y)][(9x ) (5y)] (9x + 5y ) (9x 5y ). wmk<kg<gim<m 9: giv{qh<hmk<kg; x 4 +. kqiu; x J%m<cg<gpqg<g?fil<ohXuK x 4 + (x 4 + x + ) x [(x ) + (x )() + () ] x (x + ) ( x) [(x + ) + ( x)][(x + ) ( x)] (x + x + ) (x x + ). wmk<kg<gim<m 40: giv{qh<hmk<kg; x 4 + x y + y 4. kqiu; x y Jg<%m<cg<gpqg<g?fil<ohXuK x 4 + x y + y 4 (x 4 + x y + y 4 ) x y [(x ) + (x )(y ) + (y ) ] (xy) (x + y ) (xy) [x + y + (xy)] [x + y (xy)] (x + xy + y ) (x xy + y ). wmk<kg<gim<m 4: giv{qh<hmk<kg; x 4 + 5x + 9. kqiu; x Jg<%m<cg<gpqg<g, fil<ohxuk x 4 + 5x + 9 (x 4 + 6x + 9) x (x + ) x [(x + ) + x][(x + ) x] (x + x + ) (x x + ).

116 wmk<kg<gim<m 4: x 8 x y 6 Jg<giv{qgtigh<hqiq. kqiu; x JyVohiKg<giv{qbigwMg<g? x 8 x y 6 x (x 6 y 6 ) x [(x ) (y ) ] x (x + y ) (x y ) x [(x + y)(x xy + y )] [(x y)(x + xy + y )] x (x + y)(x y)(x + xy + y ) (x xy + y ). hbqx<sq 4.. hqe<uvuesiqbikuxiweuqjmbtq/. x + x + ( + x ). x 6 4x + 4 (x + ). a b (a b) 4. a + b (a + b)(a + ab + b ) 5. a b (a b)(a + ab + b ) giv{qh<hmk<kz<$k<kqvr<gjth<hbe<hmk<kqgiv{qgjtg<g{<mhqc/ x + 9x 7. 44x 7x a b + 0abcd + 5c d 9. x + y a b + xy + ab 0. x y + 7z. (x + y) + 8y. (x + ) + (x ). x 6 y 6 4. (x + y) (x y) 5. (p + q) + (p q) + 6p(p q ) 6. 7x + y + 7x y + 9xy 7. x x +48x x 7y 6x y + 54xy 9. 4x + 9y + z + xy + 4xz + 6yz 0. a + b + 9c + ab 6ac 6bc. x y + + xy. 8x 5y + 80xy x 7y + z +8xyz 4. a 8b 5c 0 abc 5. (a b) + (b c) + (c a) 6. (x + y z) + (y + z x) + (z + x y) 7. (a b ) + (b c ) + (c a ) 8. a (b c) + b (c a) + c (a b) 9. x(x + z) y(y + z) 0. xy x y. x ax + bx + c we<el<-vhcg<ogijujbg<giv{qh<hmk<kz< ogpg<gt< a, b, c Ngqbju njek<kl< LPg<gt< we wmk<kg< ogit<ouil</ OlZl< a 0/ ogpg<gt< a, b, c sqz gm<mh<himgtg<g dme<hm<miz< ax + bx + c Jg< giv{qh<hmk<kzil</-f<kg<gm<mh<himgjtbl<giv{qgjtbl<-eqgi{<ohil</ Lkzqz<? a, b Bl< c Bl< LPg<gt< we<el< wtqb ujgjb wmk<kg< ogit<ouil</ fil< -h<ohik x + bx + c we<hjkg< giv{qh<hmk<k Ou{<Ml</ fil< lixqzq dxh<higqbc we<el<lpju? p + q b we-vg<glix?p?q we<el<-vlpg<gtqe< ohvg<gx<hzeigwpkouil</fl<ljmblbx<sqbqz<fil<oux<xqohx<xiz<? x + bx + c x + (p + q)x + pq (x + px) + (qx + pq) x(x + p) + q(x + p) (x + p) (x + q) -u<uix?fil<uqvl<hqbjks<sikqk<kt<otil</

117 uqkq : x + bx + c bqe< lixqzq dxh<h c biek? p? q we<el< -V LPg<gtqe< ohvg<gx<hzeigul<? nu<uqv LPg<gtqe< %Mkzigqb p + q uiek x e< ogpuigqb b g<gs<slligul<-vg<glixhqiqg<gh<hm<miz<?x + bx + c (x + p) (x + q). wmk<kg<gim<m 4: giv{qh<hmk<kg; x + 9x + 8. kqiu; ogimg<gh<hm<mogijujbx + XY + Y wel<ucuk<kqz<wpklcbik/weou? X + XY + Y (X + Y) we<hjkh<hbe<hmk<klcbik/weou?lixqzqdxh<h8 Jg< giv{qh<hmk<klbz<ouil</ 8 e<wz<zigiv{qs<osicgt< g<giv{qgtqe<%mkjzwpkouil</ ( 8) + ( ) ( ) + ( 8) ( ) + ( 9) ( 9) + ( ) ( ) + ( 6) ( 6) + ( ) 9. x e< ogpjubl<? giv{qgtqe< %MkjzBl< yh<hqm<mh< hiik<okiole<xiz<, 6 Ngqb giv{qgtqe<%mkz<x e<ogpuigdt<tk/weou? x + 9x + 8 (x + ) (x + 6). wmk<kg<gim<m 44: giv{qh<hmk<kg; x 5x kqiu; lixqzq 54 lx<xl< x e< ogp 5. -r<g 54 e< giv{qgjtbl<? nux<xqe< %MkjzBl<gQOphm<cbzqm<Mg<gim<MOuil</ giv{qgt< %Mkz< {, 54} 55 {, 54} 55 {, 7} 9 {, 7} 9 {, 8} {, 8} {6, 9} 5 { 6, 9} 5 weou? x 5x + 54 (x 6) (x 9). wmk<kg<gim<m 45: giv{qh<hmk<kg; 5 x x. kqiu; kqm<mucuqz<wpk? 5 x x x x + 5 ( ) (x + x 5). -r<gfil< 5 5, 5 + ( ) weg<gi{<gqoxil</ weou? 5 x x ( ) [(x + 5) {x + ( )}] ( ) (x + 5)(x ) (x + 5) ( x). wmk<kg<gim<m 46: giv{qh<hmk<kg; x x. kqiu; ( ), ( ) + wefil<gi{<gqoxil<</ weou? x x [x + ( )] (x + ) (x ) (x + ).

118 nmk<kkig? a 0, a, b, c LPg<gtigg< ogi{<m ax + bx + c we<gqx -Vhc hz<zxh<hg< Ogijubqjeg< gvkouil</ p, q Ngqb -V LPg<gjt pq ac weul<? p + q b weul<-vg<glixfl<liz<g{<mhqcg<glcf<kiz<? ax + bx + c a (a x + abx + ac) a [a x + a(p + q)x + pq] a [a x + apx + aqx + pq] a [ax (ax + p) + q(ax + p)] a (ax + p) (ax + q) -u<uix?fl<liz<ogijujbgiv{qh<hmk<klcgqxk/ uqkq : p?q wel<lpg<gjt? p q a c? p + q b we<xqvg<glixgi{lcf<kiz<? ax + bx + c a (ax + p) (ax + q). wmk<kg<gim<m 47: giv{qh<hmk<kg; x + 7x +. kqiu; -r<g a x e<ogp b x e<ogp 7 c lixqzq fil<gi{<hk a c 6 6, b. Njgbiz< x + 7x + (x + 6) (x + ) (x + )(x + ). uqkqbqe< Lcjuh< hbe<hmk<kukx<gh< hkqzig fm dxh<jhh< hqiqk<k? gqpg<gi[lixgpljxbqz<giv{qh<hmk<kzil</wmk<kg<gim<mig? x + 7x + x + (6 + )x + x + 6x + x + x(x + ) + ()(x + ) (x + ) (x + ). wmk<kg<gim<m 48: giv{qh<hmk<kg; 8a + a. kqiu; -r<g? , 6 + ( 4) weg<gi{<gqoxil</hqiqk<okpkqbhqe<? GPh<hMk<kqeiz<fil<njmuK? 8a + a 8a + 6a 4a a(4a + ) ()(4a + ) (4a + ) (a ). wmk<kg<gim<m 49: giv{qh<hmk<kg; 6 + x + x. kqiu; Ogijujblix<xqobPk? 6 + x + x (x + x + ). -r<g? 4 8, 8 +. weou?fmdxh<jhh<hqiqk<kl<?gph<hmk<kqbl<wpk? 6 + x + x (x + 8x + x + ) [x(x + 4) + (x + 4)] (x + 4) (x + ). ax + bx + c z< a, b, c Ngqbju LPg<gtig -z<zilz<? olb<ob{<gtig -Vh<hqEl< %m fm dxh<jhh< hqiqk<okpkq GPh<hMk<kqg< giv{qh<hmk<kl< Ljxjb fil<hbe<hmk<kzil</ 4

119 wmk<kg<gim<m 50: giv{qh<hmk<kg; 7 x 0x 4. kqiu; -r<g? ( 4) 4 OlZl<( 4) weou?fmdxh<jhh< hqiqk<okpkq?gpljxbqz<wpk? 7 x 0x 4 7 x 4x + 4x 4 7x ( x ) + ( x ) ( x ) (7x + ). wmk<kg<gim<m 5: giv{qh<hmk<kg; x + 5 x + 6 kqiu; -r<g? 6 8 ( ) ( ) OlZl< + 5. weou?fmdxh<jhh< hqiqk<okpkq?gpljxbqz<giv{qh<hmk<k? x + 5 x + 6 x + x + x + 6 x (x + ) + (x + ) (x + ) (x + ). wmk<kg<gim<m 5: giv{qh<hmk<kg; 5x + 7xy + 4y. kqiu; fil< , weg<gi{<gqoxil</weou?fmdxh<jhh< hqiqk<okpkq?gpljxbqjeh<hbe<hmk<kqeiz<, 5x + 7xy + 4y (5x + xy) + (5xy + 4y ) x(5x + 4y) + y(5x + 4y) (5x + 4y) (x + y). wmk<kg<gim<m 5: giv{qh<hmk<kg; 6(a ) b 5(a )b 6b kqiu; x a wewmk<kg<ogi{<miz<? 6(a ) b 5(a )b 6b 6x b 5xb 6b b(6x 5bx 6b ) -r<g? ( 9) 4, OlZl< ( 9) weg<gi{<gqoxil</ Njgbiz< b(6x 9bx + 4bx 6b ) b[x(x b) + b(x b)] b(x b) (x + b) b[(a ) b] [(a ) + b] b[(a b ) (a + b )]. giv{qh<hmk<klcbiklpg<gjtg<ogpg<gtigg<ogi{<m-vhchz<zxh<hg< OgijugTl<d{<M/ wmk<kg<gim<m 54: giv{qh<hmk<kg; x + x. kqiu; ax + bx + c Bme<yh<hqMjgbqz< a, b, c. -r<g ac. OlZl<( ) + 0 b. weou?x + x J LPg<gjtg<ogPg<gtigg<ogi{<mgiv{qgtig<gLcbiK/ Gxqh<<H;x + x x + x x + 4 x + x + + x +. 5

120 gqopuvueux<jxg<giv{qgtigh<hqiq/ hbqx<sq x + 7x +. x + 9x + 0. d + 0d + 4. z 7z a a 7 6. x + x p 8p y y y 0y t 8t + 95 gqopuvueux<jxg<giv{qh<hmk<kg;. a + a x + 8x +. 4x + x x + x 5. 6p + 7p a a m + 6m p + 9p 9. 6x + 5x y y 6. 4x x. 9a 9a +. a a x 7x x x + 7 gqp<uvueux<jxg<giv{qgtigh<hqiq/ 6. 9x + 4xy + 5y 7. 4x 6xy 9y 8. 6c + cd 0d 9. 5x xy + 6y 0. a 5ab + 8b gqp<uvueux<jxg<giv{qh<hmk<kg;. 0 8 x x. u u +. x x x 8x x x x + x + 7. x + x x + 0x x + 5x x + 4x yv hz<zxh<hg< Ogijujb lx<oxiv hz<zxh<hg< Ogijubiz< ugk<kz< f(x) we<el< hz<zxh<hg< Ogijujb g(x) we<el< hz<zxh<hg< Ogijubiz< ugg<gl<osbziekf(x) q(x) g(x) + r(x) we<x-vg<glixl<?r(x) 0 nz<zkr(x) e< hcbiek g(x) e< hcjb uqm sqxqbkigul< -Vg<GliX? q(x), r(x) we<el< -V hz<zxh<hg< Ogijugjtg< gi{<hkigl</ -r<g f(x) J okigkq we<xl<? g(x) J hgkq we<xl<? q(x) J U we<xl<? r(x) J lqkq we<xl< njpg<gqe<oxil</ f(x) J g(x) Nz< ugg<gl< osbzqz< ughml< Ogijubigqb f(x) e< hc wh<ohipkl<? ugg<gl< Ogijubigqbg(x) e<hcg<gnkqgligouinz<zkslligoui-vg<gm<ml</woeeqz< f(x) e<hcg(x) e<hcjbuqms<sqxqbkig-vf<kiz<q(x) 0 NGl<; OlZl<r(x) f(x) we<xigl</u?lqkqgi{-vljxgt<dt<te/ 6

121 Ljx : fq{<mugk<kz<ljx: -f<kljxjbfil<yiwmk<kg<gim<ce<&zl<uqtg<gouil</ wmk<kg<gim<m 55: + 5x + x + x we<hjk + x Nz<uGg<gUl</ kqiu; ughml<ogiju f(x) + 5x + x + x ugg<gl<ogiju g(x) + x, f(x) e<hc, g(x) e<hc / flkgxqg<ogit<uq(x) JBl<?lQkqr(x) JBl<gi{<hOkbiGl</ gm<ml< : f(x), g(x) Ngqbux<jxk<kqm<mucuqz<wPKOuil</ f(x) x + x + 5x + g(x) x + gm<ml< : ughml<ogijubqe<lkz<dxh<higqb (x ) J ugg<gl< Ogijubqe< Lkz< x dxh<higqb(x) Nz<uGk<kiz<flg<Guqe<Lkz<dXh<H x gqjmg<gl</ x gm<ml<: ugg<gl<ogijubigqb(x + ) Juqe<Lkz<dXh<higqb (x ) Nz<ohVg<gq uvl< ohvg<gx<hzeigqb x + x J ughml< OgijubqzqVf<K gpqg<gou{<ml</ flg<gg< gqjmg<gl< lqkq x + 5x +. lqkqbqe< hc? ugg<gl< Ogijubqe< hcjb uqmh< ohiqbk/ gm<ml< 4: OlOz gqjmk<k x + 5x + we<el< lqkqjb Hkqb ughml< Ogijubig wmk<kg< ogi{<m gm<ml< Jh< hbe<hmk<kqeiz< uqe< -v{<mil< dxh<h x x gqjmg<gl</ x gm<ml< 5: ugg<gl< Ogiju )x + ) Juqe<-v{<mil<dXh<hiz<(x) ohvg<gq? uvl< ohvg<gx<hzje (x + x) J Hkqb ughml< Ogijubqeqe<X gpqg<g Ou{<Ml</ flg<g gqjmg<gl<lqkq(4x + ). lqkqbqe<nmg<gugg<gl<ogijubqe<hcbigdt<tk/ gm<ml< 6: lqkq (4x + ) J Hkqb ughml< Ogijubig wmk<kg< ogi{<m gm<ml< Jh< hbe<hmk<kqeiz<uqe<&e<xil<dxh<h 4 x x 4 gqjmg<gl</ gm<ml< 7: fil< ugg<gl< Ogiju (x + ) J?uqe<&e<xiuKdXh<hiz<(4) ohvg<gq uvl<(4x + 4) Jh<HkqbuGhMl<Ogijubqeqe<Xgpqg<gOu{<Ml</gqjmg<Gl<lQkq. -f<klqkqbqe<hch,s<sqbl</-kugg<gl<ogijubqe<hcjbuqms<sqxqbk/weou? fil<ugg<gl<osbjzfqxk<kquqm<m?u?lqkqngqbux<jxwmk<kwpkgqoxil</ Olx<%xqbgm<mr<gt<gQPt<tucuk<kqz<ogiMg<gh<hm<Mt<te/ x + x + x + 4 x + x + 5x + x + x x + 5x + x + x 4x + 4x + 4 x x x x x x 4x 4 x 7

122 -u<uixigflg<gg<gqjmg<gl<uq(x) x + x + 4, lqkq r(x). fil< nxquk, f(x)q(x) g(x) + r(x). x + x + 5x + (x + x + 4) (x + ) + ( ) Ljx : ugk<kg< giv{qh<hmk<kz< Ljx; -f<k Ljxbqz<? f(x) J -v{<m dxh<hgtqe< %Mkzigh< hqiqk<koz Gxqg<Ogit< NGl</ Lkz< dxh<h g(x) J giv{qbigg< ogi{<cvg<gl</ -v{<miuk dxh<h g(x) J uqm nmg<gqz< Gjxf<k yv hz<zxh<hg< OgijubiGl</-jkfil<ohx?f(x) dme<okjubiedxh<hgjtg<%m<c?gpqh<ohil</ wmk<kg<gim<m 56: 9x + x 5x + 7 J x + x Nz<uG/ kqiu; 9x + x 5x + 7 [(x + x ) (x) 6x + x] + x 5x + 7 (x + x )(x) + [ 6x + x ] + [x 5x] + 7 (x + x )(x) + ( x ) + ( x) + 7 (x + x ) (x) + [(x + x ) ( ) + x ] + ( x) + 7 (x + x ) (x) + (x + x ) ( ) + [(x) + ( x)] + [( ) + 7] (x + x )(x) + (x + x ) ( ) + 6 (x + x ) (x ) + 6 weou?u x, lqkq 6. wmk<kg<gim<m 57: 4 7x x x x 4 J x x + 4 Nz<uG/ kqiu; fil<kqiju-vupqljxgtqzl<gi{<ohil</ fq{<mugk<kz<ljx x 8x 68 x x 4 x x 7x x + 4 x x 4 + 6x 8x + + x 8x 4x 7x + 4 8x 8x + 54x 7x + + x 68x + 55x x 68x + 04x 7 x x + 76 weou?u x 8x 68, lqkq 49x ugk<kg<giv{qh<hmk<kz<ljx 4 7x x x x 4 x 4 x x 7x + 4 [(x x + 4) ( x ) 6x + 8x ] x x 7x + 4. (x x + 4) ( x ) 6x + 8x x x 7x + 4 (x x + 4) ( x ) 8x 4x 7x + 4 (x x + 4) ( x ) + [(x x + 4) ( 8x) 54x + 7x] 4x 7x + 4 (x x + 4) ( x ) + (x x + 4) ( 8x) 54x + 7x 4x 7x + 4 x 8x 68 8

123 (x x + 4) ( x ) + (x x + 4) ( 8x) 68x +55x+ 4 (x x + 4) ( x ) + (x x + 4) ( 8x) + [(x x + 4) ( 68) 04x + 7] +55x + 4 (x x + 4) ( x ) + (x x + 4) ( 8x) + (x x + 4) ( 68) 04x x + 4 (x x + 4) ( x 8x 68) + ( 49x + 76). weou?u x 8x 68, lqkq 49x hbqx<sq x x + x 7 NeKgQOpogiMg<gh<hm<mOgijugtiz<uGhMl<OhiKU?lQkq gi{<g/ (i) x + (ii) x 4 (iii) x. 5 + x 4 8x NeKgQOpogiMg<gh<hm<mOgijugtiz<uGhMl<OhiKU?lQkq gi{<g/ (i) (x + )(x + ) (ii) (x ) (iii) x + x. uqjmgt< hbqx<sq 4.. (i) kux (ii) kux (iii) kux (iv) kux (v) siq. x + x x + 4. x 4 x + 0x 8 4. x + 5x x + 5. x + 5x 7x x 4 4x + 4x 8 7. x 5 + x 8x + 6x x 4 6x + 5x 66x x 5 + x 4 + 9x + x 9x 8 0. x 5 + 4x 4 + 9x 8x + x x e<ogp x e<ogp x e<ogp acx + bdy + (ad + bc)xy 5. x x y 5xy y 6. x 4 + x y + y 4 7. p 9 8. a 7 9. m hbqx<sq 4.. (i) x + x + 8 (ii) x + 6x 6 (iii) t + 4t (iv) p 7p + (v) 08 (vi) 658 (vii) 4 (viii) 95. (i) 5x + 80xy + 64y (ii) 9s 4st + 6t (iii) 6p 49q (iv) 00 (v) 9604 (vi) ,9/ , 0 5., 8 6. (i) 9x + y + 4z + 6xy + 4yz + xz (ii) 6x + 4y + 9z 6xy yz + 4xz (iii) 4p + 9q + 4r + pq qr 8pr (iv) 9a + 4b + 4c ab + 8bc ac 9

124 (i) x + 9x + 6x + 4 (ii) x + x 4x 4 (iii) x + x 0x 4 (iv) x 5x x + 4 (v) x 9x + 6x 4 x e<ogp x e<ogp lixqzq 9. (i) (ii) 0 6 (iii) ,, 5 5. (i) 8x + x y + 6xy 4 + y 6 (ii) 8u 84u v + 94uv 4v (iii) x x + x x (iv) x 6 y 9 + 6x 4 y 6 + x y , ,7 5., 80,06 hbqx<sq 4... (m n). 4a(a a + 4). x(x 4 + 4) 4. xy (6x 4 y + x + 4) 5. 7pq ( pq) 6. (m p) (n + ) 7. (x + ) (x ) (x ) 8. (x + a ) (x a ) (x ) 9. (p + ) (p ) 0. (x + ) (x + ) hbqx<sq 4... siq. kux. kux 4. kux 5. siq 6. ( + x) 7. (x ) 8. (ab + 5cd) 9. (x + y + a b) (x + y a + b) 0. ( xy + z) (x y xyz + 9z ). (x + y) (x + y ). x (x 4 + ). (x + y) (x y) (x xy + y ) (x + xy + y ) 4. y(x + y ) 5. 8p 6. (x + y) 7. (x 4) 8. (x y) 9. (x + y + z) 0. (a + b c). (x y + ) (x + y + + xy + y x). (x 5y + 6) (4x + 5y xy + 0y x). (x y + z) (4x + 9y + z + 6xy + yz zx) 4. ( a b 5c) (a + 4b + 5c + ab 0bc + 5 ca ) 5. (a b) (b c) (c a) 6. (x + y z) (y + z x) (z + x y) 7. (a + b) (a b) (b + c) (b c) (c + a) (c a) 8. abc (a b) (b c) (c a) 9. (x y) (x + y + z) 0. ( + x + y) ( x y). (x + x + ) (x x + ) 0

125 hbqx<sq 4... (x + ) (x + 4). (x + 4) (x + 5). (d + ) (d + 7) 4. (z + 7) (z 4) 5. (a + 8) (a 9) 6. (x + 0) (x 9) 7. (p ) (p 5 ) 8. (y 6) (y 7) 9. (y 9) (y ) 0. (t ) ( t 5). (a + 5) (a + ). (x + ) (x + ). (x + ) (x + ) 4. (x + )(x ) 5. (p + ) (6p + 5) 6. (a + ) (4a 5) 7. (m + ) (7m 5) 8. (p + 4) (8p ) 9. (x + ) (x ) 0. (y + ) (5y 6). (x ) (7x + ). (a )(a ). (a ) (a 9) 4. (x ) (4x ) 5. (4x ) (4x 7) 6. (x + y) (9x + 5y) 7. (x + y) (x 9y) 8. (c + 5d) (c d) 9. (x y) (5x 6y) 0. (a 4b) (a 7b). (x ) (5x +). (u ) (u 4). (4x )(4x ) (4x ) (4x 7) 5. (4x ) (6x ) 6. ( x + ) ( x + ) ( x + ) (x + ) 8. ( 5 x + ) ( 5x + 5) 9. (x + 5 ) (x + 5) 40. ( 7 x + )( 7x + ) hbqx<sq 4.4 U lqkq. (i) x x (ii) 4x + x (iii) 4x x 5. (i) x x 9x + 7 (ii) x + 4x + 4 (iii) x 0x + 5

126 5. kqiugt<gi[l<<ljxgt<<<<<<<<<<<< flg<gyvg{g<gogimg<gh<hm<m, nkx<gk< kqiu gi{s< osie<eiz<, Lkzqz<nkje LPjlbig fe<g hck<k,hiqf<kogi{<m, ng<g{g<gqz< we<e ogimg<gh<hm<mt<tk, we<eg{<mhqcg<gou{<ml<nz<zkwkjefq'hqg<gou{<ml<we<hkjenxqf<k osbz<hmkz< Ou{<Ml<. hqxg ng<g{g<gqx<gk< kqiugi{ wf<k g{qk d{<jlgjth< hbe<hmk<k Ou{<Ml<,wf<k Ljxbqz< nf<k g{qk d{<jlgjth< hbe<hmk<kou{<ml< we<hkjek<< kqilieqg<g Ou{<Ml</ g{g<gqx<gk< kqiu gi{k< Okjubie g{qk d{<jlgjts< siquvh< hbe<hmk<ks< osbz< kqxel<, hbqx<sqbl< OkjubiGl</ osbz< kqxe<&zligk<< kqiu gi{ fqjxb upqljxgjtbl<, dk<kqgjtbl< nxqbzil<. sqz Ofvr<gtqz<yVg{g<gqe<kQIUhz<OuXupqgtqz<nz<zKhz<OuXdk<kqgtqz<gi{ LcBl<.wMk<Kg<gim<miggQOpdt<tg{g<gqjewMk<Kg<ogit<Ouil</ g{g<g: a b 4, a + b 5 weqz<, b a -e<lkqh<hgi{<g/ -g<g{g<gqe<kqiugi{gqp<g{<mljxgtqz<flkw{<o{im<ml<osbz<hmgqxk/ uqei: we<eogimg<gh<hm<mt<tk? uqjm: a b 4, a + b 5. uqei: we<e g{<mhqcg<gou{<ml<? uqjm: a -e<lkqh<h/ b uqei: wh<hcs<osbz<hmkz<ou{<ml<? uqjm: dk<kq: a b 4. () 9 () + () a 9 a. a + b 5. () () () b b. b a 9 9. dk<kq: a a ( a + b) + ( a b) b b ( a + b) ( a b) 5 4 dk<kq : a b 4 () a + b 5 () a a x x we<g. hqe<ei? n.k a bx. b b

127 () bx b 4 b (x ) 4. () bx + b 5 b (x + ) 5. b( x ) 4 x 4 n.k n.k 5x 5 4x + 4 n.k 5x 4x n.k x 9. b( x + ) 5 x + 5 weou fl<ljmb F{<{xqUk<kqxe<, osbz<kqxe<, kqxjl, OlZl< nehul< Ngqbju g{g<ggjtk< kqig<g Wx<hiMgjtBl<? dk<kqgjtbl< dvuig<gukx<gk< Okju/ Olx<%xqb g{g<jgk< kqih<hkx<g &e<x dk<kqgt< lm<mol -Vh<hkig LcU osb<b Ou{<mil</ yv g{g<gqe<< kqiu gi{? Hkqb dk<kqgjt nehuk<kqe< uibqzigul<, nok g{g<gqx<g lq{<ml<< lq{<ml< kqiu gi[l< OhiKl< ohx LcBl</ OlZl<flKw{<{lieKsqf<kqg<Gl<kqxeqz<ujtf<KogiMh<hkib<-Vg<gOu{<Ml<, lx<xupqljxgjtwx<xg<ogit<tkqxf<kkib<-vg<gou{<ml<?oux<xqml<-z<zilz< hz<oux gvk<okim<mr<gjth< ohxukib< -Vg<g Ou{<Ml</ yv g{g<gqe< kqiuqjeg< gi{ YI dk<kqbiz< Lcbuqz<jz weqz<, lx<oxiv dk<kqjbh< hbe<hmk<kqk< kqiu gi[kz<ou{<ml</-u<uix? yvg{g<gqe<kqiuqjeg<gi{flg<gk<okiqf<khz<oux dk<kqgt<kqif<kohigl<ujvhbe<hmk<kqg<ogi{<om-vg<gou{<ml</ 5. nelier<gt<lx<xl<fq'h{r<gt<< gqp<gi[l<w{<gtqe<njlh<jhofig<gg/,, 7,,, fil< -f<k njlh<hqe< ohik dxh<hqjeg< gi{ uqjpgqe<oxil< we<g/ dxh<hgjtg< gqp<g{<muixhgk<kxqbzil</ h<ohipk, -f<knjlh<hqz<nmk<kw{<we<ewe<hjkfl<liz<g{<mhqcg<glcbl</ weou?6 NuKdXh<H. OlZl< + ( ). 7 NuKdXh<H ( ). 8 NuKdXh<H ( ). 9 NuKdXh<H

128 + ( ). -r<ogdxh<hgtqe<lkqh<hgqjmg<gl<ljxjbofig<gl<ohipk, njlh<hqe<ohik dxh<h)nkiukn NuKdXh<H, n,,, ) + [ (n )] wefil<%xlcgqxk/ Neiz< -f<kg< %x<xqz< (n ) we<x %Mkz< dt<tk. -g<%mkjz g{<mxqbilz< njlh<hqe< ohik ucuk<jkg< g{<muqm<omil< we<x osiz<z LcbiK/ wmk<kg<gim<mig? %Mkz< we<hjkg< gvkouil<. -K -zqvf<k 00 ujv dt<t nmk<kmk<k -bz< w{<gtqe< %Mkz< NGl<</ S we<hk -g<%mkz<weqz<, S fil<nxquk? nkiuk S , S S kqz<f~x0 gt<-vh<hkjeg<gi{lcgqxk/ 00 0 weou?s 00 0 nz<zk S Olx<gi[l<%Mkz<gqjmg<gh<ohx<xLjxjbg<%If<KOfig<gqe<, fil< ( n ) n (n ) we<x%x<jxneliel<)conjecture) osb<bzil</ n,,, weg< ogi{<m -g<%x<jxs< siqhiig<gzil</ -r<g fq'h{l< ogimg<gh<hmilz< yv %x<xqje njlk<k nkjes< siqhiig<gqoxil</ fq'hqg<gh<hmikujv ng<%x<x YI nelief<kie< )gi^< we<x o\i<lieqb g{qk Oljk ke< 0uK ubkqz< 4uK hck<kg< ogi{<cvf<kohik? ugh<hisqiqbi< li{ig<gigjt e<%mkz<gi{s<osie<eohik? dmoegi^<5050we<xuqjmbtqk<kii/nsqiqbinujvwu<uixdmoehkqztqg<g Lcf<kKwe<XOgm<ggi^<?OlOzfil<%xqbLjxjb?NsqiqbIuqbf<Khivim<MliX ntqk<kii*/flknjlh<hqe<ohikdxh<h n( n ) + + n(n ) n n +. weou?,, 7,,. we<xnjlh<hqe<ohikdxh<h n n + NGl<. Olx<g{<m Nb<uqz<, fil< YI njlh<hqjeg< %If<kib<f<K, yv %x<xqje d{<mig<gqoeil</ d{<jlbqz< -bx<g{qkl<, ucuqbz< Ohie<x hqiqugtqz< hz Okx<xr<gt<w{<gtiZl<dVur<gtiZl<njlf<knjlh<Hgjt%If<kib<Us<osb<kke< uqjtuiz<g{<mxqf<kjungl</-h<ohipkfil<g{qkk<kqz<dt<touu<oux %x<xgt<?ng<%x<xgjth<hgk<kxqukx<gh<hbe<hmk<kh<hml<hzdk<kqgt<ngqbux<jx nxqf<kogit<ouil</ 4

129 %x<xgt< weh<hmhju uzqbxk<kqg< %xh<hml< uig<gqbr<gtigl</ gqop sqz %x<xgt<ogimg<gh<hm<mt<te: (i) x + 7 5, -r<g x N. (ii) skvk<kqe<&jzuqm<<mr<gt<ye<xg<ogie<xosr<gk<kigl</ (iii) (a + b) (a b) a b, -r<g a, b R. (iv) yvuqgqklxw{<. (v) sib<skvk<kqe<&jzuqm<<mr<gt<ye<xg<ogie<xosr<gk<kigik. (vi) n( n +) n. %x<xgt< olb<biejubigoui nz<zk olb<bx<xejubigoui -Vg<gzil</ wmk<kg<gim<mig OlOz dt<t %x<xgtqz< (i), (iv) lx<xl< (v) Ngqbju olb<bx<x %x<xgt<; (ii), (iii) lx<xl< (vi) Ngqbjuolb<bie%x<Xgt<. 5.. ujvbjxwe<xiz<we<e? sqz %x<xgt< Wx<geOu dt<t gvk<kgtqzqvf<k Hkqb gvk<kg<gjt dvuig<gq d{<jlbie LcUgjth< ohx upqugg<gl</ ng<%x<xgot ujvbjx weh<hml</wx<geouwx<xg<ogit<th<hm<msqz ujvbjxgt<gqopogimg<gh<hm<mt<te/ (i) wz<zih<hg<gr<gtl<slntuogi{<mlg<ogi{l<slhg<glg<ogi{l< weh<hml</ (ii) a x b weqz<,x NeKncliel<a ogi{<mb -e<lmg<jgweh<hml</ (iii) -v{<mogi{r<gtqe<%mkz<80 weqz<,njulqjgfqvh<hogi{r<gt< weh<hml</ 5.. ncogit<gt<< sqz %x<xgjt d{<jlobe LPjlbig Wx<Xg<ogit<tzil</ -k<kjgb %x<xgt< ncogit<gt<<< nz<zk yh<hg<ogi{<m d{<jlgt< weh<hml</ ucuqbzqzl< -bx<g{qkk<kqzl<dt<tsqzyh<hg<ogi{<md{<jlgt<gqopogimg<gh<hm<mt<te; (i) -v{<mht<tqgt<upqobyovyvogimkie<-vg<gqxk/ (ii) WOkEl< -v{<m olb<ob{<gt< x, y gtg<g x + y, xy NgqbjuBl< olb<ob{<gtigl</ (iii) n yv-bz<w{<weqz<?n + dl<-bz<w{< NGl</ (iv) yvogim<mk<k{<miekyovyvjlbh<ht<tqjbk<kie<ohx<xqvg<gl</ (v) yv Ogi{lieKyOvyV-Vsloum<cjbk<kie<ohx<xqVg<Gl<. 5..,, NgqbGxqgt< g{qkl<? kvg<g vqkqbig fqjeu %If<K ohxh<hm<m yv himh<hgkqbigl</ yv g{g<gqe< kqiu nz<zk g{g<gqe< upqljxgt< nz<zk g{g<gqe< fq'h{l< hch<hcbigohxh<hm<myvnjlh<higl</upqljxbqe<yu<ouixhcbl<nkx<gle<h dt<t hcbqjes< siif<kkig njlf<kqvg<gl</ kk<ku vqkqbie upqgjt Gxqg<g fil< 5

130 we<x Gxqbqjeh< hbe<hmk<kgqoxil</ wmk<kg<gim<ce< &zlig we<x Gxqbqe< hbjenxqouil</hqe<uvl<%x<xgt<p, Q jug<gvkg/ P: x, Q: x 4. P Jd{<jlobeg<ogi{<miz< x NGl</ x x x 4. Q d{<jlbigl</ weou? P d{<jlobeqz< Q d{<jlbigl</ -jkg< GxqbQm<cz< P d{<jl Q d{<jl nz<zkwtqkig P Q wewpkzil<. GxqbQM NeKd{Ik<KgqxKwe<hkjeg<Gxqg<Gl</ -h<ohipkgxqbqm we<hkjenxqouil<. lq{<ml<nok%x<xgt<p, Q -ux<jxwmk<kg<ogit<ouil</nkiuk P: x, Q: x 4 Q d{<jlobeqz<x 4 NGl<. Neiz<-kx<Gx l< <kqiu; x l<kqiuigl</weou? P olb<bie%x<xnz<z/-f<kd{<jljbfil<q P wewpkzil</ nmk<kkig we<xgxqbqm<jmnxqf<kogit<ouil</ -v{<m%x<xgt<q, Q wmk<kg<ogit<ouil</ Q : x + y OlZl< 5x 6y. Q : x OlZl< y. Q d{<jlobeqz< x + y, () 5x 6y. () () 4x + 6y 4 () () 5x 6y. (4) () + (4) 9x 7 x. x J() -z<hqvkqbqm 6 + y nz<zk y 6 nz<zk y. nkiuk x, y. weou?q d{<jlbigl</weou? Q Q. Q d{<jlobeqz< x, y. x + y ; OlZl< 5x 6y weou Q d{<jlbigqxk/weou Q Q. 0 Q Q OlZl< Q Q. -f<k LcUgt< Q Q, Q Q Ngqb -v{<jmbl< OsIk<K Q Q we wpkzil<. -k<kjgb $p<fqjzbqz<, Q dl< Q dl< slliekig -Vg<Gl<. -ke<ohivtiuk?q olb<weqz<?q olb</ Q olb< weqz<?q olb</nkiuk Q olb<big -Vf<kiz< lx<xl< -Vf<kiz< lm<mol Q olb<bigl</ we<x GxqbQM -Vf<kiz<lx<Xl<-Vf<kiz<lm<MOl )if and only if) we<hkjeg<gxqg<gl< Okx<xl<weh<hMuKbiK? yv %x<x? siqbiek nz<zk kuxiek we fq'hqg<gh<hmikujv njk neliel< )Conjecture) we<xjpg<gqe<oxil</ yv neliel< )Conjecture) siq we fq'hqg<gh<hm<muqm<miz< nk Okx<xligquqMgqxK/ kux we fq'hqg<gh<hm<m neliel< olb<bx<x %x<x weh<hml</ weou Wx<geOu olb< we<x fq'hqg<gh<hm<muqm<m %x<x Okx<xl< weh<hml</ yv %x<x yv Gxqh<hqm<m ujgbqz< d{<jlobeqz< nf<kg< %x<x hz<oux fqjzgtqz< siqhiig<gh<hm<mk we<x osiz<gqoxil</ -bx<<g{qkk<kqzl<? ucuqbzqzl<fil<nxqf<kt<tsqzokx<xr<gt<hqe<uvlixogimg<gh<hm<mt<te; 6

131 (i)yvlg<ogi{k<kqz<-v{<mhg<gr<gt<sll<weqz<?nux<xqx<gwkqov dt<togi{r<gt<sll</ (ii) yvlg<ogi{k<kqe<ogi{ntugtqe<%mkz<-v{<m osr<ogi{ligl</ (iii) -j{gvk<kqe<&jzuqm<mr<gt<ye<jxobie<x-vslg<%xqml</ (iv) yx<jxw{<{qe<uig<gll<yx<jxw{<o{ngl</ (v) -vm<jmw{<{qe<uig<gll<-vm<jmw{<o{ngl</ (vi) yvuqgqklxiw{<ngl<. (vii) (a + b) a + ab + b. (viii) log a (mn)log a m + log a n yvokx<xk<kqe<fq'h{l<we<xiz<we<e? yvokx<xk<kqe<fq'h{l<weh<hmuknke<d{<jljbfqi{bqg<gl<uquikl< NGl</wMk<Kg<gim<mig yx<jxw{<{qe<uig<gll<yiyx<jxw{<o{ we<x%x<xqjewmk<kg<ogit<ouil</ -f<k %x<x yv Okx<xl< weqz<? -kx<g kk<kuvqkqbie fq'h{l< -Vg<g Ou{<Ml</gQp<<g{<muquikk<jkgueqg<gUl<: n YIyx<jxw{<we<g/hqe<Hn m +, -r<g m yvlpw{</ -h<ohipk? n (m + ) 4m + 4m + (m + m)+. m yvlpw{<we<hkiz<, m + m dl<yvlpw{<{igl<. weou (m + m) YI-vm<jmw{<{iGl<. Nkziz< (m +m)+ YI yx<jx w{<{igl<. weou n YI yx<jx w{<. fq'h{l< ntqg<g hz<oux dk<kqgt< dt<<te/ ohikuig nju hqe<uvlix ujgh<hmk<<kh<hm<mt<te; (i) (ii) (iii) (iv) (v) Ofvcfq'h{Ljx. ljxlgfq'h{ljxnz<zklv{<him<m<fq'h{ljx. wkqiwmk<kg<gim<mgtqe<hcfq'h{l<. ucuqbz<fq'h{dk<kq/ njlh<hljxfq'h{l</ (i) Ofvcfq'h{Ljx: P Q we fq'hqg<g Ou{<Ml< we<g. Lkzqz< P d{<jl weg<ogi{<m hch<hcbig uquikqk<k Q d{<jl weh< ohxkz< Ou{<Ml</ P we<hk olb<obeqz< Q NeK olb< NGl< we<x fq'hqg<gl< LjxOb Ofvc fq'h{ Ljx weh<hml</ a a b wmk<kg<gim<m : 5 weqz<, weg<gi{<hqg<gul<. b a + b a a b 5b b 4b kqiu: 5 we<g. hqe<ha 5b.. b a + b 5b + b 6b 7

132 a c a b c d wmk<kg<gim<m : OfvcLjxbqz<? weqz<, wefq'hqg<gul</ b d a + b c + d a c a a c c kqiu: we<g/-r<g u weh<hqvkqbqmul</ hqe<h a ub. we<hkiz<? u. b d b b d d c ud. a b ub b ( u ) b u c d ud d ( u ) d u. -jkh<ohie<ox. a + b ub + b ( u + ) b u + c + d ud + d ( u + ) d u + a b a + b c d c + d. (ii) ljxlgfq'h{ljx: %x<xp NeK%x<X Q Jd{Ik<KgqxKwefq'hqg<g Ou{<Ml<we<Xogit<Ouil<. -kx<gig%x<xp olb<?%x<xq olb<bz<zweg<ogit<g/ hqe<h hch<hcbig uquikqk<k Lv{<himie uqjtuqje njmouil<)nkiuk wmogit< %x<xqx<gofilixie%x<xohxouil<*/weouwmogit<kuxiekwe<xlcuosb<k? Q d{<jlbigk<kie< -Vg<g Ou{<Ml< we dxkq osb<gqoxil</ %x<x P olb< weqz<? %x<x Q dl< olb< we fq'hqg<gl< -f<k Ljx ljxlg fq'h{ Ljx weh<hml< )wmk<kg<ogi{<m%x<xqx<gwkqvie%x<jxnjmkz<*/ wmk<kg<gim<m : ljxlgfq'h{ljxbqz<? yvuqgqklxiw{<wefq'hq. kqiu: wmogitig? yv uqgqklx w{< we OfIlixigg< ogit<ouil<. yu<ouiv p uqgqklxw{<j{bl<kq<m<mucuqz< wewpkzil<wenxqouil</hqe<h q q p, -r<gp, q lqjgw{<gt<<a p g<gl<, q g<gl< Jk<kuqvOuoxf<kgiv{qBl< -z<jz. -h<ohipk q p p q p q p YI-vm<jmw{< weou p YI-vm<jmw{< p m, m yv LPw{< 4m q q m q YI-vm<jmw{< q YI-vm<jmw{< q n, n yv LPw{< p g<<gl<q g<<gl< giv{qbigl< Lv{<hiM )p g<<gl< q g<gl< Jk< kuqv Ouoxf<k giv{qbl<-z<jz we<hkwmogit<*/ yvuqgqklxiw{<ngl<. 8

133 wmk<kg<gim<m 4: ljxlg fq'h{ Ljxg<ogi{<M? 00 hf<kgt< 9 ohm<cgtqz< jug<gh<hm<cvf<kiz< WkiuK yv ohm<cbqz< nz<zk nkx<g OlZl< hf<kgt< jug<gh<hm<cvg<gl<wefq'hq. kqiu: 00 hf<kgjt 9 ohm<cgtqz<jug<gl<ohipkwf<kyvohm<cbqzl<< hf<kgoti nkx<g OlOzi jug<gh<hmuqz<jz we wmk<kg< ogit<ouil</ NgOu yu<ouiv ohm<cbqzl< nkqghm<slig hf<kgt< jug<gh<hm<cvg<gl<. weou 9 ohm<cgtqz< jug<gh<hm<m hf<kgtqe< %Mkz< nkqghm<slig 9 99 NGl</ -K ogimg<gh<hm<m ogit<jgg<g Lv{<himiekiGl</ Woeeqz<? 00 hf<kgjt 9 ohm<cgtqz< jug<g Ou{<Ml</ weou Gjxf<k hm<sl< yv ohm<cbqziuk hf<kgoti nkx<g OlOzi jug<gh<hm<cvg<gl<. wmk<kg<gim<m 5: P we<xyvht<tq AB we<xogim<mk<k{<jmm : n we<xuqgqkk<kqz< dt<hr<gqmosb<bl<weqz<? P keqk<kkwe?ljxlgfq'h{ljxbqz<fq'hq/ kqiu: P we<xyvht<tq AB we<xogim<jm dt<hr<gqm<cz< m : n we<xuqgqkk<kqz< hqiqh<hkigg< ogit<ouil</ ogit<jgg<g dm<hm<m? P we<hk keqk<kk -z<jz weg< ogi{<miz<? lx<oxiv Ht<tq P? AB we<x Ogim<Mk<K{<jm m : n we<x uqgqkk<kqz< dt<hr<gqmosb<ukigl< (hml<5. Jh<hiIg<gUl<). hqxg AP m AP. OlZl< m. PB n P B n hml<5. n AP m PB OlZl< n AP m P B n AP m (AB AP) OlZl< n AP m (AB AP ) n AP m AB m AP OlZl< n AP m AB m AP (m + n) AP m AB OlZl< (m + n) AP m AB mab mab AP, AP. m + n m + n AP AP P Bl< P l<yovht<tqbigl</ -Kogit<jgg<GLv{<himignjlgqxK. weoup?yvkeqk<kht<tqbigl</ (iii) wkqiwmk<kg<gim<mgtqe<hcfq'hqk<kz<: P, P -v{<m%x<xgt<we<g/ P P we<hk d{<jlbi we Nvib Ou{<Ml< we<g/ P olb<bigul< P olb<bx<xkigul< -Vg<GliX WOkEl< YI wmk<kg<gim<m gi{lcf<kiz< P P we<x LcUg<G fil< uf<kuigtiouil</nxqbh<hm<mwmk<kg<gim<m YIwkqIwMk<Kg<gim<Mweh<hMl</ 9

134 wmk<kg<gim<m 6: x we<hkyvolb<ob{<weqz<?x x wenjlbli? kqiu: P : x we<hkyvolb<ob{<. P : x x. x weqz<?p : x we<hkyvolb<ob{<we<x%x<xolb<bigqxk/neiz< x g<gx 4 < x ; nkiuk P olb<bz<zwe<xigqxk/weou? P P. -r<g x YI wkqi wmk<kg<gim<migl</ weou x we<x wz<zi olb<ob{<gtg<gl< x x we<x%x<xolb<bigikwe<xlcuqjenjmgqoxil</ wmk<kg<gim<m 7: n yv-bz<w{<weqz<?n 4n we<hkd{<jlbi@ kqiu: P : n yv-bz<w{</ P : n 4n. n we<g/ YI-bz<w{</weOu?P d{<jlbigl</ Neiz<n n n. 4n 4 n 4 4. weoun < 4n. weou?p d{<jlbz<z/weou? P P. wmk<kg<gim<m8: x we<xwz<ziolb<ob{<gtg<gl< x > 0 wenjlbli? kqiu: P : x we<hkyvolb<ob{<. P : x > 0. x weqz<? P olb<bigl<. Neiz< x < 0. weou?p olb<bz<z r<gx YIwkqIwMk<Kg<gim<MNGl</ weou x we<xwz<ziolb<ob{<gtg<gl< x > 0 olb<bx<x%x<xigl</ Gxqh<H: Olx<gi{h<hm<m wmk<kg<gim<cz< x -e< yv Gxqh<hqm<m w{< lkqh<jhg< ogi{<m yv%x<xqe<olb<bx<xke<jljbfl<liz<fqi{bqg<glcf<kt<tk/ (iv) ucuqbz<fq'h{ljx: -bx<g{qkk<kqz<sqz g{g<ggjtucuqbz<ljxh<hckqiugi{zil</ wmk<kg<gim<m 9: (a + b) (a b) a b wefq'hq/ kqiu: hmk<kqz<abcd yvosu<ugl</ AB AI a, BE DI b (hml<5. Jh<hiIg<gUl<). hqe<had AI + DI a + b, AE AB BE a b. weou osu<ugl< AEFD -e<hvh<htu (a + b) (a b) Neiz<osu<ugl<AEFD -e<hvh<htu skvl< ABGI -e<hvh<htu osu<ugl< BEHG -e<hvh<htu + osu<ugl< DFHI -e<hvh<htu hml< 5. 0

135 a ab + (osu<ugl< CDIG -e<hvh<htu skvl< CFHG -e<hvh<htu) a ab + (ab b ) a b. (a + b) (a b) a b. (v) njlh<hljxfq'h{l<<: ucuqbzqz< sqz g{g<ggtg<gk< kqiu gi{<hkx<g? kvh<hm<m dvur<gtqz< sqz OgiMgjt %Mkzig njlg<gqe<oxil<</ hz ucuqbz< g{g<ggtqz< njlk<kz<< we<hk lqgs<sqxf<k dk<kqbigl</ siqbie -mr<gtqz< njlh<hgt<< njlbou{<ml</ weou njlk<kz<<&zl< fq'h{l< gi{<hk? g{g<gqe< kqiu gi{<huvk Le<%m<cOb nxqbl< Nx<xjzOu{<cbqVg<gqxK/ wmk<kg<gim<m 0: yvlg<ogi{k<kqz<-v{<mhg<gr<gt<sll<weqz<?nux<xqx<gwkqov dt<togi{r<gt<sll<wefq'hq/ kqiu: ABC yv Lg<Ogi{l<? AB AC we<g. B C wefq'hqg<gou{<ml<. D, BC -e< jlbh<ht<tq we<g. AD Js< OsIg<g)ujvkz<Ljx*/ Lg<Ogi{r<gt< ADB, ADC Ngqbux<Xt< BD DC, AD ohik? AB AC (hml< 5. Jh< hiig<gul<*/ weou -l<lg<ogi{r<gt<< siusll</ weou yk<k Ogi{r<gt<sll</ weou B C. hml< 5. hbqx<sq 5.. neliel<we<xiz<we<e?. Okx<xl<we<xiz<we<e?. Okx<xk<kqe<fq'h{l<we<hKwe<e? 4. We<siqhiIk<kz<fq'h{k<kqx<GLe<evig-Vg<gOu{<Ml<@ 5. YIwMk<Kg<gim<Mme<ucuqbz<fq'h{Ljxjbuqtg<Gg/ 6. wkqiwmk<kg<gim<mfq'h{ljxjbwmk<kg<gim<mme<uqtg<gg/ 7. njlh<hljxwe<xiz<we<e@ 8. ljxlgfq'h{ljxbq<z<?x + y we<xuixx, y WkiuK-v{<M-bz<w{<gt< weqz<?x nz<zky wefq'hq/ 5. g{qklikqiqgt< dzgqz< fjmljxs< sqg<gz<gjth< Hiqf<K ogit<ukx<gig g{qk likqiqgt< dvuig<gh<hmgqe<xe/likqiqgt<-bx<g{qkl<?ucuqbz<ohie<xhimh<hgkqgtqe<kj{ ogi{<m dvuig<gh<hmgqe<xe/ ucuqbz< gvk<kgjtg< ogi{<m njlg<gh<hm<<m g{qk likqiqgt< ucuqbz< likqiqgt< weh<hml</ -bx<g{qk gvk<kgjtg<< ogi{<m njlg<gh<hm<m g{qk likqiqgt< -bx<g{qk likqiqgt< weh<hml</ sqz slbr<gtqz< hiqosikjeosb<ukx<gle<ohg{qklikqiqgt<hgk<kxqbh<hml</hiqosikjeosb<uk we<hk lqgf<k oszu? Ofvl< nkqglikz<? hikgih<h Ngqbux<jxs<< siif<kkigl<</

136 fjmljxbqz<dt<t g{g<ggjth<hx<xqhcg<gl<ohipk fqjxb g{qk gvk<kg<gt< dvuigqbt<te/ -h<ohipk sqz -bx<g{qk likqiqgjth<hx<xqbl<? ucuqbz< likqiqgjth<hx<xqbl<nxqf<kogit<ouil</ fil< Lkzqz< yv wmk<kg<gim<cjeg< gvkouil</ Ofim<Mh<Hk<kgk<kqe< uqjz ' weqz<? 0 Ofim<Mh<Hk<kgr<gtqe<<uqjz 0 '0 NGl</ 0 Ofim<Mh<Hk<kgr<gtqe<<uqjz 0 '40 NGl</ 5 Ofim<Mh<Hk<kgr<gtqe<<uqjz 5 '60 NGl</ Ofim<Mh<Hk<kgr<gtqe<<uqjz '6 NGl</ Ofim<Mh<Hk<kgr<gtqe< w{<{qg<jg (x) uqjz(y) Ofim<Mh<Hk<kgr<gtqe< w{<{qg<jg nkqgligl<ohipk uqjz nkqgliujkbl<? w{<{qg<jg GjxBl<ohiPK uqjz GjxujkBl< nxqbzil</ fil< wmk<kg<ogi{<m -v{<m lixqgtl< ye<xig nkqgiqg<gqe<xe nz<zk ye<xig Gjxgqe<xe/-u<uiXnjlBl<-Vlixqgt<Ofvcuqgqkk<kqz<-Vh<hkigg<%XOuil</ OlOz %xqb wmk<kg<gim<cz< Ofim<Mh<Hk<kgr<gtqe< w{<{qg<jgbl< nux<xqe< uqjzbl< OfIuqgqkk<kqz<dt<tewenxqbzil</uip<g<jg$p<fqjzbqz<dt<tyVg{g<jg -h<ohipk wmk<kg<ogit<ouil</ yv Gxqh<hqm<m Diqz<? ubk 0 zqvf<k5 g<gt< -Vh<huIgtqe< w{<{qg<jgjb x we<x lixq Gxqg<Gl< weul<? y we<x lixq nuigtt< dbifqjzh<ht<tqg<gs< osz<huigtqe< w{<{qg<jgjb Gxqg<Gl< weul< ogit<ouil</ 999-zqVf<K00 uvml< ujv gqjmk<k uquvr<gjt gqp<g<g{<muix nm<muj{h<hmk<kqbt<otil<; x y y -r<gyu<ouivuvmk<kqx<gl<uqgqkl< 0.45 wenjlukignxqbzil<. hqe<hx, y x we<el<lixqgjt-j{g<gl<sle<himigy 0.45x gqjmg<gqxk/ gmf<k N{<Mgtqe< uquvr<gjt Ofig<Gl<ohiPK uvh<ohigl< N{<MgtqZl<< uqgqkl< fqjzbig njlbl< wele<likqiqbigwmk<kg<ogit<ouil</nmk<kuvmk<kqz<nf<kdiqz<ubkuvl<h 0 zqvf<k 5 g<gt< -Vh<huIgt< w{<{qg<jg 5000 we -Vf<kiz< nuigtt< dbifqjzh<ht<tq osz<ouii w{<{qg<jg 6750wey 0.45x sle<him<miz< nxqbzil</ weou y 0.45x J ubkuvl<h 0zqVf<K5 g<gt< -Vh<huIgTg<Gl<? nuigtt< dbifqjzh<ht<tq osz<hui<gtqe< w{<{qg<jgg<gl< okimihhmk<kl< yv g{qk likqiqbig ogit<tzil</ -K yv -bx<g{qks< sle<himig njlukiz< -l<likqiqjb -bx<g{qklikqiqwe<ohil</ -f<kwmk<kg<gim<cz<ubkuvl<h0zqvf<k5g<gt<-vh<huigt<w{<{qg<jg )x* g<gl<, dbifqjzh<ht<tq osz<hui<gtqe< w{<{qg<jg )y* g<gl< -jmob njlf<k uqgqkl<yvlqjgw{<lixqzqbigl</ weou-s<$p<fqjzbqz<y NeKx dme<ofvc lixkz< ogi{<mt<tk we<gqoxil</ sle<him y 0.45x yv g{qk Ofvc lixkz< Le<likqiqbiGl</ohiKuigyVg{qkOfvcliXkz<Le<likqiqy kx wenjlbl</ -r<gk NeKlixqzqNGl</-KyVucuqbz<g{g<gig-z<jzweqEl<-kje yv hmlig ujvf<k nh<hmk<jkg<ogi{<m g{g<gqe< kqiu gi{ Lbx<sqg<gzil</

137 wmk<kg<gim<mig OlOz njlf<k -bx<g{qk likqiqjb gqp<g{<muix ucuqbz< g{qk likqiqbig njlg<gzil</ y 0.45x we<x sle<him<cx<g ujvhml< ujvbzil</ -f<k ujvhml< yv OfIg<Ogimig njlbl<)hml< 6/5 Jh< hiig<gul<*/-k Ofvc lixkzqe< ucuqbz<likqiqbigl</ hml< 5.4 nmk<kkig? hqe<uvl< wmk<kg<gim<jmg< gvkouil</ yv -vbqz< u{<c yov sqvieougk<kqz<osz<ukigg<ogit<ouil</-vbqz<u{<c 60 gq/lq/k~vk<jkg<gmg<g5 60 l{q Ofvl< NGl< weqz<? u{<cbqe< Ougl< l{qg<g 40 gq/lq/ NGl</ 60 gq/lq/ 4 60 K~vk<jkg<gmg<gl{qOfvl<NGl<weqz<?u{<cbqe<Ougl<l{qg<G 80 gq/lq/ NGl</ -kqzqvf<k fil< Ougl< )v* -V lmr<gieiz< gmg<gl< Ofvl< )t* njv lmr<gigl< we nxqbzil</ -f<k uquvk<kqzqvf<k fil< -vbqzqe< Ougl< nkqgiqg<gl<ohipkyvgxqh<hqm<mk~vk<jkgmg<gwmk<kg<ogit<tl<ofvl<gjxbl< wenxqbzil</nkiukv nkqglieiz<t GjxBl/<OlZl<tnkqglieiz<v GjxBl< we<hkiz< OugLl< )v*? OfvLl< )t* kjzgqp< ohivk<kl< ohx<xqvh<hjk nxqbzil</ weou -f<k -v{<m ntugtl< )v lx<xl< t) kjzgqp< uqgqkk<kqz< -Vh<hkig nxqbzil</ yv ntu nkqgiqg<gl<ohipk lx<oxiv ntu GjxuKl<? yv ntu GjxBl<ohiPK lx<oxiv ntu nkqgliukl< ohx<xqvh<hqe< -f<k -V ntugtl< kjzgqp<uqgqkk<kqz< njlgqe<xe we<ohil</ gqp<g<g{<m nm<muj{bqz< yv Gxqh<hqm<m K~vk<jkg< gmg<g -vbqz< u{<c wmk<kg<ogit<tl< OfvLl<? OugLl< ogimg<gh<hm<mt<te/ Ofvl< (t) l{qbqz< Ougl< (v) gq/lq/ Olx<g{<mnm<muj{bqzqVf<K, t v 80 60, t v , t v 5 60, t v we<hkjenxqbzil</nkiuk

138 60 tv 60 nz<zk v. t v Bl< t Bl< wkqiuqgqkk<kqz< dt<te/ -KOfvk<jkh<ohiXk<KOugk<jk Gxqg<Gl< YI -bx<g{qk likqiqbigl</ vt 60 g<gyvujvhml<ujvf<kiz< nf<k ujvhml< yv OfI OgimigiK/ nk hmk<kqz< dt<tk Ohiz< yv sqxqb uqz< Ohiz< njlbl< )hml< 5.5 Jh< hiig<gul<*/ -h<hmk<kqz< t Js< siif<k v -e< uqpl< Ohig<gqjeg< gi{zil</ -u<uix Ougk<kqx<Gl<? Ofvk<kqx<Gl< okimih hmk<kl< ujvhml<yvucuqbz<likqiqbigl</ hml< 5.5 -bx<hqbzqz<pv yvlixqzq? we<el<sle<him<jmnxqouil</-kyvkjzgqp< uqgqk lixkzg<g lx<xolii wmk<kg<gim<migl</ lixik ouh<h fqjzbqz< npk<kl< nkqglieiz<gentugjxbl<weul<?npk<kl<gjxf<kiz<gentunkqgligl< weul< nxqouil</ kjzgqp< uqgqk lix<xk<kqx<<g lx<xolii wmk<kg<gim<mig? Gxqh<hqm<m hvh<htuaogi{<mosu<ugk<kqz<fqtk<kqe<ntux nkqglieiz<ngzk<kqe<ntuy GjxBl<weUl<?fQtk<kqe<ntUGjxf<kiz<ngzk<kqe<ntUnkqgliGl<weUl< nxqbzil</nkiukxy A weqz<?)x fqtl<, y ngzl<) y x A nz<zk x y A. fqtl<gjxf<kiz<ngzl<nkqgiqg<gl<?ngzl<gjxf<kiz<fqtl<nkqgiqg<gl</. g{qklikqiqwe<xiz<we<e@. g{qklikqiqbqe<okjujbg<%x/. OfIuqgqklixz<uqtg<Gg/ 4. wkqiuqgqklixz<uqtg<gg/ hbqx<sq 5. 4

139 6. nxqljxucuqbz< ucuqbz< we<x Gxqg<Gl< Nr<gqzs< osiz< geometry NeK? Huq we<x ohivtjmb geo lx<xl< ntuqmz< we<x ohivtjmb metron we<x -u<uqv{<m gqovg<gs< osix<gtqzqvf<k ohxh<hm<mkigl</ ucuqbz< we<hk fqzg<g{g<gqjeg< Gxqg<Gl< himlig -keiz< ohbiqmh<hm<mk/ -h<himh< hqiquqe< okimg<g giz uti<s<sqbqz<? wgqh<kqbi<gt< ucuqbz< uqkqgjt fqz ntjugtg<gl<? Ogibqz<gt< gm<mukx<gl<? gz<zjxgt< njlh<hkx<gl<? %i<r<ogihvr<gt< )hqvlqmgt<* njlh<hkx<gl< hbe<hmk<kqei</ hqe<ei< gqovg<gi<gt< ucuqbz< d{<jlgjt fe<g kvg<g iqkqbigs< sqf<kqk<k? hqkigv^<? B,g<tqm< Ohie<x gqovg<g uz<zfi<gtqe< hjmh<hgtqe< &zlig kr<gt< ucuqbz< nxquqje g{qk dzgk<kqx<g ni<h<h{qk<kei</ -ui<gtk hjmh<hgtqe< dbifqjzob nxqljx ucuqbz< himh<hqiquqx<g Okix<Xuibig njlf<kk/-h<himh<hqiquqz<?ucuqbz<gvuqgt<kj{bqe<xq?ucuqbz<d{<jlgjt uqkqkvljxbqz< hgk<kxqukx<og Lke<jl kvh<hmgqe<xk/ SliI 0 gq/l/ gizk<kqz< uip<f<k ucuqbzqe< kf<jk we<xjpg<gh<hml< gqovg<g nxqri B,g<tqm< we<hui? ke< gizk<kqb ucuqbz< kk<kur<gjt keqjlg<%xgt< we<x ohbiqm<m hkq&e<x F~z< okigh<hgtig upr<gqbt<tii/ ucuqbjzh< hch<hk Hkqbkigs< sqf<kqh<hkx<gl< lx<x himr<gtqz<kqxjljbwx<hmk<kukx<gl<ohiqkl<dkuukigl</ 6. siqhii<k<kzg<giqbokx<xr<gt< flk Lf<jkb ugh<hgtqz<? ujvbxg<g -bzik nch<hjmbie ucuqbz< osix<gtigqbht<tq?ogim?ktl<?ogi{l<ohie<xux<jxnxqf<kt<otil</olzl<fil< Lg<Ogi{r<gtqe< ogit<jggt<? -j{ogimgt<? sqz sqxh<hie fix<gvr<gt< Ngqbux<jxBl<nxqf<Kt<Otil</weqEl<?nux<jxh<hx<xqOlZl<nxqf<Kogit<ukx<G Le<?fil<Wx<geOuhck<kux<jx-h<ohiPKfqjeU%i<Ouil<. 6.. nch<hjmbieucuqbz<osix<gt< Ht<tq we<hk outqbqz< yv fqjzbqjeg< Gxqh<hkx<G hbe<hmukigl</ upg<gk<kqz<?gigqkk<kitqe<lqokinz<zkgvl<hzjgbqe<lqokiyvht<tqbiek?yv sqxqb njmbitlqm<m Gxqg<gh<hMl</ Neiz<? nxqljxbqe<hc Ht<tqg<G ntoui nz<zk ucuoli gqjmbik/ -v{<m OgiMgt< ye<jxobie<x oum<cg<ogit<tl< fqjzbqzqvf<k Ht<tqbqje nxqf<k ogit<tzil</ Neiz<? -r<g Ht<tqbqje nxqf<k ogit<togim<jmh<hx<xqbgvk<khbe<hmk<kh<hm<mk/-v{<mktr<gt<ye<jxobie<x oum<cg<ogit<tl< -mk<kqz< njlf<k Ht<tqgtqe< okigh<hqje OgiM we nxqbzil</ Neiz<-r<GOgim<cjenxqf<Kogit<tktk<kqjeh<hx<xqbgVk<Khbe<hMk<kh<hm<mK/ 5

140 ke< lqkt<t wf<kuqv Ht<tqgjtBl< -j{g<gl< OfIg<Ogim<ce< njek<k Ht<tqgjtBl< ke<lqok ogi{<mt<tuixjlf<k? njek<k kqjsgtqzl< Lcuqz<zilz< osz<zg<%cb Olx<hvh<Oh yv ktl< wenxqf<kogit<gqoxil</weou?nch<hjm ucuqbz<osix<gtieht<tq?ogim?ktl<-ux<jxh<hx<xqnehuk<kqz<lm<molnxqf<k ogit<t LcBle<xq nux<jxs< siqbig ujvbxh<hk -bzik ye<xigl</ Ht<tqgt<? Nr<gqzh< ohiqb wpk<kgtie A, B, C, D Ohie<xux<xiz< Gxqk<Kg< gim<mh<hml</ A, B we<heyvogim<ce<lqkt<t-vht<tqgt<weqz<?ng<ogim AB nz<zk BA weg<gxqg<gh<hml</-kjeogimabweul<hcg<gzil</ -Vkjznl<Hg<Gxq? we<hkqz< dt<t -V nl<hgt<? OgiM -V kqjsgtqzl< Lcux<X osz<gqxk we<hkjeg< Gxqg<gqxK/ SVg<glig? yv OgimieK l we<x keq wpk<kizl< Gxqg<gh<hMl</ A, B we<hju yv Ogim<ce< lqkt<t -V Ht<tqgt< weqz<? A, B Ngqb Ht<tqgjtBl< Osi<k<K nh<ht<tqgtg<gqjmobnjlbl<nf<ofig<ogim<ce<higk<kqje? A, B we<x -V Ht<tqgTg<gqjmOb njlf<k OfIg<Ogim<Mk<K{<M nz<zk SVg<glig Ogim<Mk<K{<Mweh<hMl</-KGxqbQm<cz< AB weg<gxqg<gh<hml</ AB -e<fqtk<jksvg<glig AB nz<zkba wewpkzil</yvht<tqbqz<okimr<gqwokel<yvkqjsbqz<lcuqe<xqs<osz<zl<yv Ogim<ce<higl<gkqi<weh<hMl</-r<Gokimr<Gl<Ht<tqbieK?ng<gkqiqe<Nvl<hh<Ht<tq nz<zk okimg<gh<ht<tq weh<hml</ A we<hk yv gkqiqe< okimg<gh<ht<tq? BNeK ng<gkqiqe<lqkt<twokel<yvht<tqobeqz<?-g<gkqviek AB weg< Gxqg<gh<hMl</ -kje? yvkjz nl<hg<gxqbme< Gxqg<gilz<? gkqi< AB weul< Gxqg<gzil</ AB bqe<lqkjlf<kt<tyvkjznl<hg<gxqgkqi<ab bqe< kqjsjbg< Gxqg<Gl</ Gxqh<H; -eq? AB we<hkje? -Vkjz nl<hg<gxq JAB bqe< lqk Gxqg<gilz< SVg<gligOgiMABweUl<? AB we<hkjegxqbqm JABbqe<lQKGxqg<gilz< SVg<glig Ogim<Mk<K{<M AB weul<? gkqi AB J yvkjz nl<hg<gxq J AB bqe< lqk Gxqg<gilz< SVg<glig gkqi AB weul< Gxqh<Ohil</ Ht<tqgt< A, B -ux<xqx<gqjmh<hm<mokijzuqjeab we<xl<gxqh<ohil</ yvohikh<ht<tqabqz<nvl<hqg<gl<-vgkqi<gt< AB, AC Neju?Ht<tqA z< yv Ogi{k<kqje njlg<gqe<xe we<gqoxil</ Ht<tq A NeK Ogi{k<kqe< Lje weh<hml</ofig<ogim<mk<k{<mgt<abbl< AC Bl<ng<Ogi{k<kqe<-VgkqIgt<weh<hMl<. -g<ogi{liek? BAC nz<zk CAB weg<gxqg<gh<hml</ BAC nz<zk CAB we yv Ogi{lieK Gxqg<gh<hm<miz<? Ht<tq A NeK ng<ogi{k<kqe< Lje? AB lx<xl< ACng<Ogi{k<kqe<gkqIgt<we<hjkk<okiqf<Kogit<g/ Abqz<njlBl<Ogi{lieK 6

141 yv gkqiqzqvf<k okimr<gq nmk<k gkqvg<gs< osz<ukig yv sqxqb uqz<ziz< Gxqg<gh<hMl<(hml< 6. Jh<hii<g<gUl<). Awe<xLjebqZt<tyVOgi{k<kqe<gkqIgt< okiqf<k fqjzbqz< ng<ogi{k<jk wtqkig A we wpkzil</ yv Ogim<Mk< K{<jmh<Ohie<X yv Ogi{k<kqx<Gl< ntu d{<m/ A we<x Ogi{k<kqe< ntju m A weg< Gxqg<gzil</ Gph<hl< WKl< -z<jzobeqz<? m A J wtqkig A weg< Gxqh<Ohil</Neiz<?m A we<hkyintu? A we<hkyvgxqbqmwe<hjkh<hiqf<k ogit<tul</ hml< 6. hml< 6. yvogi{k<kqe<ntu?ng<ogi{k<kqe<gkqigtqe<fqtntjuh<ohivk<kkz<z/ Ogi{r<gt<? Ähijg} weh<hml< nzgqeiz< ntg<gh<hmgqe<xe/ yv ktk<kqe< lqkjlf<k yvgkqi<nke<okimg<gh<ht<tqjbg<ogi{<myvlpspx<sqjbwx<hmk<kqeiz<?nk 60 hijg ntut<t Ogi{k<kqje njlg<gqe<xk we<gqoxil</ -f<k ntu 60º we wpkh<hml<(hml<6. Jh<hii<g<gUl<). -r<gogi{k<kqe<gkqigt<ye<xqe<lqkye<xig njlf<kt<tk/lx<xogi{r<gtqe<ntugt<60º jbnch<hjmbigg<ogi{<mkigl</ yv gkqi<? yv LP Spx<sqbqe<< higk<kiz< njlg<gl< Ogi{k<kqe< ntu 4 (60º) 90º NGl<; higk<kiz< njlg<gl< Ogi{k<kqe< ntu (60º) 60º NGl<; higk<kiz<njlg<gl<ogi{k<kqe<ntu (60º) º NGl</ hml< 6.4 hml< 6. hml< 6.5 m BAC 90º weqz<? BAC yv osr<ogi{l< (hml<6. Jh<hii<g<gUl<) weh<hml<. m BAC e< ntu 90º g<gl< nkqgoleqz<? BAC yv uqiqogi{l< (hml< 6.4 Jh< hii<g<gul<) weh<hml<. m BAC e< ntu 90º g<gl< GjxU weqz<? BAC yv GXr<Ogi{l< (hml< 6.5 Jh<hii<g<gUl<) weh<hml</ 7

142 m BAC 80º weqz<? BAC yvofi<g<ogi{l< (hml< 6.6 Jh<hii<g<gUl<) weh<hml</ BAC yv Ofi<g<Ogi{oleqz<? BC yv OfIg<Ogim<Mk< K{<miGl<A A, B, C we<he yvogimjlf<k Ht<tqgtiGl<A nkiuk? -h<ht<tqgt< yvogim<cz< njlbl< Ht<tqgtiGl</ hml< 6.6 hml< 6.7 -VOgiMgt< BD Bl< CE Bl<Awe<xHt<tqbqz<oum<cg<ogit<ukiz<njlBl< Ogi{r<gt< BAC Bl< DAE Bl< Gk<okkqi< Ogi{r<gt< weh<hml</ OlZl<? CAD, BAE NgqbOgi{r<gt<Gk<okkqi<Ogi{r<gtignjlujkBl<nxqbzil<)hml< 6.7 Jh<hii<g<gUl<). m BAC Ogi{k<kqe< ntu 80º g<g nkqgligul<? 60º g<gg< Gjxuig -Vh<hqe<ng<Ogi{l<hqe<ujtOgi{l< weh<hml<(hml< 6.8 Jh<hii<g<gUl<). hml< 6.8 hml< 6.9 hml< 6.0 -VOgi{r<gTg<GohiKds<sqBl<?yVohiKg<gkqVl<njlf<K?ohiKuie gkqvg<g -V hg<gr<gtqzl< Ogi{r<gt< njlblieiz<? nu<uqv Ogi{r<gTl< nmk<kmk<kogi{r<gt<weh<hml< (hml< 6.9 Jh<hii<g<gUl<). hml< 6.9 -z< BAD, DAC Ngqbux<xqx<G ohiklje A NGl<;ohiKgkqI AD g<g -V hg<gr<gtqzl< -ju njlf<kqvh<hkiz<? BAD Bl< DAC Bl< nmk<kmk<k Ogi{r<gt< NGl</ BAC Bl< BAD Bl<ohiKuiejgABohx<xqVf<kiZl<?njunMk<kMk<kOgi{r<gt<NgiK; Woeeqz<? nju AB we<x ohik hg<gk<kqx<g yov hg<gk<kqzjlf<k Ogi{r<gtig -Vh<hKkie<we<hjknxqf<Kogit<Ouil</-VnMk<kMk<kOgi{r<gtqe<%Mkz<90º weqz<? nju fqvh<hg<ogi{r<gt< (hml< 6.0 Jh< hii<g<gul<) weh<hml</ hml< 6.0 -z< m BAD + m DAC 90º; weou? BAD Bl< DAC Bl<fqvh<Hg<Ogi{r<gtiGl<;-r<G m BAD 90º m DAC ; yv Ogi{l< lx<xkqe< fqvh<hg<ogi{ligl</ weou? -g<ogi{r<gtqz<ye<xqe<ntuokiqf<kiz<?lx<xkqe<ntuqjenxqblcbl</ 8

143 -VnMk<kMk<kOgi{r<gtqe<%Mkz< 80º weqz<?njulqjgfqvh<hg<ogi{r<gt< weh<hml<(hml< 6. Jh<hii<g<gUl<*/ hmk<kqz<? m BAD + m CAD 80 o. weou? -r<g filxquk BAD Bl< CAD Bl< lqjgfqvh<hg<ogi{r<gtigl</olzl<? m DAC 80º m BAD, m BAD 80º m DAC. nkiuk?yvogi{lieklx<xkqe<lqjgfqvh<hg< Ogi{liGl</-r<GyVOgi{l<kvh<hce<?lx<xjkg<gi{zil</ 6.. <OgiMgtqe<lQkieh{<Hgt<lx<Xl<Okx<xr<gt< hml< 6. nxqf<k ogit<ukx<gig? fil<? OfIg<OgiMgtqe< lqkie sqz h{<hgjtbl<? Okx<xr<gjtBl< -h<ohik gi{<ohil</ -r<g Okx<xr<gjt fq'hqg<gilz< osbz< uqtg<gk<kqe<&zl<siqhiik<kg<ogit<gqoxil</ osbz<; yvktk<kqz< A, B we<x-vht<tqgjtg<gxqg<g/ hml< 6. Ht<tq A e<upqbighzogimgt<ujvg/nux<xt<yvogimlm<ml<<bupqob osz<ujkg< gi{<g/ -jkh< Ohie<Ox? Ht<tq B e< upqob hz OgiMgt< ujvg/ nux<xt< yov yv OgiM lm<ml< A e< upqob osz<ujk okiqf<k ogit<g/ -g<ogimiek? A lx<xl< B gjt -j{g<gl< OfIg<OgiM AB we nxqg/ -s< osbzqzqvf<k?gqp<g<gi[l<h{<hgqjmg<gqxk/ h{<h;yvktk<kqz<?-vht<tqgt<ogimg<gh<hm<cvf<kiz<?nux<xqe<upqobyovyv OgiMkie<njlBl</ Gxqh<H;OlOz%xqbnch<hjmg<ogit<jgbqzqVf<KgQp<g<g{<mux<jxnxqbzil<; (i) yv ktk<kqz< dt<t -V ouu<oux Ht<tqgt< yov yv Ogim<jmk<kie< njlg<gl</x, Y we<he-vht<tqgoteqz<?ogim XY ye<xkie<njlbl</ (ii) &e<x nz<zk &e<xg<g Olx<hm<m Ht<tqgt< yv Ogim<cz< njlf<kiz<? nju yvogimjlf<kht<tqgt<weh<hml</ 9

144 (iii) &e<xnz<zk&e<xg<golx<hm<mht<tqgtqz<wkiuokie<xlx<xuqvht<tqgtiz< njlbl<ogim<cz<njlbiokeqz<?njuyvogimjlf<kht<tqgtigi/ osbz<;yvktk<kqz<ab, CD we<x-vouu<ouxogimgt<ujvg/-vogimgjtbl< Ou{<Mltuqx<G fqm<mg/ -V OgiMgTg<Gl< ohikuig yv Ht<tq -Vh<hjkObi nz<zk-z<zilz<ohiujkobigi{<g (hml< 6. Jh<hii<g<gUl<). hml< 6. Olx<gi[l<osbzqzqVf<KgQp<g<g{<mh{<Hgqjmg<gqxK/ h{<h : -VOuXOgiMgTg<Gl<ohiKuigyVHt<tqg<GOlz<-Vg<giK/ Gxqh<H;-VOgiMgTg<gqjmObyVohiKh<Ht<tqnjlBlieiz<njuye<jxobie<X oum<ml<ogimgt< weh<hml</ ohikh<ht<tq njlbik OgiMgt< oum<cg<ogit<tik OgiMgt< weh<hml</ -k<kjgb ohikh<ht<tq njlbik OgiMgt< -j{ OgiMgt< weh<hml</ osbz<: OgiMABujvg/OgiMAB bqz<njlbik P we<xht<tqjbwmk<kg<ogit<g/ P bqe<upqobosz<zlixogimgt<ujvg/nk<kjgbogimgtqz<yovyvogimkie< AB g<g-j{bignjlujkg<gi{zil<(hml< 6.4 Jh<hii<g<gUl<). hml< 6.4 -s<osbzqzqvf<kgqp<g<g{<mh{<hgqjmg<gqxk/ h{<h: yvogiml<?nkqz<njlbikyvht<tqbl<kvh<hce<?kvh<hm<mht<tqupqob kvh<hm<mogim<cx<g-j{bigyovyvogimkie<njlbl</ Gxqh<H; &e<xnz<zknkx<golx<hm<mogimgt<yvht<tqupqobosz<zoleqz<? ng<ogimgt<yvht<tqupqg<ogimgt<weh<hml</ 40

145 osbz<; AB, CD wel< -V ouu<oux OgiMgt< ye<jxobie<x oum<mlix ujvf<k? oum<ml< Ht<tqjb O weg< Gxqg<gUl< (hml< 6.5Jh< hii<g<gul<*/ AOC, BOD, AOD, BOC NgqbOgi{r<gjtntg<gUl</ -kqzqvf<kgqp<g<g{<mux<jxnxqgqe<oxil</ m AOD m BOC, m AOC m BOD. -r<g AOC, BOD NgqbOgi{r<gt< yvosic Gk<okkqi< Ogi{r<gtiGl</ -u<uiox? filxquk BOCBl< AOD Bl< yvosic Gk<okkqi< Ogi{r<gtiGl</ hml< 6.5 -s<osbzqzqvf<kgqp<g<g{<mh{<hgqjmg<gqxk/ h{<h 4; -VOgiMgt< ye<jxobie<x oum<cg<ogi{<miz< d{<migl< Gk<okkqi< Ogi{r<gt<sll</ Gxqh<H: m AOC xº, m AOD yº we<g/ Olx<g{<m nch<hjmg< ogit<jgbqe<hc m BOD xº, m BOC yº. Neiz< m AOC + m BOC + m BOD + m AOD 60º nz<zk xº + yº + xº + yº 60º nz<zk xº + yº 60º nz<zk xº + yº 80º. weou xº, yº lqjgfqvh<hg<ogi{r<gt<ngl</-kqzqvf<k? m AOC + m BOC 80º, m BOD + m AOD 80º, m AOC + m AOD 80º, m BOC + m BOD 80º we nxqbzil</ Osicgt< AOC? BOC Bl<A BOD, AODBl<A AOC, AOD Bl<A BOC? BOD Bl<yu<ouie<Xl<lqjgfqvh<Hg<Ogi{r<gjtnjlg<gqe<xe/ osbz<: AB, CDwe<x-j{OgiMgt<ujvg/AB g<g-j{big-z<zilz<ogimpq ujvg (hml< 6.6Jh<hii<g<gUl<). hml< 6.6 PQ NeK?-j{OgiMgt< AB jbbl< CD jbbl<oum<mujknxqg/pq NeKAB, CD -ux<xqe< yv GXg<Goum<cbiGl< we<hjk nxqg/ AB, PQ uq<x<g njlbl< ohikh<ht<tqjb L weul<? CD, PQ uqx<g njlbl< ohikh<ht<tqjb M weul< Gxqg<g/ PLB, PLA, BLM, ALM, LMD, LMC, CMQ, QMD Ngqbux<jx ntf<khiig<gul</filxquk? m PLB m LMD, m BLM m DMQ, m PLA m LMC, m ALM m CMQ. -s<osbzqzqvf<khqe<uvl<h{<hgqjmg<gqxk/ 4

146 h{<h 5: -V-j{OgiMgTg<GyVOgiMGXg<Goum<cbignjlf<kiz<?nr<gjlBl< wf<kouivosicyk<kogi{r<gtl<ntuqz<sllig-vg<gl</ Gxqh<H: (i) Ogi{l< ALM l< LMD Bl< yv Osic ye<xuqm<m dm<ogi{r<gjt njlg<gqe<xe/ogi{l< BLM l< LMC Bl<lx<oxiVOsicye<Xuqm<mdm<Ogi{r<gt< NGl</Olz<njlf<kosbzqe<hc? m BLM m LMC, m ALM m LMD wenxqbzil</-kjek<okx<xligg<%xouil</ Okx<xl< : -V -j{ogimgtg<g yv OgiM GXg<Goum<cbig njlf<kiz<? nr<gjlbl<wf<kouivosicye<xuqm<mdm<ogi{r<gtl<ntuqz<sll</ (ii) Ogi{l< PLA Ul< DMQ Ul< yvosic ye<xuqm<m outqg<ogi{r<gjt njlg<gqe<xe/ Ogi{l< BLP Bl< CMQ Ul< lx<oxiv Osic ye<xuqm<m outqg<ogi{r<gt<ngl</olz<njlf<kosbzqe<hc? m PLA m DMQ, m BLP m CMQ wenxqgqe<oxil</-kjek<okx<xligg<%xouil</ Okx<xl< : -V -j{ogimgtg<g yv OgiM GXg<Goum<cbig njlf<kiz<? nr<gjlbl<wf<kouivosicye<xuqm<moutqg<ogi{r<gtl<ntuqz<sll</ (iii) Ogi{r<gt< BLM l< LMD Bl< GXg<Goum<cbqe< yovhxl< njlf<k yvosic dm<ogi{r<gjt njlg<gqe<xe/ -jkh<ohizou ALM l< LMC Bl< GXg<Goum<cbqe< yovhxl< njlf<k lx<oxivosic dm<ogi{r<gt< NGl</ Olz< njlf<kosbzqe<hc? m BLM + m LMD 80, m ALM + m LMC 80 wenxqbzil</-f<kd{<jljbk<okx<xligg<%xzil</ Okx<xl< : -V -j{ogimgtg<g yv OgiM GXg<Goum<cbig njlf<kiz<? yov hg<gk<kqz<njlf<kyvosicdm<ogi{r<gt<lqjgfqvh<hg<ogi{r<gtigl</ osbz<: yvogimab ujvg/ogim ABg<G-j{bignjlbikOgiMPQ ujvg/ OgiMgt< AB Bl< PQ Ul< sf<kqg<gl< Ht<tqjb L weg<gxqg<gul</lnz<ziklx<oxivht<tqm J OgiM PQe<lQKGxqg<gUl</ ALM Jntg<gUl</ M -e< upqob m ALM m LMD we njlblix OgiM CD ujvg (hml< 6.7Jh< hii<g<gul<). -kqzqvf<k OgiM PQ we<hk OgiMgt< AB, CD -ux<xqx<g GXg<Goum<c weul<? AB Bl< CDBl<ye<jxobie<Xsf<kqg<gikOgiMgt<weUl< hml< 6.7 nxqblcgqe<xk/ -s<osbzqzqvf<khqe<uvl<h{<hgqjmg<gqxk/ h{<h 6: yvgxg<goum<c-vogimgjtoum<ml<ohipkwx<hmk<kl<yvosic ye<xuqm<mogi{r<gt<sllig-vh<hqe<?nu<uqvogimgt<-j{ogimgtigl</ 4

147 Olx<g{<mh{<hqzqVf<Khqe<uVl<Okx<xr<gjtfq'hqg<gzil</ Okx<xl< 4: yvgxg<goum<c-vogimgjtoum<ml<ohipkwx<hmk<kl<yvosicyk<k Ogi{r<gt<sllig-Vh<hqe<?nu<uqVOgiMgt<-j{OgiMgtiGl</ Okx<xl< 5: yvgxg<goum<c-vogimgjtoum<ml<ohipkwx<hmk<kl<ogi{r<gtqz<? GXg<Goum<cbqe< yovhxl< njlf<k yv Osic dm<ogi{r<gt< lqjgfqvh<hg< Ogi{r<gtignjlf<kiz<?nu<uqVOgiMgt<-j{OgiMgtiGl</ wmk<kg<gim<m : hml< 6.8-z<OgiM l Ul<OgiM l Ul<-j{OgiMgtiGl</OgiM l NeK OgiMgt< l, l gtg<g GXg<Goum<cbiGl</, Ngqb Ogi{r<gtqe< ntugtqe< uqgqkl< 4 : 5 weqz<?,,, 4, 5, 6, 7, 8 Ngqb Ogi{r<gtqe<ntUgjtg<gi{<g/ hml< 6.8 m 4 4 kqi<u: m : m 4 : 5 m m. Neiz<?, wel< m 5 5 lqjgfqvh<hg<ogi{r<gtqe<osicwe<hkiz<?m + m m + 5 m m + m 80 (n.k* (n.k* 9 m 80 5 (n.k* m 00. m 80 m h<ohipk? m m 80 (, we<heyvosicgk<okkqi<ogi{r<gt<), m 4 m 00 (, 4 we<heyvosicgk<okkqi<ogi{r<gt<), m 5 m 80 (, 5 we<heyvosicyk<kogi{r<gt<), m 6 m 00 (, 6 we<heyvosicyk<kogi{r<gt<), m 7 m 5 80 ( 5, 7 we<heyvosicgk<okkqi<ogi{r<gt<), m 8 m 6 00 ( 6, 8 we<heyvosicgk<okkqi<ogi{r<gt<). 4

148 wmk<kg<gim<m : hml< 6.9 -z<ab NeK CD g<g-j{ogimweul<? AC NeK BD g<g -j{ogimweul<fq'hq/ hml< 6.9 kqi<u: OgiM CD NeK OgiM AC g<gl< BD g<gl< GXg<Goum<cbiGl</ -r<g? m ACD + m CDB weou? GXg<Goum<cbqe< yvhxl< njlf<k dm<ogi{r<gtie ACD Bl< CDB Bl<lqjgfqvh<Hg<Ogi{r<gtiGl</weOu?AC Bl< BD Bl< -j{ OgiMgt</ weou? yk<k Ogi{r<gt< XCA Bl< CDB Bl< sll</ weou?m XCA 0. nmk<kkig?ab g<gl< CD g<gl<?ac GXg<Goum<cbiGl</ -r<g? m XCA m CAB 0. nkiuk ye<xuqm<m Ogi{r<gt< XCA Ul< CAB Bl< sll</weou? AB Bl< CD Bl<-j{OgiMgtiGl<. 6.. Lg<Ogi{k<jkh<hx<xqbh{<HgTl<Okx<xr<gTl< Lg<Ogi{k<jkh< hx<xq Wx<geOu fil< nxqf<kt<otil</ Lg<Ogi{l< we<hk&e<xhg<gr<gtizieyvucuqbz<dvuligl</hml< 6.0-z< DE, XY, PQ &e<xogimgt<. OgiMgt< PQ Ul< XYBl< Ht<tq A -z< oum<cg< ogit<gqe<xe/ OgiMgt< DE Bl< XY Bl< Ht<tq B -z< oum<cg< ogit<gqe<xe/ OgiMgt< PQ Ul< DE Bl< Ht<tq C -z< oum<cg< ogit<gqe<xe/ AB, BC, CA NgqbOgim<Mk<K{<Mgtiz<njlBl<ucul< Lg<Ogi{l< ABC weh<hml</ OfIg<Ogim<Mk< K{<Mgt< AB, BC, CA Lg<Ogi{k<kqe< hg<gr<gt< weh<hml</ Ht<tqgt< A, B, C Lg<Ogi{k<kqe< ds<sqgt< weh<hml</ hml< 6.0 Ogi{r<gt< BAC, ABC, BCA Lg<Ogi{k<kqe<dm<Ogi{r<gt<weh<hMl</-g<Ogi{r<gt<wtqkig A, B, C weg< Gxqg<gh<hMl</Ogi{l< PAB Lg<Ogi{k<kqe<outqg<Ogi{liGl</OlZl<Ogi{r<gt< DBA, YBC, BCQ, ECA, CAX we<helg<ogi{l<abcbqe<outqg<ogi{r<gt< wenxqf<kogit<ouil</ Le<uGh<hqz<hck<kux<xqzqVf<Khqe<uVl<ujvbjxgjtfqjeU%i<Ouil<; (i) yvlg<ogi{k<kqz<wf<kuqvhg<gr<gtl<sll<-z<jzweqz<?nl<lg<ogi{l<yv nslhg<glg<ogi{ligl</ (ii) yv Lg<Ogi{k<kqz< WkiuK -V hg<gr<gt< sll< weqz<? nl<lg<ogi{l< YI -Vslhg<gLg<Ogi{liGl</ (iii) yvlg<ogi{k<kqz<wz<zihg<gr<gtl<sll<weqz<?nl<lg<ogi{l<yvslhg<g Lg<Ogi{liGl</ 44

149 (iv) yv Lg<Ogi{k<kqz< &e<x Ogi{r<gTl< GXr<Ogi{r<gtibqe<? nl<lg<ogi{l< yvgxr<ogi{lg<ogi{ligl</ (v) yvlg<ogi{k<kqz< WkiuKyVOgi{l<uqiqOgi{l<weqz<?nl<Lg<Ogi{l<yV uqiqogi{lg<ogi{ligl</ (vi) yv Lg<Ogi{k<kqz< yv Ogi{l< osr<ogi{libqe< (Ogi{k<kqe< ntu 90 )? nl<lg<ogi{l<yvosr<ogi{lg<ogi{ligl</ Lg<Ogi{k<jkh<hx<xqbhqe<uVl<Okx<xr<gjtg<%XOuil</ Okx<xl< 6: yvlg<ogi{k<kqe<&e<xogi{r<gtqe<ntugtqe<%mkz<80 NGl</ Okx<xl< 7: yv Lg<Ogi{k<kqe< yv hg<gl< fqm<mh<hm<m< d{<migl< outqg<ogi{k<kqe< ntudt<otkqi<ogi{r<gtqe<ntugtqe<%mkzg<gs<slligl</ fq'h{l<: ABC yvlg<ogi{l</hg<gl< BC jb fqm<mg/ BC e< fqm<sqbqz< X we<x Ht<tqjbg< Gxqg<gUl</ hml< 6. -z< ACX outqg< Ogi{liGl<? A Ul< B Bl< dt<otkqi< Ogi{r<gtiGl</ m ACX m A + m B we fq'hqk<kz< Ou{<Ml</ ACX Ul< C Bl< lqjgfqvh<hg<ogi{r<gtigl</ m ACX + m C 80. hml< 6. Neiz<? m A + m B + m C 80. m ACX + m C m A + m B + m C. -Vhg<gLl<ohiK m C jbfqg<gl< osb<bm ACX m A + m B NGl</ osbz<:hml<6. -z< dt<thc Lg<Ogi{l< PQR ujvg/ hg<gr<gt< PQ, QR, RP Ngqbux<xqe< fqtr<gtigqb PQ, QR, RP J ntf<k hii<k<k PQ + QR, QR + PR, PR + PQNgqblkqh<Hgjtg<g{<Mhqcg<gUl</-kqzqVf<K? (i) PQ + QR > PR, (ii) QR + PR > PQ, (iii) PR + PQ > QR weg<g{<mxqbzil</ -s<osbzqzqvf<khqe<uvl<h{<hgqjmg<gqxk/ h{<h 7: yv Lg<Ogi{k<kqe< -V hg<gr<gtqe< fqtr<gtqe< %Mkz<&e<xiuKhg<gk<kqe<fQtk<jkuqmg<%MkziGl</ hml< 6. Gxqh<H: wf<kouivlg<ogi{l< ABC bqzl<? (i) AB < BC + CA (ii) BC < CA + AB (iii) CA < AB + BC. -julg<ogi{sleqe<jlgt<weh<hml</ osbz<: hml< 6. -z< dt<tuix Lg<Ogi{l< ABC ujvg/ Ogi{r<gt< A, B, C Ngqbux<jx ntg<gul</olzl<?ab, BC, CANgqbhg<gtUgjtBl< hml< 6. 45

150 g{<mhqcg<gul</ Ogi{r<gtqe< ntugjt yh<hqm<mh< hii<k<k nkqz< lqgh< ohiqb Ogi{l< wk we<hkjeg< g{<mxqbul</ -jkh< Ohie<Ox hg<gr<gtqe< ntugjt yh<hqm<mh<hii<k<k nkqz< lqgh<ohiqb hg<gl< wk we<hkjeg< g{<mxqbul</-kqzqvf<k ohiqb Ogi{k<kqx<G wkqovbt<t hg<gl< ohiqbk we nxqbzil</ Ogi{ ntu nkqglig dt<tjk? ohiqbogi{l< weul<? hg<g ntu nkqglig dt<tjk? ohiqb hg<gl<weul<ogit<tzil</-f<kd{<jljbh<hqe<uvl<h{<higwpkzil</ h{<h8: yvlg<ogi{k<kqz<?lqgh<ohiqbhg<gk<kqx<gwkqiqzt<togi{l<lqgh<ohiqbk/ Gxqh<H: l we<x Ogim<jmg< gvkg/ hml< 6.4-z< dt<tuix l e<lqknjlbik P we<x Ht<tqjb wmk<kg<ogit<g/ P bqzqvf<k OgiM l g<g osr<gk<kg<ogim PL ujvg/ L nz<zik OuoxiV Ht<tqM Jle<lQKwMk<Kg<ogit<g/hg<gl<PM J-j{g<gUl</Lg<Ogi{l< PLM yv osr<ogi{ hml< 6.4 Lg<Ogi{liGl</Woeeqz<hg<gl< PL,l g<gosr<gk<kigl</ weou? m PLM 90. m PLM + m LMP + m LPM 80 we<hkiz<? 90 + m LMP + m LPM 80 nz<zk m LMP + m LPM 90 m LMP < 90, m LPM < 90, m LMP 90 m LPM. nkiuk? Ogi{l< LMP Bl< LPM Bl< GXr<Ogi{r<gt< lx<xl< fqvh<hg<ogi{r<gt</ weou? PLM NeK Lg<Ogi{l< PLM-z<lqgh<ohiqbOgi{l</weOuhg<gl< PM lqgh< ohiqb hg<gl<a nkiuk? PL < PM, M we<hk Ogim<ce< lqkt<t WkiuK yv Ht<tq/weOuPbqzqVf<Kujvbh<hMl<osr<Gk<Kg<OgiM PL, P bqzqvf<kogimlg<g ujvbh<hml< lx<x Ogim<Mk<K{<Mgjt uqm lqgg< Gjxuie fqtljmbkigl</ -r<g? LM < PM. lqgh<ohiqb hg<gligqb PMJ?osr<Ogi{Lg<Ogi{l<PLM e< gi{l< we<gqoxil</ 6..4 si<usllg<ogi{r<gt< ucuqbjzh< hx<xq nxqbl<ohipk? si<usl Lg<Ogi{r<gjt ncg<gc gvk Ou{<cBt<tK/weOunux<xqe<sqzLg<gqbd{<jlgjth<hx<xqokiqf<Kogit<Ouil</ osbz<: -V oux<xk< kit<gjt wmk<kg<ogit<tul</ nux<xqx<gqjmob yv jlbs<sk< kit< ye<xqjeh< ohivk<kul</ yv kitqe< lqk yv Lg<Ogi{l< ujvbul</ nmk<k kitqz< njkh<ohie<x yk<k yv Lg<Ogi{l< njlf<kqvh<hjkg< gi{zil< )jlbs<sh< hcul<*/ -u<uqv Lg<Ogi{r<gjtBl< si<usllg<ogi{r<gt< weg< %xzil</ -u<uqv Lg<Ogi{r<gtqe<slhg<gr<gjtBl<?slOgi{r<gjtBl<ohiVk<kzil</ohiVk<kh<hm<m hm<m slhg<gr<gt< yk<k hg<gr<gt< weul<? slogi{r<gt< yk<k Ogi{r<gt< weul< %xh<hml</ yv Lg<Ogi{k<kqZt<t njek<k hg<gr<gtl<? Ogi{r<gTl< lx<oxiv 46

151 Lg<Ogi{k<kqe< yk<k hg<gr<gtg<gl<? Ogi{r<gTg<Gl< sllieiz<? nl<lg<ogi{r<gjtsi<usllg<ogi{r<gt<we<xjph<ohil</ hml< 6.5 wmk<kg<gim<mig? hml< 6.5 z< dt<t Lg<Ogi{r<gt< ABC, DPX Jg< gvkg/ -kqz< AB DX, BC PX, CA PD; B X, C P, A D we -Vh<hkiz< Lg<Ogi{l< ABC Bl< Lg<Ogi{l< DXP Bl< si<usl Lg<Ogi{r<gtiGl</ -kje ABC DXPwewPkzil</ si<usl Lg<Ogi{r<gjth< ohixk<k NX yk<k sle<himgt< dt<tk we<hjk nxqf<k ogit<g/ lxkjzbig? NX yk<k sle<himgt< ogimg<gh<hm<cvf<kiz< Lg<Ogi{r<gt< si<uslligl</ hqe<uvl< &e<x okigh<hgtqz< WOkEl< ye<x ogimg<gh<hm<cvf<kiz< yv Lg<Ogi{l< ujvbzil< we Lf<jkb ugh<hgtqz< nxqf<kt<otil</ (i) -V hg<gr<gtqe< ntugt<? nux<xqx<gqjmob dt<t Ogi{k<kqe< ntu )h.ogi.hogit<jg*/ (ii) &e<xhg<gr<gtqe<ntugt<)h.h.hogit<jg*/ (iii) -VOgi{ntUgt<?yVhg<gk<kqe<ntU)Ogi.h.Ogiogit<jg*/ gqp<g<gi[l<ohivk<kr<gtqz<wokel<ye<xqje-vlg<ogi{r<gtg<gfqi{bqk<kiz<? nl<lg<ogi{r<gjtsi<usll<weg<%xzil</ (i) hg<gl<.ogi{l<.hg<gl< (ii) Ogi{l<.hg<gl<.Ogi{l< (iii) hg<gl<.hg<gl<.hg<gl< osbz<: AB PQ, A P, AC PR we-vg<glix-vlg<ogi{r<gt<abc, PQR ujvbul</ nux<jxg< gk<kiqk<k wmk<knux<jxye<xe<lqkye<xigh< ohivk<klbx<sqg<gul<(hml< 6.6 Jh< hii<g<gul<). -l<lbx<sqbqz<? ds<sq P, ds<sq A e<lqkl<?ds<sq Q, ds<sq B e< lqkl<?ds<sq R, ds<sq Ce<lQKl<?AB, AC Ngqb hg<gr<gtiz< dt<tmg<gqb Ogi{l< A NeK PQ, PR Ngqb hml<

152 hg<gr<gtiz< dt<tmg<gqb Ogi{l< P BmEl< lqgs< siqbigh< ohivf<kujk dx<xofig<gzil</-kqzqvf<khqe<uvl<h{<hqjenxqgqoxil</ h{<h 9: yvlg<ogi{k<kqe<-vhg<gr<gtl<njudt<tmg<gqbogi{ll<?lx<oxiv Lg<Ogi{k<kqe< -V hg<gr<gtg<gl< nju dt<tmg<gqb Ogi{k<kqx<Gl< sllieiz<? nu<uqvlg<ogi{r<gtl<si<uslligl</ Gxqh<H: -f<kh{<hqjesi<usllg<ogi{k<kqe<hg<gl<.ogi{l<.hg<gl<nch<hjmk< kk<kul<nz<zksvg<gligh.ogi.hnch<hjmk<kk<kul<weg<%xzil</ osbz<: B Q, BC QR, C R we-vg<glix-vlg<ogi{r<gt<abc, PQR ujvbul</ nux<jxg< gk<kiqk<okmk<k ye<xe<lqokie<xig ohivk<kqh<hiig<jgbqz<? njubqv{<ml<siqbigh<ohivf<kgqe<xe(hml<6.7 Jh<hii<g<gUl<). hml< 6.7 -s<osbzqzqvf<kgqjmg<gl<nch<hjmk<kk<kuk<kqjeyvokx<xligg<%xgqe<oxil</ Okx<xl< 8: yv Lg<Ogi{k<kqe< -V Ogi{r<gTl< nux<xiz< -j{f<k hg<gll< lx<oxiv Lg<Ogi{k<kqe< -V Ogi{r<gTg<Gl< nux<xiz< -j{f<k hg<gk<kqx<gl< sllieiz<?nf<k-vlg<ogi{r<gtl<si<usllg<ogi{r<gtigl</ Gxqh<H: -f<kh{<hqjesi<usllg<ogi{k<kqe<ogi{l<.hg<gl<.ogi{l<nch<hjmk< kk<kul<nz<zkogi.h.oginch<hjmk<kk<kul<weg<%xzil</ osbz<: A D, B E, BC EF we-vg<glix-vlg<ogi{r<gt<abc, DEF ujvbul< (hml<6.8 Jh<hii<g<gUl<). hml< 6.8 ABC yvlg<ogi{l</weou A + B + C 80. () 48

153 DEF yvlg<ogi{l</weou D + E + F 80 Neiz<? D A, B E A + B + F 80 () (), ()e<hc? A + B + C A + B + F. C F. weoulg<ogi{l< ABC, DEF z< B, C Bl<nkEjmbhg<gl< BC Bl<? E, F x<gl< nkx<giqb hg<gl< EF x<gl< sllig -Vh<hkiz< Ogi.h.Ogi h{<hqe<hc ABC DEF. -kqzqvf<kgqp<g<g{<mokx<xk<jknxqbzil</ Okx<xl< 9: -V Lg<Ogi{r<gtqz< ye<xqe< -V Ogi{r<gTl<? nke< WkiuK yv hg<gll<? lx<oxiv Lg<Ogi{k<kqe< -V Ogi{r<gTg<Gl<? yk<k hg<gk<kqx<gl< sloleqz<?nf<k-vlg<ogi{r<gtl<si<uslligl</ Gxqh<H: si<usll< hx<xqb -f<k kk<kuk<kqje Ogi{l<. Ogi{l<. hg<gl< nch<hjmk< kk<kul<nz<zksvg<gligogi.ogi.hnch<hjmk<kk<kul<weg<%xzil</ osbz<: BC EF, CA FD, AB DE we -Vg<GliX Lg<Ogi{r<gt< ABC, DEF Ngqbux<jx ujvbul< (hml< 6.9Jh< hii<g<gul<). -kqz< Lg<Ogi{l< DEF J oum<cobmk<klg<ogi{l<abc e<lqkjug<g?njubqv{<ml<lqgs<siqbigh< hml< 6.9 ohivf<kgqe<xe/ -f<fqjzbqz<? D, A bqe< lqkl<? E, B bqe< lqkl<? F, C bqe< lqkl< njlujknxqbzil</weou ABC DEF. -s<osbzqzqvf<khqe<uvl<okx<xk<jk nxqbzil</ Okx<xl< 0: yv Lg<Ogi{k<kqe< &e<x hg<gr<gt< lx<oxiv Lg<Ogi{k<kqe< &e<x hg<gr<gtg<gs<sloleqz<?nu<uqvlg<ogi{r<gtl<si<usll<ngl</ Gxqh<H: Olx<%xqb kk<kul< hg<gl<. hg<gl<. hg<gl< nch<hjmk< kk<kul< weg< %xh<hml<asvg<glig?-kjeh.h.hnch<hjmk<kk<kul<weg<%xzil</ h.h.ogi kk<kul< nz<zk Ogi.Ogi.Ogi ogit<jg si<usl Lg<Ogi{r<gTg<Gh< ohivf<kliwe-h<ohipkosikqh<ohil</ osbz<: ABC we<xlg<ogi{l<ujvg/bc g<g-j{bigogimxy ujvg (hml< 6.0Jh< hii<g<gul<). XY Bl< AB Bl<sf<kqg<Gl<Ht<tqjbD weg<gxqg<gul<axy Bl< AC Bl< 49

154 sf<kqg<gl<ht<tqjbe wegxqg<gul</hg<gl<ab Bl<?hg<gl<AC Bl<-j{OgiMgtie BC, XYgTg<GGXg<Goum<cgtiGl</weOu D B, E C (yk<kogi{r<gt<). hml< 6.0 -r<g? Lg<Ogi{r<gt< ABC, ADE gtg<g Ogi.Ogi.Ogi ohivk<kl< dt<tk/ Neiz<? nu<uqvlg<ogi{r<gtl<si<usllg<ogi{r<gt<nz<z/woeeqz<?yk<khg<gr<gt< sllz<z/ weou? Ogi.Ogi.Ogi ohivk<kliek Lg<Ogi{r<gt< siusllibqvh<hkx<g nch<hjmk<kk<kulibqvg<gikwenxqgqoxil</ osbz<: OhiKlie ntuqx<g fqtlie yv OgiM AX ujvg/ a nzggt< fqtljmb OfIg<Ogim<Mk<K{<MAB J?Ogi{l< BAX yvgxqh<hqm<mntu-vg<glixujvf<k ogit<g/ B jb jlbligul<? b (< a) nzg NvligUl< djmb um<ml< ujvg/ nu<um<ml<ax jb-vht<tqgtqz<oum<mujkfil<gi{<gqoxil</-h<ht<tqgjtc, D weg<gxqg<gul< (hml<6. Jh<hii<g<gUl<). hml< 6. Lg<Ogi{r<gt< ABC? ABD gtg<g h.h.ogi ohivk<kl< dt<tk/ Neiz< AC AD. weou ABC NeK ABD g<gs< siusllz<z/ -s<osbzqzqvf<k h.h.ogi ohivk<kl<? Lg<Ogi{r<gt< si<usllig -Vh<hkx<G nch<hjmk< kk<kulig njlbik we nxqbzil</ osbz<: BC QR a nzggt<-vg<glixogim<mk{<mgt<bc, QR ujvg/ BC bqe< jlbh<ht<tqjb X weul<? QR -e< jlbh<ht<tqjb Y weul< Gxqg<gUl</ X, Y -ux<jx jlbbr<gtigul<? a nzggt< NvligUl< ogi{<m um<mr<gt< ujvg/ B, Q -ux<jx jlbr<gtiigul<?b(< a) nzggt< NvligUl<ogi{<Muqx<gt<ujvg/-f<kuqx<gt< 50

155 Wx<geOu ujvf<k um<mr<gjt oum<ml< Ht<tqgjt LjxOb A, P weg< Gxqg<gUl< (hml< 6. Jh<hii<g<gUl<). AB, AC, PQ, PR jb-j{g<gul</ AC, PR fqtr<gjt hml< 6. ntg<gul</ AC PR we<hjk nxqbzil</ weou ABC PQR. -s<osbzqzqvf<k gqp<g<gi[l<okx<xk<kqjeg<gi{<gqoxil</ Okx<xl< : yv osr<ogi{ Lg<Ogi{k<kqe< gi<{l<? WOkEl< yv hg<gl<? lx<oxiv osr<ogi{ Lg<Ogi{k<kqe< gi{l<? yv hg<gl< Ngqbux<xqx<G LjxOb sllig -Vh<hqe<?nu<uqVLg<Ogi{r<gTl<si<uslliGl</ Gxqh<H: -k<okx<xl< kvl< nch<hjmk< kk<kuk<kqje osr<ogi{ Lg<Ogi{r<gtqe< siu slk<kuk<kqx<gie osr<ogi{l<. gi<{l<. hg<gl< nch<hjmk< kk<kul< nz<zk SVg<gligos.g.hnch<hjmk<kk<Kul<wewPkh<hMgqxK/ j{gvk<kqe<h{<hgt< fie<g hg<gr<gtiz< njmhml< dvul< fix<gvl< we<hkje nxqouil</ wkqi<hg<gr<gt<-j{bigdt<tfix<gvl<-j{gvl<weh<hml</ hml< 6.4 hml<6. hml< 6. -z< ABCD yv fix<gvl</ hml< z< PQRS yv -j{gvligl</ -h<hmk<kqz< PQ SR (PQ NeK SR g<g -j{bigl< we<hjk -u<uix Gxqh<Ohil<); OlZl< PS QR. h{<h : YI-j{gvk<kqz<?wkqi<hg<gr<gt<slfQtLjmbju/ fq'h{l<: ABCD YI -j{gvl< we<g/ BD jb -j{g<gul< (hml< 6.5Jh< hii<g<gul<). ABD, BDC Ngqbux<jxg<gVKg/-r<GAB CD, BD NeKAB, CDNgqbux<xqx<GGXg<Goum<cbigdt<tK/weOu? m ABD m BDC. -u<uiox? AD BC, BD NeK AD, BC Ngqbux<xqx<GGXg<Goum<cwe<hkiz<? hml< 6.5 5

156 m ADB m DBC. hg<gl< BD, Lg<Ogi{r<gt< ABD, BDCg<G ohikuig dt<tk/ weou? Ogi.Ogi.h< ogit<jgbqe<hc ABD BDC. yk<khg<gr<gt<sll</weou? AB CD lx<xl< AD BC. h{<h : YI-j{gvk<kqz<?wkqi<Ogi{r<gt<<slntUjmbju/ fq'h{l<: ABCD YI-j{gvl<we<g/ BD jb-j{g<gul< (hml< 6.6Jh<hiIg<gUl<). ABD, BDC Ngqbux<Xt< AB DC, BD NeK AB, DC Ngqbux<Xg<G yv GXg<Goum<cwe<hkiz<?m ABD m BDC. OlZl< AD BC, BD NeK AD, BC Ngqbux<Xg<G yv GXg<Goum<cwe<hkiz<?m ADB m CBD. m ABC m ABD + m DBC m BDC + m ADB m ADC. hml< 6.6 -u<uiox m BAD m BCD wenxqbzil</ h{<h : -j{gvk<kqe<&jzuqm<mr<gt<ye<jxobie<xslg<%xqml</ fq'h{l<: ABCD YI -j{gvl</ AC, BD we<he &jzuqm<mr<gt</ -ju oum<cg< ogit<tl< Ht<tqjb M we<g/-r<g? BAM DCM, ABM CDM, AB CD. weou? Ogi.h.Ogi ogit<jgbqe< hc? AMB CMD (hml< 6.7Jh<hii<g<gUl<). AM CM, BM DM. weou&jzuqm<mr<gt<slg<%xqml</ hml< 6.7 h{<h 4: yv fix<gvk<kqe< wkqi<hg<gr<gt< sl ntu ogi{<cvf<kiz< nf<k fix<gvl< -j{gvligl</ fq'h{l<: ABCD we<xfix<gvk<kqz< AB CD, AD BC. AC jb-j{g<gul</ Lg<Ogi{r<gt<ACB, ADC Ngqbux<Xt<h.h.hogit<jgbqe<hc ABC CDA (hml< 6.8Jh<hii<g<gUl<). hqe<h? m BAC m ACD, m CAD m ACB. AB CD ; OlZl< AD BC. weouabcd YI-j{gvl</ hml< 6.8 h{<h 5: yv fix<gvk<kqe< wkqi<ogi{r<gt< sl ntu ogi{<cvf<kiz<? nf<k fix<gvl< -j{gvligl</ fq'h{l<: ABCD we<el< fix<gvk<kqz< (hml< 6.9 Jh< hii<g<gul<). m BAD m BCD, m ABC m ADC. BD jb -j{g<gul</ ABD, CDB Ngqb Lg<Ogi{r<gjtg<gVKg/-r<G? m + m + m BCD 80 ; m + m 4 + m BAD 80. m + m + m BCD m + m 4 + m BAD, hml< 6.9 Woeeqz<?m BCD m BAD. 5

157 m + m m + m 4 () Neiz<? m + m m ABC, m + m 4 m ADC m + m m + m 4 nkiuk? m m m 4 m ) () + () m m 4 m m 4. AD BC. () () m m m m. AB CD. weou?abcd YI-j{gvl</ h{<h 6: yvfix<gvk<kqe<&jzuqm<mr<gt<ye<jxobie<xslg<%xqmoleqz<?nf<fix<gvl< YI-j{gvliGl</ fq'h{l<: ABCD yvfix<gvl</ AC, BD &jzuqm<mr<gt</ AC Bl< BD Bl<Ht<tq M -z<oum<cg<ogit<gqe<xe (hml< 6.40Jh<hii<g<gUl<). M NeKAC, BD gtqe< fmh<ht<tq/ AM CM, BM DM. Gk<okkqIOgi{r<gt<sll<we<hkiz<? m AMB m CMD, m AMD m BMC. hml< 6.40 h.ogi.hogit<jgbqe<hc? AMB CMD, AMD CMB. weou BAM DCM, ABM CDM () AB, CD gtg<gac yvgxg<goum<c/() e<hc?ye<xuqm<mdm<ogi{r<gt<sll</ AB CD. -jkh<ohizou? AD BC. weou ABCD YI-j{gvl</ Okx<xl< : yv Osic wkqi<hg<gr<gt< -j{bigul<? slligul< dt<t fix<gvl< YI -j{gvligl</ ogit<jg: ABCD we<xfix<gvk<kqz< AB CD, AB CD. fq'hqg<g: ABCD YI-j{gvl</ ujvkz<: ACjb-j{g<gUl<(hml< 6.4Jh<hii<g<gUl<). fq'h{l<: ABC, ADC Ngqbux<Xt<? (i) AB CD (ogit<jg)a (ii) AC ohika hml< 6.4 (iii) AB CD, AB g<gl< CD g<gl< AC GXg<Goum<c m BAC m ACD)ye<Xuqm<mOgi{r<gt<slliGl<*/ h.ogi.hogit<jgbqe<hc? ABC ADC. Lg<Ogi{r<gtqz<yk<khg<gr<gt<? yk<kogi{r<gt<sll</ AD BC, m DAC m ACB. AD BC. weou ABCD YI -j{gvl</ h{<h 7: &e<xl<? &e<xqx<gl< Olx<hm<m -j{ogimgtiz< yv GXg<Goum<cbqe< lqokx<hmk<kh<hml< oum<mk<k{<mgt< slfqtljmbeoueqz<? OuX wf<k GXg<Goum<cbqe< lqkl< nf<k -j{ OgiMgt< d{<migl< oum<mk<k{<mgt< slfqtljmbeuigl</ fq'h{l<: OgiMgt< l, l, l we<he ye<xg<ogie<x-j{ogimgtigl</ PQ, XY Ngqbju l, l, l g<g GXg<Goum<cgtiGl</ AC CE we<g/ BD DF we fq'hqg<g Ou{<Ml</ AG BD NgUl< CH DFNgUl< ujvg (hml< 6.4 Jh<hiIg<gUl<). hml< 6.4 5

158 AGDB, CHFD Ngqbju-j{gvl<wenxqgqOxil</ AG BD, CH DF () ACG, CEHNgqbLg<Ogi{r<gtqz< CE AC, m GAC m HCE (yk<kogi{r<gt<), m ACG m CEH (yk<kogi{r<gt<). weouogi.h.ogiogit<jgbqe<hc? ACG CEH. AG CH. () (), () e<hcbd DF. h{<h 8: yv Lg<Ogi{k<kqz<? -Vhg<gr<gtqe< fmh<ht<tqgjts< Osi<g<Gl< OgiM &e<xiukhg<gk<kqx<g-j{bigul<?nke<ntuqz<hikqbigul<-vg<gl</ fq'h{l<: Lg<Ogi{l< ABC -z<? D, E LjxOb AB, AC Ngqb hg<gr<gtqe< fmh<ht<tqgtigl</fil<fq'hqg<gou{<cbk? DE BC, DE ( BC ). CF BD ujvg/ -K DE bqe< fqm<sqjb F-z<sf<kqg<Gl<(hml< 6.4Jh< hii<g<gul<). Lg<Ogi{l< ADE, CFENgqbux<Xt<?AD CF, AC GXg<Goum<c/ m DAE m ECF. AD CF, DF GXg<Goum<c/ m ADE m CFE. OlZl< E NeK AC bqe<fmh<ht<tqnekiz<? AE EC. weouogi.ogi.hogit<jgbqe<hc ADE CFE. AD CF OlZl< DE EF. Neiz< D, AB bqe<fmh<ht<tqwe<hkiz<? BD AD. BD CF. Wx<geOu BD CF. BCFD YI -j{gvligl</ DF BC lx<xl< DF BC n.k DE BC. DE + EF BC n.k DE + DE BC n.k DE BC. hml< 6.4 weou DE BC lx<xl< DE (BC). h{<h 9: yv Lg<Ogi{k<kqz<? yv hg<gk<kqe< fmh<ht<tq upqob lx<oxiv hg<gk<kqx<g -j{bigujvbh<hml<ogim?&e<xiukhg<gk<jkslg<%xqml</ fq'h{l<: ABC we<xlg<ogi{k<kqz< D, ABbqe< fmh<ht<tq we<g/ D upqbig BC g<g -j{big DE ujvg/ nk AC jb E z< oum<mm<ml< (hml< 6.44 Jh<hii<g<gUl<). E NeKAC bqe<fmh<ht<tq wefq'hqk<kz<ou{<ml<. -r<gbc DE, BC, DE gtqe<gxg<goum<c AB NGl</ m ADE m ABC, () AD CF, AD,CF gtqe<gxg<goum<cdf NGl</ m ADE m EFC lx<xl< () hml< 6.44 m AED m BCE. () (), ()e<hc m ABC m EFC. (4) AD CF, AD, CF gtqe< GXg<Goum<cAC NGl</ m BAC m ACF. (5) -h<ohipk?m BCF m BCE + m ECF 54

159 m AED + ACF, () e<hc m AED + m DAE, (5) e<hc m BDE (outqg<ogi{l< dt<otkqi<ogi{r<gtqe<%mkz<). nkiuk m BCF m BDE (6) (4), (6)e<hc? BCFD YI-j{gvliGl</ BD CF, BC DF. Lg<Ogi{r<gt< ADE, CFE Ngqbux<jxg<gVKg/ -ux<xqz<?cf BD AD we<hkiz<?cf AD. OlZl<? m EFC m ADE, m DAE m BAC m ACF m ECF. Ogi.h.Ogiogit<jgbqe<hc, ADE CFE. DE EF, AE EC. E, AC -e<fmh<ht<tqbigl</ 6..6 yvht<tqupqobosz<zl<ogimgt< &e<xnz<zk&e<xg<golx<hm<mogimgt<pwe<xyvht<tqupqobosz<zl< weqz<? ng<ogimgt< yv Ht<tqupqg< OgiMgt< weul< nh<ht<tq P J ng<ogimgt< sf<kqg<gl<ht<tqweul<njpg<gh<hml</ osbz< : Lg<Ogi{l< ABC ujvg/ hg<gl< BC, CA Ngqbux<Xg<G LjxOb jlbg< Gk<Kg<OgiMgt< DX, EY ujvg (hml< 6.45 Jh< hii<g<gul<). nju oum<ml<ht<tqjb S we<g/ hg<gl< AB bqe< jlbg<gk<kg<ogim FZ ujvg. FZ NeK S e<upqob osz<ujk nxqbzil</ -s<osbzqzqvf<k gqp<g<gi[l< Okx<xk<jknxqgqe<Oxil</ hml< 6.45 Okx<xl< : Lg<Ogi{k<kqe< hg<gr<gtqe< jlbg<gk<kogimgt< yv Ht<tq upqob osz<zl</ Gxqh<H: yv Lg<Ogi{k<kqe< &e<x hg<gr<gtqe< jlbg<gk<kg<ogimgt< osz<zl< Ht<tq nl<lg<ogi{k<kqe<sx<xum<mjlbl<weh<hml</-k Swe<xwPk<kiz<Gxqg<gh<hMl</ osbz<: ABC we<x Lg<Ogi{k<jkg< gvkg/ -kqz< Sx<Xum<m jlbl< S jbg< gi{<g/ SA, SB, SC Ngqbux<jx -j{g<gul</ SA, SB, SC Ngqbux<xqe< fqtr<gjt ntf<k hii<g<gul</filxquk?sa SB SC/ S jbjlbligul<? SA junvligul<ogi{<m yv um<ml< ujvg/ -u<um<ml<? Lg<Ogi{k<kqe< &e<x ds<sqh<ht<tqgtqe< upqob osz<ujkg< gi{zil</ nu<um<ml< Lg<Ogi{k<kqe< Sx<Xum<ml< weh<hml<a Nvl< SA (SB SC) Sx<Xum<mNvl<weh<hMl</ 55

160 osbz<: ABCwe<xLg<Ogi{l<ujvg/hg<gl<BC g<gosr<gk<kigad ujvg/nk BCjb D z< sf<kqg<gm<ml</hg<gl<ca Ug<Gosr<Gk<kigBEujvg/nKCA jb Ez< sf<kqg<gm<ml</ AD Bl< BE l< sf<kqg<gl< Ht<tqjb H weg< Gxqg<gUl</ AB e< osr<gk<k CF ujvg/ nk AB jb F z< sf<kqg<gm<ml< (hml< 6.46Jh< hii<g<gul<). CF NeK H e<upqobosz<ujk nxqbzil</ osr<gk<k OgiMgt< AD, BE, CF we<he Lg<Ogi{k<kqe hml< 6.46 osr<ogimgt<weh<hml</ -s<osbzqzqvf<kgqp<g<g{<mokx<xk<jknxqbzil</ Okx<xl< 4: yv Lg<Ogi{k<kqe<osr<OgiMgt<yVHt<tqupqObosz<gqe<xe/ Gxqh<H: yv Lg<Ogi{k<kqe< osr<ogimgt< sf<kqg<gl< Ht<tqbieK? nl<lg<ogi{k<kqe< osr<ogim<mjlbl<weh<hml</-k Hwe<xwPk<kiz<Gxqg<gh<hMl</ osbz<: Lg<Ogi{l< ABC ujvg/lg<ogi{k<kqz< Ogi{l< A, Ogi{l< BNgqbux<xqe<sloum<cgt< ujvg/ -jugt< sf<kqg<gl< Ht<tqjb I weg< Gxqg<gUl</ C e<sloum<cujvg/-kie< upqob osz<ujk nxqbzil< (hml< 6.47Jh< hii<g<gul<). -s<osbzqzqvf<kgqp<g<gi[l<okx<xk<jk hml<6.47 nxqbzil</ Okx<xl< 5: yvlg<ogi{k<kqe<?&e<xogi{r<gtqe<sloum<cgt<yvht<tqupqob osz<zl</ Gxqh<H: yv Lg<Ogi{k<kqz< &e<x Ogi{r<gtqe< sloum<cgt< sf<kqg<gl< Ht<tqbieK nl<lg<ogi{k<kqe<dt<um<mjlbl<weh<hml</-k Iwe<xwPk<kiz<Gxqg<gh<hMl</ osbz<: I -zqvf<k Lg<Ogi{l< ABC e< hg<gr<gtg<g osr<gk<kg< OgiMgt< ujvg/ nux<jx ntf<k hii<g<gul</ nju slfqtl< ogi{<meuig -Vh<hkjeg< gi{zil</ I jb jlbligul<? slntuie osr<gk<kg< Ogim<ce< fqtk<jk NvligUl< ogi{<m yv um<ml< ujvbul< (hml< 6.48Jh< hii<g<gul<). -u<um<ml< Lg<Ogi{k<kqe< &e<x hg<gr<gjtbl< okim<ms< osz<ujkg<gi{zil</-kjelg<ogi{k<kqe< hml<

161 dt<um<ml< we<xjpg<gqoxil</ -u<um<mk<kqe< Nv ntu Lg<Ogi{l< ABC -e< dt<um<mnvl<weh<hml</ osbz<: Lg<Ogi{l< ABC ujvg/ hg<gr<gt< BC, CA, AB Ngqbux<xqe<fMh<Ht<tqgjtLjxObD, E, F weg< Gxqg<gUl</ AD jbbl< BE jbbl< -j{g<gul</-juoum<cg<ogit<tl<ht<tqjb G weg< Gxqg<gUl</ CF jb ujvg/ nk G e< upqobosz<ujknxqg (hml< 6.49Jh<hii<g<gUl<). OgiMgt< AD, BE, CF Ngqbju Lg<Ogi{l< ABCbqe<fMg<OgiMgt<weh<hMl</ AG, GD, BG, GE, CG, GF Ngqbux<xqe<fQtr<gjtntf<KhiIg<gUl</filxquK? AG GD BG GE CG GF -s<osbzqzqvf<kgqp<g<gi[l<okx<xk<jknxqbzil</. hml<6.49 Okx<xl< 6: yv Lg<Ogi{k<kqe< fmg<ogimgt< yv Ht<tq upqob osz<zl<a -h<ht<tq yu<ouivfmg<ogim<cjebl< :we<xuqgqkk<kqz<hqiqg<gl</ Gxqh<H: yv Lg<Ogi{k<kqe< fmg<ogimgt< sf<kqg<gl< Ht<tqbieK nl<lg<ogi{k<kqe< fmg<ogim<mjlbl<weh<hml</-kgwe<xwpk<kiz<gxqg<gh<hml</ osbz<: AB we<x Ogim<Mk<K{<jm ujvg/ AB g<g -j{big l we<x OgiM ujvbul< (hml< 6.50Jh< hii<g<gul<). l e< lqk Ht<tqgt< C, DNgqbux<jx AB CD we -Vg<GliX Gxqg<gUl</ -kqzqvf<k ABCD YI -j{gvl< we nxqbzil</ l g<gs< hml< 6.50 osr<gk<k AL ujvg/ AL Jntf<Khii<g<gUl</ -j{gvl< ABCD e<hvh<htu nch<hg<gl< dbvl< AB AL. OuX-VHt<tqgt< P, Q Ngqbux<jx PQ ABwe-Vg<GliXle<lQKGxqg<gUl</ ABPQYI-j{gvl<wenxqbzil</ ABPQe<hvh<htUnch<hg<gl< dbvl< AB AL. -s<osbzqzqvf<kgqp<g<gi[l<okx<xk<jknxqbzil</ Okx<xl< 7: yovncbqe<lqkl<?-v-j{ogimgtg<glqjmbqz<njlbl<-j{gvr<gt< slhvh<hjmbju/ 57

162 osbz<: hml< 6.5 Jh< hiig<gul<. AB we<x Ogim<Mk<K{<jm ujvg/ AB g<g-j{big l we<x Ogim<cjeujvbUl</l e<lqkht<tqcjbg<gxqg<g/ l we<x Ogim<Mg<G A bqzqvf<k AL we<x osr<gk<kogim ujvg. AL e< fqtk<jk ntf<k hii<g<gul</ filxquk? ABC we<x Lg<Ogi{k<kqe< hvh<htu nch<hg<gl< dbvl< AB AL. hml<6.5 le<lqklx<oxivht<tqp jbg<gxqg<gul</ Lg<Ogi{l<ABP -e<hvh<htu AB AL weg<gi{<gqoxil</lg<ogi{k<kqe<ds<sq C, l e<lqkwr<gnjlf<kqvf<kizl<lg<ogi{r<gtqe<hvh<htugt<slolenxqgqoxil</ -s<osbzqzqvf<kgqp<g<gi[l<okx<xk<jknxqbzil</ Okx<xl< 8: yov ncbqe< lqkl<? -V -j{ogimgtg<gl< -jmbqz< njlbl< Lg<Ogi{r<gt<slhvh<Hjmbju/ hbqx<sq 6. hqe<uvl<%x<xgt< siqbi,kuxiweg<%xul</. -V-j{OgiMgjtyVGXg<Goum<coum<ceiz<?ye<Xuqm<mOgi{r<gt<sll</. -V-j{OgiMgjtyVGXg<Goum<coum<ceiz<?yk<kOgi{r<gt<sll</. -V-j{OgiMgjtyVGXg<Goum<coum<ceiz<?GXg<Goum<cbqe<yOvHxl< njlf<kdm<ogi{r<gt<sll</ 6. kvg<giqkqbigfq'hqg<gou{<cbokx<xr<gt< -Kujv fil< sqz osbz<gjts< osb<k hiik<k? sqz nch<hjmg< ogit<jggjtbl<? Okx<xr<gjtBl< siq hiik<okil</ -h<ohipk? Ogi{r<gt<? Lg<Ogi{r<gt< Ngqbux<jxh< hx<xqb sqz Okx<xr<gTg<G kvg<g vqkqbig? nkiuk? uqkqkvljxbqz<(method of Logical Reasoning)fq'h{r<gjtk<kvLx<hMOuil</ Okx<xl< 9: yv gkqi< lx<oxiv Ogim<ce< lqk fqx<glieiz<? nkeiz< Wx<hMk<kh<hMl< nmk<kmk<kogi{r<gtqe<ntugtqe<%mkz< 80 g<gs<sll</ kvu: gkqi< PQ, XYwe<xOgim<ce<lQKnjlf<Kt<tK/ fq'hqg<g: m QPX + m YPQ 80. njlh<h: XY g<gosr<gk<kigpe ujvg. fq'h{l<: m QPX m QPE + m EPX m QPE + 90 () m YPQ m YPE m QPE hml< m QPE () 58

163 () + () m QPX + m YPQ (m QPE + 90 ) + (90 m QPE) 80. weouokx<xl<fq'hqg<gh<hm<mk/ Okx<xl< 0: -VOgiMgt<ye<jxobie<Xoum<cg<ogi{<miz<?Gk<okkqi<Ogi{r<gt<sl ntut<tjubigl</ kvu: OgiMgt< AB, CD Ht<tq O uqz<oum<cg<ogit<gqe<xe(hml< 6.5 Jh<hii<g<gUl<). fq'hqg<g: m AOC m BOD, m BOC m AOD. fq'h{l<: gkqi< OB NeK OgiM CDbqe<lQKfqx<gqe<xK/ m BOD + m BOC 80. () gkqi< OC OgiM ABbqe<lQKfqx<gqe<xK/ m BOC + m AOC 80. () (), ()e<hc m BOD + m BOC m BOC + m AOC m BOD m AOC. gkqi< OA, CDbqe<lQKfqx<gqe<xK/ m AOC + m AOD 80. () hml<6.5 (), ()e<hc? m BOC + m AOC m AOC + m AOD. m BOC m AOD. weouokx<xl<fq'hqg<gh<hm<mk/ Okx<xl< : yvlg<ogi{k<kqz<&e<xogi{k<kqe<%mkz< 80 NGl</ kvu: ABCyVLg<Ogi{l<. fq'hqg<g: A + B + C 80. njlh<h: ds<sqa e<upqob XY we<xogim<cje? BCg<G-j{bigujvg(hml<6.54Jh<hii<g<gUl<)/ fq'h{l<: XY BC. -h<ohipk?xy, BCgTg<G ABGXg<Goum<c/ m XAB m ABC (ye<xuqm<mogi{r<gt<) B. () hml< 6.54 XY, BC gtg<g AC GXg<Goum<c/ m YAC m ACB (ye<xuqm<mogi{r<gt<) C. () OlZl< m BAC m A. () () + () + () m XAB + m YAC + m BAC m B + m C + m A (m XAB + m BAC) + m CAY m A + m B + m C m XAC + m CAY m A + m B + m C 80 m A + m B + m C. weou?okx<xl<fq'hqg<gh<hm<mk/ Okx<xl< : yv Lg<Ogi{k<kqz<? slhg<gr<gtg<g wkqovbt<t Ogi{r<gt< slntut<tju/ kvu: Lg<Ogi{l<ABC -z< AB AC. fq'hqg<g: B C. njlh<h: BC e< jlbh<ht<tqjb M weg< Gxqk<K AM J -j{g<g(hml<6.55 Jh<hii<g<gUl<)/ fq'h{l<: Lg<Ogi{l< AMB, AMC Ngqbux<Xt<? 59 hml< 6.55

164 (i) BM CM (ii) AB AC (iii) AM ohik/weouh.h.hogit<jgh<hc? AMB AMC. yk<kogi{r<gt<sll</gxqh<hig? B C. weouokx<xl<fq'hqg<gh<hm<mk/ Okx<xl< : yv Lg<Ogi{k<kqe< -V Ogi{r<gtqz<? ohiqb Ogi{k<kqx<G wkqiqz< njlbl< hg<gl< sqxqb Ogi{k<kqx<G wkqiqz< njlbl< hg<gk<jkuqm nkqg fqtljmbk/ kvu: Lg<Ogi{l< ABC -z< Ogi{l< B NeK Ogi{l< C ju uqm ohiqbk/ n.km B > m C (hml<6.56jh<hii<g<gul<). fq'hqg<g: AC we<x hg<gk<kqe< fqtl<? AB we<x hg<gk<kqe< fqtk<jk uqmh< ohiqbkigl</ nkiuk?ac > AB. fq'h{l<: AB, AC we<x hg<gr<gtqe< fqtr<gt< lqjg w{<gt< we<hkiz<? gqp<g<gi[l< hqiqugt< njlbl</ hml< 6.56 (i) AC < AB (ii) AC AB (iii) AC > AB hqiqu (i) AC < AB we<g/ hqxg? hg<gl< AB -e< fqtliek hg<gl< AC e< fqtk<jkuqmh< ohiqbkigl</ weou? AB g<g wkqovbt<t Ogi{l< C NeK AC g<g wkqovbt<t Ogi{l< B Juqmntuqz<ohiqbkignjlbOu{<Ml</nkiuK? m C > m B. -K kvuqz< dt<t d{<jl m B > m C g<g Lv{<himiekiGl</ weou? wmogit< AC < AB NeKolb<bz<z. hqiqu (ii) AC AB wenjlblieiz<?-vhg<gr<gt<ab Bl< AC Bl<slliGl</Neiz<? slhg<gr<gtg<g wkqovbt<t Ogi{r<gt< sll< we nxqouil</ nkiuk? B C. -KUl<kvuqz<dt<td{<jl B > Cg<GLv{<himiekiGl</weOuAC AB NeKolb<bz<z. weou?lqklt<thqiqu(iii) AC > ABwe<hOkolb<biGl</ Okx<xl< 4: &jzuqm<mr<gt< ye<xg<ogie<x osr<gk<kig dt<t YI -j{gvl< yv sib<skvligl</ kvu: ABCD we<hk YI -j{gvl</ -kqz< &jzuqm<mr<gt< AC Bl< BD Bl< ye<xg<ogie<xosr<gk<kig-vg<gqe<xe/ fq'hqg<g: ABCDyVsib<sKvl</ njlh<h: &jzuqm<mr<gt< AC, BDujvf<Knjuoum<Ml<Ht<tqjbM weg<gxqg<gul< (hml<6.57jh<hii<g<gul<). fq'h{l<: Lg<Ogi{r<gt< AMB, BMCNgqbux<xqz<? (i) AMB BMC 90 (ii) AM MC (iii) BM ohik/ weou?ogit<jgh.h.ogiuqe<hc AMB BMC. weou?yk<khg<gr<gt<sll</gxqh<higab BC. ABCDYI-j{gvl<we<hkiz<< AB CD, BC AD. AB BC CD AD. weou ABCD sib<skvligl</okx<xl<fq'hqg<gh<hm<mk/ hml<

165 wmk<kg<gim<m : gqp<g<gi[l<ogi{l<yu<ouie<xqe<fqvh<hg<ogi{l<gi{<g; (i) 0 (ii) 45 (iii) 55 (iv) 8 kqi<u: fqvh<hg<ogi{r<gtqe<%mkz< 90. weou? (i) 0 bqe<fqvh<hg<ogi{l< (ii) 45 bqe<fqvh<hg<ogi{l< (iii) 55 bqe<fqvh<hg<ogi{l< (iv) 8 bqe<fqvh<hg<ogi{l< wmk<kg<gim<m 4: gqp<g<gi[l<ogi{l<yu<ouie<xqe<lqjgfqvh<hg<ogi{l<gi{<g; (i) 70 (ii) 45 (iii) 0 (iv) 55 kqi<u: lqjgfqvh<hg<ogi{r<gtqe<%mkz<80.weou? (i) 70 e<lqjgfqvh<hg<ogi{l< (ii) 45 e<lqjgfqvh<hg<ogi{l< (iii) 0 e<lqjgfqvh<hg<ogi{l< (iv) 55 e<lqjgfqvh<hg<ogi{l< wmk<kg<gim<m 5: hqe<uvl<yu<ouie<xqzl<dt<togi{r<gjtg<g{<mhqcg<gul<; (i) -VOgi{r<gt<lqjgfqvh<Hg<Ogi{r<gt<; -ux<xt<ohiqbk?sqxqbjkh<ohiz< lmr<gigdt<tk/ (ii)-vogi{r<gt<fqvh<hg<ogi{r<gt<; -ux<xt<ohiqbk?sqxqbjkuqm0 lqjgbigdt<tk/ (iii) -VOgi{r<gt<nMk<kMk<kOgi{r<gtigUl<? 0 Ogi{l<njlh<hkigUl<< dt<te/nux<xt<ohiqbk?sqxqbjkh<ohiz<4lmr<jguqm0 Gjxuig dt<tk/ (iv) -VOgi{r<gt< Gk<okkqi<Ogi{r<gtigUl<?fqvh<Hg<Ogi{r<gtigUl<dt<te/ kqi<u: (i) sqxqb Ogi{k<jk x we<g/ 0 ohiqb Ogi{l< x NGl</ -V Ogi{r<gt< lqjgfqvh<hg<ogi{r<gt<we<hkiz<? x + x 80 n.kx 80 n.k x 60. hml< 6.58 sqxqbogi{l< 60, ohiqbogi{l< )ii* sqxqbogi{l< x we<g/0ohiqbogi{l< x + 0 NGl</-u<uqVOgi{r<gt<fqvh<Hg<Ogi{r<gtikziz<? x + (x + 0 ) 90 n.k x 70 n.k x 5. sqxqbogi{l< 5, ohiqbogi{l< hml< 6.59 (iii) sqxqbogi{l< x we<g/0ohiqbogi{l< x 0 NGl</-u<uqVOgi{r<gt<0 jbnjlh<hkiz<? x + (x 0 ) 0. 4x 40 n.k x 5. sqxqbogi{l< 5,ohiqbOgi{l< hml<

166 (iv) Gk<okkqi<Ogi{r<gt< yu<ouie<xl<x we<g/ -jufqvh<hg<ogi{r<gt<we<hkiz<? x + x 90 nz<zk x 90 nz<zk x 45. Ogi{r<gt< yu<ouie<xl< 45 NGl<. hml< 6.6 wmk<kg<gim<m 6: hml< 6.6 z< OgiM l NeK? -j{ogimgt< l, l Ngqbux<xqx<GGXg<Goum<c NGl</Ogi{r<gt<x, ygi{<g/ kqi<u: ye<xuqm<mogi{r<gt<sll</ x 0. GXg<Goum<cbqe<yOvHxl<njlf<k dm<ogi{r<gtqe<%mkz<80 o. hml<6.6 y nz<zky wmk<kg<gim<m 7: hml< 6.6 z<? l 4 NeK -j{ogimgt< l, l, l Ngqbux<xqx<<G GXg<Goum<cbiGl</Ogi{r<gt<x, y gi{<g/ kqi<u: yk<kogi{r<gt<sll</ x 75. GXg<Goum<cbqe< yovhxl< njlf<k dm<ogi{r<gtqe<%mkz<80 o. y nz<zk y hml< 6.6 wmk<kg<gim<m 8: hml<6.64z<?ogiml NeK -j{ogimgt< l, l Ngqbux<xqx<G GXg<Goum<cbiGl</Ogi{r<gt<x, ygi{<g/ kqi<u: GXg<Goum<cbqe< yovhxl< njlf<k dm<ogi{r<gt<lqjgfqvh<hg<ogi{r<gt</ 04y nz<zk 4y nz<zk y. yk<kogi{r<gt<sll< x + y 9 x hml< 6.64 x wmk<kg<gim<m 9: Lg<Ogi{k<kqe<Ogi{ntUgtqe<uqgqkl< : 4 : 5 weqz<?nux<jxg<< gi{<g/ kqi<u: Ogi{r<gjt x, 4x, 5xweg<ogi{<miz<?x + 4x + 5x 80 nz<zk x 80 n.k x 5. Ogi{r<gt< 5, 4 5, 5 5 nz<zk 45, 60, 75 NGl</ wmk<kg<gim<m 0: hml<6.65z<gxqh<hqmh<hm<<mogi{r<gt< x, ygi{<g/ kqi<u: ABC-z< x n.k x 5. BDC-z< x + y n.k 5 + y n.k y n.k y hml<

167 wmk<kg<gim<m : hqe<uvl<<hmr<gtqz< x, y gi{<g; (i) (ii) hml< 6.66 hml< 6.67 kqi<u: (i) AD BC, AB CD. ABCD YI-j{gvl</ x 4, y 60 (ye<xuqm<mogi{r<gt<sll<). x, y 0. (ii) Lg<Ogi{r<gt<ACD, ACB, -ux<xqz< AD AB, CD BC, AC NeKohiK/ ADC ABC. yk<kogi{r<gt<sll</weou x + 0 6, y 5 4 nz<zk x 6 0, y nz<zk x 6, y 47. wmk<kg<gim<m : YI -Vslhg<g Lg<Ogi{k<kqe< ds<sqogi{k<kqe< sloum<c nch<hg<gk<kqx<gjlbg<gk<kg<ogimwefq'hq/ kqi<u: ABC we<hk YI -Vslhg<g Lg<Ogi{l<< we<g/ -r<g AB AC, Ogi{l< A bqe< sloum<c AD we<g/ AD, nch<hg<gl< BC g<g jlbg<gk<kg<ogim we fq'hqk<kz< Ou{<Ml</Lg<Ogi{r<gt<ADB, ADCNgqbux<Xt< AB AC, m BAD m DAC ( AD NeK A e<sloum<c*? AD ohik/ h.ogi.hogit<jgh<hc, ABD ACD. yk<khg<gr<gt<sll</ BD DC. nkiuk?d NeK BCbqe<fMh<Ht<tqNGl</ ADC x we<g/hqe<h ADB 80 x. Lg<Ogi{l<ADC z<? ADC + C + CAD 80. Lg<Ogi{l<ADB z<? ADB + B + BAD 80. ADC + C + CAD ADB + B + BAD. n.kx 80 x n.k x 80 n.kx 90. AD NeKBC g<gs<osr<gk<kigdt<tk/ hml< 6.68 n.kad NeKBC bqe<jlbg<gk<kg<ogimigl</ wmk<kg<gim<m : ABC we<hk yv Lg<Ogi{l</ Ht<tq D NeK BC bqe< jlbh<ht<tq/ DA -j{g<gh<hmgqxk/ DA DCweqz<? BAC yvosr<ogi{l<wefq'hq/ kqi<u: DA DC wek<kvh<hm<mt<tk D NeKBCe<jlbh<Ht<tqwe<hkiz<BD DC/ weoulg<ogi{r<gt<abd?< ACD -Vslhg<gLg<Ogi{r<gt<NGl</ DAB DBA () DAC DCA () 6

168 () + () DAB + DAC DBA + DCA BAC DBA + DCA BAC CBA + BCA () Neiz< BAC + CBA + BCA 80 (4) (4) BAC + ( CBA + BCA) 80 BAC + BAC 80 (() Jh<hbe<hMk<k) BAC 80 BAC 90. hml< 6.69 wmk<kg<gim<m 4: yvfix<gvk<kqe<fie<gogi{r<gtqe<%mkz< 60 wefq'hq/ kqi<u: ABCD yv fix<gvl< we<g/ A + B + C + D 60 we fq'hqk<kz< Ou{<Ml</ -kx<g? &jzuqm<ml< AC J ujvbul</ Lg<Ogi{r<gt<ACD, ABCNgqbux<xqzqVf<K? DAC + D + ACD 80 () CAB + B + ACB 80 () hml< 6.70 () + () DAC + D + ACD + CAB + B + ACB 60 ( DAC + CAB) + B + ( ACD + ACB)+ D 60 A + B + C + D 60. wmk<kg<gim<m 5: AB AC we<xqvg<g ABC YI -Vslhg<g Lg<Ogi{l< we<g/ DBC DCB we njlblix Ht<tq D? Lg<Ogi{l< ABC -e< dt<ot njlf<kt<tk/ AD NeK A -e< sloum<cwefq'hq/ kqi<u: DBC DCB we<hkiz<? Lg<Ogi{l< DBC YI-Vslhg<gLg<Ogi{liGl</weOu BD DC. Lg<Ogi{r<gt< ADB, ADC Ngqbux<Xt<, BD DC,AB AC, ADohiK/ weou h.h.h ogit<jgh<hc? ADB ADC. 0yk<kOgi{r<gt<sll</ Gxqh<hig? BAD CAD. AD NeK Ae<sloum<cbiGl</ hml< 6.7 wmk<kg<gim<m 6: yvlg<ogi{l<abc e< osr<ogimgt<ad, BE we<he AE BD we<xuixt<te/ AD BEwefq'hq/ kqi<u: Lg<Ogi{r<gt< ADB, AEB Ngqbux<Xt< (i) ADB AEB 90 (ii) AB ohik (iii) BD AE. os.g.hogit<jgh<hc ADB AEB. yk<khg<gr<gt<sll</ad BE. hml<

169 wmk<kg<gim<m 7: ABCDwe<El<osu<ugk<kqz<BC e<jlbh<ht<tqe,ngl</ AE ED wefq'hq/ kqi<u: hml<6.7 Jh<hii<g<gUl<. Lg<Ogi{r<gt< ABE, DCE Ngqbux<xqz< (i) ABE DCE 90 (ii) BE CE (E, BC e<jlbh<ht<tq) (iii) AB CD (ABCD yv osu<ugl<) h.ogi.hogit<jgh<hc ABE DCE. 0yk<khg<gr<gt<sll</ AE ED. hml< 6.7 wmk<kg<gim<m 8: yv sib<skvk<kqz<? &jzuqm<mr<gt< yu<ouie<xl< lx<oxie<jxs< osr<gk<kig-vslg<%xqml<wefq'hq/ kqi<u: ABCD yvsib<skvl</&jzuqm<mr<gt<ac, BD ujvg/ AC Bl< BD Bl< oum<mh<ht<tqjbo weg<gxqg<g/ht<tqonekac, BD-e<jlbh<Ht<tqweUl<? ACNeKBDg<Gosr<Gk<K( ) weul<fq'hqk<kz<ou{<ml</ sib<skvl< YI -j{gvl< we<hkiz< &jzuqm<mr<gt< yu<ouie<xl< lx<oxie<jx -Vslg<%xqMl</nkiuK?OA OC, OB OD. -h<ohipk?lg<ogi{r<gt<< AOB, BOCNgqbux<Xt< (i) AB BC (ii) OB ohik(iii) OA OC h.h.hogit<jgh<hc AOB BOC. 0yk<kOgi{r<gt<sll</ AOB BOC x we<g/. Neiz<? AOB + BOC 80. hml< x + x 80 x 80 n.k x 90. &jzuqm<mr<gt<yu<ouie<xl<lx<oxie<jxs<osr<gk<kig-vslg<%xqml</ wmk<kg<gim<m 9: yv sib<skvk<kqe< &jzuqm<mr<gt< yu<ouie<xl< nju osz<gqe<x ds<sqg<ogi{r<gjtslg<%xqml<wefq'hq/ kqi<u: ABCD yv sib<skvl</ AC, BD &jzuqm<mr<gt</ AB CD, AC GXg<Goum<c we<hkiz<? BAC ACD (ye<xuqm<mogi{r<gt<). () Neiz< AD CD (ABCD sib<skvl<). ADC YI-Vslhg<gLg<Ogi{l</ slhg<gk<kqx<g wkqovbt<t Ogi{r<gt< sll< we<hkiz<? ACD DAC. () hml< 6.75 (), ()e<hc BAC DAC. weou AC, Ogi{l< Ajuslg<%xqMl</ -jkh<ohie<ox? AC NeK C jbbl<? BD NeK B lx<xl< D Ngqbux<jxBl< slg<%xqml<wefq'hqg<gzil</ 65

170 wmk<kg<gim<m 0: AB, CD -j{ogimgt</ AB, CD gtg<g -jmob Ht<tq O (hml< 6.76Jh< hii<g<gul<) APO 45 -Vg<GliXl< OQC 5 -Vg<GliXl< njlf<kt<tkweqz<? POQ g{<mhqc/ kqi<u: PO jufqm<mg/nkcd jb sf<kqg<gl< Ht<tqjb X weg< Gxqg<g/ QO ju fqm<mg/ nk AB J sf<kqg<gl< Ht<tqjb Yweg<Gxqg<g/ hml< 6.76 AB CD, PX GXg<Goum<cwe<hkiz<? OXQ OPY 45 (ye<xuqm<mogi{r<gt<). Lg<Ogi{l<OXQ z<? outqg<ogi{l< POQNeKnke<dt<otkqi<Ogi{r<gtigqb OXQ lx<xl< OQXNgqbux<xqe<%MkZg<Gsll</ 0 POQ OXQ + OQX wmk<kg<gim<m : ABC -z<? B -e< sloum<cbiek AC jb Ht<tq D -z< sf<kqg<gqe<xk/ ABC 80, BDC 95 weqz<? A, Cgi{<g/ kqi<u: hml< 6.77 Jh<hii<g<gUl</ BDC-z<? C 80 C ABC-z<? A + B + C 80. A A wmk<kg<gim<m : ABCDyVsiqugl</ -kqz< AB Bl<CD Bl<-j{OgiMgt</AD BC weqz<? ADC BCD wefq'hq/ kqi<u: hml< 6.78 Jh<hii<g<gUl</AD g<g-j{bigbe ujvg/-h<ohipkabed YI-j{gvl<we<hkiz<? BE AD. Neiz<AD BC. BC BE. weoulg<ogi{l<bec YI -Vslhg<gLg<Ogi{l<. BCE BEC. () Neiz< AD BE, AD, BE -ux<xqg<gdec yvgxg<goum<c. ADC BEC (yk<kogi{r<gt<). () weou (), ()e<hc? BCE ADC nz<zk BCD ADC. hml<6.77 hml< 6.78 hbqx<sq 6.. hqe<uvl<%x<xgtqz<wjusiq?wjukuxwewpkg; (i) yv gkqi<? yv Ogim<ce< lqk njlukiz< njlbl< nmk<kt<t Ogi{r<gtqe< %Mkz<80 NGl</ (ii) -VOgiMgt<oum<cg<ogi{<miz<?Gk<okkqi<Ogi{r<gt<sll</ (iii) yvlg<ogi{l<-vuqiqogi{r<gjth<ohx<xqg<gl</ 66

171 (iv) yvfix<gvk<kqe<ogi{r<gtqe<%mkz<80 NGl</ (v) ABC PQR weqz<? A Q. (vi) DEF XYZ weqz<? DE XY. (vii) YI-j{gvk<kqz<?&jzuqm<mr<gt<yu<ouie<Xl<lx<xjkslg<%xqMl</. gqp<g<g{<myu<ouie<xqe<fqvh<hg<ogi{l<gi{<g/ (i) 0 (ii) 65 (iii) 70 (iv) 78. gqp<g<g{<myu<ouie<xqe<lqjgfqvh<hg<ogi{l<gi{<g/ (i) 50 (ii) 0 (iii) 80 (iv) hqe<uvl<yu<ouie<xqzl<ogi{r<gjtg<gi{<g; (i) Ogi{r<gt<fqvh<Hg<Ogi{r<gt</sqxqbOgi{l<?ohiqbOgi{k<jkuqm 40 GjxuiGl</ (ii) Ogi{r<gt< fqvh<hg<ogi{r<gt</ ohiqb Ogi{l<? sqxqb Ogi{k<jkh<Ohiz< 4 lmr<g. (iii) Ogi{r<gt<lqjgfqvh<Hg<Ogi{r<gt</ohiqbOgi{l<?sqxqbjkuqm58 nkqgl</ (iv) Ogi{r<gt<lqjgfqvh<Hg<Ogi{r<gt</ohiqbOgi{l<?sqxqbOgi{k<kqe< lmr<jguqm0 GjxuiekiGl</ (v) -VnMk<Kt<tOgi{r<gt<40 Ogi{k<kqjenjlg<gqe<xe/sqxqbOgi{l< ohiqbogi{k<jkuqm8 GjxuiGl</ (vi) Ogi{r<gt< Gk<okkqi< Ogi{r<gtigUl<? lqjgfqvh<hg<ogi{r<gtigul< -Vg<gqe<xe/ 5. hqe<uvl<hmr<gtqz<x, ygi{<g; (i) (ii) hml< 6.80 hml< 6.79 (iii) (iv) hml< 6.8 hml<

172 6. hqe<uvl<hmr<gt<yu<ouie<xqzl<x, ygi{<g; (i) (ii) hml< 6.8 (iii) hml< 6.84 hml< 6.85 uqjmgt< hbqx<sq 6.. kux. siq. kux hbqx<sq 6.. (i) siq (ii) siq (iii) kux (iv) kux (v) kux (vi) kux (vii) siq. (i) 70 (ii) 5 (iii) 0 (iv). (i) 0 (ii) 50 (iii) 00 (iv) 8 4. (i) 5, 65 (ii) 8 (iii) 6, 9 (iv) 50, 0 (v) 56, 84 (vi) 90, (i) x 0, y 50 (ii) x 80, y 70 (iii) x 0, y 0 (iv) x 50, y 0 6. (i) x 9, y 8 (ii) x 48, y (iii) x 6, y. 68

173 7. hgljxucuqbz< yv OfIg<Ogim<cz< njlf<k yu<ouiv Ht<tqBl< siqbig yv olb<ob{<[me< ohivk<kh<hm<mt<tk we<hjk Lkz< nk<kqbibk<kqz< g{<omil</ -f<k nk<kqbibk<kqz< yv ktk<kqz< njlf<kt<t yv Ht<tqbieK wu<uix olb<ob{<gtiz< Sm<cg< gim<mh<hmzil< we<hjk Nvib<Ouil</ ovoe om^<giim^< we<gqx Hgp< ohx<x hqovr<s fim<m g{qk uz<zfi, Lke<Lkzig ucuqbjz hgk<kxqb? -bx<g{qk Ljxjb )w{<gt<lx<xl<fie<gnch<hjms<osbz<gt<hbe<hmk<kl<ljx*nxqlgh<hmk<kqeii/ weoukie<? -bx<g{qk Ljxjbh< hbe<hmk<kq ucuqbjz hgk<kxqbl< himh<hgkq -bx<g{qk ucuqbz< nz<zk hgljx ucuqbz< weg< %xh<hmgqe<xk/ -f<k hgljx ucuqbjz ovoe om^<giim^< nxquqk<kkiz<, nui hgljx ucuqbzqe< kf<jkweh<hmgqxii/ 7. gii<csqbe<ns<sk~vljx yv ktk<kqz< ujvbh<hm<mt<t sqz dvur<gtqe< -bz<hgjth< hx<xq gx<g uqjpgqe<oxil</yvktk<kqz<njlf<kht<tqgtqe<okigh<ohnf<kktk<kqz<njlf<k yvucul<ngl</weou?ucuqbzqe<nch<hjmg<ogit<jgyvht<tqngl</yv ktk<kqz< njlf<kt<t yu<ouiv Ht<tqObiMl< yv Osic olb<ob{<gjt -j{h<hk hx<xq-h<ohipkfil<gi{<ohil</ yv kitqe< ktk<kqje, Okjubie ktlig wmk<kg<ogi{<m, nf<k ktk<kqz< ye<xg<ogie<x osr<gk<kig njlf<k -V fqjzbie OfIg<OgiMgjt ujvg/ hml< 7. z< gim<cbt<tk Ohiz< upg<glig? yv Ofi<g<Ogicje gqjmg<ogimigul< lx<oxivofig<ogicjeosr<gk<kg<ogimigul<ujvouil</-vf<kohikqzl<hml<7. z< gim<cbt<tkohiz<njuwf<kujgbqzl<ujvbh<hmzil</-u<uqv{<mogimgtl< hml< 7. hml< 7. oum<cg< ogit<tl< Ht<tq, O weh<ohbiqmh<hm<m, Nkqh< Ht<tq we njpg<gh<hmgqxk/ -v{<m osr<gk<kg< OgiMgTl< fqjzbie OgiMgtig -Vh<hkiz< O we<gqx -f<kh< Ht<tqBl< fqjzbiek/ -h<ohipk -u<uqv OgiMgTg<Gl< O we<el< Ht<tq, w{< 0(H,s<sqbl<* jkg< Gxqh<hkigg< ogi{<m, -u<uqv Ofi<g<OgiMgjtBl< nzgqmouil</ yov 69

174 nzgqje -v{<m OgiMgTg<Gl< hbe<hmk<kouil</ -h<ohipk -V osr<gk<kg< OgiMgTl<, -V osr<gk<k w{< OgiMgtig lixgqe<xe/ gqjmg<ogim<cz< O uqe< uzkhg<gk<kqz< njlf<k w{<gt< lqjg w{<gt</ Gk<Kg<Ogim<cz< O uqe< Olz< hg<gk<kqz< njlf<k w{<gt< lqjg w{<gt</ -OkOhie<X gqjmg<ogim<cz< O uqe< -mkhg<gw{<gtl<, Gk<Kg<Ogim<cz<O uqe<gqp<h<hg<gk<kqz<njlf<kw{<gtl<gjx w{<gt</ w{<gtqe< WXuiqjs hml< 7. z<ogimgtqe<ljebqz<nl<hg<gxqgt< -mh<hm<m gim<mh<hm<mt<tk/ gqjmk<kqjs w{< Ogim<cje, x-ns<s we<xl< Gk<Kkqjs w{<ogim<cje, y-ns<swe<xl<fil<njpg<gqoxil</-u<uqv{<mogimgtl<ktk<kqje, gix<hgkqgt<wenjpg<gh<hml<fie<gslhigr<gtigh<hqiqg<gqe<xe/-juhml<7. z< gim<cbt<tkohiz<i )Lkzil<* gix<hgkq, II )-v{<mil<*gix<hgkq, III )&e<xil<*gix<hgkq lx<xl< IV )fie<gil<* gix<hgkq weh<ohbiqmh<hm<mt<te/ O we<gqx Ht<tqbieK fie<g gix<hgkqgtg<gl< ohikuiek/ ktk<kqz< P we<gqx WOkEl< yv Ht<tqjb wmk<kg< ogit<ouil</-h<ht<tqp NeKyVgix<hGkqbqz<njlf<Kt<tK/P upqbigy-ns<sg<g -j{bigyvofi<g<ogimujvg/-g<ogimx-ns<jsl we<gqxht<tqbqz<sf<kqg<gm<ml</ -u<uiox, P upqbigx-ns<sg<g-j{bigyvofi<g<ogimujvg/-g<ogimy-ns<js M we<gqx Ht<tqbqz< oum<mm<ml</ x-ns<sw{<ogim<cz<l we<x Ht<tqjbg<< Gxqg<Gl< olb<ob{< a NgUl<, y-ns<sw{<ogim<cz< M we<xht<tqjbg<gxqg<gl<olb<ob{<b NgUl<-Vg<gm<Ml</P NeKx-ns<sqz<njlf<kiz<, b 0 weg<gi{<gqoxil</pnek y-ns<sqz<njlf<kiz<, a 0 weg<gi{<gqoxil</p NeK x-ns<sqozinz<zky-ns<sqozi -z<zilz<lkz<gix<hgkqg<gt<njlf<kiz<, a > 0 lx<xl<b > 0 NGl</ a < 0 lx<xl< b > 0 Ng-Vf<kiz<P biek-v{<mil<( II ) gix<hgkqg<gt<njlbl</ P biek&e<xil< ( III ) gix<hgkqg<gt< njlf<kiz<, a < 0 lx<xl< b < 0. a > 0 lx<xl<b < 0 Ng-Vh<hqe<, P biekfie<gil<( IV ) gix<hgkqg<gt<njlbl</ P bieknkqh<ht<tq O Ng -Vh<hqe<, a 0 lx<xl<b 0 NGl</ a we<xw{< P wel< Ht<tqbqe< x-ns<s K~vl< nz<zk x-okijzu(abscissa) we<xl<, b wel<w{<p wel< Ht<tqbqe< y-ns<s K~vl< nz<zk y-okijzu (ordinate) we<xl< njpg<gh<hml< (hml< 7. Jh< hii<g<gul<*.fil<a, b wel< w{<gjt gix<ht<tqbiz< (, ) -u<uix hqiqg<gh<hm<mhqjxnjmh<hg<gt<, (a, b) we<x hml< 7. wpkouil</njk a, b we<gqxuiqjsosic we njph<<ohil</ gix<ht<tqbqe< -mkhg<glt<t w{<, P Ht<tqbqe< x-ns<s K~vk<jkBl<, gix<ht<tqbqe<uzkhg<glt<t w{<, P Ht<tqbqe<y-ns<SK~vk<jkBl<Gxqh<hkiz<?(a, b) NeKyVuiqjsOsicwe njpg<gh<hmgqxk/ P Ht<tqjbg<Gxqg<Gl<uiqjsOsic (a, b)we<hkye<ox ye<xkie</ nkiukp wel<yvht<tqg<gouxwf<kuiqjsosicbl<-vg<gik/ P wel<ht<tq P(a, b) weul< nz<zk SVg<glig (a, b) weul< Gxqg<gh<hMl</ fil< P biek (a, b) 70

175 ns<sk~vr<gjtg< ogi{<mt<tk weg< %XOuil</ -u<uix ktk<kqz< dt<t yu<ouiv Ht<tqBl<, olb<ob{<gtiz< Ne yv uiqjs Osicbiz< Gxqh<hqmh<hMl</ ovoe om^<giim^<^qe< dbif<k osbjz lkqg<gl< ohivm<m -k<ktliek gii<csqbe< ktl< we<xnjpg<gh<hmgqxk/olzl<nkosu<ugns<sktl< nz<zk xy ktl< we<xl< njpg<gh<hml</ -u<uix w{<uiqjs Osicgtiz< ktk<kqz< njlf<k Ht<tqgjtg< Gxqg<Gl<Ljxgii<Csqbe<Ljxnz<zKosu<ugLjxnz<zKxy ns<sk~vljx we<xnjpg<gh<hmgqxk/-v{<mns<sgtl<osu<ugns<sgt<nz<zkokijzu ns<sgt<weh<hmgqe<xe/ fil<nxquk, (i) Nkqh<Ht<tqO uqe<ns<sk~vr<gt< (0, 0). (ii) x-ns<sqe<lqkt<twf<kht<tqg<gl< y-ns<sk~vl<0. (iii) y-ns<sqe<lqkt<twf<kht<tqg<gl< x-ns<sk~vl< 0. (iv) olb<ob{<gtizie uiqjs Osic ye<x ogimg<gh<hm<miz< nkx<g gii<csqbe< ktk<kqz<keqk<kyvht<tqbqeiz<-ml<fqi<{bqg<gzil</ktk<kqz<nke<siqbie -mk<jk. we<xht<tqbiz<gxqg<gzil</ (v) yv Ht<tqbieK Lkz< gix<hgkqg<gt< njlf<kiz< -Vns<S K~vr<gTl< lqjg, -v{<mil< gix<hgkqg<gt< njlf<kiz<, x-ns<s K~vl< Gjx lx<xl< y-ns<s K~vl< lqjg/ &e<xil<gix<hgkqg<gt<<njlf<kiz<, -Vns<S K~vr<gTl< Gjx/ fie<gil< gix<hgkqg<gt< njlf<kiz<, x-ns<s K~vl< lqjg lx<xl< y-ns<s K~vl< Gjx NGl</ yv Ht<tqbqe< ns<s K~vr<gtqe< -bx<g{qkg< Gxqgt< hml< hml< z< gim<mh<hm<mt<te/ (vi) x-ns<sg<g-j{bigs<osz<zl<ogim<cz<njlf<kwz<zih<ht<tqgtl<sllie y-ns<sk~vk<jkg<ogi{<cvg<gl<)hml< 7.5 Jh<hii<g<gUl<). hml<7.5 hml< 7.6 (vii) y-ns<sg<g-j{bigs<osz<zl<ogim<cz<njlf<kwz<zih<ht<tqgtl<sllie, x-ns<sk~vk<jkg<ogi{<cvg<gl<)hml<7.6 Jh<hiIg<gUl<). 7

176 A(x, y ) lx<xl< B(x, y ) we<hjugii<csqbe<ktk<kqz<njlf<kwokel<-vht<tqgt< we<g/-ux<xqx<g-jmobbt<tgqjmlm<mk<okijzu, x > x weqz< x x weul<, x > x weqz< x x weul<, x x weqz< 0 weul< ujvbxg<gh<hmgqxk/ -jkh< OhizOu, A, B -ux<xqx<gqjmobbieosr<gk<kk<okijzuieky > y weqz<?y y weul<, y > y weqz<?y y weul<, y y weqz<?0 weul<ujvbxg<gh<hmgqe<xk/ wmk<kg<gim<mig, hml< 7.7 z<, A, B -ux<xqx<g -jmobbt<tgqjmlm<mk<okijzju BN l<, osr<gk<kk< okijzju AN l< Gxqg<gqe<xe/ fil<nxquk, BN LMOL + OM ( x ) + (x ) x x, AN AL + LN y + MB y + ( y ) y y. -u<uiox, hml< 7.8 z< A(x, y ) lx<xl< B(x, y ) weg<ogi{<miz< A, B -ux<xqx<g hml<7.7 -jmobbt<t gqjmlm<mk< okijzu, osr<gk<kk<okijzungqbeljxob, BN ML OM OL x ( x ) x x, AN LN AL BM ( y ) ( y ) + y y y. -k<okijzugjtljxob x x we<xl< y y we<xl<gxqh<hqmgqe<oxil</ hml< 7.8 wmk<kg<gim<m : A (, 0), B (0, ), C (4, 4), D (, ), E (.5, ), F (, ), G (, 0), H (0, 4) NgqbHt<tqgjtyVujvhmk<kitqz<Gxqg<gUl</OlZl<yu<ouiVHt<tqBl< wf<kgix<hgkqbqz<njlgqe<xkwe<hjkbl<gxqh<hqmul</ kqi<u: hml<7.9 -z< yvktk<kqz<ht<tqgt< Gxqg<gh<hm<Mt<te/ A we<gqxht<tqx-ns<sqe< lqjgh<hgkqbqzl<, B we<gqxht<tq y-ns<sqe< lqjgh<hgkqbqzl<, C we<gqxht<tqfie<gil< gix<hgkqbqet<tl<, D we<gqxht<tqlkz< gix<hgkqbqet<tl<, E we<gqxht<tq-v{<mil< gix<hgkqbqet<tl<, F we<gqxht<tq&e<xil< gix<hgkqbqet<tl<, G we<gqxht<tq x-ns<sqe< Gjxh<hg<gk<kqZl<, H we<gqxht<tq< y-ns<sqe< Gjxh<hg<gk<kqZl<LjxObnjlf<Kt<te/ hml< 7.9 wmk<kg<gim<m : (, 4), ( 9, ) we<gqx -V Ht<tqgTg<G -jmob dt<t gqjmk<okijzu, osr<gk<kk<okijzungqbux<jxg<g{<mhqc/ kqi<u: (, 4), ( 9, ) Ngqb -V Ht<tqgTg<G -jmob dt<t gqjmk<okijzu, osr<gk<kk<okijzuljxob( ) ( 9) 9 6 lx<xl< () ( 4) 5 NGl</ 7

177 hbqx<sq 7.. gqop ogimg<gh<hm<mt<t Ht<tqgjt ujvhmk<kitqz< Gxqk<K nju wf<okf<k gix<hgkqgtqz< njlgqe<xewe<hjkg<gxqh<hqmul</ (i) (, ) (ii) (7, 6) (iii) (, ) (iv) (6, ) (v) ( 9, 0) (vi) (5, 0) (vii) (0,) (viii) (, ). siqbikuxiweh<hkqz<ntqg<gul</ (i) (9, ), -v{<mil<gix<hgkqbqet<njlbl</ (ii) (, 0), y-ns<sq<e<olz<njlbl</ (iii) (,), y-ns<sqe<uzkhg<gl<njlbl</ (iv) (, ), x-ns<sqe<gqopnjlbl</ (v) (0, 0) we<hkx, y ns<sg<gt<oum<cg<ogit<tl<ht<tq/ (vi) (, ), gix<hgkq II z<njlbl</ (vii) ( π, ), gix<hgkq III z<njlbl</ (viii) (, ), gix<hgkq IV z<njlbl</ (ix) (0, ), x-ns<sqe<-mkhg<gl<njlbl</ (x) (5, 0), x-ns<sqe<gqopnjlbl</ (xi) x-ns<sg<g-j{bigdt<togim<ce<olz<wokel<-vht<tqgt<, sllie x-ns<sk~vr<gjtogi{<cvg<gl</ (xii) (a, b), (c, d) Ngqbju y-ns<sg<g-j{bieogim<ce<olz< WOkEl<-VHt<tqgt<weqz<, a c.. ogimg<gh<hm<mt<t-vht<tqgtg<g-jmobdt<tgqjmk<okijzu, osr<gk<kk< okijzungqbux<jxg<gi{<g/ (i) (, 4) lx<xl< (, 5). (ii) (, ) lx<xl< (4, 6). (iii) (, 5) lx<xl< (7,). (iv) (, ) lx<xl< ( 4, ). 7. Ogim<ce<sib<U Lkzqz<, x-ns<sg<ogi nz<zk y-ns<sg<ogi -j{big njlbik LL we<x Ofi<g<Ogim<ce< sib<uqje ujvbxh<ohil</ -kx<gig LL Ofi<g<Ogim<ce< lqkjlf<k P(x, y) we<gqx Ht<tqbig yv leqkje fqjek<kg<ogit<ouil</ -l<leqke< P Neue< ng<ogim<ce<lqkymgqe<xie<we<xfqjek<kh<hiig<gul</hml<7.0 nz<zkhml<7. Ngqbux<xqz< Gxqh<hqm<Mt<tK Ohiz< WOkEl< -V kqjsgtqz< nue< osz<zzil< we<hjkfil<nxqgqoxil</ hml< 7.0 hml< 7. P biek yv Gxqh<hqm<m kqjsbqe< upqbig fgvgqe<xohik, P bqe< x-ns<sk<k~vl< nkqgiqh<hjkfil<gi{zil< (hmr<gt<7. lx<xl<7. Jh<hiIg<gUl<). -f<k Gxqh<hqm<m 7

178 kqjsjbg< Ogim<ce< lqjgk<kqjs weg< %XgqOxil</ lx<oxiv kqjsbiek Ogim<ce< Gjxk<kqjs weh<hml</ P biek Gjxk<kqjsbqz< fgvl<ohipk nkejmb x-ns<s K~vl<Gjxgqe<xK/ hml< 7. hml< 7. P NeK P (x, y ) we<xfqjzbqzqvf<kp (x, y ) we<xfqjzg<glqjgk<kqjsbqz< fgvm<ml</ P bqe< x-ns<s K~vlieK x lkqh<hqzqvf<k x we<gqx lkqh<hqx<gl<, y-ns<s K~vlieK y lkqh<hqzqvf<k y we<gqx lkqh<hqx<gl<, lixujkg< gi{<gqoxil</ x-ns<s okijzuqz<wx<hml<lix<xl<x x. -K, fgvl<ht<tqp bqe<ym<ml<(run) weh<hml</ -Ok Ohie<X y-ns<s okijzuqz< Wx<hMl< lix<xl< )lixkz<* y y. -K fgvl< Ht<tqbqe<Wx<xl<nz<zKwPs<sq(rise) weh<hml</fil<hmr<gt< 7., 7. Ngqbux<xqz< Ym<ml< x x lqjgbig -Vh<hjkg< gi{<gqoxil</ hml< 7. z< P NeK Ogim<cz< Olz<Ofig<gq fgvgqe<xk/ nkiuk, nk Ogim<cz< Olz<Ofig<gq P zqvf<k P uqx<g wps<sq njmgqxk/ OlZl< P uiek P J uqm dbi<f<k -mk<kqz< dt<tk/ -r<g Wx< xl< y y Wx<xl< y y lqjgbigl</ weou? we<gqxuqgqkl<lqjgw{<ngl</ Ym< ml< x x hml<7. z<, Ht<tqP NeKOgim<cz<gQp<Ofig<gqfgVgqe<xK/nkiuK nk, P zqvf<k P uqx<guqp<gqe<xk/ht<tqp NeK P Juqmk<kip<f<k)Gjxf<k*-mk<kqz<dt<tK/ Wx< xl< -r<g Wx<xl< y y GjxbiGl</ weou? Ym< ml< Wx< xl< weou Ym< ml< y x y x y x y x, yvgjxw{<ngl</ we<gqxuqgqkliek kvh<hm<mofig<ogimwpgqe<xofig<ogimi nz<zk uqp<gqe<x OfIg<Ogimi we<hjk fqi{bqg<gqxk/ weou -f<k uqgqkk<jk ng<ogim<ce<sib<uwe<gqe<oxil</ nmk<khcbig, x-ns<<sg<g -j{bigs< osz<zl< Ogim<ce< sib<uqjeg< g{<mxqouil</ hml; 7.4 z<, OgiM LL NeK x-ns<sg<g -j{bigdt<tk/ogim<ce<olz<njlf<k wz<zih< Ht<tqgTl< yov y-ns<s K~vk<jkg< ogi{<mt<tewe<xl<gi{<gqoxil</ P (x, y ), P (x,y ) Ngqbju-j{g<Ogim<cz<njlf<k -V Ht<tqgt< we<g/ -r<g, y y. weou Wx<xl<y y 0. hml<

179 Wx< xl< y y NgOu?sib<U 0. Ym< ml< x x nmk<khcbig, y-ns<<sg<g -j{bigs< osz<zl< Ogim<ce< sib<uqjeg< gi{<ohil</ P (x, y ), P (x, y ) Ngqbju -j{g< Ogim<cz< njlf<k -V Ht<tqgt< we<g (hml<7.5 Jh<hiIg<gUl<). -r<g, x x. weou, Ym<ml< x x 0. P, P ouu<oux Ht<tqgt</weOu, y y. NgOu hml< 7.5 Wx< xl< y y y y sib<u. Ym< ml< x x 0 -KujvbXg<gh<hmuqz<jz/ y-ns<<sg<g -j{bigs< osz<zl< Ogim<ce<sib<U ujvbxg<gh<hmikk/ wpl<hl<ogim<ce<sib<u> 0. uqpl<ogim<ce<sib<u < 0. x-ns<sg<g-j{bigs<osz<zl<ogim<ce<sib<u 0. y-ns<<sg<g-j{bigs<osz<zl<ogim<ce<sib<u ujvbxg<gh<hmikk/ ( ) y y y y -r<g fil< gueqg<g Ou{<cbK, x x ( x x ) (x, y ) Ngqb-VHt<tqgjts<Osi<g<Gl<Ogim<ce<sib<U Wx< xl< y y y y. Ym< ml< x x x x -kqzqvf<k, sib<uiekogim<ce<kqjsjbh< ohivk<k njlukz<z we<hjk fil< nxqgqoxil</ OlZl< Ogim<ce< sib<u y y we<gqx uqgqkl< P, P we<gqx x x Ht<tqgtqe< Gxqh<hqm<m okiqf<okmk<kjzs< sii<f<kk nz<z/ -f<k d{<jljbk< okiqf<k ogit<t, nf<ofig<ogim<ce< lqk OuX -V Ht<tqgt< P (x, y ) lx<xl< P 4 (x 4, y 4 ) wmk<kg<ogit<ouil<(hml<7.6 Jh<hiIg<gUl<). P zqvf<kp 4 g<gs<osz<zl< y4 y Ogim<ce<sib<U. x4 x P zqvf<k P g<gs< osz<zl< Ogim<ce< y y sib<u. x x y x y x. -u<uix (x, y ), hml<

180 Neiz< P AP, P BP 4 we<hjuucouik<klg<ogi{r<gt</ P A AP AP nz<zk BP y 4 y y4 y.. P B BP 4 PA P B x x x4 x nkiuk, sib<uiekogim<ce<olzjlf<k-vht<tqgtqe<-mk<jks<sii<f<kkz<z/ Gxqh<H: ogimg<gh<hm<mt<t (x, y ) lx<xl< (x, y ) Ngqb-VHt<tqgtqe<upqObyOvyV Wx< xl< y y Ofi<g<OgiMkie<ujvbLcBl</nf<OfIg<Ogim<ce<sib<U. Ym< ml< x x wmk<kg<gim<m : (5, 6) lx<xl< (5, 9) NgqbHt<tqgtqe<upqObosz<Zl<Ogim<ce<sib<U gi{<g/ OlZl< ng<ogim OlOzx<xl< ohxgqxki nz<zk gqpqxg<gl< ogit<gqxki weg< %Xg/ kqi<u: (5,6)J (x, y ) we<xl<? (5, 9) J (x, y ) we<xl<ogit<g/ogim<ce<sib<u Wx< xl< y y Ym< ml< x x 9 6, yvlqjgw{</ weou?ogimiek)hml< 7.7 Jh<hiIg<gUl<* Olz<Wx<xl<ohx<Xt<tK/ hml< 7.7 wmk<kg<gim<m 4: ( 6, 9), (40, 6) we<gqxht<tqgtqe<upqobosz<zl<ogim<ce<sib<u gi{<g/ OgimieK Olz< Wx<xl< ohxgqxki nz<zk gqp< -xg<gl< ogit<gqxki weg< %Xg/ kqi<u: Wx< xl< 6 9 Ogim<ce<sib<U Ym< ml< 40 ( 6) 5 5 yvgjxw{< weou OgimieK)hml< 7.8 Jh<hiIg<gUl<* gqp<-xg<gl<ohx<xt<tk/ hml< 7.8 wmk<kg<gim<m 5: gqopogimg<gh<hm<mht<tqgjts<osi<g<gl<ogim<ce<sib<ugjth<hx<xq uqtg<gg/ (i) (6, 4) lx<xl<( 7, 4) (ii) (, 8) lx<xl< (, 7) kqi<u: (i) Ogim<ce<sib<U y x y x , 7 6 OgimieKx-ns<Sg<G-j{biGl</ y y 7 8 (ii)ogim<ce<sib<u ujvbxg<gh<hmikk/ x x + 0 OgimieK x-ns<sg<gs<osr<gk<kigdt<tk/ 76

181 wmk<kg<gim<m 6: sib<u 5 ogi{<m?(, ) we<xht<tqupqbigs<osz<zl<ogim<ce< lx<oxivht<tqjbg<gi{<g/ kqi<u: Lkzqz<? sib<u 5 we wpkouil< (nkiuk, hgkqjb lqjgbigg< ogit<ouil<). (, ) we<x Ht<tqg<G hml< 7.9 z< dt<tk Ohiz< P weh<ohbiqm/ P bqzqvf<k 5 nzggt< x-ns<sqx<<g-j{biguzkhg<gligfgif<k )Woeeqz<Ym<ml< 5) Q ( + 5, ) nkiuk, Q (, ) we<x Ht<tqjbs< ose<xjmg/ Q uqzqvf<k nzgy-ns<sqx<<g-j{big gqpqxr<gq )Woeeqz<? -r<g Wx<xl< ) R(, + ( )) nkiuk R (, 0) we<x Ht<tqjbs< ose<xjmg/ R (, 0) we<hk Ogim<ce< Olzjlf<k lx<oxiv Ht<tq/ -kjes<siqhii<g<g?p, R Js<Osi<g<Gl< 0 Ogim<ce<sib<U. 5 ( ) hml< 7.9 lix<xupq;(, ) J(x, y ) we<g/ogim<cz<lx<oxivht<tqjb(x, y ) we<g/weou, y y y sib<u /Neiz<, sib<u wek<kvh<hm<mt<tk/ x x x + 5 y nz<zk x 6 5y 5 nz<zkx + 5y 9. -kqz<y x<glkq<h<h x + 5 ogimg<gx gqjmg<gl</wmk<kg<gim<mig, y 0 weqz<, x nz<zk x 9 nz<zkx. weou, (, 0) NeKOgim<ce<lQKlx<oxiVHt<tqbiGl</ 7.. Ofi<g<Ogim<ce<sle<hiM P(x,y) we<hk ogimg<gh<hm<m Ogim<cz< njlbl< lixgqe<x Ht<tqbig -Vg<gm<Ml</ lixqgt< x, y -ux<jxs< Osi<g<Gl< -bx<g{qks< sle<him ng<ogim<ce< sle<him NGl</ Ogim<cz< njlf<k yu<ouiv Ht<tqbqe< x-ns<sk~vl<, y-ns<sk~vl< NgqbjuOgim<ce<sle<him<jmfqjxUosb<Bl</-f<k(x, y) we<xuiqjsosicgjt gii<csqbe< ktk<kqz< Gxqg<g OfIg<Ogim<ce< ujvhml< gqjmg<gl</ -eq? Ogim<ce< sle<him, OgiMwe<Oxnjpg<gh<hMl</Ogim<ce<ujvhml<? x-ns<js A we<gqxyovyv Ht<tqbqZl<, y-ns<js B we<gqx yov yv Ht<tqbqZl< sf<kqg<gqxk/ A NeK x-ns<sqz< njlukiz< nke< y-ns<s K~vl< 0 NGl</ a we<hk A e< x-ns<sk~vl< weqz<, (a, 0) we<hkogim<ce<sle<him<jmfqjxuosb<bl</x g<g a JBl<, y g<g 0 JBl<Ogim<ce< sle<him<cz< hqvkqbqm, a bqe<lkqh<jhg<gi{zil</a bqe< lkqh<h, Ogim<ce< x oum<mk<k{<m weh<hml</ nkiuk, yv Ogim<ce< x oum<mk<k{<miek, OgimieK x- ns<js sf<kqg<gl< Ht<tqbqe< x-ns<sk~vl< NGl</ -Ok Ohie<X, B biek y-ns<sqz< -Vh<hkiz<nke< x-ns<sk~vl<0 NGl</weOu, b we<hkb bqe< y-ns<sk~vl<weqz<? (0, b) we<hkogim<ce<sle<him<jmfqjxuosb<bl</weou?x g<gh<hkqzig0 jubl<, 77

182 y g<gh<hkqzig b jbbl< Ogim<ce<sle<him<cz<hqvkqbqm, b e<kqijug<gi{zil</ b e< -f<k lkqh<h, Ogim<ce< y oum<mk<k{<m weh<hml</ weou? OgimieK wf<k Ht<tqbqz< y-ns<js oum<mgqxoki, nf<kh< Ht<tqbqe< y ns<sk~vl<, Ogim<ce< y oum<mk<k{<m weh<hml<. kx<ohipk sib<u m we<xl<, y oum<mk<k{<m c we<xl< ogi{<m Ogim<ce< sle<him<jmhqe<uvlixgi{<ohil</ Ogim<ce< y oum<mk<k{<m c big -Vh<hkiz< P (0, c) we<hk, OgimieK y-ns<js oum<ml<ohik (hml< 7.0 Jh< hiig<gul<) Wx<hMl< Ht<tq/ P(x, y) we<hk Ogim<ce< OuX WOkEl< yv Ht<tqbigm<Ml</hqe<ei< Ogim<ce<sib<U y c y c (n.k). x 0 x Neiz< Ogim<ce< sib<u m we<x hml< 7.0 ogimg<gh<hm<mt<tk/ y c m (n.k) y c mx (n.k) y mx + c. x OlZt<tsle<himieKyVOgim<ce<sle<him<ce<sib<U.oum<Mk<K{<M$k<kqvliGl</ Gxqh<H: OgimieKNkqh<Ht<tq (0, 0) upqbigs<ose<xiz<, nke< y oum<mk<k{<m c 0. weou?ogim<ce<sle<him y mx + 0 nz<zk y mx. wmk<kg<gim<m 7: sib<u NgUl<, y-oum<mk<k{<m NgUl<dt<tOgim<ce<sle<hiM gi{<g/ kqi<u: sib<u.oum<mk<k{<m$k<kqvk<jkh<hbe<hmk<k, Ogim<ce<sle<hiM y x + ( ) m nz<zk y x 6 nz<zk x y 6 0. c y mx + c wmk<kg<gim<m 8: x + 4y we<xogim<ce<sib<u, y-oum<mk<k{<mngqbux<jxg< gi{<g/ 5 kqi<u: sle<him<jmlix<xqwpkjgbqz<gqjmh<hk, 4y x 5 (n.k) y x f<ks<sle<him<jm, y mx + c dme<yh<hqmjgbqz<? sib<um, y-oum<mk<k{<m c hbqx<sq 7.. ogimg<gh<hm<m-vht<tqgjts<osig<gl<ogim<ce<sib<jug<gi{<g/ (i) ( 4, ) lx<xl< ( 5, ). (ii) (4, 8) lx<xl< (5, ). (iii) ( 5, 0) lx<xl< (0, 8). (iv) (0, 0) lx<xl< (, ). (v) (a, b) lx<xl< (a, b). (vi) (a, 0) lx<xl< (0, b). 78

183 . ogimg<gh<hm<mht<tqupqbigul<, kvh<hm<msib<jubl<ogi{<mogim<ce<lx<oxiv Ht<tqjbg<gi{<g/ (i) Ht<tq(5, 6), sib<u. (ii) Ht<tq (0, 4), sib<u 4. (iii) Ht<tq (, ), sib<u. (v) Ht<tq (, 4), sib<u 7. (iv) Ht<tq (, ), sib<u4.. sib<ul<, y- oum<mk<k{<ml<ljxobogimg<gh<hm<mt<te/ogim<ce<sle<him<jmg< gi{<g/ (i) lx<xl< 7. (ii) 5 lx<xl< 9. (iii) lx<xl< 5. (iv) 6 lx<xl<. (v) lx<xl<. (vi) lx<xl< ogimg<gh<hm<mogim<ce<sib<u, y- oum<mk<k{<mgi{<g/ (i) x + y 4 (ii) x y (iii) x y 0 (iv) 5x 4y 8 7. (x, y ) lx<xl< (x, y ) Ngqb -V Ht<tqgTg<G -jmobbt<t okijzu -V Ht<tqgTg<G -jmobbt<t okijzu we<hk ucuqbzqz< yv nch<hjmg< gvk<kvuigl</-h<ohiknkx<gie-bx<g{qkg<ogijujbg<g{<mxqouil</ P (x, y ), P (x, y ) we<hju gii<csqbe< ktk<kqz< njlf<k -V Ht<tqgtigm<Ml</ P, P -ux<xqx<g -jmobbt<t okijzju d(p, P ) nz<zk P P weg<gxqh<ohil</ P P we<xogim<mk<k{<jmujvg/&e<xujggt<wpgqe<xe/ ujg (i): Ogim<Mk<K{<M PP NeK x-ns<sg<g -j{big dt<tk )hml< 7. Jh< hiig<gul<). -r<g y y. P L, P M Ngqbux<jxx-ns<Sg<G osr<gk<kigujvg/p P ML yvosu<ugligl</ weoup P LM. nkiuk, d(p, P ) we<hkl lx<xl< M we<heux<xqx<g -jmobbt<t okijzu/ Neiz<, L lx<xl< M we<x Ht<tqgt< hml< 7. x-ns<sqe<lqkt<te/-h<ht<<tqgjtljxobx, x we<gqx olb<ob{<gt< x-ns<sigqb w{<ogim<cz< Gxqg<gqe<xe/ nkeiz< LM e< fqtl< LM x x. weoud (P, P ) x x. ujg (ii): P P we<gqx Ogim<Mk<K{<M y-ns<sg<g -j{big dt<tk (hml< 7. Jh< hiig<gul<). -r<gx x. P L, P MNgqbux<jx y-ns<sg<g osr<gk<kig ujvg/ P P ML yv osu<ugligl</weoup P LM. nkiuk, hml< 7. 79

184 d(p, P ) we<hk L lx<xl< M we<heux<xqx<g-jmobbt<tokijzu/neiz<, L lx<xl< M we<x Ht<tqgt< y-ns<sqe< lqkt<te/ -h<ht<tqgjt LjxOb y, y we<gqx olb<ob{<gt<y-ns<sigqbw{<ogim<cz<gxqg<gqe<xe/nkeiz<?lm e<fqtl< y y. weou d(p, P ) y y. ujg(iii): Ogim<Mk<K{<M PP NeK x-ns<sg<gl<-j{bqz<jz; y-ns<sg<gl< -j{bqz<jz(hml< 7. Jh<hiIg<gUl<). P upqbig x-ns<sg<g -j{big yv OgiMl<, P upqbigy-ns<sg<g-j{big yv OgiMl< ujvg. -g<ogimgt< P z< oum<mm<ml</ hqe<ei< P, (x, y ) NGl</ Ogim<Mk<K{<MP P e<fqtl< x x NGl</ Ogim<Mk<K{<M P P e< fqtl< y y. P P P we<hk yv osr<ogi{ Lg<Ogi{l< we<hjk fil< gi{<gqoxil</ weouhqkigv^<okx<xk<kqe<hc, [ d( P P )] [ d( P, P )] + [ d( P P )],, x x + y y (x x ) + (y y ) (x x ) + (y y ) d(p, P ) ( x x ) + ( y y. ) hml< 7. -KokijzUgi[l<$k<kqvl<NGl</-K(x, y ) lx<xl< (x, y ) NgqbogiMg<gh<hm<m -V Ht<tqgTg<G -jmobbt<t okijzu d Jk< kvl</ gqjmg<ogim<cozi nz<zk Gk<Kg<Ogim<cOzinjlbik-VHt<tqgTg<gie$k<kqvl<ohxh<hm<Mt<tK/-r<Gfil< gueqg<gou{<cbkd(p, P ) d(p, P ). OlZl< -f<k $k<kqvl< wf<k -V Ht<tqgTg<Gl< ohivf<kl</ P lx<xl< P NgqbjuyOvgqjmg<Ogim<cz<njlf<kiz<, y y NGl</Njgbiz< d(p, P ) ( x x) + ( y y) x x + 0 x x. P lx<xl<p NgqbjuyOvGk<Kg<Ogim<cz<njlf<kiz<, x x NGl</Njgbiz< d(p, P ) ( x x ) + ( y y ) 0 + y y y y. Gxqh<H: Nkqh<Ht<tq O NeK (0, 0). P (x, y) WOkEl<yVHt<tqweqz<, OP ( x 0) + ( y 0) x + y. -f<kk<okijzu x + y we<hk Nkqh<Ht<tqbqzqVf<K, (x, y) we<gqxht<tqbqe<njv oug<mi< weh<hml</ 80

185 okijzu$k<kqvk<jkh<hbe<hmk<kq, fil< (i) &e<xht<tqgt<yovogim<czjlgqe<xeuinz<zkyvosr<ogi{lg<ogi{l< nz<zk -Vslhg<g Lg<Ogi{l< nz<zk slhg<glg<ogi{k<jkdvuig<gli we<xnvibzil</ (ii) fie<g Ht<tqgt<, -j{gvl<, osu<ugl<, skvl< nz<zk sib<skvl< Ngqbux<jx dvuig<gliwe<xnvibzil</ wmk<kg<gim<m 9: A( 5, ) lx<xl< B (7, ) -ux<xqx<gqjmobbt<tokijzjug<gi{</ kqi<u: A lx<xl< B -ux<xqx<gqjmobbt<tokijzu d we<g/ d (A, B) ( x x) + ( y y) (x, y ) ( 5, ) ( 7 + 5) + ( + ) (x, y ) (7, ) wmk<kg<gim<m 0: ( 4, 9), (, 0) lx<xl< (4, ) NgqbjuyOvOgim<czjlBl<Ht<tqgt< weg<gim<mg/ kqi<u: A, B lx<xl< Cwe<heLjxOb?ogiMg<gh<hm<mHt<tqgtig-Vg<gm<Ml</ AB ( + 4) + (0 + 9) A ( 4, 9) likqiqh<hml< B (, 0) 7 9. hml<7.4 BC ( 4 ) + ( 0) C (4, ) AC ( 4 + 4) + ( + 9) r<g + 4. AB + BC AC we<hjkg<gi{<gqoxil</ A, B lx<xl< C yovogim<czjlbl<ht<tqgt</ wmk<kg<gim<m : (, ), (, 5) lx<xl< (8, 7) Ht<tqgt<yV-Vslhg<gLg<Ogi{k<jk njlg<gl<weg<gim<mg/ kqi<u: ogimg<gh<hm<m Ht<tqgt< LjxOb P, Q lx<xl< R we<g. PQR yv-vslhg<glg<ogi{l< we fq'hqg<g nkejmb -V hg<gr<gt< slfqtlt<tjuweg<gim<mzil<. -h<ohipk? d(p,q) ) + (5 ) ( d (Q, R) (8 ) + ( 7 5) ,, hml< 7.5 d (R, P) ( 8) + ( + 7) ( 5) d (P, Q) d (R, P) d (Q, R). PQR yv-vslhg<glg<ogi{l<(hml<7.5 Jh< hiig<gul<).neiz<slhg<glg<ogi{lz<z/ 8

186 wmk<kg<gim<m : (0, ), (0,) lx<xl< (,) Ngqbju yv slhg<g Lg<Ogi{k<kqe< ds<sqgt<weg<gim<mg/ kqi<u: ogimg<gh<hm<mht<tqgt<ljxob A, B lx<xl< C Ng-Vg<gm<Ml<. ABC yvslhg<glg<ogi{l<we fq'hqg<g nke< wz<zih< hg<gr<gtl< sl fqtlieju weg< gim<mzil</-r<g d (A, B) (0 0) + ( ) 0 + ( ) 4, d (B, C) ( 0) + ( ) + 4, d (C, A) (0 ) + ( ) + 4. d (A, B) d (B, C) d (C, A). ABC yvslhg<glg<ogi{l<(hml<7.6 Jh< hiig<gul<*/ hml< 7.6 wmk<kg<gim<m : P (7, ), Q ( 4, ) lx<xl< R (4, 5) yvosr<ogi{lg<ogi{k<kqe< ds<sqgtiwenvib<g/ kqi<u: PQRyVosr<Ogi{Lg<Ogi{l<weg<gim<mYIds<sqg<Ogi{l<90 weg<gim<m Ou{<Ml</-kx<GLg<Ogi{k<kqe<hg<gr<gtqe<fQtr<gt<hqkigv^<Okx<xk<jkfqjxU osb<bou{<ml</-r<og PQ ( 4 7) + ( ) , QR (4 + 4) + (5 + ) , PR (4 7) + (5 ) hml<8.7 PQ 5, QR 00 lx<xl< PR 5. QR + PR PQ we<hjkg<gi{<gqoxil</weouhqkigv^<$k<kqvl<siqhiig<gh<hm<mk/ PQR yvosr<ogi{lg<ogi{l<? R 90. wmk<kg<gim<m 4: (, ), (, ), (5, ) lx<xl< (4, 6) we<xuiqjsbqz<njlf<kht<tqgt< YI-j{gvk<kqjenjlg<Gl<weg<gim<Mg/-KyVosu<ugli@Nvib<g/ kqi<u:ogimg<gh<hm<mht<tqgt<ljxob P, P, P lx<xl< P 4 Ng-Vg<gm<Ml</ P P P P 4 YI-j{gvl<weg<gim<Mukx<GyVupqLjx?nkEjmbwkqi<hg<gr<gtqe< fqtr<gt<sll<weg<gim<mukigl</-r<og P P ( ) + ( ) + 9 0, P P (5 ) + ( + ) , P P 4 (4 5) + (6 ) + 9 0, P 4 P ( 4) + ( 6) P P P P 4 0 lx<xl< P P P 4 P 5. hml< 7.8 P P P P 4 we<hkyi-j{gvl</-r<g? P P (5 ) + ( ) lx<xl< (P P ) + (P P ) , (P P ) 7, (P P ) + (P P ) (P P ). P P P we<hkosr<ogi{lg<ogi{lz<z/ P P P we<hkosr<ogi{lz<z/ P P P P 4 we<hkyvosu<ugl<-z<jz. 8

187 wmk<kg<gim<m 5: (0, ), (, ), (6, 7) lx<xl< (8, ) we<x uiqjsbqz< wmk<kg< ogit<th<hm<mht<tqgt<yvosu<ugk<jknjlg<gl<weg<gim<mg/ kqi<u: ogimg<gh<hm<mht<tqgt<a, B, C lx<xl< D Ng-Vg<gm<Ml;. ABCD yvosu<ugl< weg<gim<mukx<g yv upqljx? nke< wkqih<hg<gr<gt< slfqtlt<tju we<hkigl</ OlZl< nke< YI ds<sqg<ogi{ ntu 90 we<hkigl</ YI ds<sqg<ogi{l< 90 weg<gim<mukx<g yv upqljx? ABC e< hg<gr<gt< hqkigv^< Okx<xk<jk fqjxu osb<gqxkweg<gim<muok/-r<ogfil<gi{<hk AB ( 0) + ( + ) , BC (6 + ) + (7 ) , CD (8 6) + ( 7) , AD (8 0) + ( + ) AC (6 0) + (7 + ) hml< 7.9 AB CD 5, BC AD 4 5 lx<xl< AB + BC AC. ABCD yvosu<ugl</neiz<skvlz<z/ wmk<kg<gim<m 6: (0, ), (, ) (0, ) lx<xl< (, ) we<xuiqjsbqz<wmk<kg<ogit<th<hm<m Ht<tqgt<yVsKvk<kqe<ds<sqgt<weg<gim<Mg/ kqi<u:ogimg<gh<hm<mht<tqgt<ljxob A, B, C, D we<g. ABCD yvskvl<weg<gim<mukx<gnkejmb hg<gr<gt< slfqtljmbju lx<xl< &jz uqm<mr<gt< slfqtlt<tju weg<gim<muk yv upqngl</-r<g AB ( 0) + ( + ) , BC (0 ) + ( ) , CD ( 0) + ( ) , AD ( 0) + ( + ) , BD ( ) + ( ) , AC (0 0) + ( + ) hml< 7.0 AB BC CD AD lx<xl< BD AC 4weg<gi{<gqOxil</ ABCD yvskvl</ wmk<kg<gim<m 7: A(, ), B(6, 5), C(, ) lx<xl< D( 6, 7) we<xuiqjsbqz<wmk<kg< ogit<th<hm<m Ht<tqgt< yv sib<skvk<jk d{<mig<gl<;neiz< nkskvlz<zweg< gim<mg/ kqi<u: ABCD yv sib<skvligl< weg< gim<mukx<g yv upq? nkejmb wz<zi hg<gr<gtl< sll< weg< gim<mukkie</ yv sib<skvliek? skvlz<z weg< gim<mukx<g yv upq? nkejmb &jzuqm<mr<gt< slfqtlz<zikju weg< gim<mukkie</-r<g AB ( 6 ) + (5 + ) , 8

188 BC AC BD CD AD 6) + ( 5) ( +, ) + ( ) 6 6 ( + ( +, , 6 6) + ( 7 5) ) + ( 7 ) ( +, 6 ) + ( 7 ) ( + +. AB BC CD AD, AC BD. ABCD we<hkyvsib<skvl<;neiz<nkskvlz<z/ hml<7. hbqx<sq7.. gqopogimg<gh<hm<mt<tosicht<tqgtg<g-jmobbt<tokijzjug<gi{<g/ (i) (, ) lx<xl< (4, ) (vi) (a, b) lx<xl< ( b, a) (ii) (, 4) lx<xl< ( 7, ) (vii) ( +,) lx<xl< (, ) (iii) ( 7, ) lx<xl< (, ) (viii) 5, lx<xl< (, ) 4 (iv) (4, 5) lx<xl< ( 4, 5) (ix) (, 0) lx<xl< (5, 4) (v) (a, b) lx<xl< (b, a) (x) (, ) lx<xl< (, 5).gQOpogiMg<gh<hm<mHt<tqgt<yOvOgim<czjlBl<Ht<tqgt<weg<gim<Mg/ (i) (5, ), (, ) lx<xl< (8, 8) (ii) (, ), (, ) lx<xl< (0, ) (iii) (, 4), (, ) lx<xl< (, 6) (iv) ( 4, 8), (, 4) lx<xl< (, 6) (v) (8, 4), (5, ) lx<xl< (9, 6).. gqop ogimg<gh<hm<m Ht<tqgt< -Vslhg<g Lg<Ogi{k<jk d{<mig<gli we Nvib<g/ (i) (5, 4), (, 0) lx<xl< (, ). (ii) (6, 4), (, 4) lx<xl< (, 0). (iii) (, ), ( 4, ) lx<xl< (, 5). 4. gqopogimg<gh<hm<mht<tqgt<slhg<glg<ogi{k<jkd{<mig<gliwenvib<g/ (i) (, ), (, ) lx<xl< (, 4). (ii) (, ), (0, ) lx<xl< (0, ). (iii) (0, ) (0, 5) lx<xl< (, 4). 5. gqopogimg<gh<hm<mht<tqgt<osr<ogi{lg<ogi{k<kqe<ds<sqgtiwenvib<g/ (i) (4, 4), (, 5) lx<xl< (, ). (ii) (, 0), (, ) lx<xl< (, 5). 6. gqopogimg<gh<hm<mds<sqgjtg<ogi{<mlg<ogi{l<wu<ujglg<ogi{l<weg< gi{<g/ (i) (, 7), ( 4, 0) lx<xl< ( 0, 8). (ii) ( 5, ), (0, 6) lx<xl< (8, ). 84

189 7. gqopogimg<gh<hm<muiqjsbqz<njlf<kht<tqgt<-j{gvk<jknjlg<gliwe Nvib<g/ (i) (, 5), ( 5, 4), (7, 0) lx<xl< (5, 9). (ii) (5, 8), (6, ), (, ) lx<xl< (, 6). (iii) (6, ), (5, 6), ( 4, ) lx<xl< (, ). (iv) (0, ), (4, 4), (6, ) lx<xl< (, ). 8. gqopogimg<gh<hm<muiqjsbqz<njlf<kht<tqgt<yvosu<ugk<jknjlg<gliwe Nvib<g/ (i) (8, ), (0, ), (, ) lx<xl< (6, 7). (iii) (, 0), (, ), (5, 6) lx<xl< (, 8). (ii) (, 7), (5, 4), (, 0) lx<xl< ( 8, 7). (iv) (, ), (0, 0) (, ) lx<xl< (, 4). 9. gqopogimg<gh<hm<muiqjsbqz<njlf<kht<tqgt<yvskvk<kqjenjlg<gliwe Nvib<g/ (i) (, ), (, ), (, ) lx<xl< (, ). (ii) (, 8), (4, 6), (, ) lx<xl< (, ). (iii) (, ), (0, 4), (7, ) lx<xl< (8, 0). (iv) (, 9), (0, 6), (5, 4) lx<xl< (, ). (v) (, ), (, 0), (, 4) lx<xl< (, ). 0. gqopogimg<gh<hm<muiqjsbqz<njlf<kht<tqgt<yvsib<skvk<kqe<ds<sqgti wenvib<g/ (i) (0, 0), (, 4), (0, 8) lx<xl< (, 4). (ii) (, ), (6, 5), (, ) lx<xl< ( 6, 7). (iii) (, 4), (5, ), (, ) lx<xl< (, ) 85

190 uqjmgt< hbqx<sq 7.. (i) I (ii) I (iii) III (iv) IV (v) wf<kgix<hgkqbl<-z<jz (vi) wf<kgix<hgkqbl<-z<jz (vii) wf<kgix<hgkqbl<-z<jz (viii) II. (i) kux (ii) kux (iii) kux(iv) siq (v) siq(vi) siq (vii) siq (viii) kux (ix) kux(x) kux(xi) kux (xii)siq. (i) (, ) (ii) (6, 9) (iii) (0, 7) (iv) (, ) hbqx<sq 7. 8 b b. (i) (ii) 6 (iii) (iv) (v) 4 (vi) 5 a a. (i) (6, 7) (ii) (4, 5) (iii) (, ) (iv) (, ) (v) (, ). (i) x + y (ii) 5x y (iii) x + y 5 0 (iv) 6x y 0 (v) x + 5y 5 0 (vi) x + 5y (i), 5 (ii) (, 0) (iii) (, ) (iv), 4 hbqx<sq 7.. (i) 0 (ii) 6 (iii) 0 (iv) 4 (v) (a b) 48 (vi) (a + b) (vii) 6 (viii) (ix) 5 (x) 65.. (i) yovogim<czjlbl<(ii) yovogim<czjlbik(iii) yovogim<czjlbl< (iv) yovogim<czjlbik (v) yovogim<czjlbik. (i) -Vslhg<gLg<Ogi{l<(ii) -Vslhg<gLg<Ogi{l< (iii) -Vslhg<gLg<Ogi{l< 4. (i) slhg<glg<ogi{l< (ii) slhg<glg<ogi{l< (iii)slhg<glg<ogi{l< 5. (i) osr<ogi{lg<ogi{l< (ii) osr<ogi{lg<ogi{l<nz<z 6. (i) -Vslhg<gosr<Ogi{Lg<Ogi{l<(ii) -Vslhg<gosr<Ogi{Lg<Ogi{l< 7. (i) -j{gvl< (ii) -j{gvl< (iii) -j{gvl< (iv) -j{gvl< 8. (i) osu<ugl<(ii) osu<ugl< (iii) osu<ugl< (iv) osu<ugl< 9. (i) skvl< (ii) skvl<(iii) skvlz<z(iv) skvl<(v) skvlz<z 0. (i) sib<skvl< (ii) sib<skvl< (iii) sib<skvl< 86

191 8. Lg<Ogi{uqbz< hz F~x<xi{<MgTg<G Le<Oh uieuqbz< hx<xq nxqukx<g? g{qkuqbzqz< Lg<Ogi{uqbz<we<El<hqiqUOkix<Xuqg<gh<hm<mK/aqh<hiIg<g^<)Hipparchus*we<El< gqovg<g uieuqbz< lx<xl< g{qk uz<zfi<? Lg<Ogi{uqbjz uqiquig<gq nke< uqkqgjth< ohvltu hbe<hmk<kq uie<outqh< ohivm<gtqe<-br<g hijkgjtbl<? fqjzgjtbl< fqi<{bl< osb<kii</ weou -ujvob? Lg<Ogi{uqbzqe< kf<jk we<xjph<hk ohivk<kliekigl</ Lg<Ogi{uqbjzg< Gxqg<Gl< Nr<gqzs< osiz<zie Trigonometry NeK? Lg<Ogi{l< we<x ohivtjmb ÄTrigon}lx<Xl<ntUwe<x ohivtjmb ÄMetra} Ngqb -V gqovg<gs< osix<gtqzqvf<k ohxh<hm<mkigl</ weou Lg<Ogi{uqbz<we<hKyVLg<Ogi{k<kqe<hg<gr<gtqe<ntUgTg<Gl<?Ogi{r<gtqe< ntugtg<gl< -jmob njlf<k okimi<hgjth<hx<xq nxqbl< himh<hgkqbigl</ Lg<Ogi{uqbz<himk<kqjehcg<gk<okimr<Gukx<GLe<?fil<Ogi{r<gt<?nux<xqe< ntugt<ngqbjuhx<xqwx<geounxqf<kjklq{<ml<fqjeuqx<ogit<ouil</ Ogi{r<gTl<nux<xqe<ntUgTl< yv ohikh< Ht<tqbqzqVf<K okimr<gl< -V gkqi<gtiz< yv Ogi{l< njlg<gh<hmgqxk/ yv gkqi<? Ogi{k<kqe< okimg<gg<gkqi )okimg<gh<hg<gl<* weul<? lx<oxivgkqi<?ogi{k<kqe<lcug<gkqi)lcuh<hg<gl<*weul<%xh<hml</ohikh<ht<tq? Ogi{k<kqe< Lje weh<hml</ LjebqzqVf<K okimr<gl< gkqovie<x okimg<gh< hg<g fqjzbqzqvf<klcuh<hg<gfqjzujvspzukiz<ogi{l<njlgqe<xk/ hml<8. hml<8. gkqiqe< Spx<sq gcgiv Lt< Spx<sqbqe< wkqikqjsbqozi )hml< 8. Jh< hiig<gul<* nz<zk gcgiv Lt< Spx<sqbqe<< kqjsbqozi )hml< 8. Jh< hiig<gul<* njlujk nxqbzil</ gkqi<gt< OA Ul< OB Bl< LjxOb? yv Ogi{k<kqe< okimg<gg<jg? LcUg<jgweqz<?Ogi{k<jkg<GxqbQm<cz< AOBweg<Gxqh<Ohil</ 87

192 nu<uh<ohik? gii<csqbe< ktk<kqz< Nkqh<Ht<tqjb LjebigUl<? x-ns<js okimg<gg<gkqvigul< ogi{<m? hml< 8. -z< gi{<hkohiz< Ogi{k<kqje njlh<ohil</ yv Ogi{lieK Olx<%xqb upqbqz< fqjzh<hmk<kh<hce<? ng<ogi{liek kqm<m fqjzbqz< dt<tk we<ohil</ yv Ogi{k<jk ntg<g hijg we<xjpg<gh<hml<nzgqjeh<hbe<hmk<kgqe<oxil</ hijgntu hml<8. yv gkqi<? gcgivlt<spx<sqbqe< wkqi< kqjsbqz< yv LP Spx<sqjb Wx<hMk<Kl< ohipk? nr<g 60 hijggt< )-K 60 o we wpkh<hml<* ntut<t yv Ogi{l< njlukigg< %Xgqe<Oxil</ lx<x Ogi{r<gjt 60 o Ogi{k<jk nch<hjmbigg< ogi{<m ntg<gqe<oxil</ wmk<kg<gim<mig? yv gkqi< Spx<sqjb Wx<hMk<kuqz<jzobeqz<? nk 0 o ntut<t Ogi{l< njlg<gqe<xk we<ohil</ yv gkqi< gcgivlt< Spx<sqbqe< wkqi<kqjsbqz<?lpspx<sqbq<z<¼higl<spx<sqjbwx<hmk<kqeiz<?nk¼ (60 o * 90 o ntut<togi{l<njlg<gqe<xkwe<ohil</yvgkqigcgivlt<spx<sqbqe<kqjsbqz<? LPs<Spx<sqbqz<¼higl<Spx<sqjbWx<hMk<Klieiz<?nK¼ ( 60 o * 90 o ntut<t Ogi{l<njlg<gqe<xKwe<Ohil</weOu?gcgivLt<Spx<sqbqe<wkqi<kqjsbqz<njlBl< Spx<sqgt< lqjg Ogi{r<gjt d{<mig<ggqe<xe weul<? gcgivlt< Spx<sqbqe< kqjsbqz< njlbl< Spx<sqgt< Gjx Ogi{r<gjt d{<mig<ggqe<xe weul< nxqgqe<oxil</ -u<uk<kqbik<kqz< fil<? 0 o zqvf<k90 o ujvnjlbl<ogi{r<gjt lm<molgvkgqe<oxil</ 0 o zqvf<k90 o g<gt<njlbl<ogi{l<gxr<ogi{l<weh<hml</ 90 o ntuqz< njlbl< Ogi{l< osr<ogi{l< weh<hml</80 o ntuqz< njlbl< Ogi{l< Ofi<g<Ogi{l< weh<hml</ -V GXr<Ogi{r<gtqe< %Mkz< 90 o weqz<?nju fqvh<hg<ogi{r<gt<weh<hml</-vlqjgogi{r<gtqe<%mkz<80 o weqz<?njulqjg fqvh<hg<ogi{r<gt<weh<hml</ osr<ogi{lg<ogi{ll<?hqkigv^<okx<xll< yv Lg<Ogi{k<kqz< yv Ogi{k<kqe< ntu 90 o weqz<? nl< Lg<Ogi{l< yv osr<ogi{ Lg<Ogi{l< weh<hml</ hml< 8.4 z< ABC yv osr<ogi{ Lg<Ogi{l<? -kqz< ABC we<x Ogi{k<kqe< ntu 90 NGl</ hg<gl< AC gi<{l<weh<hml</-kou hml<8.4 88

193 lqgh<ohiqb hg<gl<? OlZl< -K osr<ogi{k<kqx<g wkqov njlf<kt<t hg<gligl</ hqkigv^<we<xgqovg<gg{qkuz<zfi<?gi<{k<kqe<lqknjlbl<skvk<kqe<hvh<htu? lx<x -V hg<gr<gtqe< lqkjlbl< skvr<gtqe< hvh<htugtqe< %MkZg<Gs< sll< weg< g{<mxqf<kii</ nkiuk? hml< 8.4-z<? AC AB + BC NGl</-KOuhqkigv^< Okx<xl<weh<hMl</ 8. Lg<Ogi{uqbz<uqgqkr<gt< WkiuK yv GXr<Ogi{l< AOB J wmk<kg<ogit<ouil</ -jk gqovg<g wpk<kie θ Nz< Gxqh<Ohil</ P we<el< Ht<tq gkqi< OB bqe< lqk njlf<k Ht<tq we<g/ gkqi< OA Ug<Gs<osr<Gk<kigP bqzqvf<kogim<mk<k{<m PQ ujvg/ hqxg Lg<Ogi{l< OQP yv osr<ogi{ Lg<Ogi{l<A Lje Q uqz< osr<ogi{l< njlf<kt<tk/ OQP -z< hml< 8.5 hg<gl<op gi<{l<ngl</hg<gl< PQ Ogi{l< θ uqe< wkqi<hg<gligl</ hg<gl< OQ Ogi{l< θ uqe< nmk<kt<t hg<gligl</ OP, PQ, OQ Ngqb hg<gr<gtqe< fqtr<gjt LjxOb OP, PQ, OQ we<x Gxqh<hqMgqe<Oxil</-f<fQtr<gjtg<ogi{<Mhqe<uVl<NXLg<Ogi{uqbz<uqgqkr<gjt ujvbxg<gqe<oxil</ wkqihg< gk< kqe< fqtl< PQ sine θ, gi< {k< kqe< fqtl< OP nmk< Kt< thg< gk< kqe< fqtl< OQ cosine θ, gi< {k< kqe< fqtl< OP wkqi< hg< gk< kqe< fqtl< PQ tangent θ, nmk< Kt< thg< gk< kqe< fqtl< OQ gi< {k< kqe< fqtl< OP cosecant θ, wkqi< hg< gk< kqe< fqtl< PQ gi< {k< kqe< fqtl< OP secant θ, nmk< Kt< thg< gk< kqe< fqtl< OQ nmk< Kt< thg< gk< kqe< fqtl< OQ cotangent θ. wkqi< hg< gk< kqe< fqtl< PQ Olx<gi[l<uqgqkr<gjts<?SVg<gligLjxOb?sinθ, cosθ, tanθ, cosecθ, secθ, cotθ wewpkouil</olx<gi[l<uqgqkr<gtqe<ntugt<?ogi{l<θ ju lm<mol siif<kjubigl<a osr<ogi{ Lg<Ogi{l< OQP -e< ntjus< sii<f<kkz<z/ -kje nxqb? P we<el< OuoxiV Ht<tq gkqi< OB bqe< lqk wmk<kg<ogit<g; OlZl< P Q J OA g<gosr<gk<kig ujvg (hml< 8.5 Jh<hiIg<gUl<). Lg<Ogi{l< OQP l< Lg<Ogi{l< OQ P l<ucouik<klg<ogi{r<gt<we<hkoktquigl</-kqzqvf<kfil<? PQ P Q OQ OQ OP OP 89

194 wenxqouil</-kqzqvf<kfil<ohxl<uqgqkr<gt< PQ P Q OQ OQ PQ P Q,, OP OP OP OP OQ OQ OP OP OP OP OQ OQ nz<zk,, PQ P Q OQ OQ PQ P Q wenxqbzil</weouolx<%xqbnxuqgqkr<gtl<ht<tq P, gkqi< OB bqe<lqkwf<k fqjzbqz< njlf<kqvf<kizl< lixik we nxqbzil</ Olx<gi[l< uqgqkr<gtqzqvf<k filxquk? PQ OP sin θ cosecθ, cosec θ, sin θ. OP PQ sin θ cos ecθ OQ OP cosθ secθ, sec θ, cos θ. OP OQ cosθ secθ PQ OQ tan θ cot θ. cot θ, tan θ. OQ PQ tanθ cot θ PQ sin θ PQ OP PQ OlZl< fil< gueqh<hk? OP tan θ. kjzgqpqgjt wmg<g? cos θ OQ OP OQ OQ OP cosθ sin θ cosθ fil<ohxuk cot θ. weou? tan θ, cot θ NGl</ sin θ tan θ cosθ sin θ Gxqh<H: θ yvgxr<ogi{ligul<?θ uqe<lg<ogi{uqbz<nxuqgqkr<gtqz<ye<xqe< lkqh<h lm<mol okiqf<k fqjzbqz<? OlOz %xqb $k<kqvr<gjth< hbe<hmk<kq lx<x Lg<Ogi{uqbz< uqgqkr<gjtg< gi{ -bzl</ fl< himh< hgkqbqz<? GXr<Ogi{r<gjt lm<molgvkgqe<oxil</ wmk<kg<gim<m : hml< 8.6 -z< kvh<hm<mt<t osr<ogi{ Lg<Ogi{k<kqzqVf<K θ uqe< NXLg<Ogi{uqbz<uqgqkr<gjtg<gi{<g/ kqi<u;hmk<kqz<ogi{l< θ uqx<g wkqi<hg<gfqtl< 6; nmk<kt<thg<gfqtl< 8. hqkigv^<okx<xh<hc? (gi<{k<kqe<fqtl<) gi<{k<kqe<fqtl< weou? wkqi< hg< gfqtl< 6 sin θ, gi< {k< kqe< fqtl< 0 5 nmk< Kt< thg< gfqtl< 8 4 cos θ, gi< {k< kqe< fqtl< 0 5 wkqi< hg< gfqtl< 6 tan θ, nmk< Kt< thg< gfqtl< 8 4 hml<8.6 gi< {k< kqe< fqtl< 0 5 cosec θ, wkqi< hg< gfqtl< 6 gi< {k< kqe< fqtl< 0 5 sec θ, nmk< Kt< thg< gfqtl< 8 4 nmk< Kt< thg< gfqtl< 8 4 cot θ. wkqihg< gfqtl< 6 90

195 wmk<kg<gim<m: ABC bqz< m B 90, AB 8 os/lq/, AC 7 os/lq/weqz<?ogi{l< A lx<xl< Ogi{l<C gtqe<njek<klg<ogi{uqbz<uqgqkr<gjtbl<gi{<g/ kqi<u; hmk<kqz< A m BAC lx<xl< C m BCA (hml< 8.7 Jh< hiig<gul<). hqkigv^<okx<xh<hc, AC AB + BC BC AC AB BC 5 5. weou? BC 5 AB 8 BC 5 sin A, cos A, tan A, AC 7 AC 7 AB cot A, sec A, cos ec A, tan A 5 cos A 8 sin A 5 AB 8 BC 5 AB 8 sin C, cos C, tan C, AC 7 AC 7 BC cot C, sec C, cos ec C, tan C 8 cos C 5 sin C 8 hml< 8.7 Gxqh<H: Olx<g{<m g{g<gqz<? sin C cos A, cos C sin A, tan C cot A, we Ofig<Ggqe<Oxil</-u<uixqVh<hkx<Gg<giv{l<ABl<CBl<fqvh<Hg<Ogi{r<gt<. 7 wmk<kg<gim<m: sin θ weqz<?lx<xlg<ogi{uqbz<uqgqkr<gjtg<gi{<g/ 5 wkqih< hg< gfqtl< 7 kqi<u; sin θ we<hkiz<? m ABC 90, m ACB θ? AB 7, gi{k< kqe< fqtl< 5 AC 5 we<xt<tuix yv osr<ogi{ Lg<Ogi{l< ABC Jg< gvkul< (hml< 8.8Jh< hiig<gul<).weou?hqkigv^<okx<xh<hc? AC AB + BC BC nz<zk BC. BC BC BC 4 weou? cos θ, AC 5 AB 7 5 tan θ, secθ, BC 4 cosθ 4 5 cosecθ, 4 cot θ. hml< 8.8 sin θ 7 tanθ 7 wmk<kg<gim<m4: cosec A weqz<? (i) sin A + cos A (ii) tan A + cot A Ngqbux<xqe< lkqh<hgjtg<gi{<g/ kqi<u; cosec A gi< {k< kqe< fqtl< wkqi< hg< gfqtl<. weou?m QRP A, gi{k<kqe<fqtl< PR, wkqih<hg<gk<kqe< fqtl< PQ we njlblix yvosr<ogi{lg<ogi{l< PQR Jg<gVKOuil< (hml< 8.9 Jh<hiIg<gUl<). hml<8.9 9

196 hqkigv^<okx<xh<hc, PR PQ + QR. ( ) () + QR. + QR. QR. QR. weou? (i) sin A + cos A sin A tan A PQ PR PQ QR QR, cos A, PR QR, cot A. PQ +, (ii) tan A + cot A +. Gxqh<H; WOkEl< yv sle<him<jm fq'hqg<g Ou{<Ml< weqz<? gqp<g<gi[l< upqgtqz< ye<xqjeh<hbe<hmk<kkz<ou{<ml</ upq; sle<him<ce<-mkhg<gg<ogijujbnz<zkuzkhg<gg<ogijujbsvg<gl< osb<klx<xhg<gk<kqz<dt<togijujbh<ohxkz<ou{<ml</ upq; sle<him<ce<-mkhg<gk<kqz<dt<togijujbsvg<gl<osb<kyvucul<() ogi{i<ouil</nmk<kkig?uzkhg<gk<kqz<dt<togijujbsvg<gl<osb<kyv ucul<()ogi{i<ouil</hqe<ei<ucul<()ucul<()weg<gim<mouil</ tan A+ tan B sin Acos B + cos Asin B wmk<kg<gim<m5: wefq'hq/ tan A tan B cos Acos B sin Asin B kqi<u; sin A sin B sin Acos B + cos Asin B + tan A+ tan B -mkhg<gogiju cos A cos B cos Acos B tan Atan B sin A sin B cos Acos B sin Asin B cos A cos B cos Acos B (sin Acos B + cos Asin B) cos Acos B cos Acos B cos Acos B sin Asin B sin Acos B + cos Asin B uzkhg<gogiju. cos Acos B sin Asin B wmk<kg<gim<m6: tan A+ cot B tan A wefq'hqg<gul</ cot A + tan B tan B tan A tan Atan B + + tan A+ cot B kqi<u; -mkhg<gogiju tan B tan B cot A + tan B tan B + tan Atan B + tan A tan A (tana tan B + ) tan A tan A uzkhg<gogiju. tan B ( + tan A tan B) tan B 9

197 + tan θ sin θ + tan θ wmk<kg<gim<m7: wefq'hqg<gul</ + cot θ + cosθ + tan θ + tanθ ( + tanθ) + tanθ tanθ kqi<u; -mkhg<gogiju + cot θ + tan θ + + tanθ tan θ tan θ tan θ () sin θ sinθ + tanθ sin θ + uzkhg<gogiju cosθ (sin θ cosθ + sin θ) + cosθ + cosθ cosθ ( + cosθ) sin θ (cosθ + ) sin θ tan θ. () cosθ (+ cosθ) cosθ () lx<xl< ()e<hc-mkhg<gogiju uzkhg<gogiju. sqzgxqh<hqm<mogi{r<gtqe<lg<ogi{uqbz<uqgqkr<gt< 0, 45 lx<xl< 60 < ntut<t Ogi{r<gtqe< Lg<Ogi{uqbz< uqgqkr<gtqe< lkqh<hgjtg<gi{<ohil</ (i) 0 lx<xl< 60 Ogi{r<gtqe<Lg<Ogi{uqbz<uqgqkr<gt< hg<g fqtl< nzggt< ogi{<m slhg<g Lg<Ogi{l< ABC jbwmk<kg<ogit<ouil< (hml< 8.0Jh< hii<g<gul<). hg<gl< ABg<G Lje C bqzqvf<kosr<gk<kg<ogimcdujvg. Ht<tqD, hg<gl< AB e<jlbh<ht<tqbigl</-h<ohipk AD, AC, m DAC 60, m ACD 0. ADC yv osr<ogi{ Lg<Ogi{l< (hml< 8.Jh< hii<g<gul<).hqkigv^<okx<xh<hc, AC AD + DC n.k + DC. DC n.k DC. hml<8.0 osr<ogi{lg<ogi{l<adc bqzqvf<k? sin 60 DC AC DA cos 60 AC DC tan 60 DA DA cot 60 DC AC sec 60 DA cosec 60 AC DC AD sin 0 AC DC cos 0 AC AD tan 0 DC DC cot 0 AD AC sec 0 DC AC cosec 0 AD hml<8. 9

198 (ii) 45 Ogi{k<kqe<Lg<Ogi{uqbz<uqgqkr<gt< ABC YI-Vslhg<gosr<Ogi{Lg<Ogi{l<we<g/-r<Gm B 90, AB BC (hml< 8.Jh<hiIg<gUl<). -r<gac, m CAB 45?m BCA 45 wenxqf<kogit<g/ Lg<Ogi{l<ABC bqzqvf<kfil<ohxuk? AB sin 45 AC AB cos 45 AC BC tan 45 AB AB cot 45 BC AC sec 45 AB AC cosec 45 BC hml<8. (iii) 0, 90 Ogi{r<gtqe<Lg<Ogi{uqbz<uqgqkr<gt< -g< Ogi{r<gtqe< Lg<Ogi{uqbz< uqgqkr<gjth< ohxukx<g giicsqbe< ns<s ktk<kqz< Nkqh< Ht<tqjb jlbligul<? Nv ntu r nzgl< ogi{<m yv um<mk<kqjeg< gvkg/ giicsqbe< ktk<kqe< Lkx< gix<hgkqbqz< njlf<k -u<um<mk<kqe<uqz<abbqe<lqkpwe<hkwokel< yvht<tqwe<g)hml<8.jh<hii<g<gul<*/ x ns<sqx<g PM we<x Gk<Kg<OgiM ujvg/ P we<x Ht<tqbqe< ns<s K~vr<gt< x, y we<g/ hqe<ei< OM x, PM yngl</osr<ogi{lg<ogi{l< OMP -z<?hqkigv^<okx<xh<hc? x + y r weh< ohxgqoxil</ r x + y hml<8.. MOP θ we<g/θ yvgxr<ogi{ligl</ sin[θ r y, cos θ r x. uqz<abbqe<lqkouu<ouxfqjzgtqz<p Jg<ogi{<miz<?fil<gueqh<hK?gkqi<OP NeKfqjzOA uqzqvf<kfqjzob g<g Spx<sqbjmBl<ohiPK?Ogi{l<θ NeK0 ntuqzqvf<k 90 ntuqx<g nkqgiqg<gqe<xka fqtl< x NeK r zqvf<k 0 uqx<g Gjxgqe<xKAy NeK0 uqzqvf<kr x<gnkqgiqg<gqe<xk/weou?θ NeK0 zqvf<k 90 g<gnkqgiqg<gl<ohipk? r x e<ntuzqvf<k0ug<ggjxujkbl<? r y e<ntu 0zqVf<K x<g nkqgliujkbl< nxqgqe<oxil</ nkiuk θ uqe< ntu 0 o zqvf<k 90 o g<gnkqgligl<ohipk?cos θ uqe<ntuzqvf<k0uqx<ggjxujkbl<?sin θ uqe< ntu 0 zqvf<k x<g nkqgliujkbl<? nxqgq<e<oxil</ OlZl<? yu<ouiv GXr<Ogi{l< θ uqx<g x, y l<? Lg<Ogi{uqbz< uqgqkr<gtl< keqk<kjugtig njlbl< we nxqgqe<oxil</ OP NeK OA uqe< fqjzjb njmbl<ohipk? θ 0, y 0 x r, y 0 NGl</ weou? sin 0 o o x r 0, cos 0. OP NeK OB bqe< r r r r fqjzjbnjmbl<ohipk?θ 90,x 0, y r NGl</weOu? o y r o x 0 sin 90, cos90 0. r r r r 94

199 -h<ohipk?fil<ohxuk? o sin 0 tan 0 cos 0 o cos 0 cot 0 sin 0 o sec 0 cos 0 cosec 0 tan 90 o o o o o o o sin 0 0 0,, ujvbxg<g-bzikk? 0 ; o sin 90 cos 90 o o 0 0 o o cos 90 cot 90 o sin 90 o sec 90 o cos 90 o cosec 90 o sin 90 0, ujvbxg<g-bzikk, ujvbxg<g-bzikk, 0 0,, ujvbxg<g-bzikk,. 0, 0, 45, 60, 90 e< Lg<Ogi{uqbz< uqgqkr<gjt gqp<g<g{<muix nm<muj{h< hmk<kzil</ θ sin θ 0 cos θ tan θ 0 cot θ sec θ cosec θ ujvbxg<g -bzikk ujvbxg<g -bzikk 0 ujvbxg<g -bzikk 0 ujvbxg<g -bzikk GxqbQM; (sin θ) we<hkje sin θ we SVg<glig wpkgqe<oxil</ -jkh<ohie<ox lx<xhcgtg<gl< wpkgqe<oxil</ wmk<kg<gim<mig? (tanθ ) tan θ. cos 4 θ we<hk (cos θ ) 4 Jg<Gxqh<hkiGl</sin θ Jsinθ wewpkukkuxigl</ 95

200 wmk<kg<gim<m9: lkqh<hgi{<g; cos 0 tan 60 sec 45 sin 60. kqi<u; cos 0, tan 60, sec 45, sin 60. cos 0 tan 60 sec 45 sin 60 ( ) ( ) wmk<kg<gim<m:; tan A o sin 60 + cos60 o weqz<?gxr<ogi{l<ajbg<gi{<g/ kqi<u; sin 60 tan A + Neiz< tan 0, cos A 0. wmk<kg<gim<m0: sin (A + B), cos B, weqz< A, B gi{<g/ kqi<u; sin (A + B) we<hkiz<?sin (A + B). Neiz<? sin 60. weou A + B 60. cos B, we<hkiz< cos B Neiz< cos 45 weou B 45.. (), ()Jk<kQi<g<g? A 5.. () () 96

201 hbqx<sq 8. g{g<ggt< Lkz<4 -ux<xqzt<tosr<ogi{lg<ogi{r<gtqz<gxqh<hqm<mt<t Lg<Ogi{uqbz<uqgqkr<gjtg<g{<Mhqc/.. hml< 8.4 sin B, cos C, tan B hml<8.5 sec X, cot Z, cosec Z. 4. hml< 8.6 cos Q, tan R, cot Q hml< 8.7 tan M, sec N, cosec N g{g<ggt< 5 -zqvf<k 0 ujv ogimg<gh<hm<m uqgqkl< Ohig θ uqe< lx<x Lg<Ogi{uqbz<uqgqkr<gjtg<gi{<g/ 5. cos θ 6. sin θ 5 8. cosec θ 0 9. cot θ 7 7. sec θ 0. tan θ 5 5 sec A+ tan A. cos A weqz<? Jg<g{<Mhqcg<gUl</ 7 sec A tan A cos ecθ. sin θ weqz<? Jg<g{<Mhqcg<gUl</ 5 cot θ cosθ 97

202 sin θ. cosec θ weqz<? cot θ + Jg<g{<Mhqcg<gUl</ + cosθ 4. cot θ cos θ weqz<? weg<gi{<g/ sin θ 5 sin θ + cosθ 5. cot θ 4 weqz<? secθ + cos ecθ lkqh<jhg<g{<mhqcg<gul</ 6. lkqh<hgi{<g; (i) cosec 45 cot 0 + sin 60 sec 0 (ii) cos 0 sin 0 cos 60 (iii) 8 sin 60 cos 60 (iv) o tan 45 o o tan 0 + tan hqe<uvueux<jxsiqhii<g<gul<; (i) sin 0 + cos 0 (ii) sec 60 tan 60 (iii) + cot 0 cosec 0 8. sin (A+B) sin (A B) weqz<? A, B gjtg<g{<mhqcg<gul</ 8. Lg<Ogi{uqbz<Lx<oxiVjlgt< nch<hjmbie &e<x Lg<Ogi{uqbz< Lx<oxiVjlgjt yv GXr<Ogi{l< θ uqx<gohxouil</nbqel<?wz<ziogi{r<gtg<gl<-juohivk<klxl</ θ e<ljejbnkqh<ht<tqwe<g/θ e<okimg<gg<jgjb x ns<sigogit<ouil</ P (x, y) we<hkθ e<lcug<jgbqe<lqkjlf<kwokel<yvht<tqwe<g(hml< 8.8 Jh< hii<g<gul<). PbqzqVf<K xns<sg<g? Gk<Kg<OgiM PQ ujvg/ hqe<ei< OQ x, PQ y. OP r we<g/hqkigv^<okx<xh<hc? osr<ogi{lg<ogi{l<oqp -z<? x + y r NGl</ -Vhg<gLl< r Nz<uGg<g? x + y r x y hml< 8.8 n.k + r r r r x y n.k +. r r Neiz<? sin θ r y, cos θ r x. (cos θ ) + (sin θ ). nkiuk? cos θ + sin θ. () 98

203 () e<-vhg<gll< cos θ Nz<uGg<g? cos θ + sin cos θ θ cos θ sin θ cos cos + θ θ n.k cos cos θ θ sin + cos θ θ cos n.k +(tan θ ) (sec θ ) θ nkiuk? + tan θ sec θ. () () e<-vhg<gll< sin θ Nz<uGg<g? cos θ + sin θ cos θ sin θ n.k + (cosecθ) sin θ sin θ sin θ sin θ sin θ n.k cot θ + cosec θ nkiuk? + cot θ cosec θ. () -f<k &e<x Lx<oxiVjlgt< (), () lx<xl< () Ngqbju hqkigv^< Okx<xk<jk nch<hjmbigg< ogi{<mjubigl</ -ux<xqzqvf<k OlZl< sqz Lx<oxiVjlgjt nxqf<kogit<ouil</ () Jh<hbe<hMk<kq (i) sin θ (sin θ + cos θ ) cos θ cos θ (ii) cos θ (cos θ + sin θ ) sin θ sin θ wenxqbzil</ () Jg<ogi{<M (i) tan θ ( + tan θ ) sec θ (ii) sec θ tan θ ( + tan θ ) tan θ wenxqbzil</ () Jg<ogi{<M(i) cot θ ( + cot θ ) cosec θ (ii) cosec θ cot θ ( + cot θ ) cot θ wenxqbzil</ Olx<gi[l<Lx<oxiVjlgjth<hqe<uVliXnm<muj{h<hMk<kzil</ sin θ + cos θ + tan θ sec θ + cot θ cosec θ sin θ cos θ tan θ sec θ cot θ cosec θ cos θ sin θ sec θ tan θ cosec θ cot θ OlZl<? -f<k Lx<oxiVjlgjt -mh<hg<gk<kqzqvf<k uzh<hg<gk<kqx<gl<? uzh<hg<gk<kq zqvf<k-mh<hg<gk<kqx<gl<hbe<hmk<kouil</nkiuk?wmk<kg<gim<mig? sec θ tan θ we<xl< sec θ tan θ weul< hbe<hmk<kouil</ -mkhg<g Ogijujb-eq-/h/Ogiwe<Xl<?uzKhg<gOgijujbu/h/Ogiwe<Xl<Gxqh<Ohil</ wmk<kg<gim<m : fq'hqg<g; sin 4 θ + cos 4 θ sin θ cos θ. kqi<u: -/h/ogi sin 4 θ + cos 4 θ (sin θ ) + (cos θ ) [sin θ + cos θ ] (sin θ )(cos θ ) ( a + b (a + b) ab) () sin θ cos θ sin θ cos θ u/h/ogi/ 99

204 cosθ wmk<kg<gim<m : fq'hqg<g; sec θ tan θ. + sin θ cosθ cosθ sin θ kqi<u: -/h/ogi + sin θ + sin θ sin θ cosθ ( sin θ) cosθ ( sin θ) sin θ cos θ sin θ sin θ sec θ tan θ u/h/ogi. cos θ cosθ cosθ + cos A wmk<kg<gim<m : fq'hqg<g; (cos ec A+ cot A). cos A + cos A + cos A kqi<u: -/h/ogi cos A + cos A ( + cos A) ( + cos A) + cos A cos A sin A sin A (cosec A + cot A) u/h/ogi. OuXupqbig? cos A + sin A sin A u/h/ogi (cosec A + cot A) cos A + cos A + sin sin A A sin A ( + cos A) (+ cos A) (+ cos A) sin A cos A (+ cos A)( cos A) + cos cos wmk<kg<gim<m 4: fq'hqg<g; sin 4 θ cos 4 θ sin θ cos θ. kqi<u: -/h/ogi sin 4 θ cos 4 θ (sin θ ) (cos θ ) (sin θ + cos θ ) (sin θ cos θ ) () (sin θ cos θ ) sin θ cos θ u/h/ogi. wmk<kg<gim<m 5: fq'hqg<g; sec A tan A sec A + tan A sec A tan A kqi<u: u/h/ogi sec A + tan A sec A+ tan A sec A tan A sec A tan A sec A tan A sec A tan A sec A tan A -/h/ogi/ wmk<kg<gim<m 6: fq'hqg<g; (sec θ + cosθ ) (secθ cosθ ) tan θ + sin θ. kqi<u: -/h/ogi (sec θ + cos θ ) (sec θ cos θ ) sec θ cos θ ( + tan θ ) cos θ tan θ + ( cos θ ) tan θ + sin θ u/h/ogi. A A -/h/ogi/ 00

205 wmk<kg<gim<m7: + cosec θ wefq'hqg<gul</ + cosθ cosθ ( cosθ) + (+ cosθ) kqi<u: -/h/ogi + + cosθ cosθ (+ cosθ)( cosθ) cosθ + + cosθ cos θ sin θ cosec θ u/h/ogi. wmk<kg<gim<m 8: fq'hq;sin A sin B + cos A cos B + sin A cos B + cos A sin B. kqi<u: -/h/ogi (sin A sin B + sin A cos B) + (cos A cos B + cos A sin B) sin A (sin B + cos B) + cos A (cos B + sin B) sin A() + cos A () sin A + cos A u/h/ogi/ wmk<kg<gim<m 9: m tan A + sin A, n tan A sin Aweqz<? m n 4 fq'hqg<gul</ kqi<u: -/h/ogi m n (tan A + sin A) (tan A sin A) tan A + sin A + tan A sin A (tan A + sin A tan A sin A) 4 tan A sin A u/h/ogi 4 mn 4 (tan A+ sin A)(tan A sin A) mn we 4 sin tan A sin A 4 A sin A cos A 4 sin A sin Acos A sin A( cos A) 4 cos A cos A 4 sin A tan A 4 sin A tan A/ () (), () -ux<xqe<hc?-/h/ogi u/h/ogi/ wmk<kg<gim<m 0: cos 6 θ + sin 6 θ cos θ sin θ wefq'hqg<gul</ kqi<u : -/h/ogi cos 6 θ + sin 6 θ (cos θ ) + (sin θ ) (cos θ + sin θ ) (cos 4 θ cos θ sin θ + sin 4 θ ) () (cos 4 θ + sin 4 θ cos θ sin θ ) [(cos θ ) + (sin θ ) ] cos θ sin θ [(cos θ + sin θ ) cos θ sin θ ] cos θ sin θ () cos θ sin θ cos θ sin θ u/h/ogi. wmk<kg<gim<m : fq'hqg<g; + sinθ cosθ sinθ + cosθ kqi<u: -/h/ogi sin θ + cos θ + sin θ cosθ sin θ + cos (sin θ + cosθ) sinθ + cosθ u/h/ogi/ () θ 0

206 hbqx<sq 8.. fq'hqg<gul<; sec A sin Asec A.. fq'hqg<gul<; (sin A + cos A) + (sin A cos A). cot θ cosec θ. SVg<Gg;. sec θ tan θ sec A+ tan A + sin A 4. fq'hqg<gul<;. sec A tan A sin A 5. fq'hqg<gul<; + sec θ. + sin θ sin θ 6. x r sin A sin B, y r sin A cos B, z r cos A weqz<?x + y + z e<lkqh<hgi{<g/ 7. tan A + cot A cosec A sec A weg<gi{<hqg<gul</ tan A 8. fq'hqg<gul<; cos A. + tan A 9. fq'hqg<gul<; cosec θ + cot θ. cosec θ cot θ 0. (tan A + cot A) sec A+ cosec A wefq'hqg<gul</ cos A sin A. + sin A+ cos A wefq'hqg<gul</ tan A cot A tan A+ sec A + sin A. fq'hqg<gul<;. tan A sec A+ cos A. fq'hqg<gul<; (tan A tan B) + ( + tan A tan B) sec A sec B. tan θ cot θ 4. fq'hqg<gul<; + sec θ cosec θ +. cot θ tan θ + sin θ cosθ cosθ 5. fq'hqg<gul<; sin θ cosθ cosθ 6. (sin θ + cosec θ ) + (cos θ + sec θ ) 7 + tan θ + cot θ wefq'hqg<gul</ cos θ + sin θ cos θ sin θ 7. + wefq'hqg<gul</ cosθ + sin θ cosθ sin θ 4 4 cos θ + sin θ 8. fq'hqg<gul<; tan θ. 4 4 sin θ + cos θ 8. fqvh<hg<ogi{r<gtg<gielg<ogi{uqbz<uqgqkr<gt< Wx<geOu osr<ogi{ Lg<Ogi{k<kqe< fqvh<h Ogi{r<gjth< hx<xq fil< nxqf<kt<otil</ osr<ogi{lg<ogi{l<oqp -z< (hml<8.9 Jh< hii<g<gul<), Q yvosr<ogi{l</-r<g m QOP + m OPQ hml< 8.9

207 weou? QOP, OPQ NgqbOgi{r<gt<fqvh<Hg<Ogi{r<gtiGl</m QOP θ we<g/ hqe<hm OPQ 90 θ NGl</Lg<Ogi{uqbz<uqgqkr<gtqe<ujvbjxjbh<hqe<hx<xq Ogi{l< θ uqx<ghqe<uvueux<jxwx<geounxqf<kt<otil</ PQ OQ PQ sin θ, cosθ, tan θ, OP OP OQ.. () OP OP OQ cosec θ, secθ, cot θ PQ OQ PQ -h<ohipk? 90 θ g<glg<ogi{uqbz<uqgqkr<gt<nxqblx<hmouil</hmk<kqzqvf<k? OQ o PQ o OQ sin (90 θ ), cos(90 θ ), tan(90 θ), OP OP PQ..() o OP o OP o PQ cosec(90 θ ), sec(90 θ), cot (90 θ) OQ PQ OQ (), () yh<hqmgqp<g<g{<mux<jxnxqbzil</ PQ o OQ sin θ cos (90 θ) cos θ sin (90 θ ) OP OP PQ OP tan θ cot (90 θ ) cosec θ sec (90 θ ) OQ PQ OP OQ sec θ cosec (90 θ ) cot θ tan (90 θ ). OQ PQ -kjeyinm<muj{bignjlg<gzil</ sin (90 θ ) cosθ cos (90 θ ) sin θ tan (90 θ ) cot θ o tan 65 wmk<kg<gim<m : lkqh<hgi{<g;. o cot 5 cosec (90 θ ) sec θ sec (90 θ ) cosec θ cot (90 θ ) tan θ o o tan 65 cot 5 kqi<u : tan 65 tan (90 5 ) cot 5. o o cot 5 cot 5. wmk<kg<gim<m : lkqh<hgi{<g; sin 0 tan 60 sec 70 kqi<u : sec 70 sec(90 0 ) cosec 0 o sin 0 sin 0 tan 60 sec 70 sin 0 tan 60 cosec 0 sin 0 o sin 0. wmk<kg<gim<m 4: cosec x sec 5 weqz<?x e<lkqh<hgi{<g/ kqi<u: cosec x sec(90 x ), sec(90 x ) sec x 5. x Gxqh<H: OlOzdt<tg{g<gqz<?xNeK?sle<him<ce<-Vhg<gLl<secjbfQg<gl< osb<ukiz< gqjmg<guqz<jza Neiz<? GXr<Ogi{k<kqx<gie Lg<Ogi{uqbz< uqgqkr<gtqe<keqk<ke<jlh<h{<hqjeh<hbe<hmk<kqgi{h<hm<mkwe<hjknxqg/ 0

208 o sin 6. lkqh<hgi{<g; (i) o cos54 (ii) hbqx<sq 8. o tan 5 o cot 55 (iii) sin θ sec (90 θ ) o o o o o tan sin 4 sec5. SVg<Gg; (i) o o o cot cos 48 cos ec9. (ii) sin sec o cos67 cosec 4 o. x jbg<gi{<g; (i) sin 60 cos x (ii) cosec x cos 54 (iii) sec x cosec 5 (iv) tan x tan 5. 5, 5 5, 4, tan θ 5 5, tan, cosθ. 5,, 5 uqjmgt< hbqx<sq 8.. 8, sin θ, cos ecθ, secθ, cot θ cos θ θ, cos ec θ, secθ, cot θ sin θ, tan θ, cosecθ, cot θ sin θ, cosθ, tan θ, secθ, cot θ sin θ, cosθ, tan θ 7, cosecθ, secθ sin θ, cosθ, cosecθ, secθ, cot θ (i) 7 (ii) 0 (iii) (iv) 4 8. A 60, B 0 hbqx<sq 8., ,,. 6. r hbqx<sq 8.. (i) (ii) (iii). (i) (ii) 7. (i) 0 (ii) 6 (iii) 65 (iv) 55 04

209 9. osb<ljxucuqbz< nxqljxucuqbzqz<uqkqgjtbl<?kig<gljxg<giv{r<gjtbl<hbe<hmk<kq Lg<Ogi{l<Ohie<xucuqbz<dVur<gtqe<h{<Hgjtg<%Xl<Okx<xr<gjtfq'h{l< osb<gqoxil</ -g<g{qkh<hqiquqz< uvl< ucu dvur<gjt ntugtg<gs< siqbig ujvukqz<jz/ likqiqh< hmr<gjt ujvf<k njkk< Okx<xr<gtqe< kvg<g Ljx fq'h{r<gtg<gk< Kj{bigg< ogit<gqe<<<oxil</ wf<k uqklie ucuqbz< gvuqgtl< nxqljx ucuqbjzh< hbqz<ukx<gk< OkjubqVg<giK/ wmk<kg<gim<mig? nxqljx ucuqbzqz< PQ we<x OfIg<Ogim<Mk< K{<cje? AB we<x OfIg<Ogim<Mk< K{<ce< jlbg<gk<kg<ogimig-vg<gqxkwe<hjkk<okiqbh<hmk<k?kz<zqblig PQ ju AB g<gs< osr<gk<kig fil< ujvukqz<jz/ Neiz<? AB g<gs< osr<gk<kig? PQ ju likqiqbigujvgqoxil</nh<hch<hm<mucuqbz<dvur<gjtk<kz<zqbligujvbnkqg Hk<kq %IjlBl<? kqxjlbl< Okju/ ucuqbz< dvur<gjt ujvb? hz ucuqbz< gvuqgt<dt<te/ucuqbz<gvuqgjtg<ogi{<mucuqbz<ujvhmr<gjtujvuok osb<ljx ucuqbzigl</ -h<himh<hqiquqz<? nxqljx ucuqbzqz< g{<mt<tkohiz<? nch<hjmg< ogit<jggt<? Okx<xr<gt<? kig<g Ljx fq'h{r<gt< WKl< gqjmbik/ nkx<gh< hkqzig? nxqljx ucuqbz< upqbig fq'hqg<gh<hm<m njlh<h Ljxgjtg< ogi{<m ucuqbz< dvur<gjt ujvuk lm<mol -h<hqiquqe< Gxqg<OgitiGl</ ntu Gxqg<gh<hmikOfIuqtql<H(straight edge) lx<xl< -V guvibr<gt< -ux<jx lm<mol ogi{<m ucuqbz< dvur<gjt ujvb Ou{<Mole<hK? ucuqbz< dvur<gjt dvuig<gl< g{g<ggtqz< suizig njlbl</ ucug{qk dvur<gjt dvuig<gl< g{g<ggjt Nvib<f<k ujgbqz< lqg dbif<k d{<jlgtl<? Okx<xr<gTl< dvuig<gh<hm<mt<te/ wmk<kg<gim<mig? hqkigv^< Okx<xl< nu<uiox dvuiek/ Lf<jkbuGh<Hgtqz<?fil<gQp<g<g{<mux<xqx<gieujvLjxgjtg<gx<Xt<Otil<; (i) yvofig<ogim<mk<k{<ce<jlbg<gk<kg<ogimujvkz</ (ii) yvogi{k<kqe<-vsloum<cujvkz</ (iii) yvslhg<glg<ogi{l<ujvkz</ (iv) yvofig<ogim<mk<k{<jmkvh<hm<muqgqkk<kqz<hqiqk<kz</ (v) yvosr<ogi{lg<ogi{l<ujvkz</ (vi) yv-j{gvl<ujvkz</ (vii) yvsib<skvl<ujvkz</ (viii) yvjlbum<mr<gt<ujvkz</ (ix) yvsiqugl<ujvkz</ (x) hg<gntugt<kvh<hce<?lg<ogi{k<jkujvkz</ 05

210 -f<knk<kqbibk<kqz<?gqp<g<g{<mljxgjtg<gx<ohil</ (i) yvlg<ogi{k<kqe<fmg<ogim<mjlbl<?osr<ogim<mjlbl<?sx<xum<mjlbl<? dt<um<mjlbl<ngqbux<jxg<gi{z</ (ii) %m<mlx<xl<ohvg<gz<svisiqgjtucuqbz<ujvljxupqbigh<ohxkz</ (iii) -Vw{<gtqe<uqgqkslsvisiqjbosb<Ljxucuqbz<&zl<gi{z</ 9. yvlg<ogi{k<kqz<yvht<tqupqg<ogimgt< nxqljxucuqbzq<z<?gqp<g<g{<mux<jxk<okiqf<kjuk<kt<otil</ (i) yvlg<ogi{k<kqe<fmg<ogimgt<yvht<tqbqz<sf<kqg<gl</-f<kh<ht<tq Lg<Ogi{k<kqe< fmg<ogim<m jlbl< weh<hml</ -h<ht<tq yu<ouiv fmg< Ogim<jmBl< : wel<uqgqkk<kqz<hqiqg<gl</ (ii) yv Lg<Ogi{k<kqe< hg<gr<gtqe< jlbg<gk<kg<ogimgt< yv Ht<tqbqz< sf<kqg<gl</ -h<ht<tqlg<ogi{k<kqe<sx<xum<mjlbl<weh<hml</ (iii) yv Lg<Ogi{k<kqe< &e<x Ogi{r<gtqe< sloum<cgt< yv Ht<tqbqz< sf<kqg<gl</ -h<ht<tqlg<ogi{k<kqe<dt<um<mjlbl<weh<hml</ (iv) yv Lg<Ogi{k<kqe< osr<ogimgt< yv Ht<tqbqz< sf<kqg<gl</ -h<ht<tq osr<ogim<m jlbl<weh<hml</ osb<ljxbqz<-h<ht<tqgjtg<gxqg<gl<ljxjb-eq<gi{lx<hmouil</ 9.. fmg<ogim<mjlbl< Lg<Ogi{k<kqe<yVds<sqh<Ht<tqjbBl<-ke<wkqIh<hg<gk<kqe<fMh<<Ht<tqjbBl< -j{g<gl<ofig<ogim<mk<k{<myvfmg<ogimweh<hml</&e<xds<sqh<ht<tqgt< dt<tkiz< &e<x fmg<ogimgt< yv Lg<Ogi{k<kqx<G -Vg<gqe<xe/ -f<k fmg<ogimgt< yv Ht<tqbqz< sf<kqg<gl</-h<ht<tq Lg<Ogi{k<kqe< fmg< Ogim<Mjlbl< weh<hml</ -h<ht<tq? upg<glig G wel< Nr<gqz wpk<kiz< Gxqg<gh<hMl</ G wel< -h<ht<tq yu<ouiv fmg<ogim<jmbl< : wel< uqgqkk<kqz< hqiqg<gl</ G we<hk ds<sqh<ht<tqjb uqm wkqih<hg<gk<kqx<g nvgijlbqz< -Vg<Gl</ G e< h{<hgjt nch<hjmbigg<ogi{<m?nke<-vh<hqmk<jkg<gi[l<ljxgqopkvh<hm<mt<tk/ hc: kvh<hm<mlg<ogi{l< ABC jbujvg/ hc: BC bqe<fmh<ht<tqd e<-vh<hqml<g{<m?fmg<ogim AD Jujvg/ hc: CA bqe<fmh<ht<tqe e<-vh<hqml<g{<m?fmg<ogim BE Jujvg/ hc 4: AD, BE we<he sf<kqg<gl< Ht<tqjb G we<x Gxqg<g/ G we<hk ABC e< fmg<ogim<mjlbligl</ 06

211 Gxqh<H: Olx<g{<m Ljxbqz<? G Jg< gi{ &e<xiuk fmg<ogim<jm ujvbuqz<jz/ Woeeqz<? oum<ml<ht<tqbie fmg<ogim<m jlbl< G Jg< gi{-v fmg<ogimgot OhiKlieK/ &e<xiuk fmg<ogim<jm ujvf<kiz<? nk G upqbigs< osz<ujkg< gi{zil</ wf<kouiv njlh<h nz<zk ujvhm g{g<gqzl<? Lkzqz< fil< kvh<hm<m ntugjtbl<?okjujbbl<okiqf<kogit<tou{<ml</-kx<gh<hqe<?fil<yvlikqiqh< hmk<jk ujvf<k ogit<t Ou{<Ml</ -l<likqiqh< hmk<kqz<? njlh<h nz<zk ujvkzg<g{<mieupqljxh<hcgjts<sm<cg<gim<mou{<ml</ wmk<kg<gim<m : AB 7 os/lq? AC 7.5 os/lq? BC 5.5 os/lq weqz< ABC J ujvg/ nke<fmg<ogim<mjlbl<g Jg<gi{<g/AD JGwf<kuqgqkk<kqz<hqiqg<Gl<we<hjk wpkg/ kqiu: ABC bqe< likqiqh< hmk<jk ujvf<k kvh<hm<m ntugjtg< Gxqg<gUl< (hml< 9. Jh< hiig<gul<). -h<ohik fmg<ogim<m jlbk<jkg< gi{<ohil</ hcgt< gqop kvh<hm<mt<te/ hc : BC 5.5 os/lq ntuqz< BC wel< OfIg< Ogim<Mk<K{<jmujvg/B Jjlbligg<ogi{<M likqiqh<hml< 7 os/lqnvk<kqz<yvuqz<ujvg/-okohiz<c J jlbligg< ogi{<m 7.5 os/lq Nvk<kqz< yv uqz< ujvg/ -u<uqv uqx<gtl< oum<ml< Ht<tqjb A weg< Gxqg<gUl</ AB lx<xl< AC ujvg/ -h<ohik Lg<Ogi{l< ABC ujvbh<hm<mt<tk/ hc : jlbg<gk<kg<ogim Ljxbqz<? BC e< fmh<ht<tq D JBl<? AC e< fmh<ht<tq E JBl< gi{<g/ hml< 9. hc : AD, BE ujvg/ -ju G z< sf<kqg<gl</ G we<hkkie< ABC e<fmg<ogim<mjlbl</ hc 4: AB e< jlbh<ht<tq F Jg< gi{<g/ CF ujvg/ -K G upqs< osz<ujkg< gi{zil</ hc 5: AG lx<xl< GD Ngqbux<xqe< fqt ntugjtg< gi{<g/ AG 4.5 os/lq? GD.5 os/lq/ weg< gi{zil</ weou? AG 4.5. weou G NeK AD J : GD.5 we<xuqgqkk<kqz<hqiqg<gqe<xk/ hml< 9. 07

212 9.. Sx<Xum<mjlbl< yvlg<ogi{k<kqe<hg<gr<gtqe< jlbg<gk<kg<ogimgt< yvht<tqupqosz<zl</ -h<ht<tq? Lg<Ogi{k<kqe< Sx<Xum<m jlbl< weh<hml</ -h<ht<tq upg<glig S wel< Nr<gqz wpk<kiz< Gxqg<gh<hMl</ S NeK Lg<Ogi{k<kqe< &e<x ds<sqh<ht<tqgtqzqvf<kl< slk~vk<kqz< -Vg<Gl</ -s<slk~vk<kqje R we<g/ S J jlbligul<? R J NvligUl< ogi{<m ujvbh<hml< um<ml<? Lg<Ogi{k<kqe< &e<x ds<sqh<ht<tqgt< upqob osz<zl</ -u<um<ml< Lg<Ogi{k<kqe< Sx<Xum<ml< weul<? R we<hksx<xum<mnvl<weul<%xh<hml</ Sx<Xum<m jlbk<jkbl<? Sx<Xum<mk<jkBl< gi{? gqp<g<g{<m upqljxjbh< hqe<hx<xgqe<oxil</ hc : Lg<Ogi{l<ABC Jujvg/ hc : BC lx<xl< AC Ngqbux<xqe<jlbg<Gk<Kg<OgiMgjtujvg/ hc : BC lx<xl< AC Ngqbux<xqe< jlbg< Gk<Kg< OgiMgt< oum<cg< ogit<tl< Ht<tqjbS weg<gxqg<g/ Ht<tqS NeK ABC e<sx<xum<mjlbl<we<xjpg<gh<hml</ hc 4: AB e< jlbg< Gk<Kg< Ogim<cje ujvg/ -g<ogim S upqs<osz<ujkg< gueqg<gul</ SA, SB lx<xl< SC Ngqbux<xqe< fqtr<gjt ntg<gul</ SA SB SC we<xqvh<hjkk< okiqf<k ogit<g/ S J jlbligul<? SA ju NvligUl< ogi{<m yv um<ml< ujvg/ -u<um<mf<kie< Lg<Ogi{k<kqe< Sx<Xum<ml</ -K A, B, C upqs< osz<ujkk<okiqf<kogit<tul</ hc 5: CA e< jlbg< Gk<Kg< Ogim<cje ujvg/ -K S e< upqs< osz<ujkg< gi{<gqoxil</ wmk<kg<gim<m : AB 7 os/lq, m B 45º, BC 6 os/lq ntugt< ogi{<m ABC ujvf<knke<sx<xum<mk<jkujvg/ kqiu; kvh<hm<m ntugtg<ogx<h ABC J ujvg likqiqh<hml< (h.ogi.h ogit<jg). hqe<<ei? hqe<uvl< hcgjtk< okimvul<; hc: BC lx<xl< AB Ngqbux<xqe<jlbg<Gk<Kg< OgiMgt<ujvg/ hc : -l< jlbg<gk<kg<ogimgt< oum<ml< Ht<tqjb S weg< Gxqg<g/ S NeK Sx<Xum<m jlbligl</ hc: SA, SB lx<xl< SC Ngqbux<xqe<fQtr<gjt ntg<gul</ SA SB SC.6 os/lq weg< hml< 9. gi{<gqoxil</ hc4: S JjlbligUl<?SA JNvligUl<ogi{<Mum<ml<ujvg/-u<um<ml<A, B, C Ngqbux<xqe<upqbigs<osz<gqe<xK/-KOuOkjubieSx<Xum<mliGl</ 08

213 hc5: CA e<jlbg<gk<kg<ogim<cjeujvg/-ks e<upqs<osz<ujkg<gi{<gqoxil</ hml< 9.4 Gxqh<H: yv Lg<Ogi{k<kqe< Sx<Xum<mk<kqje ujvf<kume<? nl<lg<ogi{liek Sx<Xum<mk<kiz<$ph<hm<Mt<tKwe<Ohil</ 9.. dt<um<mjlbl< yv Lg<Ogi{k<kqe< &e<x Ogi{r<gtqe< -V sloum<cgt< yv Ht<tq upqs< osz<gqe<xe/ -h<ht<tq? Lg<Ogi{k<kqe< dt<um<m jlbl< weh<hml</ -K I wel< Nr<gqz wpk<kiz< Gxqg<gh<hMl</ dt<um<m jlbk<kqe< Lg<gqblie h{<h we<eoueqz<? I bqzqvf<k Lg<Ogi{k<kqe< hg<gr<gtg<g ujvbh<hml< IL, IM, IN we<el< Gk<Kg<OgiMgtqe< fqtr<gt< slligl</ -f<k hml< 9.5 fqtr<gtqe< sllie lkqh<h? r wel< Nr<gqz wpk<kiz<gxqg<gh<hml</ I JjlbligUl<?r JNvligUl<ogi{<mum<mk<kqjeujvf<kiz<?-u<um<ml< Lg<Ogi{k<kqe<&e<Xhg<gr<gjtBl<dm<Hxligk<okiMgqe<xK/-KLg<Ogi{k<kqe< dt<um<ml< weh<hml< (hml< 9.5 Jh< hiig<gul<). Nvl<r J dt<tivl< (inradius) we<gqoxil</ dt<um<m jlbl< gi{ul<? dt<tivk<jk ntuqmul<? dt<um<mk<jk ujvbul< upqljxgt<gqopkvh<hm<mt<te/ hc : ABC Jujvg/ hc : B lx<xl< C NgqbOgi{r<gtqe<Ogi{sloum<cjbujvg/ hc : -f<k -V sloum<cgt< oum<cg< ogit<tl< Ht<tqjb I weg< Gxqh<hqMg/ -f<kh<ht<tqi we<hokokjubiedt<um<mjlbligl</ hc 4: A e<sloum<cbl<i upqs<osz<ujks<siqhiig<gul</ hc 5: I bqzqvf<khg<gl< BC g<gs<osr<gk<kg<ogimujvg/nke<fqtk<jkntg<gul</ nkdt<tivl<r Jk<kVl</ 09

214 hc 6: I jb jlbligul< r J NvligUl< ogi{<m yv um<ml< ujvg/ -KOu? Lg<Ogi{k<kqe<dt<um<mliGl</ wmk<kg<gim<m : PQ 8 os/lq, m P 50º, m Q 60º NgqbntUgTjmb PQR e< dt<um<ml<ujvg/olzl<dt<tivk<jkntg<gul</ kqiu: PQR e<likqiqhmk<kqz<?nke<ntugjtg<gxqg<gul</ likqiqh<hml< hc : Ogi.h.Ogi nch<hjmg< ogit<jgjbh< hbe<hmk<kq PQR ujvg/ hc : P e<-vsloum<cujvg/ hc : Q e<-vsloum<cujvg/ hc 4: -f<k -V sloum<cgt< oum<ml< Ht<tqjb I weg< Gxqg<gUl</ -h<ht<tq I NeK dt<um<m jlbligl</ hml<9.6 hc 5: PQ wel<hg<gk<kqx<g ID wel<osr<gk<kg<ogimujvg/ hc 6: ID e< fqtk<jk ntg<gul</ -f<k fqtl< Lg<Ogi{k<kqe< dt<tivligl</ ID os/lq. weg<gi{zil</ hc 7: I J jlbligul<? ID J NvligUl< ogi{<m yv um<ml< ujvg/ -u<um<ml< Lg<Ogi{k<kqe<dt<um<mliGl</ hml< osr<ogim<mjlbl< Lg<Ogi{k<kqe< yv osr<ogim we<hk Lg<Ogi{k<kqe< YI ds<sqh< Ht<tqbqzqVf<K wkqih<hg<gk<kqx<g ujvbh<hml< osr<gk<kg<ogim we<hjk fil< fqjeuhmk<kqg<ogit<ouil</ yvlg<ogi{k<kqx<g &e<x osr<ogimgt< dt<te we<hjk nxqouil</ -s<osr<ogimgt< yv Ht<tq upqs< osz<gqe<xe we<hjk fil< Le<Oh nxqouil</ -h<ht<tq Lg<Ogi{k<kqe< osr<ogim<m jlbl< weh<hml</ -K H wel< Nr<gqz wpk<kiz< Gxqg<gh<hMl</ hml< 9.8 z<? ABC we<hk yv Lg<Ogi{l</ AL, BM lx<xl< CN we<hju hml< 9.8 0

215 osr<ogimgt</ -ju H z< sf<kqg<gqe<xe/ -r<g H we<hk ABC e< osr<ogim<m jlbligl</ Lg<Ogi{k<kqe< osr<ogim<m jlbl< H Jg< gi{ upqljxgt< gqop kvh<hm<mt<te; hc : kvh<hm<mntugtg<glg<ogi{l<abc ujvg/ hc : AL, BM wel<osr<ogimgjtujvg/ hc : AL? BM sf<kqg<gl<ht<tqjbh weg<gxqg<gul</h NeKLg<Ogi{l<ABC e< osr<ogim<mjlbligl</ wmk<kg<gim<m 4: XY 9 os/lq, YZ 8 os/lq? ZX 7 os/lq weqz<? XYZ e< osr<ogim<m jlbl<gi{<g/ kqiu: XYZ likqiqh<hmk<jkujvf<k?ogimg<gh<hm<mt<tntugjtg<gxqg<gul</ hc: h.h.h nch<hjmg<ogitqjeh< hbe<hmk<kq? Lg<Ogi{l< XYZ Jujvg/ likqiqh<hml< hc : osr<ogimgt< XL, YM ujvg/ hc : XL, YM oum<cg< ogit<tl< Ht<tqjb H weg< Gxqg<gUl</ H NeK XYZ e< osr<ogim<m jlbligl</ hc 4: ZH J-j{k<K? XY JN z<sf<kqg<glix fqm<mg/ ZN NeK Z upqbie osr<ogim weg< gi{zil</ hml< 9.9 hml<9.0 ouu<ouxuqklie Lg<Ogi{r<gTg<G fmg<ogim<m jlbl<? Sx<Xum<m jlbl<? dt<um<mjlbl<?osr<ogim<mjlbl<ngqbux<jxg<gxqk<kiz<?nux<xqe<-vh<hqmr<gt< gqopkvh<hm<mt<thcgi{zil</

216 nm<muj{ yvljeh<ht<tq Lg<Ogi{k<kqe<ujg fmg<ogim<mjlbl< njek<kujgbie Lg<Ogi{l< GXr<Ogi{Lg<Ogi{l< Sx<Xum<mjlbl< osr<ogi{lg<ogi{l< uqiqogi{lg<ogi{l< dt<um<mjlbl< njek<kujgbie Lg<Ogi{l< GXr<Ogi{Lg<Ogi{l< osr<ogim<mjlbl< osr<ogi{lg<ogi{l< uqiqogi{lg<ogi{l< yvr<ght<tqbqe< -Vh<hqml< Lg<Ogi{k<kqe<dt<Ot Lg<Ogi{k<kqe<dt<Ot gi{k<kqe<jlbh<ht<tq Lg<Ogi{k<kqx<GoutqOb Lg<Ogi{k<kqe<dt<Ot Lg<Ogi{k<kqe<dt<Ot osr<ogi{k<kqe<ds<sqh< Ht<tq Lg<Ogi{k<kqx<GoutqOb hbqx<sq 9. g{g<ggt< Lkz< 4 ujv?kvh<hm<mt<tlg<ogi{k<kqe<fmg<ogim<mjlbl<g gi{<g/. ABC z<?bc 6 os/lq, m B 40º, m C 60º.. ABC z<?njek<kh<hg<gr<gtl<6.5 os/lq fqtl<ogi{<mju/. PQR z<? m R 90º, PQ 7 os/lq, PR 6 os/lq. 4. LMN z<? LM 6 os/lq, m L 95º, MN 8 os/lq. g{g<ggt<5 Lkz< 8 ujv?kvh<hm<mlg<ogi{k<kqe<sx<xum<ml<ujvg/sx<xum<m Nvk<kqe<ntjug<gi{<g/ 5. ABC z<? AB 8 os/lq, BC 5 os/lq, AC 7 os/lq. 6. PQR z<? PQ 5 os/lq, PR 4.5 os/lq, m P 00º. 7. XYZ z<? XY 7 os/lq, m X 70º, m Y 60º. 8. PQR z<?yu<ouivhg<gll< 5.5 os/lqfqtlt<tk/ g{g<ggt< 9 Lkz< ujv?dt<um<ml<ujvf<k?dt<tivk<kqjentuqmg/ 9. ABC z<? AB 9 os/lq, BC 7 os/lq, CA 5 os/lq. 0. XYZ z<? XY YZ ZX 8 os/lq.. PQR z<? PQ 0 os/lq, m P 90º, m Q 60º.. ABC z<? AB 5.4 os/lq? m A 50º, AC 5 os/lq. g{g<ggt< Lkz< 6 ujv?lg<ogi{k<kqe<osr<ogim<mjlbl<gi{<g/. ABC z<? BC 5.6 os/lq, m B 55º, m C 65º. 4. PQR z<? m P 90º, m Q 0º, PR 4.5 os/lq. 5. LMN z<? LM 7 os/lq, m M 0º, MN 6 os/lq. 6. XYZ z<? XY 7 os/lq, YZ 5 os/lq, ZX 6 os/lq.

217 9. svisiqgtqe<ucuqbz<uqtg<gl< -h<ohikfil<-vlqjglpw{<gtqe<%m<ms<svisiq?ohvg<gz<svisiq Ngqbux<jxucuqbz<Ljxbqz<gi{<Ohil</ 9... %m<ms<svisiq a, b wel< -V w{<gtqe< %m<ms< svisiq a + b NGl</ a + b ucuqbz<&zl<gi{gqp<g<g{<mljxjbg<jgbit<ouil</ hc : a + b fqtl<ogi{<mofig<ogim<mk<k{<m PQ JwMk<Kg<ogit<g/ wel< w{<j{ hc : PQ e<jlbg<gk<kg<ogim<cjeujvg/ hc : PQ Ul<?jlbg<Gk<Kg<OgiMl<sf<kqg<Gl<Ht<tqjbg<Gxqk<K?P nz<zk Q a + b uqzqvf<k nh<ht<tq dt<t okijzuqje ntg<gul</ -k<okijzu Jk< kvl</ -kx<gg<giv{l<we<eoueqz<? XY we<xofig<ogim<mk<k{<ce<fqtl<l weqz<?xy e< l jlbh<ht<tqbiekx? Y zqvf<k okijzuqz<-vg<gl</ wmk<kg<gim<m 5: 6 lx<xl<9 Ngqbux<xqe<%m<Ms<svisiqjbg<gi{<g/ kqiu: osb<ljxgqopkvh<hm<mt<tk; hc : OkjubiefQtk<kqx<GyVOfIg<Ogim<jmujvg/ AB 6 os/lq wel<hc AB J nkqz<oum<cg<ogit<tul<(hml<9. Jh<hiIg<gUl<)/ hc : AB e<uzh<hxk<kqz<bc 9 os/lq wel<hc BC wel<k{<jmoum<cg<ogit<g/ hc : AC e<jlbg<gk<kg<ogicjeujvg/-k AC Js<sf<kqg<Gl<Ht<tqjbGxqk<K nkjem weh<ohbiqmg/ hc 4: A nz<zk C bqzqvf<k M e< okijzju ntg<gul</ AM 7.5 os/lq weg< gi{zil</-kou6 lx<xl<9 Ngqbw{<gtqe<%m<Ms<svisiqNGl</ hml< ohvg<gz<svisiqnz<zkuqgqkslsvisiq a, b we<heux<jx -V lqjg LP w{<gt< we<g/ a lx<xl< b bqe< ohvg<gz< svisiqwe<hk ab NGl</ x ab weqz<? x a x ab nz<zk x x ab nz<zk x b nz<zk a : x x : b. weou x NeK a, b g<g -jmbqzie uqgqksl svisiq wezil< (yvw{<x NeKa : x x : b welix-vf<kiz<?x NeKa lx<xl< b NgqbjugTg<G

218 -jmbqzieuqgqkslsvisiqweh<hmgqxk). ucuqbz<ljxh<hc gqopkvh<hm<mt<tk; hc : Okjug<Ogx<h fqtlie yv OfIg<Ogim<Mk<K{<jmujvg/ hc : nkqz<? AB a, BC b wel<hc-v K{<Mgt< oum<cg< ogit<tul< (hml< 9. Jh<hiIg<gUl<)/ ab Jg<gi[l<Ljx hc : AC J uqm<mligg< ogi{<m yv um<ml<ujvg/ hc 4: AC g<gs< osr<gk<kig B upqbig DE wel<fi{<ujvg/ hc 5: BD nz<zk BE e< fqtk<kqje hml< 9. ntg<gul</-f<kfqtl<a, b g<g-jmbqzie uqgqkslsvisiqjbk<kvl</-h<ohik BD e< fqtliek AB lx<xl< BC we<heux<xqe<fqtr<gtqe<uqgqkslsvisiqjbwu<uixkvl< we<hjkh<hiqf<kogit<ouil</ AC we<hkuqm<ml<?d we<hkum<mk<kqe<olzt<tht<tq/ weou ADC 90º. BD we<hk AC g<gs<osr<gk<kiek/ B Bl<? BD we<xhg<gll< ADB lx<xl< DCB we<gqx Lg<Ogi{r<gTg<Gh< ohikuieju/ weou -u<uqv Lg<Ogi{r<gTl<ucouik<kju/weOuhg<gr<gt<OfIuqgqkk<kqz<-Vg<Gl</nkiuK? AB BD nz<zk BD AB BC nz<zk x ab nz<zk x ab. BD BC wmk<kg<gim<m 6: 9 os/lq, os/lq fqtr<ogi{<m -V K{<Mgtqe< ohvg<gz< svisiqjbg< Gxqg<Gl<fij{g<gi{<g/ kqiu: hc : AX wel< Ogim<cje Okjug<Ogx<h fqtligg<ogit<g/ hc : nkqz< AB lx<xl< BC Ngqb -V K{<Mgjt LjxOb 9 os/lq, os/lq oum<cg< ogit<g(hml<9. Jh<hiIg<gUl<)/ hc : AC e< jlbg< Gk<Kg< Ogicje ujvf<k? nk AC J oum<ml< Ht<tqjb O we<g/ hml< 9. hc 4: O J jlbligul<? OA J NvligUl< ogi{<myvum<ml<ujvg/ hc 5: B upqbig DE wel<fij{ AC g<gs<osr<gk<kigujvg/ hc 6: BD nz<zk BE we<he AB, BC g<gqjmbqzieohvg<gz<svisiqjbg<gxqg<gl</ BD nz<zk BE e<fqtr<gjtntg<gul</-f<kfqtol9, e<ohvg<gz<svisiqngl</ BD fqtk<jkntg<g? BD 5. os/lq weg<gi{zil</ 4

219 wmk<kg<gim<m 7: 4 lx<xl< 9 g<g-jmobuqgqkslsvisiqjbg<gi{<g/ kqiu: 4 lx<xl< 9 Ngqbux<xqe<< uqgqksl svisiq we flg<gk< okiqbl</ -l<lkqh<h6 Jucuqbz<Ljxbqz<gi{<Ohil</ hc : AX wel< OfIg<Ogim<Mk< K{<cje OhiKlie ntuqx<g fqtlig ujvf<k ogit<ouil</ hc : AX e< Olz< 4 os/lq fqtlt<t AB we<gqxogim<mk<k{<jmoum<mg/ hc : B g<g uzh<hxlig? B bqzqvf<k 9 os/lq fqtlt<tk{<m BC Jujvg(hml<9.4 Jh< hiig<gul<)/ hc 4: AC e< jlbh<ht<tqjb O weg< Gxqg<gUl</ hc 5: O jujlbligul<?oa ju NvligUl< hml< 9.4 ogi{<myvum<ml<ujvg/ hc 6:B upqbig? AC g<gs<osr<gk<kig DE wel<fij{ujvg/ hc 7: BD we<hk AB lx<xl< BC bqe<uqgqkslsvisiqjbg<gxqg<gl</ hc 8: BD fqtk<jkntf<kogit<g/ BD 6 os/lqweg<gi{zil</-f<kw{< 6 NeK4 lx<xl< 9 gtqe<uqgqkslsvisiqngl</ wmk<kg<gim<m 8: e<lkqh<jhucuqbz<ljxbqz<gi{<g/ kqiu: 4 weg< gi{zil</ weou we<hjk 4 lx<xl< Ngqb w{<gtqe< ohvg<gz< svisiqbigg< gvkzil</ 4 lx<xl< gtqe< uqgqksl svisiqjbg< gi{ ucuqbz< Ljxjb fil<hbe<hmk<kouil</ hc : AX wel< Ogim<ce< lqk AB 4 os/lq/, BC os/lq/wel<hc? AB? BC wel< K{<Mgjt oum<cg< ogit<g (hml<9.5 Jh<hiIg<gUl<)/ hc : AC J uqm<mligg< ogi{<m yv hml<9.5 um<ml<ujvg/ hc : AC g<gs<osr<gk<kig?b upqbig DE wel<fij{ujvg/ hc 4: BD e<fqtk<jkntg<gul</bd.4 os/lqwefil<gi{zil</weou?.4. 5

220 hbqx<sq 9. Lkz< 4 ujvbqzieg{g<ggtqz<?ogimg<gh<hm<mt<tw{<gtqe<%m<ms<svisiqjbg< gi{<g/. 6 lx<xl< 4. 0 lx<xl< 5. 9 lx<xl< 4..5 lx<xl< Lkz< 8 ujvbqzieg{g<ggtqz<?kvh<hm<mw{<gtqe<ohvg<gz<svisiqjbg<gi{<g/ 5.. lx<xl< lx<xl< lx<xl< lx<xl< 4 9 Lkz< ujvbqzieg{g<ggtqz<?kvh<hm<mw{<gtqe<uig<g&zk<kqjeucuqbz< Ljxh<hcg<gi{<g/ uqjmgt< hbqx<sq os/lq 6..7 os/lq os/lq 8.. os/lq os/lq 0.. os/lq..7 os/lq..5 os/lq hbqx<sq

221 0. uquvr<gjtg<jgbitkz< fl<ljmb ne<xim uip<g<jgbqz< Ht<tququvr<gt< we<xjpg<gh<hml< w{<{x<x w{<dvur<gjtfil<hiig<gqoxil</wmk<kg<gim<mig?fitqkp<gjth<hcg<gl<ohik?yi nj{bqe<fqik<okg<gntjubl<nz<zknj{g<gt<hibl<fqiqe<ntjubl< gi{<gqe<oxil</ -f<k w{<{tugt<? nux<xqe< wkqigizh< Ohig<Ggjth< hx<xq nxqf<k ogit<ukx<gig sqvie giz -jmoutqgtqz< hkqbh<hmgqe<xe/ -u<uix hkqbh<hml< Ht<tq uquvr<gt< nkqg ntuqz< -Vh<hkiz<? -ux<jx Ljxh<hMk<kq hbet<t uquvr<gjt nxqb nxquqbz< siif<k Ljx Okjuh<hMgqxK/ nxquqbz< siif<k Ljxbqz< kvh<hm<m Ht<tq uquvr<gjt? hgk<kxqukx<gie g{qkk<kqe< yv hqiqu Ht<tqbqbz< NGl</ -h<hqiquqe< okimg<gg< giz utis<sqbqz<? -K yv fim<ce< Nm<sqbitVg<G?ke<fim<Mlg<gtqe<ohiVtikivfqjzjbnxqf<Knkx<Ogx<huiqgt< uqkqg<g upq nxqb dkuqbk/ Neiz<? -e<x Ht<tqbqbz< lqgh<ohiqb utis<sqjb njmf<k njek<kh< hqiqugtqzl< LcouMh<hkqZl<? kqm<mlqmukqzl< lqgh< ohiqb hr<gqjeugqg<gqxk/ Ht<tqbqbz< we<hjkg<gxqg<gl<nr<gqzs<osiz< statistics we<hk zk<kqe< olipqs< osiz<zie? Status we<hkqzqvf<k dvuiek/ Status we<hkx<g nvsqbz< fqjz (political state) we<xohivtigl</fil<?lf<jkbugh<hgtqz<ht<tq uquvr<gjt Osgiqg<Gl< Ljx hx<xqbl<? nux<jx nxqlgh<hmk<kl< Ljx hx<xqbl< hck<kjk-h<ohipkfqjeu%iouil</ Ht<tq uquvr<gt< Lkz< fqjzh< Ht<tq uquvr<gt< )primary data*? -v{<mil< fqjzh< Ht<tq uquvr<gt< (secondary data) we-vujgh<hml</nb<uitiyvui< kioeosgiqg<gl<uquvr<gt<lkz<fqjzh<ht<tququvr<gt<weh<hml</sqzofvr<gtqz<? Wx<geOu Yi< Nb<uitviz< Osgiqg<gh<hm<m Lkz< fqjzh< Ht<tq uquvr<gjt lx<oxiv Nb<uiti< OuoxiV Okjug<gigh< hbe<hmk<<kqg< ogi{<miz<? nh<ohik nh<ht<tq uquvr<gjt -v{<mil< fqjzh< Ht<tq uquvr<gt< we<gqoxil</ Nb<uitviz< Osgiqg<gh<hMl< uquvr<gt< okigg<gh<hmik Ht<tq uquvr<gt< nz<zk osh<heqmh<hmik Ht<tq uquvr<gt< weh<hml</-k<kjgbht<tququvr<gt<svg<gucuqz<ljxbig okigg<gh<hm<m?nm<muj{ucuqz<kvh<hmgqxk/-u<um<muj{biek?yvfqgp<ou{<< hm<cbz< we<xjpg<gh<hmgqxk/ fqgp<ou{< hm<cbz< upqbigk< kvh<hml< Ht<tq uquvr<gjt okigg<gh<hm<m Ht<tq uquvr<gt< we<gqoxil</ wmk<kg<gim<mig? gqop kvh<hm<mt<t0 li{uigtqe<g{qklkqh<oh{<gjtg<gvkouil</

222 Olx<gi[l<Ht<tququvl<okiGg<gh<hmikfqjzbqz<dt<tK/kvh<hm<mlkqh<oh{<gjt WXuiqjsbqz<wPk?flg<Gg<gqjmh<hK? 0,,,, 7, 7, 7, 9, 9, 40, 40, 4, 4, 4, 4, 4, 4, 45, 45, 46, 46, 46, 48, 48, 48, 49, 50, 50, 56, 56. Olx<%xqb uiqjsbqz< lkqh<oh{< 0 yv LjxBl<? &e<x LjxBl<? 7 &e<x LjxBl<lx<Xl<-u<uiOxlx<xlkqh<oh{<gTl<njlf<Kt<te/nf<kLjxbqz< kvh<hm<m lkqh<oh{<gjt w{<[ukqeiz< flg<gg< gqjmg<gl< fqgp<ou{<gt< nm<muj{jb okigg<gh<hmik Ht<tq uquvr<gtqe< fqgp<uh< hm<cbz< we<gqoxil</ x we<hk yv lkqh<oh{<{qjebl<? f we<hk x lkqh<oh{< ohx<x li{uigtqe< w{<{qg<jg nz<zk x e< fqgp<ou{<{qjeg< Gxqh<hkigg< ogit<g/ fqgp<ou{<{qje njzou{<we<xl<fil<%xouil</ x f 4 -r<g? x we<hk ntjubqe< lixq nz<zk lix<xv (variate) )-u<oumk<kg<gim<cz<? x NeK lkqh<oh{<{qjeg< Gxqg<gqxK* we<xjpg<gh<hml<; f fqgp<ou{<? nkiuk? yv lixqbqe<gxqh<hqm<mlkqh<hwk<kjeljxfqgp<gqe<xkwe<hjkg<gxqg<gqxk/ -r<g?lqgh<ohiqblkqh<h 56 lx<xl<lqgs<sqxqblkqh<h 0. weou? uqs<s lqgh<ohiqblkqh<h lqgs<sqxqblkqh<h fil<? kvh<hm<cvg<gl< lkqh<<oh{<gjts< OsIk<Kg<ogit<t hqiqu -jmoutqgt<weh<hml< -jmoutqgt<njlg<gzil</lkz<ugh<h-jmoutq0-4. -f<k-jmoutq0,,, lx<xl< 4 Ngqb lkqh<oh{<gjtg< ogi{<mt<tk/ nmk<k ugh<h -jmoutq 5-9/-u<uixigk<okimv?gjmsquGh<H-jmoutq NeK 55, 56, 57, 58 lx<xl< 59 Ngqb lkqh<oh{<gjtg< ogi{<mt<tk/ -r<g -jmoutqgt< yu<ouie<xl< gqp< lx<xl< Olz< wz<jzg<giqb w{<gjt dt<tmg<gq -Vh<hkiz<? -u<uqjmoutqgt< dt<tmr<gqb-jmoutqgt<ngl</-h<ohik?fqgp<ou{<hm<cbjznjlh<ohil</ hqiqu-jmoutq w{<{qg<jggxq fqgp<ou{< olik<kl< 0 kvh<hm<cvg<gl< Ht<tq uquvk<kqzt<t lkqh<hgjt ye<xe< hqe< ye<xig hcg<g? yu<ouiv lkqh<hqx<gl< nkx<giqb -jmoutqg<g wkqov OfIg<OgiM (yh<hg< Gxq nz<zkw{<{qg<jgg< Gxq) -m Ou{<Ml</ yov hqiquqz<-ml<ohxgqe<x yu<ouiv 5 uk w{<{qx<giew{<{qg<jgg<gxqbqjewx<geounh<hqiquqx<ogkqov-ml<ohx<xqvg<gl< fie<g w{<{qg<jgg< GxqgTg<G GXg<gig ( \ ) -m Ou{<Ml</ -f<k LjxbieK? kvh<hm<cvg<gl< Ht<tq uquvr<gtqzt<t nk<kje lkqh<hgtg<gl< -m Ou{<Ml</ Olx<%xqb nm<muj{bqz<? yu<ouiv ugh<h-jmoutqg<giqb w{<{qg<jgg< Gxqgtqe< 8

223 w{<{qg<jgbiek nu<ugh<hqe< fqgp<ou{< (frequency) weh<hmgqxk/ -u<um<muj{? okigg<gh<hm<m Ht<tq uquvr<gtqe< fqgp<ou{<hm<cbz< weh<hmgqxk/ Olx<%xqb nm<muj{bqe< hqiqu -jmoutqgtg<gt< 4.5, 9.5 Ohie<x lkqh<oh{<gjts< OsIg<g -bzik we<hjk nxqg/ -k<kjgb $pzqz<? fil< ugh<h -jmoutqgtqe< Olz< wz<jzjbnf<kf<k-jmoutq<juk<kqvg<gikwe<xgvk<kme< , ,, we lix<xqnjlg<gzil</-k<kjgblix<xk<jkdjmbnm<muj{jbgqop gi{zil</ hqiqu-jmoutq w{<{qg<jggxq fqgp<ou{< olik<kl< 0 -r<g? fqgp<ou{< hm<cbziek x lixqbqe< okimis<sqbie lix<xk<jkk< okiquqg<gqxk/ yv hqiqu -jmoutqbqe< Olz< wz<jz lx<xl< gqp< wz<jzgtqe< uqk<kqbisk<jk nu<uqjmoutqbqe< ntu (size) we<xl<? Olz< wz<jz lx<xl< gqp< wz<jzgtqe< svisiqjb hqiquqe< lkqh<h (class mark) we<xl< njpg<gqoxil</ -r<g hqiqu -jmoutqbqe< ntu 5 lx<xl<hqiquqe<lkqh<h 7?-K-jmoutqbqe<jlblkq<h<H NGl</OlZt<tnm<muj{bqzqVf<K?4.5 g<gg<gqp<lkqh<oh{<ohx<xuigt< 4, 9.5 g<gg< gqp<lkqh<oh{<gt<ohx<xuigt< , 44.5 g<gg<gqp<lkqh<oh{<ohx<xuigt< , 49.5 g<gg<gqp< lkqh<oh{<gt< ohx<xuigt< , 54.5 g<gg<gqp< lkqh<oh{<gt<ohx<xuigt< lx<xl< 59.5 g<gg<gqp<lkqh<oh{<gt< ohx<xuigt< k<kjgbfqgp<ugtqe<w{<{qg<jggjtguqu fqgp<ou{<gt<(cumulative frequencies (c.f)) nz<zkguqunjzou{<gt<we<gqoxil</ GuqUfqgp<ou{<gtqe<nm<muj{gQOpkvh<hm<Mt<tK hqiqu-jmoutq jlblkqh<h x fqgp<ou{<f GuqUfqgp<ou{<c.f olik<kl< 0 0. jlbfqjzh<ohig<gntjugt< osh<heqmh<hmik Ht<tququvr<gtqe< fqgp<ou{<hm<cbjz Olx<%xqbuiX njlh<hke< &zl<? nh<ht<tq uquvr<gtqe< yv oktquie njlh<hqjeg< gi{lcgqxk/ yv Gxqh<hqm<m lkqh<hqzqvf<k Ht<tququv lkqh<hgt< njmbl< lix<xk<kqe< Ohig<gqjeh<hx<xq 9

224 OlZl< nxqf<kogit<t? Ht<tq uquvr<gjt yvlqk<klig nxqf<kjvg<gl< kqm<mum<mlie ntjugt<dt<te/nk<kjgbntjugt<jlbfqjzh<ohig<gntjugt<(measures of Central Tendency) nz<zk jlbih<h ntjugt< (Measures of Location) weh<hmgqe<xe/nk<kjgb?sqzntjugtiue:. %m<ms<svisiq(average). -jmfqjz(median). LgM(Mode) 0.. %m<ms<svisiq,, 7,, 7 we<x lkqh<hgjtg< gvkouil</ Olx<%xqb yu<ouiv lkqh<hqzqvf<kl<? 0 Jg< gpqg<g? flg<gg< gqjmh<hk 9,,,, 7. -f<k uqk<kqbisr<gjtg< %m<m flg<g gqjmh<hk 0. -kqzqvf<k? w{< 0 kvh<hm<cvg<gl< 5 lkqh<hgtqe<fmuqz<njlf<kqvg<gqxkwenxqgqoxil</-kkvh<hm<cvg<gl<lkqh<hgtqe< svisiqnz<zk%m<ms<svisiqweh<hml</ohikuig?x, x,, x n we<gqxn lkqh<hgtqe< %m<ms<svisiq(average) nz<zkw{<g{qks<svisiq(arithmetic mean) nz<zksvg<glig svisiq (mean) x we<x w{<? x zqvf<kn lkqh<hgt< x, x,, x n e< uqzg<gr<gtqe< %Mkz< 0 we<xqvg<glix ujvbxg<gh<hmgqe<xk/ nkiuk? x, x,, x n wel< n lkqh<hgtqe<svisiq x NeK (x x ) + (x x ) (x n x ) 0 nz<zk ( x + x xn ) n x 0 we<xsle<him<miz<gqjmg<gh<ohxl</ weou x x x +... n + + g{qkk<kqz<?gxqbqm, sqg<li)sigma*nek?%mkjzg<gxqg<gh<hbe<hmk<kh<hmgqxk/ -f<kg<gxqbqm<ce<&zl<?%mkz< x n. n + x +... xn NeK x i nz<zk wtqkig i x + wegxqg<gh<hml</weou?fil<ujvbxh<hk? x i x. n Ht<tququvlkqh<Hgt<fqgp<ou{<hm<cbzqz<njlg<gh<hm<cVf<kiz<?svisiq x NeK? fx + f x f n xn x f + f f n we<x ohxh<hmgqe<xk/ -r<g x, x,, x n NeK LjxOb f, f,, f n we<x fqgp<ou{<gjtg< ogi{<m keqh<hm<m lkqh<hgtigoui nz<zk f, f,, f n we<x fqgp<ou{<gjtg< ogi{<m hqiqu -jmoutqgtqe< -jmlkqh<h ntugtigoui -Vg<Gl</sqg<liGxqbQm<cz<wPk? f i xi x, -r<gn f + f f. N n kvh<hm<cvg<gl<lkqh<hgtqe<lm<mlkqh<hgt<lqgh<ohiqbjubig-vf<kiz<?svisiqbiek SVg<G.upqLjxobie<xqeiz< g{g<gqmh<hml</ A we<hk ohivk<klig OkIf<okMg<gh<hm<m xi 0

225 YI w{< we<g/ fil<? x A, x A,, x n A we<gqx lixz<gjt njlh<ohil</ -l<lixz<gtg<g c we<x ohikuie giv{q -Vh<hkigg< ogi{<miz<? hqe<uvl< uqgqkr<gjtnjlh<ohil<; x A x A xn A,,...,. c c c -ux<jxljxob d, d,, d n we<g/ -h<ohipk? x A x A xn A f idi f d + f d +..+ f n d n f + f f n c c c [( f x fa) + ( f x f A) ( f n xn f n A) ] c [( f x + f x f n xn ) A( f + f f n )] [ f xi A N ] c c i. f xi A N c f n.k i i d i f i x A N + c f i id i f i xi n.k x A f id i + c. N N Gxqh<H; x A, x A,, x n A gjt nxqf<khqe<hkie<? ohikg<giv{q c Jg< Gxqh<hqmLcBl</ wmk<kg<gim<m : 9,,, 5, 7, 9 we<gqxht<tququvr<gtqe<svisiqjbg<gi{<g/ x i kqiu : x 4. N 6 6 wmk<kg<gim<m : hqe<uvl<ht<tququvr<gtg<g%m<ms<svisiqjbg<gi{<g/ kqiu: OfvcLjx; x f f x olik<kl< N 0 fx 40 x f SVg<G.upqLjx; A 4, c weg<ogit<g/hqe<h d x A x f d f d olik<kl< N0 fd x f i xi N 0 fd 0 x A+ c 4 + N

226 wmk<kg<gim<m : hqe<uvl<ht<tququvr<gtg<g%m<ms<sivsiqgi{<g/ lkqh<oh{< li{uigtqe< w{<{qg<jg x A kqiu: A 90, c 5, d we<g/ x A gjtg<g{g<gqm<mc 5 wenxqg/ c x f d f d N 0 fd x A+ c N fd wmk<kg<gim<m 4: hqe<uvl<ht<tququvr<gtg<g%m<ms<svisiqgi{<g/ hqiqu-jmoutq lkqh<oh{< kqiu: OfvcLjx; hqiqu-jmoutq jlblkqh<h x fqgp<ou{< f f x N 00 fx 800 nm<<muj{bqzqvf<k?n olik<kfqgp<ou{< 00, fx 800. fx 800 x 8. N 00

227 SVg<G.upqLjx;A 0, c 5, d x A we<g/ c hqiqu-jmoutq jlblkqh<h x d fqgp<ou{< f f d N 00 fd x A+ c fd N 00 hbqx<sq 0... svisiqjbg<gi{<g/ 7,, 8, 4, 9, 0.. yv ugh<hqzt<t 5 li{uigtqz<? 4 li{uigt< 66 lkqh<oh{<gtl<? 5 li{uigt< 67 lkqh<oh{<gtl<?6 li{uigt<68 lkqh<oh{<gtl<wmk<kiz<?nu<ugh<hqe<%m<ms< svisiqjbg<gi{<g/. hqe<uvl<ht<tququvr<gtg<g%m<ms<svisiqjbg<g{g<gqmg/ x f hqe<uvl<ht<tququvr<gtg<g%m<ms<svisiqjbg<g{g<gqmg/ lkqh<oh{<gt< li{uigtqe< w{<{qg<jg hqe<uvl<ht<tququvr<gtqzqvf<k%m<ms<svisiqjbg<gi{<g/ lixq fqgp<ou{< hqe<uvl<nm<muj{jbg<ogi{<m%m<ms<svisiqg<gi{<g hqiqu-jmoutq fqgp<ou{<

228 0.. -jmfqjzntu kvh<hm<cvg<gl< osh<heqmh<hmik Ht<tq uquvr<gjt WX nz<zk -xr<g uiqjsbqz< wpkl<ohik? fl<liz< ypr<gh<hmk<kq -Vg<Gl< uiqjsbqz< fmfqjzbig njlf<kqvg<gl<yvlkqh<jhg<g{<mxqblcbl</-f<kfmlkqh<hnz<zklk<kqbqz< dt<tlkqh<hht<tququvr<gtqe<-jmfqjzntuweh<hml</ wmk<kg<gim<mig? 4, 8, 0, 9, 8, 5, 6, 7, 6 we<gqx Ht<tq uquvr<gjtg< gvkouil</nux<jxwxuiqjsbqz<wpk?4, 7, 8, 0, 5, 6, 8, 9, 6 weflg<gg< gqjmg<gqxk/ -u<uiqjsbqz<? 5 NeK? Ht<tq uquvr<gtqe< fmfqjzbig njlf<kqvg<gqxk/ weou 5 NeK? Ht<tq uquvr<gtqe<-jmfqjz ntu NGl</ -r<g? kvh<hm<cvg<gl< lkqh<hgtqe< w{<{qg<jg yx<jxh<hjmbqz< njlf<kt<tkiz<? uiqjsbqz<njlf<kt<tlkqh<hig-jmfqjzntu-vg<gqxk/ 85, 79, 57, 59, 66, 6, 40,, 48, 5 we<gqx Ht<tq uquvr<gjtg< gvkouil</ nux<jxypr<ghmk<kqwxuiqjsbqz<wpk? 6,, 40, 48, 5, 57, 59, 66, 79, 85 weg< gqjmg<gqxk/ -r<g -vm<jmh<hjm w{<{qg<jgbqz< lkqh<hgt< njlf<kt<tkiz<? ypr<ghmk<kqb uiqjsbqe< fmuqz< 5 lx<xl< 57 njlf<kt<te/ weou? fil< -u<uqv w{<gtqe< svisiqjbg< g{g<gqm? 55 NeK uiqjsg<g jlb lkqh<hig -Vg<gqxK/ lkqh<h 55 NeK? kvh<hm<m Ht<tq uquvr<gtqz< yv lkqh<hig -z<jzobe<xizl<? nkou -jmfqjz lkqh<hig njlgqxk/ NgOu? kvh<hm<m osh<heqmik Ht<tq uquvr<gtqe< -jmfqjz ntuqjeh< ohx hqe<uvl< upqgjt Olx<ogit<Ouil</ Lkzqz<? kvh<hm<m olik<k Ht<tq uquvr<gjt WXuiqjsbqOzi nz<zk -xr<guiqjsbqozi wpk Ou{<Ml</ N we<hk lkqh<hgtqe< w{<{q<g<jg we<g/ N yx<jxh<hjm w{<{ig -Vf<kiz<? Olx<g{<m uiqjsbqz< yv lkqh<h fmfqjzbig N + -Vg<Gl</ -K kvh<hm<m lkqh<hgtqe< WX nz<zk -xr<guiqjsbqz< uk dxh<hig njlbl</ -KOu -jmfqjz lkqh<h NGl</ N -vm<jmh<hjm w{<{ig njlf<kiz<? nr<g -V lkqh<hgt< fmfqjzbig njlbl</ nju Ht<tq uquv N N lkqh<hgtqe< WX nz<zk -xr<guiqjsbqz< uk lx<xl< + uk dxh<hgtigl</weou?-u<uqvdxh<hgtqe<svisiqob-jmfqjzngl</ kvh<hm<mht<tququvr<gt<?fqgp<ou{<hm<cbzqz<njlf<kqvf<kiz<-jmfqjzjb gi{h<hqe<uvl<ljxjbg<jgbitzil</ N Lkzqz<?GuqUfqgp<ou{<fqvjznjlk<K? e<lkqh<jhg<gi{ou{<ml</ -r<g N we<hk olik<k fqgp<ou{< (N f + f f n ) NGl</ hqxg 4

229 nm<muj{bqzqvf<k? N g<gs< sllie nz<zk N g<g sx<ox nkqglie GuqU fqgp<ou{< lkqh<hqje djmb lixqbqe< lkqh<h nz<zk hqiqu -jmoutqjbg< gi{ Ou{<Ml< )-K hvuzqe< -jmfqjz hqiqu -jmoutq weh<hml<*/ kvh<hm<m Ht<tq uquvr<gtg<g? -jmfqjz hqiqu -jmoutqg<giqb lixqbqe< lkqh<oh kvh<hm<m Ht<tq uquvk<kqx<gie-jmfqjzlkqh<higl</ wmk<kg<gim<m 5:, 5, 9, 0, 9 Ngqbux<xqe<-jmfqjzgi{<g/ kqiu: kvh<hm<cvg<gl< lkqh<hgt<wx<geouwxuiqjsbqz<njlf<kt<te/ N lkqh<hgtqe<w{<{qg<jg 5. -KYIyx<jxh<hjmw{</NgOu? N jmfqjz ukdxh<h ukdxh<h ukdxh<h 9. -jmfqjz 9. wmk<kg<gim<m 6:, 4, 0,, 7, 60, 55, 49, 50, 4,, 6, 7, 75, 80e<-jmfqjz gi{<g/ kqiu: kvh<hm<cvg<gl<lkqh<hgjtwxuiqjsbqz<njlg<g?, 4, 0,, 7,, 4, 49, 50, 55, 60, 6, 7, 75, 80. N lkqh<hgtqe<w{<{qg<jg 5, YIyx<jxh<hjmw{</ N jmfqjz ukdxh<h ukdxh<h 8 ukdxh<h 49. wmk<kg<gim<m 7:9,, 5, 9, 0, 5, 8 -ux<xqe<-jmfqjzgi{<g/ kqiu: kvh<hm<cvg<gl<lkqh<hgjtwxuiqjsbqz<wpk?, 5, 5, 8, 9, 9, 0. N lkqh<hgtqe<w{<{qg<jg 7, YIyx<jxh<hjmw{</ N jmfqjz ukdxh<h ukdxh<h 4uKdXh<H 8. wmk<kg<gim<m 8:6, 5, 9,, 5, 9, 0, 5, 8, 0 e<-jmfqjzgi{<g/ kqiu: kvh<hm<cvg<gl<ht<tququvr<gjtwxuiqjsbqz<wpk?, 5, 5, 5, 6, 8, 9, 9, 0, 0. N lkqh<hgtqe<w{<{qg<jg 0, YI-vm<jmh<hjmw{</ N N -jmfqjz ukdxh<hlx<xl< + ukdxh<hngqbux<xqe<svisiq 5 uklx<xl<6 ukdxh<hgtqe<svisiq lx<xl<8 gtqe<svisiq 7. 5

230 wmk<kg<gim<m 9: hqe<uvl<nm<muj{g<g-jmfqjzntjug{g<gqmg/ kqiu: lixq ( x) fqgp<ou{<( f ) x f GuqU fqgp<ou{< olik<kfqgp<ou{< N f. Njgbiz< N 6. N -jmfqjz uklkqh<h 6 ukdxh<hqe<lkqh<h/neiz<6uklkqh<hiek? GuqU fqgp<ou{< 9 dt<t hqiqu -jmoutqbqz< njlf<kt<tk/ -kx<gh< ohivk<klx<xlixqbqe<lkqh<h5ngl</weou?-jmfqjz 5. hbqx<sq 0... hqe<uvl<lixqgtqe<okigh<hqx<g-jmfqjzgi{<g; (i) 66, 6, 55, 60, 46, 0 (ii) 5, 9, 6, 4, 8, 7, 45, 4 (iii) 60, 6, 60, 58, 57, 59, 70 (iv) 4, 45, 6, 7, 4, 45, 4, li{uigtqe<lkqh<oh{<gtg<gie-jmfqjzgi{<g; lkqh<oh{<gt< li{uigtqe< w{<{qg<jg hqe<uVl<Ht<tququvr<gTg<G-jmfqjzgi{<g; x f

231 4. 4 okipqzitigtqe< %zqgt< kvh<hm<mt<te/ -ux<xqe< -jmfqjz lkqh<hqjeg< gi{<g/ %zq okipqzitigtqe< w{<{qg<jg LgM jlbfqjzntjugtqz<lgml<yintuigl</ (i) keqk<okigkqbig njlf<kt<t lkqh<hgtqe< g{k<kqz< wf<k yv lkqh<hiek nkqg w{<{qg<jgbqz< -Vg<gqxOki nk kvh<hm<m Ht<tq uquvr<gtqe< LgM weh<hml</ (ii) kvh<hm<m Ht<tq uquvr<gjt ypr<ghmk<kq yv fqgp<ou{< hm<cbzqz< njlk<kiz<? nkqg fqgp<ou{<j{ ogi{<m hqiqu? LgM hqiqu weh<hmgqxk/ -h<hqiquqz<dt<tlixqbqe<-jmh<hm<mlkqh<h?kvh<hm<mht<tququvk<kqe<lgm weh<hml</ wmk<kg<gim<m 0: 7, 4, 5,, 7,, 4, 6,7 e<lgmgi{<g/ kqiu: Ht<tququvr<gjtWXuiqjsbqz<wPk?,, 4, 4, 5, 6, 7, 7, 7. Olx<gi[l<Ht<tququvr<gtqz<7, nkqgkmjugi{h<hmgqxk/weou?lgm 7. wmk<kg<gim<m : 9, 0,, 4, 7, 0 e<lgmgi{<g/ kqiu: Ht<tq uquvr<gt< Wx<geOu WXuiqjsbqz< dt<te/ yu<ouiv lkqh<hl< yov yv kmju Olx<g{<m uiqjsbqz< njlf<kqvg<gqxk/ weou? kvh<hm<m Ht<tq uquvr<gtg<g LgM-z<jz/ wmk<kg<gim<m :, 5,,, 9, 5, 4, 7, 0,, 9, 5 e<lgmgi{<g/ kqiu: kvh<hm<mht<tququvr<gjtwxuiqjsbqz<wpk?,,,, 5, 5, 5, 9, 9, 0, 4, 7. -r<g&e<xljxbl<?5 &e<xljxbl<njlf<kqvg<gqxk/ lx<xl< 5 -v{<ml<kvh<hm<mht<tququvr<gtg<glgmgtignjlgqe<xe/-r<g? kvh<hm<mht<tququvr<gtg<g-vlgmgt<-vg<gqe<xewe<x%xgqe<oxil</ wmk<kg<gim<m : hqe<uvl<fqgp<ou{<hm<cbzqzqvf<klgmgi{<g/ %zq okipqzitigtqe< w{<{qg<jg kqiu: hm<cbzqzqvf<k fil< nxquk? lqg dbif<k fqgp<ou{< 4 NGl</ -kx<g -jsuie lixq %zqbqe< lkqh<h 55 NGl</ -KOu kvh<hm<m uquvk<kqe< LgmiGl</ nkiuk?lgm 55. 7

232 hbqx<sq0... hqe<uvl<ht<tququvr<gtg<glgmgi{<g; (i) 84, 9, 7, 68, 87, 84 (ii) 65, 6, 7, 8, 5, (iii) 8,,, 0,, 6, 5, 0 (iv) 5,, 8,,, 9,. hqe<uvl<hvuzqx<glgmgi{<g; x f hqe<uvl<nm<muj{bqzqvf<klgmgi{<g/ x f uqjmgt< hbqx<sq hbqx<sq 0... (i) 57.5 (ii) 5.5 (iii) 60 (iv) hbqx<sq0... (i) 84 (ii) LgM-z<jz (iii) 0, (iv)

233 . ujvhmr<gt< nxquqbz<? ohixqbqbz< lx<xl< uik<kgl< Ohie<x Kjxgtqz< fil< olb<ob{< lkqh<hgt< ohxl< hz<oux lixqgjtg< g{<cvg<gqoxil</ wmk<kg<gim<mig? u{qgk<kqz<? yv svg<gqe< kvu )s* lx<xl< uqjz )p* -V olb<lixqgtigl</ -l<lixqgjt yv sle<him<ce< upqbig -j{g<gzil</ -s<sle<him<jmh< hbe<hmk<kq? yu<ouiv s -e< lkqh<hqx<gl< p -e< lkqh<jh fil< ohxzil<; lx<xl< olb<ob{<gtiz< Ne uiqjs Osicgt< )s, p* -e< g{k<jkh< ohxzil</ wz<zi uiqjs OsicgjtBl<? gqjmbs<s s-ns<sigul<? Gk<ks<S p-ns<sigul< ogi{<m giicsqbe< ktk<kqz< Ht<tqgtigg< Gxqg<gzil</ -h<ohipk -h<ht<tqgt<? lixqgtg<gqjmobbt<t dxuqe< ujvhmk<kqje ujvbxg<gqxk we<x osiz<gqoxil</ -u<ujvhml< lixqgtqe< dxuqe< ke<jljbg< gim<mgqxk/ lqglg<gqblie? fil< ncg<gc hbe<hmk<kl< yv ujvhml< OfIg<OgiM ujvhmligl</ fil< -h<ohipk OfIg<OgiM ujvhmr<<gjth< hx<xqbl<? nju wu<uix ujvbh<hmgqe<xe we<hjkh< hx<xqbl<? nux<jxh< hbe<hmk<kqs< sqz sle<himgjtk< kqih<hkgxqk<kl<gi{lx<hmouil</. OfIg<OgiMujvhmr<gt< x lx<xl< y -Vlixqgt<we<g/njuy mx + c we<x sle<him<m ucuk<kqz< -j{g<gh<hm<miz<? nju Ofiqb Ljxbqz< -j{g<gh<hm<mt<te we<x %XOuil</ fil< Wx<geOuhGLjxucuqbz<himk<kqz<?giICsqbe<ktk<kqz<y mx + cwe<xsle<him yv OfIg<Ogicjeg< Gxqg<gqxK weg< g{<mt<otil</ -g<giv{k<kiz<kie< x lx<xl< y -ux<xqx<gqjmobbie dxju yv Ofiqb dxuwe<gqoxil</yu<ouivx lkqh<hqx<gl<? y mx + cwe<xsle<himy-e<yvlkqh<jhg<ogimg<gqxk;lx<xl<x, y w{<gtiz< njlbh<ohx<x yvuiqjsosic)x, y* gqjmg<gqxk/ -u<uixigh< ohxh<hm<m uiqjs Osicgtqe<g{l<?y mx + c -e<ujvhmk<kqjeujvbjxosb<gqxk/olzl<-jk Ofiqbujvhml<wenjpg<gqOxil</sle<hiMy mx + cz<?m NeKnf<OfIg<Ogice< sib<u? c NeK nke< y-oum<mk<k{<m we<hjk fil< fqjeu %IOuil</ x0 wel<ohik? y -e< lkqh<h y-oum<mk<k{<migl</ sqz slbr<gtqz< y-oum<mk<k{<ce< lkqh<h 0 Ng -Vg<Gl</ -s<$p<fqjzbqz<? sle<him y mx we<xigqxk; lx<xl< -f<ofig<ogim Nkqh<Ht<tq upqs<osz<gqxk/ fil< -h<ohipk hz<oux $p<fqjzgtqz< OfIg<Ogice< ujvhml< ujvuk Gxqk<Kh< hiih<ohil</ yv OfIg<OgiM ujvukx<gie nch<hjmg<gxqg<ogit<?nf<ofig<ogice<lqk-vht<tqgt<flg<gk<okjuwe<hkigl</ hqe<uvl<<ljx?ofig<ogimujvukx<gigh<hqe<hx<xh<hmgqe<xk; hc : x -e< -V ouu<oux lkqh<hgt< x, x -ux<jxs< sle<him y mx + c -z<< hqvkqbqm<m?y g<g-vlkqh<hgt<y, y fil<ohxgqe<oxil</-h<ohipkfil<-v Ht<tqgt<)x, y *lx<xl< (x, y ) -ux<jxnf<ofig<ogice<lqkohx<xt<otil</ 9

234 hc : x-ns<s lx<xl< y-ns<s -ux<jx yv ujvhmk<kitqz< ujvf<k nux<xqe< lqk Okjug<Ogx<h ntuqmgjtg< Gxqk<Kg<ogit<Ouil</ hc -z< ohxh<hm<m ns<s K~vr<gtqe< ntjuh< ohixk<ok -V ns<sgjt nzgqmkz< osb<gqoxil</ ns<s K~vr<gt<nkqglkqh<Hgt<djmbeweqz<?ns<Sgtqz<os/lQ/ntjuohiqb lkqh<jhg<gxqg<gl<nzgigg<ogit<gqoxil</ hc : -V Ht<tqgt< (x, y ) lx<xl< (x, y ) J ujvhmk<kitqz< gvkqb giicsqbe< ktk<kqz<gxqg<gul</ hc 4: -VHt<tqgjtBl<yVOfIg<Ogim<Mk<K{<miz<-j{k<K-Vhg<gLl<fQm<mUl</ -KOuOkjubieOfIg<OgiMujvhmliGl</ wmk<kg<gim<m : (, ) lx<xl< ( 4, ) J-j{g<Gl<Ogim<ce<ujvhml<ujvg. kqiu: ujvhmk<kitqz< x, y-ns<sgjt ujvf<k nux<xqe< lqk os/lq/ nzg weg< Gxqg<gUl</ A(, ) lx<xl< B ( 4, ) we<he kvh<hm<m -V Ht<tqgt< we<g. fil< -u<uqv Ht<tqgjtBl< ujvhmk<kitqz< Gxqg<gqOxil</ fil<? A lx<xl< B J OfIg<Ogimiz< -j{k<k -V HxLl< fqm<mouil</ -h<ohipk Okjubie ujvhml< ohxh<hm<mk (hml<. Jh<hiIg<gUl<). hml<. wmk<kg<gim<m : y x -e<ujvhml<ujvg. kqiu: y x we<hkofig<ogice<sle<himwe<hkiz<? OfIg<OgiMNkqh<Ht<tqupqbigs<osz<gqxK/ x, 0, wes< sle<him<cz< hqvkqbqm? LjxOb fil< y, 0, weh< ohxgqoxil</ -kjeg< gqop nm<muj{bigk<kf<kt<otil<. x 0 hml<. y 0 ujvhmk<kitqz< x-ns<s? y-ns<s ujvf<k? nux<xqe< lqk os/lq/ nzg weg< ogit<gqe<oxil</ fil< -h<ohipk (, ), (0, 0), (, ) NgqbHt<tqgjt ujvhmk<kitqz< Gxqg<gqOxil<? -h<ht<tqgjt -j{k<k -Vhg<gLl< fqm<mgqoxil</ -h<ohipk flg<gk< Okjubie OfIg<OgiM ujvhml< gqjmk<kt<tk (hml<. Jh< hiig<gul<). wmk<kg<gim<m : y x -e<ujvhml<ujvg/ kqiu: x, 0, wes< sle<him<cz< hqvkqbqm LjxOb fil< y 4,, weh< ohxgqoxil</ ujvhmk<kqz< (, 4), (0, ) lx<xl< (, ) Jg< Gxqg<gUl</Ht<tqgjtOfIg<Ogimiz<-j{k<K-V HxLl< fqm<mul</ flg<gk< Okjubie OfIg<Ogice< ujvhml<gqjmk<kt<tk(hml<. Jh<hiIg<gUl<). hml<. 0

235 wmk<kg<gim<m 4: sib<u NgUl<? y-oum<mk<k{<m NgUl< ogi{<m OfIg<Ogice< ujvhml<ujvg. kqiu: Ogice<sle<hiM y mx + c nz<zk y x + ( ) nz<zk y x. x, 0, weh< hqvkqbqm LjxOb y 0,, 6 wefil<ohxgqoxil</ (, 0), (0, ) lx<xl< (, 6) Ht<tqgjt ujvhmk<kitqz<gxqg<gul</ht<tqgjt x 0 y 0 6 -j{k<k -V HxLl< fqm<mul</ -h<ohipk flg<gk< Okjubie OfIg<Ogice<ujvhml<gqjmg<gqxK)hml<.4Jh<hiIg<gUl<*/ hml<.4 wmk<kg<gim<m 5: x + y we<xofig<ogim<ce<ujvhml<ujvg. kqiu: ogimg<gh<hm<ms<sle<him<jmhqe<uvlixwpkzil</ y x + nz<zky x + 4. x, 0, weh< hqvkqbqm LjxOb y 6, 4, we fil<ohxzil</ (, 6), (0, 4) lx<xl< (, ) Ngqb Ht<tqgjt ujvhmk<kitqz<gxqg<gul</ x 0 y 6 4 Ht<tqgjt -j{k<k -V HxLl< hml<.5 fqm<mul</ -KOu Okjubie OfIg<OgiM ujvhmligl<)hml<.5jh<hiig<gul<*/ wmk<kg<gim<m 6: x -e<ujvhml<ujvg. kqiu: x we<x sle<him<cz< y Jh< hx<xq Gxqh<hqmh<hmuqz<jz we<hjk fil< gueqg<gqoxil</ weou? y -e< wf<k yv lkqh<hqx<gl<x NGl<. y g<glx<xl<wek< OkIf<okMg<g?-VHt<tqgt<(, ) lx<xl< (, ), x we<x Ogim<ce< lqk -Vg<gqxK weh< ohxgqoxil<. -h<ht<tqgjt ujvhmk<kitqz< Gxqg<gUl</-VHt<tqgjtOfIg<Ogimiz< hml<.6

236 -j{k<k-vhxll<fqm<mul</flg<gk<okjubieofig<ogimujvhml<gqjmg<gqxk )hml<.6 Jh< hiig<gul<*/ -r<g OfIg<O<giM y-ns<sg<g -j{big dt<tjk gueqg<gul</ wmk<kg<gim<m 7: y 4 -e<ujvhml<ujvg. kqiu: y -e< lkqh<h lixilz< 4 weul<? sle<him<cz< x -e< lkqh<h Gxqh<hqmh<hmilZl< -Vh<hjkg<gi{<gqOxil</weOu?fil<x g<g-v lkqh<hgt<, wek< OkIf<okMg<gqOxil<. -h<ohipkflg<g-vht<tqgt< (, 4) lx<xl< (, 4), OfIg<OgiM y 4 -e< lqkqvh<hkigh< ohxgqoxil</ x y 4 4 hml<.7 -u<uqvht<tqgjtbl<ujvhmk<kqz<gxqk<kyvofig<ogiceiz< -j{g<gul</-kje -VHxLl< fqm<mul</ -KOu flg<gk< Okjubie ujvhmligl< )hml<.7 Jh< hiig<gul<*/-r<gofig<ogimiekx-ns<sg<g-j{bigdt<tjkgueqg<gul</ hbqx<sq.. gqp<g<g{<mht<tqgt<upqs<osz<zl<ofig<ogimujvhml<ujvg; (i) (, ) lx<xl< (4, 6) (ii) (, 0) lx<xl< (, 5) (iii) (, ) lx<xl<(5, ) (iv) (, ) lx<xl< (5, 4). hqe<uvueux<xqe<ujvhml<ujvg: (i) y x (ii) y x (iii) x 5y (iv) x 4y. hqe<uvueux<xqe<ujvhml<ujvg: (i) x (ii) y 5 (iii) x 5 (iv) y 4 (v) x + 0 (vi) + y 0 4. y mx + c we<hkx<gieujvhmk<kqjeh<hqe<uvl<lkqh<hgjtg<ogi{<mujvg; (i) m lx<xl<c 4 (ii) m lx<xl< c (iii) m lx<xl<c 4 (iv) m lx<xl< c 5 5. hqe<uvl<sle<himgtqe<ujvhml<ujvg: (i) x + y (ii) x 5y 0 (iii) y + x 5 0 (iv) x y + 0

237 . OfIg<OgiMujvhmr<gtqe<hbe<hiM -bx<g{qks< osbz<himgtqe<xq -V yvr<gjl OfIg<OgiMs< sle<himgtg<g? nux<xqe< ujvhmr<gjt ye<xig ujvf<k kqiu gi{zil</ x, y -z< njlf<k yv Ofiqbsle<hiM ax + by + c 0 we<xucuqz<-vg<gl<. -s<sle<himgiicsqbe<ktk<kqz< yvofig<ogijmg<gxqg<gl</weou?-vyvr<gjls<sle<himgtqe<kqiugi{<hk-v OfIg<OgiMgtqe<ohiKh<Ht<tqjbg<g{<Mhqch<hkx<Gs< slligl</-r<g?&e<x ujggt< d{<migqe<xe/ Lkziukig?-VOfIg<OgiMgTl<ye<Oxiomie<xignjlgqe<xe;nkiuK?-V ujvhmr<gtl< ye<xigqe<xe/ -s<$p<fqjzbqz< Lcuqzi Ht<tqgt< -V ujvhmr<gtg<gl< ohikuieju we nxqgqoxil</ weou, ogimg<gh<hm<m sle<himgtg<gw{<{x<xkqiugt<d{<m/ -v{<miukig? -V OfIg<OgiM ujvhmr<gt< ye<oxiomie<xig njlukqz<jz; Neiz<? nju -j{bieju/ -s<$p<fqjzbqz< -V OfIg<OgiM ujvhmr<gtl< ye<jxobie<x oum<cg< ogit<ukqz<jz/ weou? -V OgiMgTg<Gl< ohikuie Ht<tq gqjmbik/weou?-u<ouivr<gjls<sle<himgtg<gk<kqiugqjmbik/ &e<xiukig? -V OfIg<OgiMgt< yov yv Ht<tqbqz< oum<cg<ogit<gqe<xe/ -s<$p<fqjzbqz<? ogimg<gh<hm<mt<t yvr<gjls< sle<himgtg<gk< keqk<k kqiugt< d{<m/ -ju? nf<ofig<ogimgt< oum<cg<ogit<tl< Ht<tqbqe< ns<s K~vr<gtiGl</ weou?-u<ouivr<gjls<sle<himgtg<gyovobivkqiud{<m/ wmk<kg<gim<m 8: x + y lx<xl< 4x + y we<x yvr<gjls< sle<himgjt ujvhml<&zl<kqi. kqiu: OgiM : y x + OgiM : y 4x + i.e., y x + x y x y yov ujvhmk<kitqz< -V sle<himgtqe< Ht<tqgjtg< Gxqg<gUl</ Ht<tqgjt )Ogim<Mk<K{<miz<* -j{k<k -VHxLl< fqm<mul</ -h<ohipk -V ye<oxiomie<x -j{f<k OfIg<OgiMgt< gqjmg<gqe<xe )hml<.8 Jh< hiig<gul<*/ yv Ogim<ce< lqkt<t wf<k yv Ht<tqBl< lx<oxiv Ogim<ce<lQKdt<tK/weOu?w{<{x<x Ht<tqgt< -V OfIg<OgiMgTg<Gl< ohikuig dt<te/ weou? w{<{x<x kqiugt<? ogimg<gh<hm<m -V yvr<gjls< sle<himgtg<gd{<m/ hml<.8

238 wmk<kg<gim<m 9: x y 4 lx<xl< x y 6 -e<ujvhml<ujvf<knke<&zl< -s<sle<himgtqe<kqiugi{<g/ kqiu: OgiM : x y 4 nz<zk y x 4 nz<zky x. x 0 y OgiM : x y 6 nz<zk y x + 6 nz<zk y x +. x 0 y 4 hml<.9 fil<(0, ) lx<xl< (, ) we<xht<tqgjtujvhmk<kitqz<gxqk<knux<xqe<upqob OfIg<OgiM ujvouil</ nmk<k? fil< (0, ) lx<xl< (, 4) Ngqb Ht<tqgjt nok ujvhmk<kitqz< Gxqk<K nux<xqe< upqob OfIg<OgiM ujvouil</-r<g OfIg<OgiMgt< -j{bigs<osz<ujkfil<gi{zil</weou?njuoum<cg<ogit<tuqz<jz/weou? -u<ouivr<gjls<sle<himgtg<gk<kqiugqjmbik(hml<.9jh<hiig<gul<*/ wmk<kg<gim<m 0: yvr<gjls<sle<himgt< x + y 5, &zl<kqig<gul<. kqiu: OgiM : x + y 5 nz<zk y x + 5 () x y -ux<jx ujvhml< OgiM : x y nz<zky x () x y 7 6 (, 7), (, 6) lx<xl< (, ) Ngqb Ht<tqgjt ujvhmk<kitqz< Gxqg<gUl</ -h<ht<tqgt< upqob OfIg<OgiM ujvbul</-kou sle<him)*-e< Ofi<g<OgiMujvhmliGl</nMk<K (, ), (0, ) lx<xl< (, 0) Ngqb Ht<tqgjt nok ujvhmk<kitqz< Gxqg<gUl</ -h<ht<tqgt< upqob OfIg<OgiM ujvbul</ -KOu sle<him () -e< OfIg<<OgiM ujvhmligl</ -u<uqv OfIg<OgiM ujvhmr<gtl< yv Ht<tq P(4, ) -z< oum<mgqxk (hml<.0 Jh< hiig<gul<*/ -h<ht<tq? -V OgiMgtqe<< lqkl< njlukiz<? yvr<gjls<sle<himgtqe<kqiu x 4, y we nxqgqe<oxil<. x 0 y 0 hml<.0 4

239 hbqx<sq. gqop ogimg<gh<hm<mt<t Lkz<0 ujvbqzie sle<himgtqe< okigkqg<g ujvhml< &zl<kqiugi{<g;. x + y 0, x x + y, 4x + y.. x y 0, y. 7. x + y 4, x + y 6.. x + y, x y. 8. x y 4, x + y. 4. x y 6, x + y x + y, 6x y x + y 5, x y. 0. x + 0, 4x + y uqjmgt< hbqx<sq.. (i). (ii). (iii). (iv) (i) x 0 y 0. (ii) x 0 y 0 5

240 . (iii). (iv) x y 0 x y 0. (i) (ii) x y x y (iii) x y 0 (iv) x 0 y

241 (v) x y 0 (vi) x 0 y (i) (ii) x 0 y 4 7 x 0 y 5 (iii) x 0 y 4 7 (iv) x 0 y 5 7

242 5. (i) (ii) x 0 y 6 4 x y (iii) x 0 y 7 5 (iv) x 5 y. x 0 y 0 hbqx<sq. x y 0 kqiux 4; y 4.. x 0 y 0 x 0 y kqiu x ; y. 8

243 . x 0 y 0 x 4 5 y kqiu x ; y x 4 5 y x 4 y 5 kqiu x 5; y. 5. x 4 y x 4 y kqiu x ; y. 6. x 0 y x 0 y 7. w{<{x<xkqiugt/< x 0 4 y 0 x 0 4 y kqiu-z<jz/ 9

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Sheet H d-2 3D Pythagoras - Answers

Sheet H d-2 3D Pythagoras - Answers 1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

gs;spf; fy;tpj; Jiw jpur;rpuhg;gs;sp Krpwp fy;tp khtl;lk; nxquqbz<! nky;yf;fw;fk; khzthfsf;fhd rpwg;gf; ifnal

gs;spf; fy;tpj; Jiw jpur;rpuhg;gs;sp Krpwp fy;tp khtl;lk; nxquqbz<! nky;yf;fw;fk; khzthfsf;fhd rpwg;gf; ifnal ;; gs;spf; fy;tpj; Jiw jpur;rpuhg;gs;sp Krpwp fy;tp khtl;lk; 10 nxquqbz< nky;yf;fw;fk; khzthfsf;fhd rpwg;gf; ifnal 2012 2013 mzpe;jiu Krpwp fy;tp khtl;lj;jpy; gj;jhk; tfg;g gbf;fk; khztu;fs; mur nghjj;nju;tpy;

Διαβάστε περισσότερα

Ψηθιακά ςζηήμαηα - Διζαγωγή. ΣΔΙ Πάηπαρ, Σμήμα Ηλεκηπολογίαρ Καθ. Π. Βλασόποςλορ

Ψηθιακά ςζηήμαηα - Διζαγωγή. ΣΔΙ Πάηπαρ, Σμήμα Ηλεκηπολογίαρ Καθ. Π. Βλασόποςλορ Ψηθιακά ςζηήμαηα - Διζαγωγή Καθ. Π. Βλασόποςλορ 1 Κςκλώμαηα Γιακοπηών και Λογικέρ Πύλερ Καθ. Π. Βλασόποςλορ 2 Κςκλώμαηα Γιακοπηών και Λογικέρ Πύλερ Καθ. Π. Βλασόποςλορ 3 Κςκλώμαηα Γιακοπηών και Λογικέρ

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 9ο ΑΣΚΗΣΕΙΣ 801-900 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com Adda47 No. APP for Banking & SSC Preparation Website:store.adda47.com Email:ebooks@adda47.com S. Ans.(d) Given, x + x = 5 3x x + 5x = 3x x [(x + x ) 5] 3 (x + ) 5 = 3 0 5 = 3 5 x S. Ans.(c) (a + a ) =

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &

J! #$ %& ( ) ) )  *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) & J! "#$ %"& J ' ( ) ) ) " *+, -./0-, L *- /! /!+12,3-4 % +15,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/01 ',913-51:--

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr, GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 212-213 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει

Διαβάστε περισσότερα

SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2

SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2 SKEMA PERCUBAAN SPM 07 MATEMATIK TAMBAHAN KERTAS SOALAN. a) y k ( ) k 8 k py y () p( ) ()( ) p y 90 0 0., y,, Luas PQRS 8y 8 y Perimeter STR y 8 7 7 y66 8 6 6 6 6 8 0 0, y, y . a).. h( h) h h h h h h 0

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( (((

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( ((( ? / / / o/ / / / o/ / / / 1 1 1., D 1 1 1 D 1, E F 1 D 1. = a, D = b, 1 = c. a, b, c : #$ #$ #$ 1) 1 ; : 1)!" ) D 1 ; ) F ; = D, )!" D 1 = D + DD 1, % ) F = D + DD 1 + D 1 F, % 4) EF. 1 = 1, 1 = a + b

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

!! #!!!$ #$! %!&' & (%!' #!% # *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2! # $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;

Διαβάστε περισσότερα

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

!#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667 !"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mthemtic.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mthemtic.gr. Μετατροπές

Διαβάστε περισσότερα

8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii)..

8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii).. இர மத ப பண கள வ ன க கள 1.கணங கள ம ச ப கள ம 1. A ={4,6.7.8.9}, B = {2,4,6} C= {1,2,3,4,5,6 } i. A U (B C) ii. A \ (C \ B). 2.. i. (A B)' ii. A (BUC) iii. A U (B C) iv. A' B' v. A\ (B C) 3. A = { 1,4,9,16

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών

Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών . Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών www.pe03.gr. Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών, Φθιώτιδας και Ευρυτανίας www.pe03.gr Day: 1 49th INTERNATIONAL MATHEMATICAL OLYMPIAD

Διαβάστε περισσότερα

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων Ψηφιακή Σχεδίαση Κεφάλαιο 2: Συνδυαστικά Λογικά Κυκλώματα Γ. Κορνάρος Περίγραμμα Μέρος 1 Κυκλώματα Πυλών και

Διαβάστε περισσότερα

Στις ΗΠΑ διεξάγονται κάθε χρόνο διάφοροι µαθηµατικοί διαγωνισµοί από τους οποίους ο USAMO, που αποτελεί την εθνική µαθηµατική ολυµπιάδα της χώρας, έχε

Στις ΗΠΑ διεξάγονται κάθε χρόνο διάφοροι µαθηµατικοί διαγωνισµοί από τους οποίους ο USAMO, που αποτελεί την εθνική µαθηµατική ολυµπιάδα της χώρας, έχε Στις ΗΠΑ διεξάγονται κάθε χρόνο διάφοροι µαθηµατικοί διαγωνισµοί από τους οποίους ο USAMO, που αποτελεί την εθνική µαθηµατική ολυµπιάδα της χώρας, έχει τα δυσκολότερα θέµατα. Άλλοι διαγωνισµοί µε σειρά

Διαβάστε περισσότερα

Προβολές και Μετασχηματισμοί Παρατήρησης

Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

È http://en.wikipedia.org/wiki/icosidodecahedron

È http://en.wikipedia.org/wiki/icosidodecahedron À Ô ÐÓ ÖÓÒØ ØÓÙÔ Ö ÕÓÑ ÒÓÙ Ò Ø Ô ØÓÙ Ô Ñ Ð Ø ØÓÙhttp://www.mathematica.grº Å Ø ØÖÓÔ LATEX ÛØ Ò Ã Ð Ò Ø ÃÓØÖôÒ Ä ÙØ Ö ÈÖÛØÓÔ Ô Õ ÐÐ ËÙÒ ÔÓÙÓ ËÕ Ñ Ø Å Õ Ð Æ ÒÒÓ ÉÖ ØÓÌ Ë Ð ¹ ÅÔÓÖ Ò Ò Ô Ö Õ Ò Ò Ñ Ð Ö º ÌÓß

Διαβάστε περισσότερα

5.2 ΑΠΛΟΠΟΙΗΣΗ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΚΑΤΑΤΑΞΗΣ ΣΕ ΠΙΝΑΚΑ

5.2 ΑΠΛΟΠΟΙΗΣΗ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΚΑΤΑΤΑΞΗΣ ΣΕ ΠΙΝΑΚΑ 5.2 ΑΠΛΟΠΟΙΗΣΗ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΚΑΤΑΤΑΞΗΣ ΣΕ ΠΙΝΑΚΑ 5.2. Εισαγωγή Αν η λογική συνάρτηση που πρόκειται να απλοποιήσουμε έχει περισσότερες από έξι μεταβλητές τότε η μέθοδος απλοποίησης με Χάρτη Καρνώ χρειάζεται

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές

Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές 1 Κλειστότητα Συναρτησιακών Eξαρτήσεων: Πώς συμβολίζεται: F + Τι σημαίνει : Το ΣΥΝΟΛΟ των Σ.Ε. που μπορούν να παραχθούν από ένα σύνολο εξαρτήσεων

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

(2), ,. 1).

(2), ,. 1). 178/1 L I ( ) ( ) 2019/1111 25 2019,, ( ), 81 3,,, ( 1 ), ( 2 ),, : (1) 15 2014 ( ). 2201/2003. ( 3 ) ( ). 2201/2003,..,,. (2),..,,, 25 1980, («1980»),.,,. ( 1 ) 18 2018 ( C 458 19.12.2018,. 499) 14 2019

Διαβάστε περισσότερα

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* ! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Ο Αλγόριθμος FP-Growth

Ο Αλγόριθμος FP-Growth Ο Αλγόριθμος FP-Growth Με λίγα λόγια: Ο αλγόριθμος χρησιμοποιεί μια συμπιεσμένη αναπαράσταση της βάσης των συναλλαγών με τη μορφή ενός FP-δέντρου Το δέντρο μοιάζει με προθεματικό δέντρο - prefix tree (trie)

Διαβάστε περισσότερα

Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 6ο ΑΣΚΗΣΕΙΣ 501-600 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

a,b a f a = , , r = = r = T

a,b a f a = , , r = = r = T !" #$%" &' &$%( % ) *+, -./01/ 234 5 0462. 4-7 8 74-9:;:; < =>?@ABC>D E E F GF F H I E JKI L H F I F HMN E O HPQH I RE F S TH FH I U Q E VF E WXY=Z M [ PQ \ TE K JMEPQ EEH I VF F E F GF ]EEI FHPQ HI E

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

FICHA TΙCNICA Tνtulo original em russo: Na Rubeje - (1901) Traduzido para o portuguκs por: Vicente Paulo Nogueira

FICHA TΙCNICA Tνtulo original em russo: Na Rubeje - (1901) Traduzido para o portuguκs por: Vicente Paulo Nogueira FICHA TΙCNICA Tνtulo original em russo: Na Rubeje - (1901) Traduzido para o portuguκs por: Vicente Paulo Nogueira NA FRONTEIRA Copyright - 1991 5ͺ Ediηγo (revisada) LIVRARIA ESPΝRITA BOA NOVA LIDA. Rua

Διαβάστε περισσότερα

Θωμάς Ραϊκόφτσαλης 01

Θωμάς Ραϊκόφτσαλης 01 0 Α. ΕΙΑΓΩΓΗ ΘΕΜΑ Α Γ_Μ_Μ_ΑΘΡ_ΕΙ_Β_ΕΚ_9 Έστω ο μιγαδικός αριθμός i,,. Τι καλούμε:. Πραγματικό μέρος του.. Φανταστικό μέρος του.. υζυγή του. 4. Εικόνα του μιγαδικού στο μιγαδικό επίπεδο. 5. Διανυσματική

Διαβάστε περισσότερα

Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 8ο ΑΣΚΗΣΕΙΣ 701-800 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης

Διαβάστε περισσότερα

tel , version 1-7 Feb 2013

tel , version 1-7 Feb 2013 !"## $ %&' (") *+ '#),! )%)%' *, -#)&,-'" &. % /%%"&.0. )%# "#",1 2" "'' % /%%"&30 "'' "#", /%%%" 4"," % /%%5" 4"," "#",%" 67 &#89% !"!"# $ %& & # &$ ' '#( ''# ))'%&##& *'#$ ##''' "#$ %% +, %'# %+)% $

Διαβάστε περισσότερα

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/52779

Διαβάστε περισσότερα

A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards

A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards Table of Contents Introduction (Arabic)... 1 Introduction (English)...396 Part One: Texts of the Constitutions

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΡΟΦΙΜΩΝ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΚΟΙΝΟΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΥΠΟΔΟΜΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΕΦΑΡΜΟΓΗΣ ΠΑΑ ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΪΚΟ ΓΕΩΡΓΙΚΟ ΤΑΜΕΙΟ

Διαβάστε περισσότερα

OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw)

OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw) PVWW!"#$ PVWW!"#$%&'()*+!"#$% 12!"#$%&'()*!!"#$%&'(!"#$!"#$%&'()*+!"#$%!!"#!$%&'()*+!"#$%!"!"#$%&'!"#$%&'!"#!"#$%!" SE!"!"#$%&'!"#!"#$%&'!"#$%&'!"#$!"#$!"#$%&'!"#$%&'!"#$%&!"#$%&'!"!"#$%&!"#$%&!"!"#$%!"#$%!"#$%&'(!"#$%&'!!"#!"#!"#$%&!"#$%&'(

Διαβάστε περισσότερα

Ανάλυση Συσχέτισης IΙ

Ανάλυση Συσχέτισης IΙ Ανάλυση Συσχέτισης IΙ Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 ΟΑλγόριθμοςFP-Growth Εξόρυξη Δεδομένων: Ακ. Έτος 2010-2011 ΚΑΝΟΝΕΣ

Διαβάστε περισσότερα

". / / / !/!// /!!"/ /! / 1 "&

. / / / !/!// /!!/ /! / 1 & ! "#$ # % &! " '! ( $# ( )* +# ),,- ". / / /!"!0"!/!// /!!"/ /! / 1 "& 023!4 /"&/! 52! 4!4"444 4 "& (( 52! "444444!&/ /! 4. (( 52 " "&"& 4/444!/ 66 "4 / # 52 "&"& 444 "&/ 04 &. # 52! / 7/8 /4 # 52! "9/

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013 Α Δ Ι Α - Φ 7 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 13 Δεκεμβρίου

Διαβάστε περισσότερα

Points de torsion des courbes elliptiques et équations diophantiennes

Points de torsion des courbes elliptiques et équations diophantiennes Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques

Διαβάστε περισσότερα

Dissertation Title: The Genealogy of the Seleucids: Seleucid Marriage, Succession, and Descent Revisited

Dissertation Title: The Genealogy of the Seleucids: Seleucid Marriage, Succession, and Descent Revisited College of Humanities and Social Science Graduate School of History, Classics and Archaeology Masters Programme Dissertation Dissertation Title: The Genealogy of the Seleucids: Seleucid Marriage, Succession,

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017 Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017 Άσκηση Φ4.1: Θεωρείστε τις ακόλουθες σχέσεις επί του συνόλου Α={1, 2, 3} 1. R={(1, 1), (1, 2), (1, 3), (3, 3)} 2. S={(1, 1), (1, 2), (2, 1), (2, 2),

Διαβάστε περισσότερα

TALAR ROSA -. / ',)45$%"67789

TALAR ROSA -. / ',)45$%67789 TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2

Διαβάστε περισσότερα

MITSUBISHI. Έτος κατασκευής

MITSUBISHI. Έτος κατασκευής 3000 GT 3.0i 24V (Z16A) 6G72 210 286 06/92-08/99 0802-1432M 237,40 ASX 1.6 MIVEC (GA1W) 4A92 86 117 04/10 + 0802-12987M 237,40 1.6 MIVEC (GA1W) 4A92 85 116 04/10 + 0802-58507M 237,40 1.8 DI-D (GA6W) 4N13

Διαβάστε περισσότερα

. visual basic. int sum(int a, int b){ return a+b;} : : :

. visual basic. int sum(int a, int b){ return a+b;} : : : : : : : (),, : (),( )-,() - :,, -,( ) -1.... visual basic int sum(int a, int b){ return a+b; float f=2.5; main(){ float A[10]; A[f]=15; int x=sum(int(f), 10, A[2]);. -2.... -3.foolowpos(3) * ( a b c) (

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

Εξωτερικό Γινόμενο Διανυσμάτων. Γιώργος Μπαλόγλου

Εξωτερικό Γινόμενο Διανυσμάτων. Γιώργος Μπαλόγλου Εξωτερικό Γινόμενο Διανυσμάτων Γιώργος Μπαλόγλου 4 η Μαθηματική Εβδομάδα, Θεσσαλονίκη, 7- Μαρτίου 0 Μνήμη Λουκά Κανάκη (95-0) υποθετικό κίνητρο: τομή δύο επιπέδων Ας θυμηθούμε ότι ένα επίπεδο E στον τρισδιάστατο

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

! #! & 0/! ).#! 71 1&$ -+ # &>  %+# 1 2$ "#$" &""'(() *+ , -------------------------------------------------------------------------------------------------------------------. / 0-1 2 $1 " 1 /& 1------------------------------------------------------------------------------------------------------------------------3

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ Πύλες - Άλγεβρα Boole 1 ΕΙΣΑΓΩΓΗ Α)Ηλεκτρονικά κυκλώµατα Αναλογικά κυκλώµατα Ψηφιακά κυκλώµατα ( δίτιµα ) V V 2 1 V 1 0 t t Θετική λογική: Ο V 1 µε V 1 =

Διαβάστε περισσότερα

Παρατηρήσεις στα ϑέµατα

Παρατηρήσεις στα ϑέµατα Παρατηρήσεις στα ϑέµατα του διαγωνισµού ΘΑΛΗΣ 2013 της Ε.Μ.Ε. Λυγάτσικας Ζήνων Πρότυπο Πειραµατικό Γ.Ε.Λ. Βαρβακείου Σχολής 20 Οκτωβρίου 2013 1 Γενικές Παρατηρήσεις Οι απόψεις των παιδιών Τα ϑέµατα, ιδίως

Διαβάστε περισσότερα

Τρίτη 4 εκεµβρίου m + 4Z

Τρίτη 4 εκεµβρίου m + 4Z ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 6 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τρίτη 4 εκεµβρίου 202 Ασκηση. Βρείτε

Διαβάστε περισσότερα

1 η Εργασία Ηµεροµηνία αποστολής: 19 Νοεµβρίου 2006

1 η Εργασία Ηµεροµηνία αποστολής: 19 Νοεµβρίου 2006 η Εργασία Ηµεροµηνία αποστολής: 9 Νοεµβρίου 6. α. Να βρεθεί η γωνία µεταξύ των διανυσµάτων a = i + j k και b = 6 i j + k. β. Να δείξετε ότι τα διανύσµατα a, b, c είναι ορθογώνια και µοναδιαία. a = ( i

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 12: Κανόνες Συσχέτισης Μέρος B Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης

Διαβάστε περισσότερα

!"# '1,2-0- +,$%& &-

!# '1,2-0- +,$%& &- "#.)/-0- '1,2-0- "# $%& &'()* +,$%& &- 3 4 $%&'()*+$,&%$ -. /..-. " 44 3$*)-),-0-5 4 /&30&2&" 4 4 -&" 4 /-&" 4 6 710& 4 5 *& 4 # 1*&.. #"0 4 80*-9 44 0&-)* %&9 4 %&0-:10* &1 0)%&0-4 4.)-0)%&0-44 )-0)%&0-4#

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 4ο ΑΣΚΗΣΕΙΣ 301-400 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Δπηθακπύιηα Οινθιεξώκαηα Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Επηθακπύιηα Οινθιεξώκαηα θαη εθαξκνγέο. Επηθακπύιην Οινθιήξωκα. Έζηω όηη ε βαζκωηή ζπλάξηεζε f(x,y,z) είλαη νξηζκέλε πάλω ζε κία

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R)

Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R) Α Δ Ι Α - Φ 8 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 20 Δεκεμβρίου

Διαβάστε περισσότερα

March 14, ( ) March 14, / 52

March 14, ( ) March 14, / 52 March 14, 2008 ( ) March 14, 2008 1 / 52 ( ) March 14, 2008 2 / 52 1 2 3 4 5 ( ) March 14, 2008 3 / 52 I 1 m, n, F m n a ij, i = 1,, m; j = 1,, n m n F m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a

Διαβάστε περισσότερα

γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις 7ο Φροντιστήριο. Βάρσος Κωνσταντίνος

Συναρτησιακές Εξαρτήσεις 7ο Φροντιστήριο. Βάρσος Κωνσταντίνος ΗΥ-360 Αρχεια και Βασεις εδοµενων, Τµηµα Επιστηµης Υπολογιστων, Πανεπιστηµιο Κρητης Συναρτησιακές Εξαρτήσεις Βάρσος Κωνσταντίνος 24 Νοεµβρίου 2017 Ορισµός 1. Μια συναρτησιακή εξάρτηση µεταξύ X και Y συµβολίζεται

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

ϳϮϳΪΘγεϼϓ. εϼϓ ήρύα. ήρύαεϼϓ

ϳϮϳΪΘγεϼϓ. εϼϓ ήρύα. ήρύαεϼϓ ΖϤϴϗ ϝϊϣ ϳϮϳΪΘγεϼϓ ϻύϛϡύϧ ϒϳΩέ,,,000,0,000,0,000,,000 00,000,000,0,000,0,000,,000,0,000,,,000,,,000,0,000,0,000,0,000,0,000,00,000,0,000,0,000,,0,000,0,000,0,000 0,000 0,000,0,000,0,000,0,000,00,000,,000,0,000,,000,00,000

Διαβάστε περισσότερα

#%" )*& ##+," $ -,!./" %#/%0! %,!

#% )*& ##+, $ -,!./ %#/%0! %,! -!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3

Διαβάστε περισσότερα

Πρώτη Μέρα. με πραγματικούς συντελεστές τα ο- ποία ικανοποιούν την ισότητα

Πρώτη Μέρα. με πραγματικούς συντελεστές τα ο- ποία ικανοποιούν την ισότητα 45η ΔΙΕΘΝΗΣ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ IMO 004 ΑΘΗΝΑ ΕΛΛΑΔΑ Επιμέλεια: Ανδρέας Φιλίππου Θεόκλητος Παραγιού Πρώτη Μέρα Πρόβλημα. Έστω ABC ένα οξυγώνιο τρίγωνο με AB =/ AC. Ο κύκλος με διάμετρο την πλευρά BC τέμνει

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

MICROMASTER Vector MIDIMASTER Vector

MICROMASTER Vector MIDIMASTER Vector s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.

Διαβάστε περισσότερα

Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en)

Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en) Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en) 7057/17 ADD 1 TRANS 97 ΔΙΑΒΙΒΑΣΤΙΚΟ ΣΗΜΕΙΩΜΑ Αποστολέας: Ημερομηνία Παραλαβής: Αποδέκτης: Για τον Γενικό Γραμματέα της Ευρωπαϊκής Επιτροπής,

Διαβάστε περισσότερα

ΗΥ360 Αρχεία και Βάσεις Δεδομένων

ΗΥ360 Αρχεία και Βάσεις Δεδομένων ΗΥ360 Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Συναρτησιακές Εξαρτήσεις Αξιώματα Armstrong Ελάχιστη Κάλυψη Συναρτησιακές Εξαρτήσεις Τι είναι : Οι Συναρτησιακές εξαρτήσεις είναι περιορισμοί ακεραιότητας

Διαβάστε περισσότερα