x E[x] x xµº λx. E[x] λx. x 2 3x +2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "x E[x] x xµº λx. E[x] λx. x 2 3x +2"

Transcript

1 ¾ λ¹ ÐÓÒ Ó ÙÖ ½ ¼ º õ ¹ ¹ ÙÖ ¾ ÙÖ º ÃÐ ¹ ½ ¼º ¹ Ð Ñ ÐÙÐÙ µ λ¹ λ¹ ÐÙÐÙ µº λ¹ º ý ½ ¼ ø λ¹ ÃÐ º λ¹ ÌÙÖ Ò ÌÙÖ º ÌÙÖ Ò ÚÓÒ Æ ÙÑ ÒÒ ¹ ÇÊÌÊ Æ Ä Çĺ ý λ¹ ¹ º Ö ÙØ ÓÒ Ñ Ò µ Ø ¹ ÓÛ ÓÑÔÙØ Ö µ ¹ λ¹ º λ¹ ÙÒØ ÓÒ Ð ÔÖÓ Ö ÑÑ Ò µº λ¹ ÂÓ Ò Å ÖØ Ý ÄÁËÈ ½ ¼º ý ¹ Ë Ñ ÅÄ Å Ö Ò À Ðк λ¹ ÚÓÒ Æ ÙÑ ÒÒ ¹ º ý ½

2 º ÚÓÒ Æ ÙÑ ÒÒ ¹ º ý ½ ¼ Ö Ô Ö ÙØ ÓÒµº ½ ¼ º λ¹ º ½ ¼ Ö ØÓÔ Ö ËØÖ Ý È Ø Ö Âº Ä Ò Ò λ¹ ¹ º λ¹ º λ¹ ÓÑ Ò Ø ÓÖݵ ÔÖÓ Ö ÑÑ Ò Ð Ò Ù ¹ Ñ ÒØ µº ÙÖ λ¹ ¹ º º ý λ¹ ÙÖÖ ÙÖ ¼ º λ¹ º ¾º½ λ¹ º F A FAº º ô x E[x] x xµº λx. E[x] x E[x] v E[v]º x E[x]º ý λx. E[x] º ¹ º λx. x 2 3x +2 ¾¼

3 µ x x 2 3x +2º ý 8 ½ (λx. x 2 3x +2)8 = = 42 8 x º À λx. E[x] x E[x]º º λx. x 2 3y +2 x y º º (λx. x 2 3y +2)(4x +1) x x 2 µ x 4xµ º º ¹ π π sin x +cosy cos x sin y dx x x º ý y y º λ¹ ¹ º ø ¹ (λx. E[x]) A A x E[x]º ¹ º µ x 42 π π sin 42 + cos y cos 42 sin y d42 ½ ý ¹ º ý f a f(a) λ¹ º ¾½

4 x A A º y 3x +1º x º º 4 3x +1 13º µ y π π sin x +cos(3x +1) cos x sin(3x +1) dx x º 3x x π πº º ¾º¾ λ¹ Λ ¹ ¾º½ ô V º Λ λ¹ x V x Λ M,N Λ (M N) Λ x V,M Λ (λx. M) Λ Λ λ¹ λ¹ø ÖÑ µ λ¹ λ¹ ÜÔÖ ÓÒ µº ý ¾º½ λ¹ ½º Ú Ö Ð µ V º ¾º ÔÔÐ Ø ÓÒ µ (M N) M N λ¹ º º ý ØÖ Ø ÓÒ µ (λx. M) x M λ¹ º x y z º ºµ M N F G P Q º ºµ λ¹ º Æ ¹ Ú Ö Λ λ¹ ¹ Ø ÖÑ ::= Ú Ö ( Ø ÖÑ Ø ÖÑ ) ( λ Ú Ö. Ø ÖÑ ) ¾¾

5 ¾º½ λ¹ (xy) (λx. x) (λx. (λy. (xy))) (((λx. x) y)(λx. z)) ((λx. (λy. z)) (λx. x)) (λx. ((λy. y)(λz. x))) λ¹ ¾º½ λ¹ ¾º½ λ¹ º λ¹ ¾º½ ½º λx. x (λx. x) ¾º FM 1 M 2... M n (...((F M 1 ) M 2 )... M n ) º ¹ λx. M 1 M 2... M n λx. (M 1 M 2... M n ) ¾º¾ ý λ¹ ¾º½ ¹ xy λx. x λx. λy. x y ((λx. x) y)(λx. z) (λx. λy. z)(λx. x) λx. (λy. y)(λz. x) λ¹ º Λº ¾º¾ λ¹ ¾

6 x y x = y (M N) (P Q) M P N Q (λx. M) (λy. N) x = y M N x = y V x y µº ý M N M,N Λ ÒØ Ðµº x λx. M Ò Ò Ú Ö Ð µº ÓÔ µ λx λ¹ M xº x λx ÓÙÒ µº ý ¹ λx Ö µº º ¾º Ö Ú Ö Ð µ λ¹ M Λ ¹ FV(M) FV(x) = { x } FV(M N) = FV(M) FV(N) FV(λx. M) = FV(M) {x } ¾º ô M (λx. y x)(λy. x y) ý ¾º FV(M) = FV((λx. y x)(λy. x y)) = FV(λx. y x) FV(λy. x y) = (FV(yx) {x }) (FV(xy) {y }) = ((FV(y) FV(x)) {x }) ((FV(x) FV(y)) {y }) = (({ y } {x }) {x }) (({ x } {y }) {y }) = ({ x, y } {x }) ({ x, y } {y }) = { y } {x } = { x, y } ¾º ô λ¹ M Λ λ¹ ÐÓ λ¹ø ÖÑ ÓÑ Ò ØÓÖµ FV(M) = º λ¹ Λ 0 º ¾º λ¹ Ø Ò Ö ÓÑ Ò ØÓÖ µº I K K S λx. x λx. λy. x λx. λy. y λx. λy. λz. (xz)(yz) ¾

7 ¾º ý λ¹ º M[x := N] M x Nº ¾º Ù Ø ØÙØ ÓÒµ x V M Λ N Λ M[x := N] x[x := N] N y[x := N] y y x (P Q)[x := N] P [x := N] Q[x := N] (λx. P )[x := N] λx. P (λy. P )[x := N] λy. P [x := N] y x (y FV(N) x FV(P )) (λy. P )[x := N] λz. P [y := z][x := N] y x y FV(N) x FV(P ) z FV(P ) FV(N) ý N º ¾º N y FV(N) x FV(P )º º ¾ ¾º z V z FV(P ) FV(N)º M[x := N] º V z z FV(P ) FV(N)º ¾º λ¹ ÓÒÚ Ö ÓÒµ α β ηº M χ N (χ) χ {α, β, η } M,N Λº M χ¹ö Ü Ö Ü N ÓÒØÖ ØÙѺ β¹ M β¹ö ܺ ¾ ¾º ÙÖÖ À Ò º ¾

8 λ¹ ³ ¾º½º λ¹ º λ¹ º ¾º Λ ÓÑÔ Ø Ð µ x V M,N,P Λ M N (M P) (N P) M N (P M) (P N) M N (λx. M) (λx. N) λ¹ º þ λ¹ º ¾º Ö ÙØ ÓÒ Ö Ð Ø ÓÒµ Λº ¾º ÓÒ ÖÙ Ò Ö Ð Ø ÓÒµ ¹ Λº ¾º º½ α¹ f(x) = 3x +1 f(y) =3y +1º ý λ¹ x λx. M º α¹ º ¾º α Λ M Λ x, y V y FV(M) λx. M α λy. M[x := y] (α) y FV(M) M º ¾º α¹ λx. x α λy. y λx. z x α λy. z y λx. λy. z x y α λy. λw. z y w ÕÙ Ú Ð Ò Ö Ð Ø ÓÒµ ¹ º ¾

9 (λy. z x y)[x := y] ¹ ¹ yº ý λx. λz. z x y α λy. λz. z y y y FV(λz. z x y)º ¾º º¾ β¹ ø ¾º½ (λx. M) N ¹ λx. M Nº ¹ x N Mº (λx. M) N M[x := N]º β¹ º ¾º½¼ β Λ M,N Λ x V (λx. M) N β M[x := N] (β) ¾º β¹ (λx. z x) w β zw (λx. λy. z x y) w β λy. z w y (λy. z y (λx. x y)) w β zw(λx. x w) (λx. λy. z x y)(wy) β λy. z (wy) y (λy. z x y)[x := wy] y y wy º β¹ (λx. λy. z x y)(wy) β λt. z (wy) t t º ¾º º η¹ º η¹ λ¹ º ô λ¹ (λx. M x) x Mº ¾º½¼ Nβ¹ MNº ý ¾

10 M N MNº (λx. M x) M º ¾º½½ η Λ M Λ x V x FV(M) λx. M x η M (η) ¾º η¹ λx. z x η z λy. z x y η zx λx. z x x η zx x FV(zx)º ¾º º (α) (β) (η) α β η λ¹ º M N M N º ¾º½¾ α β η º M α N M β N M η N M N M N M N M N 0 N 1 N 2... N n 1 N n N M N º M Nº ý n =1 M N º n =0 M N º ¾º½ º M N M N,N P M N M M M P ¾

11 º ¾º µº ø M N M Nº ø M N º ý º º M N 0 N 1 N 2 N 3 N 4 N 5 N 6 N =º º ¾º½ = º = M N M = N M = N,N = P M = N N = M M = P = º ¾º µº ø M = N M Nº M = N ¾º¾ M Nº = ¾º½ º ¾º¾ ¾º º = º º β β = α α º ¾º λ¹ λ¹ º β¹ ³ λ¹ º α¹ º ¹ α¹ º α¹ M,N Λ M = α N º ¾

12 η¹ λ¹ º M N M N µ º ø M N N Ú ÐÙ Ø ÓÒµ Mº º ø M β¹η¹ º º ¾º½ ô M Λ ÒÓÖÑ Ð ÓÖѵ β¹ö Ü η¹ö ܺ ¾º½ βη¹ βη¹òóöñ Ð ÓÖѵº M β¹ β¹òóöñ Ð ÓÖѵ β¹ö Ü η¹ η¹òóöñ Ð ÓÖѵ η¹ö ܺ ¾º λx. x λf. f (λx. x f) º ý λz. (λf. λx. f z x)(λy. y) β¹ö Ü (λf. λx. f z x)(λy. y) β λx. (λy. y) zx ¾º½ α¹ º ý λ¹ λx. x º = α α¹ º º ¾º½ ý M Λ M N N Λ M = α Nº λ¹ º ³ º η¹ º ¼

13 ¾º½ ô M Λ N Λ M N N º M ÒÓÖÑ Ð Þ Ò µº ¾º λz. (λf. λx. f z x)(λy. y) ¾º º ø λz. (λf. λx. f z x)(λy. y) β β η λz. λx. (λy. y) zx λz. λx. z x λz. z λz. (λf. λx. f z x)(λy. y) λz. zº λz. z º ¾º½¼ ô Ω (λx. x x)(λx. x x) º β¹ö Ü Ω (λx. x x)(λx. x x) β (λx. x x)(λx. x x) Ω Ω º Ω º Ω º º ¾º½½ ô M (λx.xxy)(λx.xxy) β¹ö ܺ M (λx.xxy)(λx.xxy) β (λx.xxy)(λx.xxy) y My β (λx.xxy)(λx.xxy) yy Myy β (λx.xxy)(λx.xxy) yyy Myyy β... β¹ö ܺ ý M Ö Ü º ¾º½¾ ô M =(λx. (λy. x y) z) w β¹ö Ü x yº M β (λy. w y) z β wz ½

14 M β (λx. x z) w β wz º º ¾º½ ô M =(λz. y)((λx. x x)(λx. x x)) Ω ¾º½¼º M β¹ö Ü z xº M β y ý Ω M β (λz. y)((λx. x x)(λx. x x)) M M β¹ö Ü º ¾º½ ô M ØÖÓÒ ÐÝ ÒÓÖÑ Ð Þ Ò µ M º ø ¾º½ º λ¹ º Ö Ü Ö ÙØ ÓÒ ØÖ Ø Ýµº º ¾º½ ¹ Ö Ü λ ÒÓÖÑ Ð ÓÖ Ö Ö ÙØ ÓÒ ØÖ Ø¹ ݵº ¾º ø λ¹ º M ¾

15 º M N 1 N 2 N 1 = α N 2 º ý ¾º º º ¾º½ ÙÖ ¹ÊÓ Öµ ô M,N 1,N 2 Λ M N 1 M N 2 º N Λ N 1 N N 2 Nº M N 1 ººººººººººººººººººººººººººººº N ººººººººººººººººººººººººººººº ¾º½ ÙÖ ¹ÊÓ Ö ÙÖ ¹ÊÓ Ö ÔÖÓÔ ÖØݵ ÓÒ Ù Ò ÔÖÓÔ ÖØݵº º ý ¾º½ º º µ º N 2 ¾º¾ ý M 1 = M 2 N M 1 N M 2 Nº ¾º M = α º ý ô M N 1 N 2 º M N 1 M N 2 N 1 = N 2 º ý ¾º¾ P N 1 P N 2 P º ø ¾º½ N 1 = α P N 2 = α P N 1 = α N 2 º λ¹ º ¾º½ =º

16 ø ¾º½ ¾º λ¹ º ý ¾º º º º ¾º¾ ß ÆÓÖÑ Ð Þ Ø ÓÒµ ý M º λ¹ ¹ º º ¾º ß Ü ÔÓ Òص (i) F Λ X Λ FX= Xº (ii) Y Λ F Λ F (Y F )=Y F º ý (i) ô W λx. F (xx) X WWº X WW (λx. F (xx)) W β F (W W) FX (ii) ô Y Λ Y λf. (λx. f (xx)) (λx. f (xx)) F Λº µ Y F (λf. (λx. f (xx)) (λx. f (xx))) F β (λx. F (xx)) (λx. F (xx)) X X = FX = Y F = F (Y F )º ¾º λ¹ º º Ç λ¹ º λ¹ º X F º

17 ¾º º½ λ¹ true falseº ¾º½ true λx. λy. x false λx. λy. y λ¹ º not º ¾º¾¼ not λz. z false true true false µº not º ¾º (i) not true = false (ii) not false = true ý µº not true (λz. z false true) true β β true false true (λx. λy. x) false true false λ¹ cond if¹then¹elseº º ¾º¾½ cond λz. λx. λy. z x y if B then N else M cond BNM ý º ¾º N,M Λ (i) if true then N else M = N (ii) if false then N else M = M ý µº

18 if true then N else M cond true NM (λz. λx. λy. z x y) true NM β β true NM (λx. λy. x) NM N ¾º º¾ λ¹ µº ¹ pair º N,M º ¾º¾¾ pair λx. λy. λz. z x y N,M pair NM fst snd ¾º¾ fst λz. z true snd λz. z false N,M º ¾º N,M Λ (i) fst N,M = N (ii) snd N,M = M ý µº fst N,M (λz. z true) N,M β β β N,M true pair NMtrue (λx. λy. λz. z x y) NMtrue true NM (λx. λy. x) NM N

19 ¾º º ô λ¹ º ÙÖ º ¾º¾ ô n N F, A Λº F n (A) Λ F 0 (A) A F n+1 (A) F (F n (A)) F n (A) F n+1 (A) F n (FA)º F n (FA) F (F n (A)) F n (F m (A)) F n+m (A)º ¾º¾ ý ÙÖ ß ÙÖ ÒÙÑ Ö Ð µ n N c n Λ c n λf. λx. f n (x) ¼ c 0 λf. λx. x ½ ¹ c 1 λf. λx. f x ¾ c 2 λf. λx. f (f x) º º º ø β¹ c 1 ¹ η¹ µº λ¹ º ¹ º ¾º¾ succ λn. λf. λx. n f (f x) A + A A exp λn. λm. λf. λx. n f (mfx) λn. λm. λf. n (mf) λn. λm. m n ¾º º º ¾º½ n, m N x, y Λ (i) c n f (c m fx)=c n+m fx (ii) (c n x) m (y) =x nm (y) (iii) ý m>0 (c n ) m (x) =c n m x ý

20 (i) c n f (c m fx) (λf. λx. f n (x)) f ((λf. λx. f m (x))) fx) β β β (λf. λx. f n (x)) f (f m (x)) f n (f m (x)) f n+m (x) (λf. λx. f n+m (x)) fx c n+m fx (ii) mº m =0 y = yº ô mº (c n x) m+1 (y) c n x ((c n x) m (y)) = c n x (x nm (y)) (λf. λx. f n (x)) x (x nm (y)) β x n (x nm (y)) x n+nm (y) x n(m+1) (y) (iii) mº m =1 c n x = c n xº ô m>0º (c n ) m+1 (x) c n ((c n ) m (x)) = c n (c n m x) (λf. λx. f n (x)) (c n m x) β λy. (c n m x) n (y) = λy. x nmn (y) ¾º½ µ λy. x nm+1 (y) β (λf. λx. f nm+1 (x)) x c n m+1 x ¾º n, m N (i) succ c n = c n+1 (ii) A + c n c m = c n+m (iii) A c n c m = c nm (iv) ý m>0 A exp c n c m = c n m ý (i) succ c n (λn. λf. λx. n f (f x)) (λf. λx. f n (x)) β λf. λx. (λf. λx. f n (x)) f (f x) β λf. λx. f n (fx) c n+1

21 (ii) A + c n c m (λn. λm. λf. λx. n f (mfx)) c n c m β λf. λx. c n f (c m fx) = λf. λx. c n+m fx ¾º½ µ η c n+m (iii) A c n c m (λn. λm. λf. n (mf)) c n c m β λf. c n (c m f) λf. (λf. λx. f n (x)) (c m f) β λf. λx. (c m f) n (x) = λf. λx. f mn (x) ¾º½ µ c nm (iv) A exp c n c m (λn. λm. m n) c n c m c m c n β (λf. λx. f m (x)) c n β λx. (c n ) m (x) = λx. c n m x ¾º½ µ η c n m ¾º º λ¹ º λ¹ ¹ º λ¹ λ¹ ¹ º º Ð ÞÝ Ú ÐÙ Ø ÓÒµ ¹ À ÐÐ Å Ö Ò º Ú ÐÙ µº ÒÓÒ Ð ÓÖÑ ÒÓÖÑ Ð ÓÖѺ ÒÓÒ Ð ÓÖÑ º

22 ¹ º ³ λ¹ º º β¹ö Ü β¹ö ܺ ³ º Ð ÓÐ ¼ ³ ÐÐ Ý Ò Ñ µº ¹ (λx. λy. y)ω λy. yº Ð ÓÐ ¼ ÒØ Ö ÔÖÓ ÙÖ Üµ ÒØ Ö Ü Ò ¾ Ò ÒØ Ö ÔÖÓ ÙÖ Ò Û Ð ØÖÙ Ó Ò µº ¾ º ý µ Ð ÓÐ È Ð º ³ Ý Ú ÐÙ µ º º ý Ö Ú ÐÙ Ø ÓÒµº λ¹ ³ (λx. λy. y)ω Ωº ¹ β¹ (λx. M) N β M[x := N] N º ý Λ 0 λ¹ µ º º ¼

23 ý ¾º½ α = α M,N Λ M α N M = α Nº ¾º¾ Θ (λx. λy. y (xxy)) (λx. λy. y (xxy)) ¹ ÌÙÖ Ò º Θ F = F (Θ F ) Yº ¾º and or xor ¹ ¾º º½ º ¾º λx. λy. λz. y (xyz) Λ ÙÖ º ¾º iszero λx. x (λy. λx. λy. y)(λx. λy. x) ÙÖ c n true n =0 false n>0º ¾º º Î ÐÑ Ò µ pred λx. λy. λz. x (λp. λq. q (py)) (λy. z)(λx. x) ÙÖ º c 0 º ¾º n¹ λ¹ º n N M 0,M 1,...,M n 1 Λ tuple c n M 0 M 1... M n 1 n¹ M 0,M 1,...,M n 1 º i N i<n prj c i i¹ n¹ º ý tuple, prj Λ prj c i M 0,M 1... M n 1 = M i ¾º λ¹ º ½

Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )

Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( ) Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ4) Περίοδος 8-9 ΕΡΓΑΣΙΑ η Θέμα (μονάδες ) i. Δείξτε ότι ( a b) c a ( b c ) + b( a c ). a b c+ c a b+ b c a ii. Δείξτε την ταυτότητα Jacobi : ( ) ( ) ( ) Απάντηση i.

Διαβάστε περισσότερα

Κεφάλαιο 10 Λάμβδα λογισμός

Κεφάλαιο 10 Λάμβδα λογισμός Κεφάλαιο 10 Λάμβδα λογισμός Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Ιστορική εξέλιξη λ-λογισμού - 1 Αναπτύχθηκε αρχικά από τον Alonzo Church στις αρχές της δεκαετίας του 1930,

Διαβάστε περισσότερα

ÍÒ Ú Ö Ø Ð Ù ÖÒ Ö ÄÝÓÒ Á ÁÒ Ø ØÙØ È Ý ÕÙ ÆÙÐ Ö ÄÝÓÒ Ì ÓØÓÖ Ø ËÔ Ð Ø È Ý ÕÙ Ô ÖØ ÙÐ ØÙ Ù Ò Ð À ¼ ¼ ÙÜ ÓÐÐ ÓÒÒ ÙÖ ÖÓÒ ÕÙ Ø ÒØ Ö Ð Ö Ø ÓÒ Ù ÐÓÖ Ñ ØÖ Ù ÊÙÒ ÁÁ Ù Ì Ú ØÖÓÒº Ô Ö È ÖÖ ¹ ÒØÓ Ò Ð ÖØ ËÓÙØ ÒÙ Ð ½

Διαβάστε περισσότερα

Õâñéäéóìüò. Ðïéá åßíáé ç áíüãêç åéóáãùãþò ôçò Ýííïéáò ôïõ õâñéäéóìïý. Ðïéá åßíáé ôá âáóéêüôåñá åßäç õâñéäéóìïý

Õâñéäéóìüò. Ðïéá åßíáé ç áíüãêç åéóáãùãþò ôçò Ýííïéáò ôïõ õâñéäéóìïý. Ðïéá åßíáé ôá âáóéêüôåñá åßäç õâñéäéóìïý 9 Õâñéäéóìüò ÐÅÑÉÅ ÏÌÅÍÁ 9.1 ÅéóáãùãÞ 9.2 Õâñéäéóìüò & õâñéäéêü ôñï éáêü 9.3 Åßäç õâñéäéóìïý êáé õâñéäéêþí ôñï éáêþí 9.4 Õâñéäéóìüò êáé ðïëëáðëïß äåóìïß 9.5 Õâñéäéóìüò êáé ìïñéáêþ ãåùìåôñßá 9.6 ÅñùôÞóåéò

Διαβάστε περισσότερα

ÔÖÓØ Ô ØÓ ESO (M. Sarazin and F. Roddier, A&A 227, 294-300, 1990) Õ Ò ¹

ÔÖÓØ Ô ØÓ ESO (M. Sarazin and F. Roddier, A&A 227, 294-300, 1990) Õ Ò ¹ Seeing-GR Å ØÖôÒØ Ø Ø Ö Õ Ø ØÑ Ö Ø Ò ÐÐ Å Ð Ñ ØÖ 1 Æ ØÓÖ ÒÒ 2 È ÖÞ ËØ Ð Ó 3 ÌÖ ÑÓÙ Ù Ð 4 Ã Ö Ñ Ò Ð 5 ÒØÛÒ ÒÒ 5 ÓÙÐ ÒÒ 5 ÃÓÙÖÓÙÑÔ ØÞ Ãô Ø 5 Ë Ö ÒÒ 5 1 Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg,

Διαβάστε περισσότερα

Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration. DTU Wind Energy - PhD

Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration. DTU Wind Energy - PhD Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration DTU Wind Energy - PhD Leonardo Bergami DTU Wind Energy PhD-0020(EN) August 2013 DTU Vindenergi Active Load Alleviation

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 5: Συναρτήσεις Πολλών Μεταβλητών Μέρος ΙI Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο

Διαβάστε περισσότερα

ÍÆÁÎ ÊËÁ Ë ÆÌÁ Ç ÇÅÈÇËÌ Ä ÍÄÌ ËÁ Ô ÖØ Ñ ÒØÓ È ÖØ ÙÐ Ó Ý ÈÖÓ Ö Ñ Ò ÓÖ ÒØ Ó Ç ØÓ Ð Ê ÓÒ ØÖÙ Ò ËÙ Ó Ò Ð ÜÔ Ö Ñ ÒØÓ À Ë ÓÐ ÓÒ Æ Ð Ó¹Æ Ð Ó Å ÑÓÖ ÔÖ ÒØ Ô Ö ÓÔØ Ö Ð Ö Ó Ä Ò Ó Ò Ò ÔÓÖ Å ÒÙ Ð Ë Ò Þ Ö Å ÖÞÓ ½ ¾

Διαβάστε περισσότερα

a x = x a x. Ηθετικήλύσητηςεξίσωσηςαυτής(για a = 1)είναιοαριθμόςτου Fibonacci 5 1 φ =. 2 ΟΑριστοτέληςδενχρησιμοποιείτονόρο,αλλάπροτιμάτοκάθετος.

a x = x a x. Ηθετικήλύσητηςεξίσωσηςαυτής(για a = 1)είναιοαριθμόςτου Fibonacci 5 1 φ =. 2 ΟΑριστοτέληςδενχρησιμοποιείτονόρο,αλλάπροτιμάτοκάθετος. Ã Ð Ó ½¾ ËØÓ Õ ÛÒ ÐÓ Ø³ ÇÑÓ Ø Ø ½¾º½ Ì Ô Ö Õ Ñ Ò ØÓÙ ÐÓ٠س ÇÖ ÑÓ ÇÖ ÑÓ Ø ÓÑÓ Ø Ø Ù Ù Ö ÑÑÛÒ Õ Ñ ØÛÒº ÈÖ Ø ½ ÌÓ ôö Ñ º ÈÖÓØ ¾ ÇÑÓ Ø Ø ØÖ ôòûòº ÈÖÓØ ½ Ò ÐÓ Ö ØÑ Ñ ØÛÒº ÈÖÓØ ½ ½ Ò ÐÓ Ñ º ½¾ ½¾ à ï Ä ÁÇ ½¾º

Διαβάστε περισσότερα

A Francesca, Paola, Laura

A Francesca, Paola, Laura A Francesca, Paola, Laura L. Formaggia F. Saleri A. Veneziani Applicazioni ed esercizi di modellistica numerica per problemi differenziali 2 3 LUCA FORMAGGIA FAUSTO SALERI ALESSANDRO VENEZIANI MOX - Dipartimento

Διαβάστε περισσότερα

API: Applications Programming Interface

API: Applications Programming Interface ÒØ Ñ ÒÓ ØÖ ÔÖÓ» Ñ ÒØ Ñ ÒÓ ØÖ ÔÖÓ Ö ÑÑ Ø Ñ ½ Ö Ø Ò Ô Ö Ø ÒØ Ñ ÒÛÒ ÒÒÓ ôòøóù ÔÖ Ñ Ø Ó ÑÓÙ Ì ÔÓ ÓÑ ÒÛÒ Ì µ (i) ÒÓÐÓØ ÑôÒ (ii)ôö Ü º Ð ØÖ Ò Ò ÖÛÔÓ ØÖ ÔÐ Ò Ø Ó Ó Ù Ø Ñ Ø ººº ½ºÈÖÛØ ÓÒØ Ø ÔÓ int double char

Διαβάστε περισσότερα

Role of Alumina Support in Cobalt Fischer-Tropsch Synthesis

Role of Alumina Support in Cobalt Fischer-Tropsch Synthesis Øyvind Borg Role of Alumina Support in Cobalt Fischer-Tropsch Synthesis Thesis for the degree of doktor ingeniør Trondheim, April 2007 Norwegian University of Science and Technology Faculty of Natural

Διαβάστε περισσότερα

Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη)

Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη) Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 009 (μπορεί να περιέχουν λάθη) (L) Θέμα 1 α) i Ένα σύνολο A X λέγεται γραμμικά ανεξάρτητο αν κάθε πεπερασμένο υποσύνολό του είναι γραμμικά ανεξάρτητο.

Διαβάστε περισσότερα

ca t = β 1z t 1(q t γ)+β 2z t 1(q t >γ)+ε t z t = g(x t,π)+u t

ca t = β 1z t 1(q t γ)+β 2z t 1(q t >γ)+ε t z t = g(x t,π)+u t Ì Ö ÓÐ ÅÓ Ð Ó Ø ÍË ÙÖÖ ÒØ ÓÙÒØ ÊÓ ÖØÓ ÙÒ Ò ÇØÓ Ö ½ ¾¼½ ØÖ Ø Ï Ø Ö Ú ÍË ÙÖÖ ÒØ ÓÙÒØ Ñ Ð Ò Á Ø Ö ÓÐ Ú Ò Ø Ø Ø Ú ÓÖ Ó Ø ÙÖÖ ÒØ ÓÙÒØ Ö ÒØ ÙÖ Ò Ø Ò ÙÖÔÐÙ ÓÖ Ø Ø Ø Þ Ó Ø Ñ¹ Ð Ò Ñ ØØ Ö Á Ø Ö Ø Ö ÓÐ Ö Ð Ø ÓÒ Ô

Διαβάστε περισσότερα

18.2 Sistemi sa eliptichkim krivama Sistem analogan PUKDH... 50

18.2 Sistemi sa eliptichkim krivama Sistem analogan PUKDH... 50 ÃÖ ÔØÓ Ö Å Ó Ö Ú ÓÚ ½ ÔÖ Ð ¾¼½¾ º ËÓ Ö Ò ½ ÍÚÓ ¾ Ç ÒÓÚÒ ÔÓ ÑÓÚ Á ØÓÖ ÈÖ Ð Ó ÒÓÚ Ø ÓÖ ÖÓ Ú Â ÒÓ Ø ÚÒ Ü Ö Ø Ñ ½ Ë ÚÖ Ñ Ò ÔÖÓØÓÕÒ Ü Ö ½ ÃÓÒ ÕÒ ÔÓ ½ 8 RC4 17 9 Ë ÑÓ Ò ÖÓÒ ÜÙ ÔÖÓØÓÕÒ Ü Ö ½ 10 ËÐÙÕ Ò Ü Ö ½ 11

Διαβάστε περισσότερα

A Threshold Model of the US Current Account *

A Threshold Model of the US Current Account * Federal Reserve Bank of Dallas Globalization and Monetary Policy Institute Working Paper No. 202 http://www.dallasfed.org/assets/documents/institute/wpapers/2014/0202.pdf A Threshold Model of the US Current

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Εισαγωγή. Καθηγητής Γεώργιος Τζιρίτας. Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Εισαγωγή. Καθηγητής Γεώργιος Τζιρίτας. Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Εισαγωγή Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 1 Û Å ØÒ ÐÙ Ø Ý ÛØÓÖ Ý Ò Ò ÔÐÓÒ ØÑ ØÓÙ ÙÖÛ ÓÒÓº À ÔÜÖ ÒÛÒ

Διαβάστε περισσότερα

Montreal - Quebec, Canada.

Montreal - Quebec, Canada. ÂÆÁÃÇ Å ÌËÇ ÁÇ ÈÇÄÍÌ ÉÆ ÁÇ ËÉÇÄÀ ÀÄ ÃÌÊÇÄÇ ÏÆ ÅÀÉ ÆÁÃÏÆ Ã Á ÅÀÉ ÆÁÃÏÆ ÍÈÇÄÇ ÁËÌÏÆ ÌÇÅ Ë ËÀÅ ÌÏÆ Ä ÉÇÍ Ã Á ÊÇÅÈÇÌÁÃÀË ËÙÑ ÓÐ Ø Ò Ò ÔØÙÜ ÈÓÐÙÔÖ ØÓÖ ÖÕ Ø ØÓÒ Ò ÔØÙÜ Ó ÊÓÑÔÓØ Ó Ð ÕÓÙ Ø Ó Ò ÕÙØ Å : ÖÑÓ ØÓÒ

Διαβάστε περισσότερα

ÅØÑØ ÒÓ Î ØÙÐÖ Ó ÁÅ ¼¼ ËÖÓ ÄÑ ÆØØÓ ÖÓÒ ºÙÖºÖ ÚÖ Ó ÓÖÑ Ø ÑØÖÐ ØÐÚÞ ÖÑÓÒØ» ÕÙÒÓ Þ Ó Ú ØÙÐÖ Ó ÁÅ Ñ ÖÖÓ ÕÙ Ù ÖÖÓÚÓ ÓÑÓ Ö ÖÖº ÈÖØÙÐÖÑÒØ ÓÑØÖ Ó ÁÅ ÑÖ Ó ÙÑ ÖÒ Ó Ñ ØÖÒÓ Ð ÐÞ Ù ÖÓÐÑ ÖÒÐÑÒØ Ð ÐÒ Ð Ø Ö ØÚ ÓÐÙÓ º

Διαβάστε περισσότερα

µ µ µ ¾¼¼ ¹ º ¹ º ¹ º º ¹ º þ º ¹ º º º º º ÓÔÝÖ Ø º º º º º º º º º ¹ º º ýº ¹ º º º º º º º Ú Ú Ú ½ ½ ½º½ º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ º º º º º º º º º º º º º º º

Διαβάστε περισσότερα

Πρότυπα. ΙωάννηςΓºΤσ ούλος

Πρότυπα. ΙωάννηςΓºΤσ ούλος Πρότυπα ΙωάννηςΓºΤσούλος ¾¼ ½ Συναρτήσειςπροτύπων Μετιςσυναρτήσειςπροτύπωνμπορούμενακάνουμεσυναρτήσειςοιοποίεςεκτελούντονίδιοκώδικα γιαδιαφορετικούςτύπουςδεδομένων όπωςπαρουσιάζεται καιστοεπόμενοπαράδειγμαºοιδηλώσειςσυναρτήσεωνμετηνχρήση

Διαβάστε περισσότερα

ΑπαντησηΙσχύει α+βi = γ +δi α = γκαι β = δ 1πτ

ΑπαντησηΙσχύει α+βi = γ +δi α = γκαι β = δ 1πτ È Ö Ñ Ø ÓÄÙ Ó Ù Ð ËÕÓÐ ËÑÙÖÒ Ì Ü Å Ñ Ø Â Ø Ì ÕÒÓÐÓ Ã Ø Ù ÙÒ Ë Ñ Û Â ÛÖ ô º Ò ÑÓÒØ Û ÕÓÙÒ Ó ÙÒØ Ø ØÓÙ Ò Ö Ñ Ù Ò ØÙÕ ÒÔÖÓ Ð Ñ Ø ÔÓÙ Ã Ø Ç Ñ ô ÙØ Ò ÕÓÐ ÕÖ ºÅÔÓÖÓ ÒÒ Ò Ô Ö Õ Ó Ò Ò Ò Ñ Ó Ò Ð Ö Ö ½¼ ÔÖ ÐÓÙ¾¼½¾

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Αποκατάσταση εικόνων. Καθηγητής Γεώργιος Τζιρίτας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Αποκατάσταση εικόνων. Καθηγητής Γεώργιος Τζιρίτας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Αποκατάσταση εικόνων Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 12 ÔÓØ Ø ÒÛÒ ÈÓÐÐ ÓÖ Ó Ò Ø Ø ÐÝ Ù ØÒØ ÔÖÑÖÛ

Διαβάστε περισσότερα

Λυκειο Ευαγγελικης Σχολης Σμυρνης

Λυκειο Ευαγγελικης Σχολης Σμυρνης Ì Ü Å Ñ Ø Ò È Ã Ø Ç Ñ ô ÙØ Ò ÕÓÐ ÕÖ ºÅÔÓÖÓ ÒÒ Ò Ô Ö Õ Ó Ò Ò Ò Ñ Ó Ò Ð ¹ Πειραματικο Ö Ö Ò Ñ Ò ÐÐ Ü ÑÓÖ ØÓÙº ØÓÒÔ Ö ÓÖ Ñ ØÛÒ Ò Ô Ù ØÛÒ Ð ôòùô ÒØ Λυκειο Ευαγγελικης Σχολης Σμυρνης ½ Ë ÔØ Ñ ÖÓÙ¾¼½¼ ÙÒ Õ ÓÖ

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

ÍÆÁÎ ÊËÁÌ Ç ÎÊ Î Ä ³ ËËÇÆÆ Ç ÌÇÊ Ä Ë ÀÇÇÄ ËÁÌ ÎÊ È À Ì À Ë Á Ë ØÓ Ó Ø Ò Ø Ø ØÐ Ó È Ó Ë Ò Ó Ø ÍÒ Ú Ö ØÝ Ó ÚÖÝ Î Ð ³ ÓÒÒ ËÔ ÐØÝ ÊÓ ÓØ Ò Ý ÅÓ Ñ Ù ØÒ Ò Ò ÓÒØÖÓÐ Ó À ÔØ Ú ÓÖ Å Ò Ñ ÐÐÝ ÁÒÚ Ú ËÙÖ ÖÝ Ë ÑÙÐ Ø ÓÒ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο. - Συστήµατα γραµµικών εξισώσεων της µορφής: α

ΚΕΦΑΛΑΙΟ 3 ο. - Συστήµατα γραµµικών εξισώσεων της µορφής: α ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ - - ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ο - Συστήµατα ραµµικών εξισώσεων της µορφής: α x+ β y= α x+ β y= Λύση του (Σ) καλείται η διαδικασία εύρεσης των τιµών του x και του y που επαληθεύουν και τις δύο

Διαβάστε περισσότερα

ÌÖ Ò ÔÓÖØ Ò Ø Ò ÓÑÔÐ Ü Ö Ñ Ø ÐÐ Ö ËÝ Ø Ñ Ñ Ö È Ý ÙÒ Ð ØÖÓØ Ò Ö ÍÒ Ú Ö ØØ Ö Ñ Ò ÚÓÖ Ð Ø À Ð Ø Ø ÓÒ Ð ØÙÒ ÂÓ Ò Ò ÖØ Å ½ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ÌÖ Ò ÔÓÖØ Ò Ñ Ø ÐÐ Ò ËÝ Ø Ñ Ò ½ ½º½ Ò ÖÙÒ º º º º º º º º º º

Διαβάστε περισσότερα

Α3. Ποια είναι τα πλεονεκτήματα του Δομημένου προγραμματισμού; (Μονάδες 10)

Α3. Ποια είναι τα πλεονεκτήματα του Δομημένου προγραμματισμού; (Μονάδες 10) ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08 / 02 / 2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι. ΜΙΧΑΛΕΑΚΟΣ Γ.ΝΙΤΟΔΑΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Λυση. και επομένως. Αντικαθιστούμε στη σχέση. Λυση. y = f 3 και y = f 3

Λυση. και επομένως. Αντικαθιστούμε στη σχέση. Λυση. y = f 3 και y = f 3 Ø ÔØÓÑ Ò ½ Á ÒÓÙ ÖÓÙ ¾¼¼ Ασκηση Δίνεται η συνάρτηση f (x) =x +lnx. Να βρεθεί η εφαπτομένη της C f στοσημείομετετμημένηe. Η εξίσωση της τυχούσας εφαπτομένης της C f είναι y = f (x 0 ) x + f (x 0 ) f (x

Διαβάστε περισσότερα

Scientific knowledge is the common heritage of mankind. Abdus Salam

Scientific knowledge is the common heritage of mankind. Abdus Salam È Æ ÈÁËÌÀÅÁÇ ÂÀÆÏÆ ÌÅÀÅ ÍËÁÃÀË ÈÌÍÉÁ ÃÀ Ê ËÁ Ô Ö ØÒÓÙ ÖÕ ÓÒ ÈÙÖ ÒÓ Ò ÇÖ Ø Ð ºÅº ¾¼¼¾¼¼¼¾ Ô Ð ÔÛÒ Ã Ø Ò Ó Ä Õ Ò ¾ Scientific knowledge is the common heritage of mankind. Abdus Salam È Ö Õ Ñ Ò ÈÖ ÐÓ Ó ½

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y.

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (1/7/ 2013) y x + y. ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΑΝΑΛΥΣΗΣ ΙΙ, ΣΕΜΦΕ (/7/ 203) ΘΕΜΑ. (α) Δίνεται η συνάρτηση f : R 2 R με f(x, y) = xy x + y, αν (x, y) (0, 0) και f(0, 0) = 0. Δείξτε ότι η f είναι συνεχής στο (0, 0). (β) Εξετάστε αν

Διαβάστε περισσότερα

Ψηθιακά ςζηήμαηα - Διζαγωγή. ΣΔΙ Πάηπαρ, Σμήμα Ηλεκηπολογίαρ Καθ. Π. Βλασόποςλορ

Ψηθιακά ςζηήμαηα - Διζαγωγή. ΣΔΙ Πάηπαρ, Σμήμα Ηλεκηπολογίαρ Καθ. Π. Βλασόποςλορ Ψηθιακά ςζηήμαηα - Διζαγωγή Καθ. Π. Βλασόποςλορ 1 Κςκλώμαηα Γιακοπηών και Λογικέρ Πύλερ Καθ. Π. Βλασόποςλορ 2 Κςκλώμαηα Γιακοπηών και Λογικέρ Πύλερ Καθ. Π. Βλασόποςλορ 3 Κςκλώμαηα Γιακοπηών και Λογικέρ

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ

Διαβάστε περισσότερα

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Ανέπτυξα την παρακάτω μεθοδολογία που με βοήθησε να ανταπεξέλθω στο

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Τεχνολογικής Κατεύθυνσης Προγραμματισμός Γ Λυκείου Μέρος 2 ο ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Τεχνολογικής Κατεύθυνσης Προγραμματισμός Γ Λυκείου Μέρος 2 ο ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Τεχνολογικής Κατεύθυνσης Προγραμματισμός Γ Λυκείου Μέρος 2 ο ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr 4 - - 75 - true true - false

Διαβάστε περισσότερα

ΗΜΥ-201: 201:Ψηφιακοί. Υπολογιστές Χειμερινό Εξάμηνο 2006. Βασικά Ψηφιακής Σχεδίασης

ΗΜΥ-201: 201:Ψηφιακοί. Υπολογιστές Χειμερινό Εξάμηνο 2006. Βασικά Ψηφιακής Σχεδίασης ΗΜΥ-2: 2:Ψηφιακοί Υπολογιστές Χειμερινό Εξάμηνο 26 Βασικά Ψηφιακής Σχεδίασης Σκοπός του μαθήματος Λογικός Σχεδιασμός και Σχεδιασμός Η/Υ Βασικές έννοιες & εργαλεία που χρησιμοποιούνται για το σχεδιασμό

Διαβάστε περισσότερα

DOKTORA TEZĐ. Canan AKKOYUNLU. Anabilim Dalı: Matematik-Bilgisayar. Programı: Matematik. Tez Danışmanı: Prof. Dr. Erhan GÜZEL

DOKTORA TEZĐ. Canan AKKOYUNLU. Anabilim Dalı: Matematik-Bilgisayar. Programı: Matematik. Tez Danışmanı: Prof. Dr. Erhan GÜZEL T.C. ĐSTANBUL KÜLTÜR ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ LĐNEER OLMAYAN SCHRÖDĐNGER DENKLEMĐNĐN ENERJĐ KORUMALI YÖNTEMLE ÇÖZÜMÜ VE MODEL ĐNDĐRGEME YÖNTEMĐNĐN UYGULANMASI DOKTORA TEZĐ Canan AKKOYUNLU Anabilim

Διαβάστε περισσότερα

ΠΕΤΡΟΣ ΣΤΕΦΑΝΕΑΣ ΓΙΩΡΓΟΣ ΚΟΛΕΤΣΟΣ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΛΟΓΙΚΗΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΠΕΤΡΟΣ ΣΤΕΦΑΝΕΑΣ ΓΙΩΡΓΟΣ ΚΟΛΕΤΣΟΣ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΛΟΓΙΚΗΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΠΕΤΡΟΣ ΣΤΕΦΑΝΕΑΣ ΓΙΩΡΓΟΣ ΚΟΛΕΤΣΟΣ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΛΟΓΙΚΗΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΠΕΤΡΟΣ ΣΤΕΦΑΝΕΑΣ ΓΕΩΡΓΙΟΣ ΚΟΛΕΤΣΟΣ Εφαρμογές της Λογικής στην Πληροφορική Εφαρμογές της Λογικής στην Πληροφορική Συγγραφή Πέτρος

Διαβάστε περισσότερα

THÈSE. Raphaël LEBLOIS

THÈSE. Raphaël LEBLOIS MINISTÈRE DE L AGRICULTURE ÉCOLE NATIONALE SUPÉRIEURE AGRONOMIQUE DE MONTPELLIER THÈSE présentée à l École Nationale Supérieure Agronomique de Montpellier pour obtenir le diplôme de Doctorat Spécialité

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΕΞΙΣΩΣΗ ΠΑΡΑΒΟΛΗΣ 8. Να βρεθεί η εξίσωση της παραβολής με κορυφή το (0, 0) στις παρακάτω περιπτώσεις: α) είναι συμμετρική ως προς το θετικό ημιάξονα Οx και έχει παράμετρο p = 5 β)

Διαβάστε περισσότερα

Š ˆ ˆ Šˆ Šˆ ˆ Šˆ ˆ Š ˆˆ ˆ Ÿ Œ ƒ ˆ œ Šˆ ˆ ˆ Š Œ 1 n 1,6

Š ˆ ˆ Šˆ Šˆ ˆ Šˆ ˆ Š ˆˆ ˆ Ÿ Œ ƒ ˆ œ Šˆ ˆ ˆ Š Œ 1 n 1,6 Ó³ Ÿ. 2013.. 10, º 3(180).. 376Ä388 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ Š ˆ ˆ Šˆ Šˆ ˆ Šˆ ˆ Š ˆˆ ˆ Ÿ Œ ƒ ˆ œ Šˆ ˆ ˆ Š Œ 1 n 1,6.. Œ Ì,.. É±μ ±μ μ Ê É Ò Ê É É, Ó, μ Ö μé Ò μ± μ ² Î ± É Î ± Ì ÉμÎ ± ÉμÎ ± ËÊ ± Í Ê Ð ÕÐ Ì

Διαβάστε περισσότερα

A2. Να γράψετε για κάθε περίπτωση τον αριθμό της πρότασης και δίπλα το γράμμα που δίνει τη σωστή επιλογή.

A2. Να γράψετε για κάθε περίπτωση τον αριθμό της πρότασης και δίπλα το γράμμα που δίνει τη σωστή επιλογή. ΜΑΘΗΜΑ / ΤΑΞΗ : ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ/Γ' ΕΠΑ.Λ. ΗΜΕΡΟΜΗΝΙΑ: 17-1-2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι.ΜΙΧΑΛΕΑΚΟΣ-Χ.ΠΑΠΠΑ-Α.ΚΑΤΡΑΚΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα

Διαβάστε περισσότερα

ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Α' ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) 1 ΠΙΝΑΚΕΣ- ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Α' Ομάδας i) 3x7 ii) π.χ. το στοιχείο α 12 μας πληροφορεί ότι η ομάδα «ΝΙΚΗ» έχει 6 νίκες. x = -7, y = 8, ω = 8..i) x

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 ο. 2= p=q 2 p =2q

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 ο. 2= p=q 2 p =2q ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ο. Υποθέτουµε ότι ο είναι ρητός. ηλαδή, υποθέτουµε p ότι υπάρχουν φυσικοί αριθµοί p και q τέτoιοι ώστε : =, p και q δεν έχουν q κοινούς διαιρέτες. Παρατηρούµε ότι ο άρτιος αριθµός.

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 27/02/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/1/2015

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: ΠΛΗΡΟΦΟΡΙΚΗ Ημερομηνία και ώρα εξέτασης: Τρίτη, 6 Ιουνίου 2006 07:30 10:30

Διαβάστε περισσότερα

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,

Διαβάστε περισσότερα

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία 0 3 10 71 < < 3 1 7 ; (y k ) 0 LU n n M (2; 4; 1; 2) 2 n 2 = 2 2 n 2 n 2 = 2y 2 n n ' y = x [a; b] [a; b] x n = '(x n 1 ) (x n ) x 0 = 0 S p R 2 ; S p := fx 2 R 2 : kxk p = 1g; p = 1; 2; 1 K i

Διαβάστε περισσότερα

Θέματα. , για. a 0. (8 μονάδες) Γ. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις:

Θέματα. , για. a 0. (8 μονάδες)  Γ. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: Θέματα Θέμα 1 Α. Να δώσετε τον ορισμό της παραβολής. (5 μονάδες) Β. Να αποδείξετε ότι a v a, για a 0. (8 μονάδες) Γ. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ισχύει Σ Λ ii)

Διαβάστε περισσότερα

Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z)

Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z) 1 ιανυσματικοί χώροι Άσκηση 1.1 Στο σύνολο R 3 όλων των διατεταγμένων τριάδων διατηρούμε την πρόσθεση, που ορίσαμε στο αντίστοιχο παράδειγμα, και ορίζουμε εξωτερικό πολλαπλασιασμό με τη σχέση λ(a 1,a 2,a

Διαβάστε περισσότερα

d 1 d 1

d 1 d 1 É É d 1 d 1 n ; n ; x E x E Q 0 z db1 0 z W 0,( 0,d 0,1 ( (,W z 0 z 0 z 0 z z z z z z z z z z z z z z z z z z 0 Date 0 Date 1 Date 2 Borrowing Crisis Repayment Investment Consumption Date 0 Budget Constraint:

Διαβάστε περισσότερα

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η 201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ - 1-1. Να αποδείξετε ότι: Α. ΘΕΩΡΙΑ i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η C : x 2 y 2 ρ 2. Να αποδείξετε ότι η εφαπτομένη του κύκλου C: χ 2 + ψ 2 = ρ 2

Διαβάστε περισσότερα

Κεφάλαιο 1. Τι θα μάθουμε σήμερα: -AND, OR, NOT. -Ενσωματωμένες συναρτήσεις. -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD. -Προτεραιότητα πράξεων

Κεφάλαιο 1. Τι θα μάθουμε σήμερα: -AND, OR, NOT. -Ενσωματωμένες συναρτήσεις. -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD. -Προτεραιότητα πράξεων Κεφάλαιο 1 Αρχή ήμισυ παντός. Πλάτων, 427-347 π.χ., Φιλόσοφος Τι θα μάθουμε σήμερα: -AND, OR, NOT -Ενσωματωμένες συναρτήσεις -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD -Προτεραιότητα πράξεων 1 Λογικές

Διαβάστε περισσότερα

Βασικά στοιχεία της Java

Βασικά στοιχεία της Java Βασικά στοιχεία της Java προτάσεις, εκφράσεις, µεταβλητές, σταθερές, τελεστές Ορισµοί Πρόταση (statement) είναι µία απλή εντολή σε µία γλώσσα προγραµµατισµού. Γιαπαράδειγµα: int x=12; Έκφραση (expression)

Διαβάστε περισσότερα

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i.

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i. http://elern.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 00-0: Άσκηση (0 µον) Θεωρούµε το µιγαδικό αριθµό z= i. α) (5 µον) Βρείτε την τριγωνοµετρική µορφή του z.

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επιλογής. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επιλογής. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Δομή Επιλογής Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Δομή Επιλογής (Απόφασης) Εκτέλεση υπό συνθήκη IF THEN IF THEN ELSE IF THEN

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,

Διαβάστε περισσότερα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Z L L L N b d g 5 *  # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1  5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3  # Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H

Διαβάστε περισσότερα

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ] συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)

Διαβάστε περισσότερα

ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ

ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΣΕ ΟΛΕΣ ΤΙΣ ΕΡΩΤΗΣΕΙΣ. Το εξεταστικό δοκίμιο αποτελείται από δύο Ενότητες Α και Β. ΕΝΟΤΗΤΑ Α - Αποτελείται από δέκα (10) ερωτήσεις. Κάθε ορθή απάντηση

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Œ Œ ˆ ˆ ˆŠ ˆˆ 58. ˆ. Œ. ƒμ É. Œμ ±μ ± μ Ê É Ò É ÉÊÉ Ô² ±É μ ± ³ É ³ É ± (É Ì Î ± Ê É É), Œμ ±

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Œ Œ ˆ ˆ ˆŠ ˆˆ 58. ˆ. Œ. ƒμ É. Œμ ±μ ± μ Ê É Ò É ÉÊÉ Ô² ±É μ ± ³ É ³ É ± (É Ì Î ± Ê É É), Œμ ± ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2010.. 41.. 1 Œ ˆ ˆ ˆŠ ˆˆ ƒ ˆ Šˆ š Š ƒ Œ ˆ Š Š Ÿ ˆˆ ˆ. Œ. ƒμ É Œμ ±μ ± μ Ê É Ò É ÉÊÉ Ô² ±É μ ± ³ É ³ É ± (É Ì Î ± Ê É É), Œμ ± ˆ 49 ˆ ˆ Šˆ Šˆ 50 ˆ ˆ Œ ˆ ˆˆ ˆ Š 54 Œ Œ ˆ ˆ ˆŠ ˆˆ 58 ˆ ˆ

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς

Διαβάστε περισσότερα

ÆÓØ ÙÐ Ò Ð Ê ÐØÖ ¾¼¼µ ÐÑ Åº ÐÓ ÐÓÒºÙÖºÖµ ÇÈÈ»ÍÊ ÈÖÓÖÑ ÒÒÖ ÐØÖ Ü ÈÓ ØÐ ¼ È ¾½½¹¾ ÊÓ ÂÒÖÓ Ê Ìк ¼µ ¾½µ ¾¾¹¾ ¼µ ¾½µ ¾¾¹¾ ܺ ¼µ ¾½µ ¾¾¹¾ ÈÖ Ó Ø ÒÓØ ÙÐ ÓÒØÑ Ó ÑØÖÐ ÔÖ ÒØÓ Ò ÙÐ ÔÐÒ Ç ½ Ò Ð Ê ÐØÖ Ó ÙÖ Ó Å

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ Πύλες - Άλγεβρα Boole 1 ΕΙΣΑΓΩΓΗ Α)Ηλεκτρονικά κυκλώµατα Αναλογικά κυκλώµατα Ψηφιακά κυκλώµατα ( δίτιµα ) V V 2 1 V 1 0 t t Θετική λογική: Ο V 1 µε V 1 =

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Κλίση συνάρτησης f Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Αν σε κάθε σημείο Px, y,z ενός τμήματος Δ του χώρου μία τιμή, ορίζεται μια συνάρτηση. f x, y,z : Δ, Δ αντιστοιχίσουμε την οποία ονομάζουμε σημειακή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 29 ΙΟΥΛΙΟΥ 2006 ΕΥΤΕΡΟ ΜΕΡΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 29 ΙΟΥΛΙΟΥ 2006 ΕΥΤΕΡΟ ΜΕΡΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΝΑΛΥΣΗ ΑΛΓΕΒΡΑ - ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ - ΣΤΑΤΙΣΤΙΚΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΓΕΩΜΕΤΡΙΑ ΛΟΓΙΚΗ - ΘΕΩΡΙΑ

Διαβάστε περισσότερα

12 th SYMPOSIUM OF THE HELLENIC NUCLEAR PHYSICS SOCIETY

12 th SYMPOSIUM OF THE HELLENIC NUCLEAR PHYSICS SOCIETY β γ α 12 th SYMPOSIUM OF THE HELLENIC NUCLEAR PHYSICS SOCIETY Ε. Ε. Π. Φ. NCSR Demokritos, Athens, May 10-11, 2002 Organising Committee Dr. S. V. Harissopulos Dr. P. Demetriou Dr. D. Bonatsos Στη µνήµη

Διαβάστε περισσότερα

A = B = Ψ(1) = Ψ(0) = γ) Αφαιρώντας τη δεύτερη σχέση από την πρώτη έχουμε

A = B = Ψ(1) = Ψ(0) = γ) Αφαιρώντας τη δεύτερη σχέση από την πρώτη έχουμε 1 Prìblhma 2 και α Εχουμε ότι a 11 =1 a 21 = a 12 = 1 a 22 = b 11 = b 21 = b 12 = b 22 =1 A = B = ( 1 1 ( και επομένως det A =detb =, οπότε οι συνθήκες είναι αμιγείς. β Εχουμε ότι ( ( 1 2 1 A =, B = 1

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες

ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΑΕΡΟΣΚΑΦΩΝ ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΕΙΣΑΓΩΓΗ στους Η/Υ Διδάσκουσα Δρ. Β. Σγαρδώνη 2013-14 ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες Α. ΑΛΓΕΒΡΑ Boole Η Άλγεβρα Boole (Boolean algebra) πήρε

Διαβάστε περισσότερα

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Ανέπτυξα την παρακάτω μεθοδολογία με υλικό από το ΕΑΠ που με βοήθησε

Διαβάστε περισσότερα

Στοχαστικές διαδικασίες. Γραµµικά συστήµατα. Αλυσίδες Markov. Θεωρία πληροφοριών. Γιάννης Α. Φίλης

Στοχαστικές διαδικασίες. Γραµµικά συστήµατα. Αλυσίδες Markov. Θεωρία πληροφοριών. Γιάννης Α. Φίλης ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ Στοχαστικές διαδικασίες Γραµµικά συστήµατα Αλυσίδες Markov Θεωρία πληροφοριών Γιάννης Α Φίλης Πολυτεχνείο Κρήτης - Σεπτέµβριος 6 ΠΕΡΙΕΧΟΜΕΝΑ I ΟΡΙΣΜΟΣ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΧΑΣΤΙΚΩΝ

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Χ. Σωτηρίου. Μετά τον τελευταίο χαρακτήρα του μηνύματος, θα ακολουθεί ο πρώτος, έτσι το μήνυμα ουσιαστικά θα περιστρέφεται διαρκώς.

Χ. Σωτηρίου. Μετά τον τελευταίο χαρακτήρα του μηνύματος, θα ακολουθεί ο πρώτος, έτσι το μήνυμα ουσιαστικά θα περιστρέφεται διαρκώς. ÈÒÔ ØÑÓ ÃÖØ ¹ ÌÑÑ Ô ØÑ ÍÔÓÐÓ ØôÒ À;¾¼ ¹ Ö ØÖÓ ôò ÃÙÐÛÑØÛÒ ÉÑÖÒ ÜÑÒÓ ¹ Ñ ³ØÓ ¾¼½¾¹¾¼½ Ö ØÖ Ö ½ ¹ Ç ³ÒÜ ¹ØÑÑØÛÒ ½»½¼»¾¼½¾ Û ½»½¼»¾¼½¾ Χ. Σωτηρίου ½ ËØÕÓ Ø ½ Ö Ο στόχος της πρώτης εργαστηριακής εργασίας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Ο τύπος char Επιτρέπει να διαβάζουμε

Διαβάστε περισσότερα

Βασικά μαθηματικά εργαλεία

Βασικά μαθηματικά εργαλεία Παράρτημα Αʹ Βασικά μαθηματικά εργαλεία Σύνοψη Παρατίθενται μια επανάληψη σε βασικές γνώσεις που αφορούν βασικά μαθηματικά εργαλεία, για την αντιμετώπιση προβλημάτων που παρουσιάζονται στο σύγγραμμα, και

Διαβάστε περισσότερα

, όπου D. το πεδίο ορισμού της y f ( x). Τότε θα έχουμε ( ) ( ) ( ) i i i. ανήκουν στην καμπύλη 2 και καθορίζουν τα ύψη των παραλληλογράμμων

, όπου D. το πεδίο ορισμού της y f ( x). Τότε θα έχουμε ( ) ( ) ( ) i i i. ανήκουν στην καμπύλη 2 και καθορίζουν τα ύψη των παραλληλογράμμων Έστω διάστημα B= ( b ) Df όπου D f το πεδίο ορισμού της f ( x) και διαμέριση ( B) = { t i n: t < t r n t = t = b} Τότε θα έχουμε n i r r+ n n ( b ] ( x x ] = Το ολοκλήρωμα της = f ( x) στο B άθροισμα του

Διαβάστε περισσότερα

Αναλυτικός υπολογισµός των πεδίων τάσεων και παραµορφώσεων γύρω από τυπικές πεταλοειδείς διατοµές ΝΑΤΜ

Αναλυτικός υπολογισµός των πεδίων τάσεων και παραµορφώσεων γύρω από τυπικές πεταλοειδείς διατοµές ΝΑΤΜ Αναλυτικός υπολογισµός των πεδίων τάσεων και παραµορφώσεων γύρω από τυπικές πεταλοειδείς διατοµές ΝΑΤΜ Ο. Αγγελοπούλου & Σ. Καρανάσιου Αγρονόµος Τοπογράφος Μηχανικός Ε.Μ.Π. Μ. Σακελλαρίου Αναπληρωτής Καθηγητής

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς ΤΧΝΟΛΟΙΚΟ ΚΠΑΙΥΤΙΚΟ ΙΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΧΝΟΛΟΙΚΩΝ ΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΙΣ ΣΤΑΤΙΚΗΣ ΙΙ οκοί, Πλαίσια, ικτυώματα, ραμμές πιρροής και Υπερστατικοί Φορείς, Ph.D. Μάρτιος 11 Ασκήσεις

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: Πληροφορική Ημερομηνία και ώρα εξέτασης:

Διαβάστε περισσότερα

Οδιαχωρισμόςτωνσχημάτωνσετρίπλευρα,τετράπλευρακλπ. οφείλεταιστονίδιοτον Ευκλείδη,αφούδεναπαντάταιούτεστονΠλάτωναούτεστονΑριστοτέλη.

Οδιαχωρισμόςτωνσχημάτωνσετρίπλευρα,τετράπλευρακλπ. οφείλεταιστονίδιοτον Ευκλείδη,αφούδεναπαντάταιούτεστονΠλάτωναούτεστονΑριστοτέλη. Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ ÛÑ ØÖ º½ È Ö Õ Ñ Ò ØÓÙ ÐÓÙ ³ ÇÖ ÑÓ ½ ¾ ÒÒÓ ÓÖÞÓÒØ Ô Ö Ö ÓÒØ º Ü ôñ Ø ½ ÃÓ Ò ÒÒÓ ½ Ì Ü ôñ Ø Ó Ó Ò ÒÒÓ Ò Ø Ü ôñ Ø Ø Ô Ô ÓÑ ØÖ º ÈÖÓØ ½ ¾ ÈÖÓØ ¾ ¾ ÈÖÓØ ÈÖÓØ Â Ñ ÐÛ Ø Ô Ô ÓÑ ØÖ ÕÛÖ Ø Ò

Διαβάστε περισσότερα

2x 2 y. f(y) = f(x, y) = (xy, x + y)

2x 2 y. f(y) = f(x, y) = (xy, x + y) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Εστω f : R R η συνάρτηση με τύπο y + x sin 1, για y 0, f(x, y) = y 0, για y = 0. (α) Να αποδειχθεί οτι lim f(x, y) = 0. (x,y) (0,0) (β) Να αποδειχθεί οτι το lim(lim f(x, y)) δεν

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.

Διαβάστε περισσότερα

L A TEX 2ε. mathematica 5.2

L A TEX 2ε. mathematica 5.2 Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica

Διαβάστε περισσότερα

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Λογική Σχεδίαση Ψηφιακών Συστημάτων Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδική Λογική Η δυαδική λογική ασχολείται με μεταβλητές

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ± Ó³ Ÿ. 009.. 6, º 7(156.. 6Ä69 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒ ˆ - ˆ ƒ ˆ ˆ ˆŸ Š -Œ ˆ Šˆ ˆ.. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ μ ± Ê É É Ê Ò μ μ, Œμ ± É ÉÓ μ Ò ÕÉ Ö ²μ Í Ò - μ Ò ² É Ö ³ ÖÉÓ Ì ÒÎ ² ÖÌ, μ²ó ÊÕÐ Ì ±μ ± 4- μ Ò. This paper

Διαβάστε περισσότερα

( x! x 0 ) 2 + ( y! y 0 ) 2

( x! x 0 ) 2 + ( y! y 0 ) 2 ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική 6 η Εργασία Επιστροφή: 28/4/13 Yπενθύµιση: Οι εργασίες πρέπει να επιστρέφονται µε e-mail που θα στέλνετε από το πανεπιστηµιακό σας λογαριασµό το αργότερο µέχρι

Διαβάστε περισσότερα

G L (x) =Ax + B, G R (x) =A x + B οπότε από τις συνοριακές συνθήκες έχουμε

G L (x) =Ax + B, G R (x) =A x + B οπότε από τις συνοριακές συνθήκες έχουμε 1 ÈÖ Ð Ñ Για να είναι εφαρμόσιμη η μέθοδος της συνάρτησης Green, θαπρέπειηομογενής εξίσωση Ly =+ Ο.Σ.Σ. να έχει ως μοναδική λύση τη μηδενική. α) Η ομογενής εξίσωση y =έχει λύση y = A + B, από τις δεδομένες

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών. Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και

Διαβάστε περισσότερα