, , 2. A a και το στοιχείο της i γραμμής και j

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ", 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j"

Transcript

1 Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος Β 0 Είδος Γ 9 Ο πίνακας δικτύου αεροπορικών συνδέσεων τεσσάρων πόλεων ( υπάρχει σύνδεση, - δεν υπάρχει) : Αθήνα Θεσσαλονίκη Ηράκλειο Αλεξανδρούπολη Αθήνα 0 Θεσσαλονίκη 0 - Ηράκλειο 0 - Αλεξανδρούπολη Ορισμός πίνακα Ένας πραγματικός (μιγαδικός) πίνακας Α διάστασης mείναι μία διάταξη m πραγματικών (μιγαδικών αριθμών) σε m γραμμές και στήλες Παράδειγμα: πίνακας και τετραγωνικός πίνακας τετραγωνικός 0 9, Ένας πίνακας που αποτελείται από μία στήλη ( m ) ή μία γραμμή ( ), ονομάζεται πίνακας-στήλη (διάνυσμα στήλη ή απλά διάνυσμα) ή πίνακαςγραμμή (ή διάνυσμα γραμμή) αντίστοιχα Ένας πίνακας λέγεται πίνακας στοιχείο Παράδειγμα: Συχνά συμβολίζουμε τον πίνακα ως στήλης με ij, 0 9, A a και το στοιχείο της i γραμμής και j ij m a ή ij -στοιχείο του πίνακα Συνήθως για τα ονόματα των πινάκων χρησιμοποιούμε κεφαλαία γράμματα και για τα ονόματα των διανυσμάτων πεζά Από εδώ και πέρα όταν αναφερόμαστε σε πίνακες θα εννοούμε πραγματικούς πίνακες Αν m, τότε ο πίνακας Α είναι ένας τετραγωνικός πίνακας τάξης Η κύρια διαγώνιος ενός τετραγωνικού πίνακα τάξης αποτελείται από τα στοιχεία a i ii

2 Κεφάλαιο Ισότητα πινάκων Δύο πίνακες μπορούν αν συγκριθούν εάν είναι της ίδιας διάστασης Δύο πίνακες (ιδίας διάστασης) είναι ίσοι όταν έχουν ένα προς ένα τα στοιχεία τους ίσα A B a b i m, j ij ij Παράδειγμα: Οι παρακάτω πίνακες δεν μπορούν να συγκριθούν γιατί δεν έχουν την ίδια διάσταση Ενώ για τους πίνακες ισχύει διότι Τέλος εάν 0 0 9, A, B= [ ] [ ] τότε Βασικοί πίνακες Ένας πίνακας του οποίου όλα τα στοιχεία είναι μηδενικά ονομάζεται μηδενικός και συμβολίζεται συνήθως με O m Ένας τετραγωνικός πίνακας D που έχει στοιχεία μόνο στη διαγώνιο του ονομάζεται διαγώνιος (diagoal) Ένας τετραγωνικός πίνακας U που έχει όλα τα στοιχεία κάτω από την κυρία διαγώνιο μηδενικά ονομάζεται άνω-τριγωνικός (upper triagular) Ένας τετραγωνικός πίνακας L που έχει όλα τα στοιχεία πάνω από την κυρία διαγώνιο μηδενικά ονομάζεται κάτω-τριγωνικός (lower triagular) u u u u l u u u l l U, L 0 0 u u l l l u l l l l U άνω τριγωνικός u 0 όταν i j L κάτω τριγωνικός l 0 όταν i j ij ij

3 Ένας διαγώνιος πίνακας ονομάζεται μοναδιαίος Πίνακες I του οποίου τα διαγώνια στοιχεία είναι ίσα με, d d D, I 0 0 d d U διαγώνιος d 0 όταν i j I μοναδιαίος: διαγώνιος και I ij Ένας τετραγωνικός πίνακας ο οποίος έχει μη μηδενικά στοιχεία στην κύρια διαγώνιο και σε ίσο αριθμό άνω και κάτω διαγωνίων, ενώ τα υπόλοιπα στοιχεία είναι μηδέν, ονομάζεται πίνακας δέσμη (baded) Όταν ο αριθμός των μη μηδενικών γειτονικών προς την κύρια διαγώνιο είναι ένα τότε ο πίνακας λέγεται τριδιαγώνιος (tridiagoal) a a a a a a a a 0 T a a a a a T τριδιαγώνιος T Ο ανάστροφος A (traspose) ενός πίνακα προκύπτει εάν στον πίνακα αλλάξουμε τις γραμμές σε στήλες και τις στήλες σε γραμμές Ένας τετραγωνικός πίνακας A λέμε ότι είναι συμμετρικός αν ισχύει η σχέση T T A A όπου A, ο ανάστροφος του A Σε έναν πίνακα Z με μιγαδικά στοιχεία ο πίνακας με τα συζυγή στοιχεία του λέγεται συζυγής πίνακας Z z ij Ο ανάστροφος συζυγής του πίνακα Z συμβολίζεται με ερμιτιανός Z * Z T Εάν ισχύει * Z Z τότε ο πίνακας ονομάζεται ii Παραδείγματα: T 0 0 T 9,

4 Κεφάλαιο T 0 9 T T, 0 9, * i i i 5i i 5i Πίνακες και πράξεις Ορίζεται το γινόμενο (πραγματικού ή μιγαδικού) αριθμού επί πίνακα ως ένας πίνακας που έχει ως στοιχεία το γινόμενο του αριθμού επί το στοιχείο του πίνακα σε κάθε θέση ka ka ij Δύο πίνακες μπορούν να προστεθούν εάν είναι της ίδιας διάστασης Το άθροισμα δύο πινάκων (ιδίας διάστασης) είναι ένας πίνακας ιδίας διάστασης που έχει ως στοιχεία το άθροισμα (στην αντίστοιχη θέση) των στοιχείων των προσθετέων C A B c a b i m, j ij ij ij Η διαφορά πινάκων ορίζεται ως A B A ( B) Για την πρόσθεση πινάκων (εννοείται κατάλληλων πινάκων ώστε να γίνεται η πράξη) ισχύει: A B B A (αντιμεταθετική ιδιότητα) ( A B) C A ( B C) (προσεταιρισική) AO A(ουδέτερο στοιχείο) A ( A) O Για το γινόμενο αριθμού επί πίνακα ισχύει: ( k l) A ka la k( AB) ka kb k( la) ( kl) A A A Αν la Oτότε ή l 0ή A O (Εννοείται ότι οι πινάκες είναι κατάλληλοι ώστε να γίνεται η πράξη) Παραδείγματα:

5 Πίνακες Αφού τα διανύσματα είναι ένα είδος πίνακα, το γινόμενο πραγματικού αριθμού επί ένα διάνυσμα είναι ένα διάνυσμα: x ax a a πχ z az 0 0 Κάθε συνιστώσα (ή συντεταγμένη) πολλαπλασιάζεται επί τον αριθμό Επίσης, ανάλογα ορίζεται και το άθροισμα δύο διανυσμάτων: x x x x πχ z z z z Ορίζουμε το γινόμενο πίνακα-γραμμή (ή διάνυσμα γραμμή) επί πίνακαστήλη (διανύσματος) : b b a a a, a, ab ab a, b, a, b, a ibi i b, b, Το αποτέλεσμα της πράξης αυτής είναι ένας πίνακας στοιχείο Όπως θα δούμε σε επόμενο κεφάλαιο θα ορίσουμε το στοιχείο του πίνακα αυτού ως εσωτερικό γινόμενο των δύο διανυσμάτων Παραδείγματα: ( ) ( ) Εάν [ ] τότε [ ] [ ] [ ] [ ] Ορίζουμε το γινόμενο πίνακα m επί πίνακα-στήλη (διάνυσμα) ως τον πίνακα-στήλη (διάνυσμα) που στην i -συνιστώσα του έχει το εσωτερικό γινόμενο της i -γραμμής του πίνακα το διάνυσμα 5

6 Κεφάλαιο Παράδειγμα: b ab a, b, b a a a b a b a b, am,b a m a m m, b, b, am b amb, m,, i i i i a ab i i a b i i, i i ( ) ( ) ( ) ( ) 0 8 Ορίζουμε το γινόμενο πίνακα Α m επί πίνακα Β k ως τον πίνακα m k για τον οποίο το ( i, j)- στοιχείο προκύπτει από το γινόμενο της i -γραμμής του πίνακα Α επί της j -στήλης του πίνακα Β a i, b b i C AB [ cij ] aipbpj p Οπότε για να ορίζεται το γινόμενο ο αριθμός των στηλών του πίνακα Α θα πρέπει να είναι ίσος με τον αριθμό των γραμμών του πίνακα Β Παράδειγμα: Έστω x A 0, B 0 0, C, όπου x Από τις παρακάτω παραστάσεις να υπολογισθούν όσες έχουν νόημα ΑΒ, ΒΑ, T AA, CB, BC, B, A B Έχουμε x x0 x0 x x AB T x 0 x x 0 x x x AA 0 x 0 x 0 0, x 6

7 BC Πίνακες Οι υπόλοιπες παραστάσεις δεν έχουν νόημα Για παράδειγμα, το πλήθος των στηλών του Β δεν είναι ίσο με το πλήθος των γραμμών του Α και επομένως δεν ορίζεται το γινόμενο BA Το άθροισμα Α+Β δεν ορίζεται γιατί οι πίνακες Α, Β είναι διαφορετικού μεγέθους Για το γινόμενο πινάκων (εννοείται η επιλογή κατάλληλων διαστάσεων πινάκων ώστε να γίνεται η πράξη) ισχύει: ( AB) C A( BC) (προσεταιρισική) A( B C) AB AC (επιμεριστική από αριστερά ιδιότητα) ( B C) A BA CA (επιμεριστική από δεξιά ιδιότητα) AO O ή OA O γενικά AI A ή IA Aκαι για τετραγωνικούς IA AI A k( AB) ( ka) B A( kb) Γενικά, ακόμη και αν ορίζεται το γινόμενο, για πίνακες δεν ισχύει η αντιμεταθετικότητα AB BA k Ορίζεται και η κ-δύναμη τετραγωνικού πίνακα ως A A A και k φορές A I Για έναν διαγώνιο τετραγωνικό πίνακα η κ-δύναμη του είναι ένας διαγώνιος τετραγωνικός πίνακας με διαγώνια στοιχεία τις κ-δυνάμεις των διαγώνιων στοιχείων του αρχικού ( ) Τώρα που ορίσαμε τις πράξεις μπορούμε να παραθέσουμε τις ακόλουθες ιδιότητες: Ιδιότητες Αναστρόφων πινάκων T A T A ( A B) T A T B T ( ka) T ka T ( AB) T B T A T 7

8 Κεφάλαιο Ως ίχνος του τετραγωνικού πίνακα Α (trace) ονομάζουμε το άθροισμα των στοιχείων της κυρίας διαγωνίου του: i tr( A) a a a a Ιδιότητες ίχνους τετραγωνικού πίνακα tr A B tr( A) tr( B) tr AB tr( BA) tr ka k tr( A) T tr A tr( A) Παράδειγμα: Ο πίνακας των πωλήσεων της εταιρείας του πρώτου παραδείγματος είναι ο Το ετήσιο σύνολο των πωλήσεων ανά είδος δίνεται από το γινόμενο Το σύνολο των πωλήσεων ανά τρίμηνο δίνεται από το γινόμενο Εάν το κέρδος για το πρώτο προϊόν είναι 0 για το δεύτερο και για το τρίτο το συνολικό κέρδος ανά τρίμηνο δίνεται από το γινόμενο και το ετήσιο σύνολο των κερδών [50] ii 8

9 Πίνακες Παράδειγμα: Η αναπαράσταση ενός κατευθυνόμενου γραφήματος όπως το παρακάτω 5 6 δίνεται με την μορφή του πίνακα A όπου υπάρχει κατευθυνόμενο τόξο από τον κόμβο i στον κόμβο j aij 0 δεν υπάρχει κατευθυνόμενο τόξο από τον κόμβο i στον κόμβο j Μπορούμε εύκολα να διαπιστώσουμε ότι ο αριθμός των διαφορετικών τρόπων μετάβασης (συνδέσεων) από τον κόμβο i στον κόμβο j διατρέχοντας ακριβώς κατευθυνόμενα τόξα (ακολουθώντας την φορά τους) είναι ίσος προς τον αριθμό: a a a a a a i j i j i6 6 j (δηλαδή μέσω του κόμβου ή μέσω του κόμβου ή ή μέσω του κόμβου 6) Από τον ορισμό του γινομένου πινάκων διαπιστώνουμε ότι ο αριθμός αυτός είναι το στοιχείο (i,j) του πίνακα A Παρόμοια, ο αριθμός των διαφορετικών τρόπων μετάβασης από τον κόμβο i στον κόμβο j διατρέχοντας ακριβώς κατευθυνόμενα τόξα (ακολουθώντας την φορά τους) είναι ίσος προς το στοιχείο (i,j) του πίνακα A κοκ Αν ο πίνακας Α έχει την εξής μορφή 0 A 0 0 και αντιστοιχεί στο διάγραμμα 9

10 Κεφάλαιο Τότε ο A Διαπιστώνουμε για παράδειγμα ότι ο κόμβος μπορεί να επικοινωνήσει με τον κόμβο με τη χρήση δύο τόξων με ένα τρόπο (), ενώ ο κόμβος μπορεί να επικοινωνήσει με τον κόμβο με τη χρήση δύο τόξων κατά δύο τρόπους (,) ενώ ο κόμβος μπορεί να επικοινωνήσει με εαυτό του κόμβο με τη χρήση δύο τόξων κατά δύο τρόπους (,) Για σύνδεση με τη χρήση τριών τόξων υπολογίζουμε: Ο αντίστροφος πίνακας A Ένας τετραγωνικός πίνακας A λέμε ότι είναι μη ιδιάζων (o sigular) ή - αντιστρέψιμος εάν υπάρχει πίνακας A για τον οποίο ισχύει - - AA A A I - Ο πίνακας A ονομάζεται ο αντίστροφος (iverse) του A Ένας πίνακας για τον οποίο δεν υπάρχει αντίστροφος λέγεται ιδιάζων (sigular) Παραδείγματα: Ας εξετάσουμε αν ο A είναι αντιστρέψιμος, δηλαδή αν υπάρχει x B z w τέτοιος ώστε AB BA I Παρατηρούμε ότι x 0 AB I z w 0 xz x z w 0 w 0 x z w 0 x z 0 w Λύνοντας το σύστημα βρίσκουμε x,, z, w Μέχρι στιγμής δεν έχουμε δείξει ότι ο Α είναι αντιστρέψιμος, αλλά έχουμε εντοπίσει έναν υποψήφιο 0

11 Πίνακες πίνακα για το Β Θέτοντας B εύκολα επαληθεύεται ότι AB BA I Άρα ο Α είναι αντιστρέψιμος Τώρα, ας εξετάσουμε αν ο A x είναι αντιστρέψιμος Έστω B z w Παρατηρούμε ότι x z w 0 AB I x z w 0 xz w0 x z 0 w Το σύστημα αυτό δεν έχει λύση, γιατί από την πρώτη και τρίτη εξίσωση παίρνουμε = 0 Άρα δεν υπάρχει πίνακας B με AB I Συνεπώς ο Α δεν είναι αντιστρέψιμος Όταν μας δίνεται ή υπολογίζουμε κάποιον αντίστροφο καλό είναι να επαληθεύουμε - - ότι πράγματι ισχύει η σχέση AA A A I Δεν χρειάζεται ωστόσο να υπολογίσουμε και τα δύο γινόμενα παράδειγμα εάν έχουμε υπολογίσει ότι για - - AA, A A, αρκεί το ένα από αυτά Για A ισχύει A θα πρέπει AA Για έναν διαγώνιο πίνακα η αντίστροφος του είναι ένας διαγώνιος πίνακας με διαγώνια στοιχεία τους αντίστροφους των διαγώνιων στοιχείων του αρχικού επίσης υπάρχουν πίνακες που εάν υψωθούν σε μία δύναμη μας δίνουν τον μοναδιαίο πχ

12 Κεφάλαιο ( για αυτόν A I οπότε - A ) Ισχύουν (εφόσον υπάρχουν οι αντίστροφοι): ( AB) B A ( η απόδειξη παρατίθεται ως άσκηση στο τέλος του κεφαλαίου) ( ) T T ( ) ( ) k k ( ) ( ) Αλγόριθμος υπολογισμός του αντιστρόφου με τη μέθοδο του επαυξημένου πίνακα Θεωρούμε τον επαυξημένο πίνακα A I και εφαρμόζουμε σε αυτόν στοιχειώδεις γραμμοπράξεις που μετατρέπουν τον Α σε ανηγμένο κλιμακωτό πίνακα Κ Τότε ο A I έχει μετατραπεί σε έναν πίνακα της μορφής K B Αν K I, τότε ο Α είναι αντιστρέψιμος και A B Αν K I, τότε ο Α δεν είναι αντιστρέψιμος Παραδείγματα 0 Ας εφαρμόσουμε τα παραπάνω στον A 8 Έχουμε διαδοχικά A I

13 Πίνακες Επειδή στο αριστερό μισό του τελευταίου πίνακα εμφανίστηκε ο μοναδιαίος, συμπεραίνουμε ότι ο Α είναι αντιστρέψιμος και A Τώρα, εξετάζουμε αν ο A 0 είναι αντιστρέψιμος 0 0 Έχουμε A I Στο αριστερό μισό του τελευταίου πίνακα υπάρχει ο ανηγμένος κλιμακωτός 0 πίνακας 0 0 που δεν είναι ίσος με τον μοναδιαίο Άρα ο Α δεν είναι αντιστρέψιμος 5 Επίλυση συστημάτων με τη χρήση του αντιστρόφου Ένα γραμμικό σύστημα μπορεί να γραφεί στη μορφή Ax b Εφόσον υπάρχει ο αντίστροφος του πίνακα A, η λύση του συστήματος δίνεται από τον τύπο x A b Οι ακόλουθες προτάσεις είναι ισοδύναμες για κάθε τετραγωνικό πίνακα Το σύστημα Ax0 έχει μοναδική λύση το x 0 Το σύστημα Axb έχει μοναδική λύση για κάθε διάνυσμα b Ο πίνακας είναι μη ιδιάζων (δηλαδή αντιστρέφεται) Παράδειγμα: Ας δούμε το γνωστό μας σύστημα: u v w 5 u 5 u 5 u 6v 6 0 v v 6 0 u 7v w 9 7 w 9 w 7 9 θεωρούμε τον επαυξημένο πίνακα A I

14 Κεφάλαιο / /8 / / 5/8 / 0 0 / 5/6 /8 0 0 / /8 / 0 0 / /8 / Οπότε u 5 / 5/6 /8 5 v 6 0 / /8 / w Μεταθετικοί Πίνακες Οι παρακάτω πίνακες εφαρμόζουν γραμμοπράξεις όταν πολλαπλασιάσουν από αριστερά έναν πίνακα Α Ο πίνακας που εφαρμόζει τη γραμμοπράξη i i(δηλαδή πολλαπλασιάζει την i γραμμή επί k ) είναι ο P i ( ) όπου το k βρίσκεται στην ii -θέση Για παράδειγμα ο πίνακας πίνακα επί k πολλαπλασιάζει την η γραμμή ενός x Ο πίνακας που εφαρμόζει τη γραμμοπράξη i i j (δηλαδή πολλαπλασιάζει την j γραμμή επί k και την προσθέτει στην i ) είναι ο

15 Πίνακες όπου το k βρίσκεται στην ij -θέση ij ( ) 0 0 Για παράδειγμα ο πίνακας 0, όπου το (,) στοιχείο του είναι -, 0 0 πολλαπλασιάζει την η γραμμή ενός x πίνακα επί - και την προσθέτει στη η Ενώ ο πίνακας 0 0, όπου το (,) στοιχείο του είναι, πολλαπλασιάζει την 0 0 η γραμμή ενός x πίνακα επί και την προσθέτει στην η 0 ( 6) Τέλος, ο πίνακας που εφαρμόζει τη γραμμοπράξη i j(δηλαδή εναλλάσσει την i γραμμή με την j γραμμή) E ij 0 0 όπου οι μονάδες βρίσκονται στην ij -θέση και στην ji -θέση 5

16 Κεφάλαιο Για παράδειγμα ο πίνακας με την η γραμμή εναλλάσσει πολλαπλασιάζει την η γραμμή Ας δούμε τώρα το γνωστό μας σύστημα και να εκτελέσουμε όλες τις γραμμοπράξεις με τη χρήση μεταθετικών πινάκων: u v w 5 u 5 u 6v 6 0 v u 7v w 9 7 w u v w u u v v 7 w w από όπου με προς τα πίσω αντικατάσταση παίρνω τη λύση Κάνοντας το ίδιο για το παράδειγμα εύρεσης του αντιστρόφου του ίδιου πίνακα, το γινόμενο των μεταθετικών πινάκων είναι: / / / 5/6 / / /8 / Πίνακες μετασχηματισμών Τέλος, ας δούμε μία εφαρμογή των πινάκων που σχετίζεται με τα γραφικά υπολογιστών Εάν πολλαπλασιάσουμε τον πίνακα Q cos si c s si cos s c όταν c cos s si x με το διάνυσμα των συντεταγμένων ενός σημείου του καρτεσιανού επιπέδου τότε παίρνουμε τις συντεταγμένες του σημείου που προκύπτει από την αριστερόστροφη στροφή γύρω από την αρχή των αξόνων (0,0) κατά γωνία 6

17 Πίνακες x' x c s x cx s Q ' s c sx c θ x Παραδείγματα: Εάν στρέψουμε ένα σημείο κατά ο πίνακας στροφής είναι ο cos si 0 Q 0 si cos οπότε το σημείο 0 στρέφεται και πάει στο x x' πετά την περιστροφή είναι ' x Εάν στρέψουμε ένα σημείο κατά ο πίνακας στροφής είναι ο 0 και οι συντεταγμένες του σημείου cos si Q si cos x οι συντεταγμένες του σημείου πετά την περιστροφή είναι Εάν εκ νέου περιστρέψουμε κατά QQ x x ' ' x ο τελικός πίνακας περιστροφής θα είναι ο 0 0 ο οποίος είναι ο Q Με τη χρήση απλών τριγωνομετρικών τύπων μπορούμε να βρούμε ότι 7

18 Κεφάλαιο cos si cos si Q si cos si cos cos si cos si cos si cos si cos si si cos και γενικότερα ότι Q Q Q Q cos si cos si Q si cos si cos cos cos si si cos si si cos si cos cos si si si cos cos cos si si Q cos Υπενθυμίζεται ότι ισχύουν οι τύποι: si( ) si( )cos( ) cos( )si( ) και cos( ) cos( )cos( ) si( )si( ) Εάν στρέψουμε ένα σημείο κατά γωνία,και στη συνέχεια κατά γωνία έχουμε οπότε συμπεραίνουμε ότι Q Εάν πολλαπλασιάσουμε τον πίνακα cos0 si 0 0 Q Q Q Q0 si 0 cos0 0 cos si Q cos si si cos si cos c P cs x με το διάνυσμα των συντεταγμένων ενός σημείου του καρτεσιανού επιπέδου τότε παίρνουμε τις συντεταγμένες του σημείου που προκύπτει από την προβολή πάνω σε μία ευθεία η οποία έχει κλίση γωνία και περνά από τον άξονα (0,0) cs s 8

19 Πίνακες x θ x' x P ' Παραδείγματα: c Εάν προβάλουμε το σημείο 0 τότε οι συντεταγμένες της προβολής θα είναι cs 0 ενώ εάν προβάλουμε το σημείο και οι συντεταγμένες της προβολής του cs σημείου θα είναι s Στην περίπτωση που η γωνία κλίσης της ευθείας είναι s si οπότε P συγκεκριμένη ευθεία έχει συντεταγμένες Εάν πολλαπλασιάσουμε τον πίνακα H τότε c cos, και η προβολή του σημείου P c 6 cs cs s x με το διάνυσμα των συντεταγμένων ενός σημείου του καρτεσιανού επιπέδου τότε παίρνουμε τις συντεταγμένες του σημείου που προκύπτει από την ανάκλαση ως προς την ευθεία η οποία έχει κλίση γωνία στη 9

20 Κεφάλαιο x θ x' x H ' Παραδείγματα: Εάν το συμμετρικό του σημείου 0 ως προς την ευθεία θα έχει συντεταγμένες c 0 cs ενώ το συμμετρικό του σημείου cs θα είναι το σημείο s Στην περίπτωση που η γωνία κλίσης της ευθείας είναι τότε c cos, 6 6 s si οπότε H 6 και το συμμετρικό 6 του σημείου ως προς τη συγκεκριμένη ευθεία έχει συντεταγμένες H 6 Η εφαρμογή δύο συνεχόμενες φορές της ανάκλασης ως προς την ίδια ευθεία έχει πίνακα μετασχηματισμού (c ) cs c cs cs s c cs c cs H cs s cs s c cs cs s (s ) cs 0 0 Αφού c s, s c οπότε (c ) cs (c c ) cs c c ( s ) c c επίσης (s ) cs (s s ) cs s s ( c ) s s και c cs cs s cs c s 0 0

21 Δηλαδή μας γυρνά στο αρχικό σημείο Πίνακες Όπως είδαμε διαδοχικά γινόμενα εφαρμόζουν διαδοχικούς μετασχηματισμούς Δηλαδή μία περιστροφή κατά γωνία, προβολή σε ευθεία με γωνία και ανάκλαση ως προς ευθεία με γωνία θα έχει πίνακα μετασχηματισμού H P Q Παράδειγμα: Ο τελικός πίνακας μετασχηματισμού περιστροφής ενός σημείου κατά προβολής σε ευθεία με γωνία κλίσης και τελικά συμμετρίας του ως προς ευθεία με γωνία κλίσης 6 είναι, H P Q Λυμένες ασκήσεις πάνω στους πίνακες Έστω x A 0, 0 B 0, C, όπου x Από τις παρακάτω παραστάσεις να υπολογισθούν όσες έχουν νόημα ΑΒ, ΒΑ, (Α+Β)C, BC, B, 5B Λύση Ο πίνακας Α είναι x και ο Β είναι x επομένως ο ΑΒ ορίζεται και είναι ο επόμενος x πίνακας x0 0 x ( ) x x x AB ( ) 0 Ο πίνακας ΒΑ δεν ορίζεται, αφού το πλήθος των στηλών του Β είναι άλλο από το πλήθος των γραμμών του Α Ο πίνακας Α+Β επίσης δεν ορίζεται, αφού οι πίνακες δεν είναι του ίδιου τύπου, συνεπώς δεν ορίζεται και (Α+Β)C Ο πίνακας ΒC είναι πίνακας x, και βρίσκουμε BC Ο πίνακας Β επίσης δεν ορίζεται, αφού ο πίνακας Β δεν είναι τετραγωνικός

22 Κεφάλαιο Τέλος ο x πίνακας ( ) B Δίνονται οι πίνακες: A, B, C και D Να εξεταστεί αν ορίζονται και να υπολογιστούν (στην περίπτωση που ορίζονται) οι πίνακες: (i) AB (ii) BA (iii) CD και (iv) DC Λύση: (i) Ο πίνακας B, όπως και ο Β, είναι Ο πίνακας Α είναι Άρα δεν ορίζεται το γινόμενο AB και επομένως και το άθροισμα AB B (ii) Ο πίνακας είναι Έχουμε και ο πίνακας Α είναι Επομένως ο πίνακας B 8 και άρα B είναι 9 5 BA BA (iii) Ο πίνακας C είναι και ο πίνακας D είναι Άρα ο πίνακας CD είναι, [] δηλαδή αριθμός Έχουμε CD (iv) Ο πίνακας D είναι και ο πίνακας είναι C Άρα ο πίνακας DC είναι Έχουμε DC Δίνονται οι πίνακες A, B, C, D Σε ποια ειδική κατηγορία πινάκων ανήκει ο πίνακας C; Τι μπορείτε να πείτε για το C, C - ; Αποδείξτε ότι A BCD Αφού υπολογίσετε το DB και με τη χρήση του A BCD υπολογίστε το Α Λύση: 0 / 0 Ο πίνακας C είναι διαγώνιος Ισχύει C, C 0 0 / DB I ( ) 5 5 ( ) BCD A, A BCDBCDBCDBCD BCICICICD BC D

23 Πίνακες Σας δίνεται ο πίνακας A 0 Υπολογίστε τον πίνακα 0 5 A A I και στη συνέχεια υπολογίστε τον πίνακα AB 5 Λύση: 0 A A A A I / 5 / / 5 / / 5 / 5 / 5 / AB 0 0 / 5 / / 5 / Οπότε B A A A I και 5 5 AB AA I x 5 Έστω A ( ) x 0,χρησιμοποιώντας επαγωγή, αποδείξτε ότι A, 0 για,,, Λύση: Επαγωγικά προφανώς για έχουμε για κάθε k, δηλ k Πράγματι, A k ( ) x A A Έστω ότι ισχύει 0 k k ( ) x Θα δείξουμε ότι ισχύει και για κάθε 0 x x x x A A A 0 0 το 0 0 οποίο δείχνει ότι ισχύει η έκφραση του A για κάθε,,, k k k k k k k k k ( ) x ( ) ( )

24 Κεφάλαιο ΕΠΑΓΩΓΗ Πολλές μαθηματικές προτάσεις είναι μερικές φορές δύσκολο να τις αποδείξουμε απ ευθείας Για να αποδείξουμε τέτοιες προτάσεις που αναφέρονται σε ακεραίους ν χρησιμοποιούμε μια μέθοδο που είναι γνωστή ως τέλεια ή μαθηματική επαγωγή Τί κάνουμε: Αντί να αποδείξουμε απ ευθείας την πρόταση αποδεικνύουμε το εξής: Βήμα : Αποδεικνύουμε ότι η πρόταση ισχύει για ν= Βήμα ::Δεχόμαστε ότι η συγκεκριμένη πρόταση ισχύει για κάποιον κ Βήμα : Και με βάση το Βήμα αποδεικνύουμε ότι ισχύει και για τον επόμενό του κ+ Παράδειγμα: Για να αποδείξουμε τον τύπο Τότε ο τύπος γίνεται ( ) κοιτάμε τι γίνεται για ν= που ισχύει Αν τώρα ( ), τότε ( ) ( )( ) ( ν ) ( ) και η πρόταση ισχύει και για ν+ ( )( ) Ο τύπος αποδεικνύεται παρόμοια 6 6 (i) Δίνεται ο πίνακας: 0 A 0 0 Δείξτε ότι A A A I, για κάθε 0,,, χρησιμοποιώντας την μέθοδο της Επαγωγής: Δείξτε πρώτα ότι ο τύπος ισχύει για = 0, Κατόπιν δεχθείτε ότι ισχύει για = k και δείξτε ότι ισχύει για = k+ (ii) Υπολογίστε τον πίνακα (Υπόδειξη: 00 A A ( A A ) ( A A ) ( A I) I ) Λύση: (i) A

25 Επομένως, Ακόμη, A Υποθέτουμε ότι I A A A( A I) A I A A A I Τότε A A A( A A ) A( A I) A I Επομένως, για κάθε,, Πίνακες A A A I, (ii) 00 προσθεταίοι A ( A A ) ( A A ) ( A I) I 00 ( A I) I A I A I Εφαρμόζοντας τον Αλγόριθμο Υπολογισμού Αντίστροφου Πίνακα (δηλαδή με τη χρήση επαυξημένου πίνακα) βρείτε τον αντίστροφο του πίνακα: A 0 0 Με τη χρήση της μεθόδου του αντίστροφου πίνακα λύστε το σύστημα: x z z z Λύση A I / /( 5/ ) / 0 / / 5 9 / / 5 / 5 / / 5 / / 5 / / 5 9 / / 5 / / 5 / / 5 / / 5 / / 5 / 5 Άρα / 5 / 5 A 0 / 5 / 5 0 / 5 / 5 5

26 Κεφάλαιο Ένα γραμμικό σύστημα μπορεί να γραφεί στη μορφή Ax b Εφόσον υπάρχει ο αντίστροφος του πίνακα A, η λύση του συστήματος δίνεται από τον τύπο x A b / 5 / 5 A 0, b οπότε x A b 0 / 5 / / 5 / Έστω A 7, όπου a Εφαρμόζοντας τον Αλγόριθμο Υπολογισμού a Αντίστροφου Πίνακα να βρεθούν οι τιμές του a για τις οποίες ο Α είναι αντιστρέψιμος και για τις τιμές αυτές να υπολογιστεί ο A Λύση Σχηματίζουμε τον 6 γραμμοπράξεις έχουμε: πίνακα Με στοιχειώδεις a a a a 0 0 a Για να μπορέσουμε να συνεχίσουμε διακρίνουμε τις ακόλουθες περιπτώσεις: Περίπτωση Έστω a Τότε το αριστερό μισό του πίνακα αυτού είναι ο 0 K 0 που είναι σε ανηγμένη κλιμακωτή μορφή Επειδή ο Κ είναι διάφορος του μοναδιαίου συμπεραίνουμε από τον αλγόριθμο υπολογισμού αντίστροφου πίνακα ότι ο Α δεν είναι αντιστρέψιμος Περίπτωση Έστω a Τότε συνεχίζουμε με στοιχειώδεις μετασχηματισμούς γραμμών για να φέρουμε το αριστερό μισό του B σε ανηγμένη κλιμακωτή μορφή a a 0 0 a a a 6

27 6 a a a a a a a a a a a a a a a a a a a a a Πίνακες Επειδή το αριστερό μισό του πίνακα αυτού είναι ο μοναδιαίος, συμπεραίνουμε ότι το δεξιό μισό είναι ο αντίστροφος του Α, δηλαδή A a 7 a a a a a a a a a a a 9 Έστω Α ένας πραγματικός πίνακας τέτοιος ώστε A A I 0 Αποδείξτε ότι οι A και A I είναι αντιστρέψιμοι και ότι A A I A Λύση Aπό τη σχέση A A I 0 έπονται οι σχέσεις A ( A I) I, ( A I) A I και κατά συνέπεια ο A I είναι αντιστρέψιμος με A I A Όμοια αποδεικνύεται ότι ο Α είναι αντιστρέψιμος Αντικαθιστώντας έχουμε A A I A A A A A A A Επειδή ο Α είναι αντιστρέψιμος έχουμε A A A A A A A A I A A A A I Δίνεται ο πίνακας A 5 Υπολογίστε τον A k για κ=,,, Τι παρατηρείτε; Μπορείτε να δώσετε έναν τύπο που να ισχύει για κάθε κ; Αποδείξτε στη συνέχεια την ισχύ του τύπου αυτού με τη μέθοδο της επαγωγής Λύση: Παρατηρώ ότι A = =A οπότε και A AA AA=A A και γενικά A k A Επαγωγική απόδειξη: Ισχύει φανερά για ν= Δέχομαι για v=κ και θα δείξω ότι ισχύει για ν=κ+ k k A AA AA=A A Ισχύει, οπότε η απόδειξη ολοκληρώθηκε 7

28 Κεφάλαιο 0 Δίνονται οι πίνακες M, A k 0 Υπολογίστε τους πίνακες M A για κ=,, και εκφράστε τους σε συνάρτηση με τον πίνακα A Μπορείτε να δώσετε έναν τύπο που να εκφράζει το γινόμενο M A σε συνάρτηση με τον πίνακα A και να ισχύει για κάθε κ; Αποδείξτε στη συνέχεια την ισχύ του τύπου αυτού με τη μέθοδο της επαγωγής Λύση: MA 5 5A M A MMA M 5A 5MA 5 A, M A MM A M 5 A 5 MA 5 A Οπότε συνάγουμε ότι M A 5 A Επαγωγική απόδειξη: Ισχύει φανερά για ν= Δέχομαι για v=κ και θα δείξω ότι ισχύει για ν=κ+ k k k k k k M A MM A M 5 A 5 MA 5 5A 5 A Ισχύει, οπότε η απόδειξη ολοκληρώθηκε Δίνονται οι πίνακες A, B , C Αφού υπολογίσετε τον D ABC υπολογίστε τον D Λύση: D ABC Οπότε D Έστω [ ] όπου ( ), βρείτε την ορίζουσα του πίνακα και τον αντίστροφό του, εάν αυτός υπάρχει Στη συνέχεια δείξτε ότι και μετά με τη βοήθεια της επαγωγής αποδείξτε ότι ισχύει Με τη χρήση της προηγούμενης σχέσης και της ταυτότητας η οποία ισχύει για γενικούς πίνακες, αποδείξτε ότι για τον πίνακα (όπου ο μοναδιαίος) ισχύει εφόσον Λύση 8

29 Πίνακες Εάν [ ] τότε (εφόσον ) οπότε συμπεραίνουμε ότι ο πίνακας δεν αντιστρέφεται [ ] [ ] [ ] [ ] [ ] Επαγωγικά για ισχύει [ ] [ ] Δέχομαι ότι ισχύει για v δηλαδή ότι ισχύει [ ] Αποδεικνύω ότι ισχύει για ν+, δηλαδή [ ] Πράγματι Εφαρμόζοντας την ταυτότητα και χρησιμοποιώντας τη σχέση που αποδείξαμε επαγωγικά και ότι έχουμε Έστω τετραγωνικοί πίνακες και όπου ο αντιστρέψιμος Αποδείξτε με χρήση της επαγωγής ότι για κάθε φυσικό αριθμό ισχύει Αν [ ] και [ ] δείξτε ότι ο είναι διαγώνιος πίνακας Στη συνέχεια με τη χρήση της σχέσης Λύση Επαγωγική απόδειξη: Iσχύει φανερά, για Δέχομαι ότι ισχύει για v δηλαδή ότι ισχύει Αποδεικνύω ότι ισχύει για ν+, δηλαδή Πράγματι [ ] δείξτε ότι: Για να βρω τον αντίστροφο του υπολογίζω αρχικά την ορίζουσά του Και από τον τύπο υπολογισμού του αντιστρόφου πίνακα x έχω [ ] = [ ] [ ] [ ] [ ] [ ] [ ] [ ] Από τη σχέση που έχουμε αποδείξει συμπεραίνουμε ότι [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]= [ ] 9

30 Κεφάλαιο 5 Δίνονται οι πίνακες A, B, C, D 9 0 Να υπολογισθούν, εφ όσον έχουν νόημα, οι παρακάτω πίνακες,,, T T A B A D C A D C, AC D Λύση A + B δεν έχει νόημα A + D = C A= = 0 79 T T D C = 9 8 = AC D δεν έχει νόημα επειδή αν και ο C είναι αντιστρέψιμος o A είναι ενώ ο C - 6 Σας δίνεται ο πίνακας A Υπολογίστε τον πίνακα A 6A 5I Στη συνέχεια υπολογίστε τον πίνακα AB Λύση: 7 8 A B A 6A 5I Οπότε AB Αποδείξτε ότι ( AB) B A Λύση: Ας θεωρήσουμε ως C AB θα πρέπει να δείξουμε ότι C B A Για να ισχύει η ζητούμενη σχέση, σύμφωνα με τον ορισμό του αντιστρόφου, θα πρέπει να ισχύει C C CC I Πράγματι, CC ABB A AIA AA I Παρόμοια, C C B A AB BIB BB I 0

31 Πίνακες Οπότε η ιδιότητα αποδείχθηκε Στην ουσία μόνο μία από τις παραπάνω σχέσεις ( C C I, CC I ) θα πρέπει να αποδειχθούν ΠΑΡΑΤΗΡΗΣΗ: Το παρόν υλικό δεν αποτελεί αυτόνομο διδακτικό υλικό, βασίζεται στο σύγγραμμα που διανέμεται και στην προτεινόμενη βιβλιογραφία του μαθήματος Το περιεχόμενο του αρχείου απλά αποτελεί περίγραμμα των παραδόσεων του μαθήματος Αποτελεί υλικό της διδασκαλίας του μαθήματος από το διδάσκοντα για δική του χρήση και παρακαλώ να μη χρησιμοποιηθεί και να μην αναπαραχθεί και διανεμηθεί για άλλο σκοπό

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1, I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2010-2011 ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΙΝΑΚΑΣ Ένας πίνακας Α με στοιχεία από το σύνολο F (συνήθως θεωρούμε τα σύνολα

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

Ορισμοί και πράξεις πινάκων

Ορισμοί και πράξεις πινάκων Ορισμοί και πράξεις πινάκων B.. Εισαγωγή Κατά την εύρεση των μαθηματικών μοντέλων των σύγχρονων δυναμικών συστημάτων, διαπιστώνεται ότι οι διαφορικές εξισώσεις που εμπλέκονται μπορούν να γίνουν πολύ περίπλοκες

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 12: Μήτρες (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΕΙΣΑΓΩΓΗ Σε κάθε τετραγωνικό πίνακα ) τάξης n θα αντιστοιχίσουμε έναν πραγματικό ( ij αριθμό, τον οποίο θα ονομάσουμε ορίζουσα του πίνακα. Η ορίζουσα θα συμβολίζεται det ή Α ή n n

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν.

Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ]. 4. Φυλλάδιο Ασκήσεων IV σύντομες λύσεις, ενδεικτικές απαντήσεις πολλαπλής επιλογής 4.. Άσκηση. Χρησιμοποιήστε τη διαδικασία Gauss-Jordan γιά να βρείτε τους αντιστρόφους των παρακάτω πινάκων, αν υπάρχουν.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

2x y = 1 x + y = 5. 2x y = 1. x + y = 5. 2x y = 1 4x + 2y = 0. 2x y = 1 4x + 2y = 2

2x y = 1 x + y = 5. 2x y = 1. x + y = 5. 2x y = 1 4x + 2y = 0. 2x y = 1 4x + 2y = 2 Σημειώσεις μαθήματος Μ22 Γραμμική Άλγεβρα Ι Βασισμένες στο βιβλίο του GStrang Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2 Εισαγωγή Αυτές οι σημειώσεις καλύπτουν την ύλη του μαθήματος

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

1 Ορίζουσες. Άσκηση 1.1 Θεωρούμε τον πίνακα. 1 x x x x 1 x x x x 1 x x x x 1 A =

1 Ορίζουσες. Άσκηση 1.1 Θεωρούμε τον πίνακα. 1 x x x x 1 x x x x 1 x x x x 1 A = 1 Ορίζουσες Άσκηση 1.1 Θεωρούμε τον πίνακα 1 x x x x 1 x x x x 1 x x x x 1, όπου x είναι τυχόν στοιχείο του σώματος R. Να βρεθούν όλες οι τιμές του x για τις οποίες ο πίνακας A δεν είναι αντιστρέψιμος.

Διαβάστε περισσότερα

R={α/ αρητός ή άρρητος αριθμός }

R={α/ αρητός ή άρρητος αριθμός } o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

2 3x 5x x

2 3x 5x x ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ι ΙΩΑΝΝΗΣ Σ ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i.

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i. http://elern.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 00-0: Άσκηση (0 µον) Θεωρούµε το µιγαδικό αριθµό z= i. α) (5 µον) Βρείτε την τριγωνοµετρική µορφή του z.

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων 7 Βασικά σημεία Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων Το σύνηθες εσωτερικό γινόμενο στο και Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορισμός, Ερμιτιανού πίνακα και μοναδιαίου πίνακα Ιδιότητες

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

από t 1 (x) = A 1 x A 1 b.

από t 1 (x) = A 1 x A 1 b. Σύνοψη Κεφαλαίου 2: Ομοπαραλληλική Γεωμετρία Γεωμετρία και μετασχηματισμοί 1. Μία ισομετρία του R 2 είναι μία απεικόνιση από το R 2 στο R 2 που διατηρεί αποστάσεις. Κάθε ισομετρία του R 2 έχει μία από

Διαβάστε περισσότερα

x y z d e f g h k = 0 a b c d e f g h k

x y z d e f g h k = 0 a b c d e f g h k Σύνοψη Κεφαλαίου 3: Προβολική Γεωμετρία Προοπτική. Εάν π και π 2 είναι δύο επίπεδα που δεν περνάνε από την αρχή O στο R 3, λέμε οτι τα σημεία P στο π και Q στο π 2 βρίσκονται σε προοπτική από το O εάν

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες

Διαβάστε περισσότερα

Πίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες.

Πίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες. 1 Πίνακες Ορίζουσες Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες. Παράδειγμα (χορήγηση Βαλασικλοβιρης (αντιυπερτασικό) σε νήπια) Ηλικία (μήνες) Μέσο Cmax (μg/ml) Μέσο βάρος

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Πίνακες ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 12 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας και της άλγεβρας των πινάκων. Το ϕυλλάδιο

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

1 m z. 1 mz. 1 mz M 1, 2 M 1

1 m z. 1 mz. 1 mz M 1, 2 M 1 Σύνοψη Κεφαλαίου 6: Υπερβολική Γεωμετρία Υπερβολική γεωμετρία: το μοντέλο του δίσκου 1. Στο μοντέλο του Poincaré της υπερβολικής γεωμετρίας, υπερβολικά σημεία είναι τα σημεία του μοναδιαίου δίσκου, D =

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Θέματα από τους μιγαδικούς

Θέματα από τους μιγαδικούς 6/0/0 Θέματα από τους μιγαδικούς Μπάμπης Στεργίου Σεπτέμβριος 0 Θέμα ο ***Οι λύσεις έγιναν από τον Αλέξη Μιχαλακίδη Δίνονται τα σύνολα : A C/ και α) Να εκφράσετε γεωμετρικά το σύνολο Α BwC/w,A β) Να βρείτε

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

8. Πολλαπλές μερικές παράγωγοι

8. Πολλαπλές μερικές παράγωγοι 94 8 Πολλαπλές μερικές παράγωγοι Οι μερικές παράγωγοι,,, αν υπάρχουν, μιας συνάρτησης : U R R ( U ανοικτό είναι αυτές συναρτήσεις από το U στο R, επομένως μπορεί να ορισθεί για αυτές η έννοια της μερικής

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 1 ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ / Γραμμική Άλγεβρα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 1 ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ / Γραμμική Άλγεβρα ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ /00- Γραμμική Άλγεβρα Διανυσματικά γινόμενα Να αποδείξετε ότι για τα διανύσματα, b,cισχύουν : (i) 0b, = c και b= c b= c (ii) +b+c= 0 b=b c= c (iii) ( b) ( c ) = (,b,c)

Διαβάστε περισσότερα

Γ 3 2Γ. Από τον τελευταίο πίνακα προκύπτει το ισοδύναμο με το αρχικό σύστημα. 3x 2 2x 3 = 1 x 3 = 2

Γ 3 2Γ. Από τον τελευταίο πίνακα προκύπτει το ισοδύναμο με το αρχικό σύστημα. 3x 2 2x 3 = 1 x 3 = 2 Γραμμικά συστήματα Άσκηση. Να βρεθεί η λύση του γραμμικού συστήματος x 2x 2 + x 3 = x + x 2 x 3 = 2 2x x 2 + x 3 = Απόδειξη. Θεωρούμε τον επαυξημένο πίνακα του συστήματος 2 2 2 και εκτελούμε στοιχειώδεις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.

Διαβάστε περισσότερα

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Χώρος Διανύσματα Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Καρτεσιανές συντεταγμένες και διανύσματα στο χώρο. Στο σύστημα καρτεσιανών (ή ορθογώνιων) συντεταγμένων κάθε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών

Διαβάστε περισσότερα

Οι Μιγαδικοί Αριθμοί

Οι Μιγαδικοί Αριθμοί Οι Μιγαδικοί Αριθμοί Οι μιγαδικοί αριθμοί αρχικά βοήθησαν στην επίλυση δευτεροβάθμιων εξισώσεων των οποίων η διακρίνουσα είναι αρνητική Το γενικότερο πρόβλημα βέβαια είναι ότι δεν υπάρχει πραγματικός αριθμός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 5 Φεβρουαρίου 008 Ημερομηνία παράδοσης της Εργασίας: 4 Μαρτίου 008

Διαβάστε περισσότερα

Η ΜΕΤΡΙΚΗ ΤΟΥ ΧΩΡΟΥ. (στην περίπτωση, που γνωρίζουμε το πεδίον ορισμού του δείκτου, θα

Η ΜΕΤΡΙΚΗ ΤΟΥ ΧΩΡΟΥ. (στην περίπτωση, που γνωρίζουμε το πεδίον ορισμού του δείκτου, θα Η ΜΕΤΡΙΚΗ ΤΟΥ ΧΩΡΟΥ Η μετρική του χώρου Στην ορίσαμε το εσωτερικό γινόμενο δύο διανυσμάτων μέσω των συντεταγμένων τους, όταν οι συντεταγμένες αυτές λαβαίνονται σε ένα Καρτεσιανό σύστημα αναφοράς του Ερχόμαστε,

Διαβάστε περισσότερα

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών. Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Στην πράξη, για πολύ σημαντικές εφαρμογές, γίνονται μετρήσεις τιμών μιας ποσότητας σε μια κλινική, για μια σφυγμομέτρηση,

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα