4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη"

Transcript

1 94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4. Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος είναι αναγκαία χώρος Baach εφόσον ταυτίζεται ισομετρικά με τον. Σημειώνουμε ότι υπάρχουν παραδείγματα μη αυτοπαθών χώρων έτσι ώστε ο να είναι γραμμικά ισομετρικός με τον φυσικά μέσω της κανονικής απεικόνισης ϕ. ( όχι Ένα τέτοιο παράδειγμα (ο χώρος του James J μπορεί να βρεθεί στα βιβλία [F-H-H-M-P-Z] και [Μ]. Θεώρημα 4.. Έστω χώρος Baach. Οι ακόλουθοι ισχυρισμοί είναι ισοδύναμοι: Ο είναι αυτοπαθής Η Β, είναι συμπαγής χώρος. 3 Ο είναι αυτοπαθής 4 (, (, =. Απόδειξη ( (. Εφόσον ο είναι αυτοπαθής έχουμε ότι (, (,,, Β = Β. Από το θεώρημα Alaoglou έχομε το συμπέρασμα. = και άρα ( ( Εφόσον η Β, είναι συμπαγής χώρος είναι και ασθενώς συμπαγές υποσύνολο της Β. Από το θεώρημα Goldstie η Β είναι και ασθενώς πυκνό υποσύνολο του Β, συνεπώς Β =Β. Άρα =. ( (4 Η ασθενής τοπολογία επί του επάγεται από τον συζυγή του που είναι ο =. Επίσης η ασθενής τοπολογία επί του επάγεται από τον προσυζυγή του που είναι πάλι ο, έτσι οι δύο τοπολογίες ταυτίζονται.

2 95 (4 (3. Από την υπόθεσή μας, έπεται αμέσως ότι Β, = Β,. Από το θεώρημα Alaoglou η Β, είναι συμπαγής χώρος. Άρα η Β, είναι συμπαγής χώρος και από την ( ( έπεται το συμπέρασμα. (3 (. Εφόσον ο (, (, άρα και του υποσύνολο του είναι αυτοπαθής από την ( (4 θα έχουμε ότι =. Η Β, είναι orm κλειστό και κυρτό υποσύνολο του ( και, έπεται από το θεώρημα του Mazur ότι είναι ασθενώς κλειστό. Αλλά τότε από την υπόθεσή μας είναι ασθενώς κλειστό υποσύνολο του. Από το θεώρημα Goldstie έπεται ότι Β =Β. Κατά συνέπεια =. Πόρισμα 4.. Έστω αυτοπαθής χώρος Baach και Y κλειστός διανυσματικός υπόχωρος του. Τότε ο Y είναι επίσης αυτοπαθής. Απόδειξη: Παρατηρούμε ότι Β Y = Y Β. Επειδή από το θεώρημα του Mazur ο Y είναι ασθενώς κλειστό υποσύνολο του και από το θεώρημα 4.. η Β είναι ασθενώς συμπαγές υποσύνολο του, έπεται ότι η Β Y είναι ασθενώς συμπαγές σύνολο. Έτσι πάλι από το θεώρημα 4.. ο Y είναι αυτοπαθής χώρος. Πόρισμα 4..3 Έστω αυτοπαθής χώρος Baach. Αν = ώστε ( =., τότε υπάρχει με Απόδειξη Υποθέτομε χωρίς βλάβη της γενικότητας ότι. Το είναι συνεχής συνάρτηση ως προς την ασθενή τοπολογία του και η Β είναι ασθενώς συμπαγές σύνολο, αφού ο είναι αυτοπαθής. Έπεται ότι υπάρχει y Β ώστε ( ( Παρατηρούμε ότι, ( με { } y = su : = = y y y = Επίσης έχομε ότι υπάρχει a K a = ώστε ( y a ( y ( ay = y =. = =. Έτσι θέτομε = ay και έχομε Παρατηρήσεις Το προηγούμενο αποτέλεσμα δεν ισχύει πάντοτε χωρίς την υπόθεση της αυτοπάθειας. Για παράδειγμα αν ( ( Λ : c R : Λ =, = c ( ( = των μηδενικών ακολουθιών πραγματικών αριθμών τότε ισχύουν: (=ο χώρος

3 96 (α Το Λ είναι φραγμένο γραμμικό συναρτησοειδές με Λ = (β Για κάθε c με ( = ( Λ < ( Πρβλ. την άσκηση ( της παραγράφου. Αν είναι χώρος με νόρμα τότε από το θεώρημα Hah-Baach ( αλλά και από το θεώρημα Alaoglou έχομε ότι για κάθε υπάρχει με = ώστε ( =. Έτσι το προηγούμενο αποτέλεσμα μπορεί να προκύψει θεωρώντας τον ως συζυγή του ( = Θεώρημα 4..4 Έστω αυτοπαθής χώρος Baach και Κ. Τότε το Κ είναι ασθενώς συμπαγές αν και μόνο αν το Κ είναι ασθενώς κλειστό και orm φραγμένο. Απόδειξη Έστω ότι το Κ είναι ασθενώς συμπαγές. Τότε βέβαια το Κ είναι ασθενώς κλειστό. Αν τότε επειδή το συμπαγές, έχομε ότι ( { } είναι ασθενώς συνεχές και το Κ ασθενώς su : Κ <+. Από την αρχή του ομοιομόρφου φράγματος έπεται ότι το Κ είναι orm φραγμένο. Έστω ε > ώστε Κ Β (,ε. Από την αυτοπάθεια του η (, ε Β είναι ασθενώς συμπαγές σύνολο. Επειδή το Κ είναι ασθενώς κλειστό συμπεραίνουμε ότι είναι ασθενώς συμπαγές.. Παρατηρήσεις 4..5 Ένας τοπολογικός χώρος λέγεται ακολουθιακά συμπαγής, αν κάθε ακολουθία ( έχει κάποια υπακολουθία ( ώστε k. Ένα ασθενώς ακολουθιακά συμπαγές υποσύνολο Κ ενός χώρου Baach είναι αναγκαία orm φραγμένο. Πράγματι, αν το Κδεν ήταν φραγμένο τότε θα υπήρχε μια ακολουθία ( Κ ώστε υπακολουθία της ( για κάθε. Έστω ( k, τότε βέβαια η ( k μια ασθενώς συγκλίνουσα θα ήταν φραγμένη άτοπο. k Το θεώρημα 4..4 είναι συνέπεια ενός γενικότερου αποτελέσματος: Αν χώρος Baach και Κ τότε το Κ είναι ασθενώς συμπαγές αν και μόνο αν είναι ασθενώς κλειστό και orm φραγμένο ( πρβλ. τις ασκήσεις. Έπεται ιδιαίτερα από το αποτέλεσμα αυτό ότι κάθε ασθενώς συμπαγές υποσύνολο ενός χώρου Baach είναι orm φραγμένο ( γιατί;. Λήμμα 4..6 Κάθε ασθενώς συμπαγές υποσύνολο Κ ενός διαχωρίσιμου χώρου Baach είναι μετρικοποιήσιμο.

4 97 Απόδειξη. Έστω Κ ένα ασθενώς συμπαγές υποσύνολο του. Από το θεώρημα 4..8 η Β, είναι συμπαγής και μετρικοποιήσιμος χώρος επομένως διαχωρίσιμος. Έστω { : } D= ένα αριθμήσιμο και πυκνό υποσύνολο της Β,. Παρατηρούμε ότι το D διαχωρίζει τα σημεία του. Πράγματι, έστω ώστε ( = για κάθε. Επειδή το = ϕ( είναι ένα ασθενώς συνεχές γραμμικό συναρτησοειδές επί του ((, έπεται ότι ( ότι =. =, είναι και συνεχής συνάρτηση αν περιορισθεί στην Β, = για κάθε Β και άρα ( = για κάθε.έτσι έχομε Ορίζουμε τον τελεστή T : c ώστε T( = Εύκολα ελέγχεται ότι ο T είναι καλά ορισμένος, γραμμικός ( το D διαχωρίζει τα σημεία του και φραγμένος ( με T. [ Επειδή από το θεώρημα 4..3 ο T είναι ασθενώς συνεχής, έπεται ότι το ασθενώς συμπαγές υποσύνολοκ του είναι ομοιομορφικό με το ασθενώς συμπαγές υποσύνολο T( Κ του c. Όμως το ( T Κ είναι orm φραγμένο από την παρατήρηση 4..5 ( και όπως γνωρίζουμε από το πόρισμα 4..9 η ασθενής τοπολογία στα φραγμένα υποσύνολα ενός χώρου με διαχωρίσιμο συζυγή ( c =l είναι μετρικοποιήσιμη. Έτσι το ( T( Κ, είναι μετρικοποιήσιμο και συνεπώς και το (, Από το προηγούμενο Λήμμα έπεται εύκολα το ακόλουθο. Κ είναι μετρικοποιήσιμο. Θεώρημα 4..7 Κάθε ασθενώς συμπαγές υποσύνολο Κ ενός χώρου Baach είναι ασθενώς ακολουθιακά συμπαγές. Απόδειξη Έστω ( τυχούσα ακολουθία σημείων του Κ. Θέτομε Ω= cl { } Κ και Y cl,, = (=η κλειστή γραμμική θήκη του συνόλου {, }. Προφανώς ο Y είναι διαχωρίσιμος χώρος Baach και το Ω είναι ένα ασθενώς συμπαγές υποσύνολο του Y. Από το Λήμμα 4..6 ο χώρος ( Ω, είναι μετρικοποιήσιμος και συνεπώς η ( έχει μια ασθενώς συγκλίνουσα υπακολουθία μέσα στο Ω Κ. Το αντίστροφο του προηγουμένου αποτελέσματος ισχύει και είναι ένα βαθύ αποτέλεσμα που ανήκει στον Eberlei. Διατυπώνουμε το θεώρημα του Eberlei και για την απόδειξή του παραπέμπουμε στα βιβλία [F-H-H-M-P-Z], [Μ] και [D].

5 98 Θεώρημα 4..8 ( Eberlei Ένα υποσύνολο ενός χώρου Baach είναι ασθενώς συμπαγές ( αν και μόνο αν είναι ασθενώς ακολουθιακά συμπαγές. Η ακόλουθη εφαρμογή του θεωρήματος 4..7 μας λέει ότι, λόγω της ιδιότητας Schur, ο χώρος l βρίσκεται στον αντίποδα των αυτοπαθών χώρων. Πρόταση 4..9 Ένα υποσύνολο Κ του χώρου l είναι ασθενώς συμπαγές αν και μόνο αν είναι orm συμπαγές. Απόδειξη Αν τοκ είναι orm συμπαγές τότε το Κ προφανώς είναι ασθενώς συμπαγές. Έστω ότι το Κ είναι ασθενώς συμπαγές. Από το θεώρημα 4..7 κάθε ακολουθία ( έχει ασθενώς συγκλίνουσα και συνεπώς - από την ιδιότητα Schur του l- orm συγκλίνουσα υπακολουθία μέσα στο Κ. Έτσι το Κ είναι orm συμπαγές υποσύνολο του l. Από το θεώρημα του Eberlei έπεται και ο ακόλουθος χαρακτηρισμός των αυτοπαθών χώρων. Θεώρημα 4.. Έστω χώρος Baach. Οι ακόλουθοι ισχυρισμοί είναι ισοδύναμοι: (α Ο είναι αυτοπαθής (β Κάθε φραγμένη ακολουθία στον έχει ασθενώς συγκλίνουσα υπακολουθία. Κ Απόδειξη (α (β Η Β, 4..7 έπεται το συμπέρασμα. είναι ασθενώς συμπαγές σύνολο, έτσι από το θεώρημα (β (α Από το θεώρημα 4..8 ( Eberlei έπεται ότι η (, και έτσι ο είναι αυτοπαθής. Παραδείγματα. ( Οι χώροι l και L L [,] Β είναι συμπαγές σύνολο =, για < <+ είναι αυτοπαθείς. Πράγματι, αν + =, τότε ισχύει l = l q = l, υπό την έννοια ότι για κάθε q υπάρχει g l ώστε ( ( = για κάθε ( f g k k= k f l q = k l q. Η δράση του f επί του είναι ίδια με την δράση του g επί του. Έπεται ότι η κανονική απεικόνιση ϕ l l είναι επί του l. Για τον L ο έλεγχος ότι η ϕ είναι επί του ( Ο χώρος c δεν είναι αυτοπαθής επειδή c L είναι ανάλογος. =l και ο l ως γνωστόν δεν είναι διαχωρίσιμος. Ο χώρος l επίσης δεν είναι αυτοπαθής. Αν ήταν, τότε ο διαχωρίσιμος και συνεπώς ο l = l θα ήταν επίσης διαχωρίσιμος, άτοπο. l θα ήταν :

6 99 3 Αποδεικνύεται ότι κανένας χώρος από την οικογένεια c και l, <+, δεν είναι ισομορφικός με υπόχωρο κάποιου άλλου μέλους της οικογένειας. Έτσι για παράδειγμα αν q<+ τότε ο l δεν εμφυτεύεται ισομορφικά στον l q. ( Πρβλ. [L-T] σελ Ορισμός 4.. Έστω ( M, d μετρικός χώρος και A μη κενό υποσύνολο του M. Το A λέγεται προσεγγίσιμο ( roimal αν, για M υπάρχει y A ώστε (, = d(, A ( ( d y { d z z A} = if, :. Σχόλιο. Όπως γνωρίζουμε αν H είναι χώρος Hilbert και A H κλειστό κυρτό τότε για κάθε H υπάρχει y A έτσι ώστε d(, y = d(, A ( και το A είναι συνεπώς προσεγγίσιμο. Η ιδιότητα αυτή των χώρων Hilbert, όχι στην πλήρη της μορφή, κληροδοτείται στους αυτοπαθείς χώρους. Θεώρημα 4.. Έστω αυτοπαθής χώρος Baach και A κλειστό και κυρτό. Τότε το A είναι προσεγγίσιμο. Απόδειξη Έστω ( με A ώστε d A. Θέτομε d = d ( A και επιλέγομε μια ακολουθία. Η ( είναι αυτοπαθής, υπάρχει υπακολουθία ( k, είναι βέβαια φραγμένη ακολουθία και επειδή ο της ( ώστε A είναι κλειστό κυρτό από το θεώρημα Mazur to A. Έστω k. Επειδή το με = ώστε = (. Τότε έχομε = ( ( k + ( k ( k + k Παίρνοντας όρια, συμπεραίνουμε ότι d Θεώρημα 4..3 Έστω χώρος με νόρμα και και έτσι έχομε d d ( A με = =.,. Τότε ο πυρήνας του είναι προσεγγίσιμος αν και μόνο αν υπάρχει με = τέτοιο ώστε ( =. Απόδειξη Η απεικόνιση : / Ker K : ( Ker ( φραγμένη και επί του K με Ker Λ Λ + = είναι γραμμική Λ = ( Πρβλ. την απόδειξη της πρότασης.. Επομένως είναι ένας ισομορφισμός μονοδιάστατων χώρων Baach, έτσι υπάρχει με υπάρχει + = και Λ ( + Ker y Ker ώστε ( Ker = Λ. Εφόσον ο y = d, Ker = + Ker =. y = = Λ + Ker = Λ =. Έπεται ότι, ( ( ( Ker είναι προσεγγίσιμος,

7 Το ζητούμενο είναι το = y. Έστω ( με =. Επειδή ( Ker. Από την υπόθεσή μας υπάρχει dim / Ker =, υπάρχουν y ώστε = y+ λ. Αν z είναι τυχόν στοιχείο του ( ( ( + λ με = ώστε Ker και K Ker θα έχουμε λ με λ z y y z = = = = +. λ λ λ y d Ker = +. Άρα ο λ Έπεται ότι, (, Ker είναι προσεγγίσιμος. Λ, ( Παρατήρηση 4..4 Ο πυρήνας του συναρτησοειδούς : c R ( ( ( Λ =, = = c, δεν είναι προσεγγίσιμος εφόσον η νόρμα του Λ δεν επιτυγχάνεται σε κανένα σημείο της μοναδιαίας σφαίρας του c. ( Πρβλ. την παρατήρηση ( μετά το πόρισμα Αν ο χώρος είναι αυτοπαθής τότε όπως έπεται από το θεώρημα 4..3 και το πόρισμα4..- ο πυρήνας κάθε συναρτησοειδούς με είναι προσεγγίσιμος. 3 Αποδεικνύεται ότι και το αντίστροφο του θεωρήματος 4.. ισχύει: Αν κάθε κλειστό και κυρτό υποσύνολο ενός χώρου Baach είναι προσεγγιστικό τότε ο χώρος είναι αυτοπαθής ( Πρβλ. το [Μ] σελ Έστω χώρος με νόρμα, Y κλειστός υπόχωρος του και π : / Y η κανονική απεικόνιση. Αποδεικνύεται τότε ότι οy είναι προσεγγίσιμος αν και μόνο αν π Β =Β / Y (Πρβλ. και τις παρατηρήσεις.4 και.6 της παραγράφου, την παρατήρηση ( μετά το πόρισμα 4..3 καθώς και τις ασκήσεις που ακολουθούν. Έστω χώρος Baach. Αποδείξτε ότι: Ασκήσεις (α Αν ( είναι ακολουθία στον και ώστε φραγμένη και limif.., τότε η ( είναι (β Αν η ( είναι ακολουθία στον και ώστε τότε η ( είναι φραγμένη και lim if.

8 [ Υπόδειξη. Για το (α: Από την αρχή του ομοιομόρφου φράγματος η ( είναι φραγμένη. Έστω c= lim if. Αν = lim if lim if τότε ( lim ( = lim if( = c. Η απόδειξη για το (β είναι παρόμοια] Έστω χώρος με νόρμα. Αν η ακολουθία ( είναι orm Cauchy και. [ Υπόδειξη + εβ και το σύνολο m m + εβ είναι ασθενώς κλειστό.] 3 Έστω ( ακολουθία στον χώρο Baach, όπου =l ή = ( k k,. Αποδείξτε ότι: (α Αν τότε c ( <+. Έστω =l, < <+ ή c τότε: αν και μόνο αν υπάρχει Μ> ώστε Μ, και για κάθε k. k (β Αν = l = c τότε: και για κάθε k. k Μ> ώστε αν και μόνο αν υπάρχει [ Υπόδειξη Η ακολουθία e, είναι ολικό υποσύνολο του ]. Μ, 4 Έστω l. Αποδείξτε ότι η ακολουθία ( = c την e e ικανοποιεί την e αλλά όχι [ Υπόδειξη Για το δεύτερο ερώτημα αποδείξτε πρώτα ότι co{ e, } 5 Αποδείξτε ότι στον χώρο Baach συμπαγές αλλά όχι orm συμπαγές. e : c l ]. [ Υπόδειξη { } ] l το σύνολο { e : } { } Κ= είναι ασθενώς 6 Έστω = c ή l (< <+. Αποδείξτε ότι η ασθενής τοπολογία στην { : } Β = είναι μετρικοποιήσιμη και ότι συμπίπτει με την τοπολογία της σύγκλισης κατά σημείο επί του. Επίσης αποδείξτε ότι e. 7 Έστω F : R l ώστε F( k= k =, = ( k l. Αποδείξτε ότι η F είναι ένα φραγμένο γραμμικό συναρτησοειδές επί του l και ακόμη ότι δεν είναι ασθενώς συνεχές επί του l c ( δηλαδή ότι F l \ c.

9 [ Υπόδειξη Από την άσκηση (4 έχουμε ότι e στον l ] 8 Έστω απειροδιάστατος χώρος Baach και S { : } = =. Αποδείξτε ότι: (α Η S είναι πυκνό υποσύνολο της Β, άρα και ασθενώς πυκνό υποσύνολο της Β (β Η νόρμα του δεν είναι ασθενώς συνεχής σε κανένα σημείο του. [ Υπόδειξη Για το (α: Έστω περιοχή του, όπου F Ο διανυσματικός υπόχωρος M { } < και έστω ( ε Β μια ασθενώς ανοικτή βασική F,. πεπερασμένο και, F F = Ker έχει πεπερασμένη συνδιάσταση και συνεπώς F ε >. Τότε + Ker Β ( ε M. Έστω, M ώστε + < και + >. Παρατηρούμε ότι το ευθύγραμμο τμήμα [, ] M (, ε Β και ότι τέμνει την S F Για το (β: Από το (α υπάρχει δίκτυο ( δ στην δ είναι ασθενώς συνεχής στο. Αν, τότε το τότε από το (α υπάρχει δίκτυο ( δ στην S δ ώστε όπου συμπεραίνουμε ότι η δεν είναι ασθενώς συνεχής στο.] S ώστε δ. Άρα η δεν y= έχει y <. Αν λ = + + δ y= λ λ δ. Από 9 Έστω χώρος με νόρμα. Αποδείξτε ότι: (α Αν Κ, τότε το Κ είναι orm φραγμένο αν και μόνο αν το Κ είναι ασθενώς φραγμένο. (β Αν ο είναι χώρος Baach και αν είναι ασθενώς φραγμένο. Κ, τότε το Κ είναι orm φραγμένο αν και μόνο [Υπόδειξη. Χρησιμοποιείστε την αρχή του ομοιομόρφου φράγματος ]. Έστω χώρος Baach και και μόνο αν είναι ασθενώς κλειστό και orm φραγμένο. Έστω (, Κ, αποδείξτε ότι το Κ είναι ασθενώς συμπαγές αν χώρος με νόρμα. Αποδείξτε ότι ο εμφυτεύεται ισομετρικά σ ένα χώρο Baach της μορφής C( Ω όπου Ω συμπαγής χώρος.

10 3 [ Υπόδειξη Έστω Ω= Β, ( ( (. Ορίζουμε T : C( Ω ώστε T =,, Ω. Αποδείξτε ότι η T είναι γραμμική ισομετρία.] Έστω χώρος με νόρμα και Κ φραγμένο σύνολο. Αποδείξτε ότι το Κ είναι ασθενώς σχετικά συμπαγές αν και μόνο αν η ασθενής κλειστότητα του στον περιέχεται στον ( δηλαδή cl Κ. 3 Έστω (, διαχωρίσιμος χώρος Baach και ( = { : = }. Ορίζουμε T : l : T( S πυκνή ακολουθία στην ( =. Αποδείξτε ότι ο T είναι ένας γραμμικός φραγμένος και τελεστής ο οποίος είναι ασθενώς -ασθενώς συνεχής όταν περιορισθεί στην Β. 4 (α Έστω, Y χώροι Baach και <+. Θέτομε Z = ( Y ( = το ευθύ άθροισμα των και Y στην νόρμα. Αποδείξτε ότι Z ( Y συζυγής εκθέτης του., όπου q ο (β Έστω αυτοπαθής χώρος Baach ώστε ο να είναι ισομορφικός με τον συζυγή του. Είναι τότε ο ισομορφικός με κάποιο χώρο Hilbert; [ Υπόδειξη. Η απόδειξη του (α είναι παρόμοια με την απόδειξη του δυϊσμού των χώρων l, δηλαδή l = l, l = l. Για το (β παρατηρούμε ότι αν είναι αυτοπαθής χώρος q Baach ( μη ισομορφικός με χώρο Hilbert και Y ( Y ( = ( Y.] 5 Έστω (, =, τότε από το (α έχουμε ότι χώρος Baach. Τότε Β, είναι μετρικοποιήσιμος ( διαχωρίσιμος χώρος αν και μόνο αν ο είναι διαχωρίσιμος. [ Υπόδειξη. Έχουμε ήδη αποδείξει την κατεύθυνση, διαχωρίσιμος τότε Β, μετρικοποιήσιμος ( και διαχωρίσιμος χώρος. ( πρβλ. Πόρισμα Έστω ότι η Β, είναι μετρικοποιήσιμος χώρος. Θεωρούμε μια ακολουθία Β ( ε q,, ασθενώς F ανοικτών βασικών περιοχών του ( F πεπερασμένο υποσύνολο του ε > ώστε η ακολουθία U ( ε, και =Β, Β,, να είναι βάση περιοχών F

11 4 του στον χώρο Β,. Χωρίς περιορισμό, της γενικότητας υποθέτομε ότι ε =, και θέτομε, ( = η κλειστή γραμμική θήκη του F στον = F = F Y = cl F αποδείξουμε ότι Y =. Έστω με F. Από το θεώρημα Goldstie υπάρχει δίκτυο ( ότι δίδεται. Τότε υπάρχει ώστε το. Θα να μηδενίζεται επί του Β δ ώστε δ δ. Έστω δ ώστε ( ( = < = για κάθε δ δ ε δ δ για κάθε F. Έπεται ότι δ U για κάθε δ δ. Επειδή αυτό γίνεται για κάθε, συμπεραίνουμε ότι δ, επομένως 6 Έστω (, χώρος Baach. =.] (α Αποδείξτε ότι νόρμα του είναι ασθενώς κάτω ημισυνεχής συνάρτηση επί του. (β Αποδείξτε ότι αν ο είναι διαχωρίσιμος τότε κάθε υποσύνολο A του είναι με την ασθενή ( σχετική τοπολογία διαχωρίσιμος χώρος. (γ Αποδείξτε ότι τα ακόλουθα είναι ισοδύναμα για τον :(ι Β, είναι διαχωρίσιμος, (ιι ( S, Baach. είναι διαχωρίσιμος και (ιιι είναι διαχωρίσιμος χώρος [ Υπόδειξη. Για το (α. Κάθε κλειστή σφαίρα του είναι από το θεώρημα Mazur ασθενώς κλειστό σύνολο. Για το (β. Η ταυτοτική απεικόνιση I :(, (, είναι συνεχής. Για το (γ. (ι (ιι. Έστω D αριθμήσιμο ασθενώς πυκνό υποσύνολο της Β και S, τότε δ D δ δ υπάρχει δίκτυο ( :. Επειδή από το (α η νόρμα είναι ασθενώς κάτω ημισυνεχής = limif, άρα δ ( πρβλ και την άσκηση (α. Έπεται ότι, δ δ δ. Άρα το σύνολο : D, δ είναι αριθμήσιμο και ασθενώς πυκνό στην S. Η κατεύθυνση (ιι (ι έπεται από το γεγονός ότι η S είναι ασθενώς πυκνό υποσύνολο της Β ( πρβλ. άσκηση (8. Για το (ι (ιιι παρατηρούμε ότι αν D είναι αριθμήσιμο και ασθενώς πυκνό υποσύνολο της Β τότε το L= D είναι αριθμήσιμο και ασθενώς πυκνό υποσύνολο του και έτσι ο είναι ασθενώς διαχωρίσιμος. Έστω D = L η γραμμική θήκη του L τότε το σύνολο S των γραμμικών συνδυασμών στοιχείων του L με ρητούς συντελεστές είναι orm πυκνό στο D, επομένως =

12 5 το D είναι orm διαχωρίσιμο. Επειδή το D είναι ασθενώς πυκνό κυρτό σύνολο ( ως γραμμικός υπόχωρος έπεται από τις συνέπειες του θεωρήματος Mazur ότι είναι και orm πυκνό στο. Η κατεύθυνση (ιιι (ι είναι συνέπεια του (β.] 7 Στον χώρο Hilbert L [,π ], θεωρούμε την ακολουθία ( Αποδείξτε ότι: (α f και (β g δεν τείνει στο, όπου Συγκρίνετε αυτά τα αποτελέσματα με το θεώρημα Mazur. ikt [ Περιγραφή της απόδειξης: Έστω ( [ π] και π, = m u, um = e dt =, m =,. it f t e = u t = e, t,, k Z. Τότε k π i( m t. Έτσι το σύνολο : u k g = f,. = k Z π είναι uk = π, k Z ορθοκανονικό. Από το θεώρημα Weierstrass ( ή Fejer το σύνολο { uk : k Z} υποσύνολο του χώρου Baach C( T, όπου Τ= { z C : z = }. Επειδή ο χώρος C( T είναι πυκνός στον χώρο Hilbert L[, π ] έπεται ότι το { u : k k Z} είναι ολικό στον L[, π ]. Επομένως μια φραγμένη ακολουθία ( f [, L π] ακριβώς όταν, για κάθε k Z. Η δοσμένη ( f είναι βέβαια f uk i t e it,, e είναι ολικό είναι ασθενώς μηδενική it φραγμένη αφού, ( f ( t = e t [ π, ( ( π f = f = και π π π =... = = ( f f dt u u u dt π u dt = π, χρησιμοποιώντας ότι το k : π Παρατηρούμε ότι αν k Z τότε για κάθε k, Άρα f. u u dt = k Z είναι ορθοκανονικό. f, u = k uk, u = π. Για το (β παρατηρούμε τα ακόλουθα: π g = f f dt π f f dt =. g (

13 6 Επίσης έχουμε: f... f ( f... f ( f... f ( f... f ( f... f + + = = = f + f f k k= k, λ k λ fk fk fλ fk fλ ( k= k< λ k< λ = + + ( u u ( u u k λ Αν k λ, τότε fk fλ = k λ = ( u... u ( u... u k λ kλ Λαμβάνοντας υπόψη την καθετότητα των u, i u j με π συμπεραίνουμε ότι ( k i j λ π k λ k k u u dt = π = π kλ kλ λ π k fk, fλ = fk fλdt =, άρα και fλ fkdt = fλ, fk = fk, fλ = π (3 λ Έπεται από τις (, ( και (3 ότι k k= π f f dt = k f dt+ fk fλ : k < λ = π + π k < λ λ (4. π π 4 : k Θέτομε I = : k < λ, λ και παρατηρούμε ότι, I = Επομένως I = A+ B, όπου A= και B... = Αν k, τότε =. k+ k+ Κατά συνέπεια, I ( + ( > A = = (5. 4 π Έπεται από τις (4 και (5 ότι g = f f dt = ( 4π + 4π I π + π I = > I 4 4 > 4 ( + ( + =. 4 4

14 7 Έπεται ότι g δεν συγκλίνει στο και συνεπώς g δεν συγκλίνει στο. Επειδή f, από το θεώρημα του Mazur υπάρχει ακολουθία κυρτών συνδυασμών μελών της ( f η οποία συγκλίνει orm στο. Από το (β όμως συμπεραίνουμε ότι η ακολουθία ( g των μέσων όρων της ( f δεν έχει αυτή την ιδιότητα. 8 Έστω, Y χώροι Baach και T : Y φραγμένος γραμμικός τελεστής. Αποδείξτε ότι: (α Ο συζυγής τελεστής T : Y του T είναι συνεχής και για τις ασθενείς τοπολογίες των Y και. (β Αν ο T είναι ισομορφισμός μεταξύ των και Y τότε και ο μεταξύ των και Y. P : : P f = f, είναι συζυγής τελεστής. (γ Η προβολή ( T είναι ισομορφισμός [ Υπόδειξη Για το (γ. Η P είναι η προβολή Dimier ( πρβλ. την άσκηση (6 της παραγράφου (. Δείξτε ότι P 9 Έστω (, = ϕ, όπου ϕ : η κανονική εμφύτευση του στον χώρος με νόρμα. Αποδείξτε ότι η ]. (α Η νόρμα του είναι ασθενώς κάτω ημισυνεχής. (β Αν ( i i είναι φραγμένο δίκτυο στον και i I lim if. Έστω χώρος με νόρμα. Αποδείξτε ότι: ώστε i τότε (α Κάθε μη κενό ασθενώς συμπαγές υποσύνολο του είναι προσεγγίσιμο. Ιδιαίτερα κάθε αυτοπαθής υπόχωρος του είναι προσεγγίσιμος. (β Κάθε μη κενό ασθενώς συμπαγές υποσύνολο του είναι προσεγγίσιμο. (γ Αν Y είναι κλειστός υπόχωρος του και π : / Y η κανονική απεικόνιση τότε, ο Y είναι προσεγγίσιμος αν και μόνο αν ισχύει ότι, π Β =Β / Y.

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη 94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4.2 Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος

Διαβάστε περισσότερα

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine. 8 Έστω (, ) 4 Ασθενείς τοπολογίες σε χώρους με νόρμα 4. θεωρήματα Mazur, Alaoglou, Goldste. χώρος με νόρμα. Υπενθυμίζουμε ότι η ασθενής τοπολογία T του έχει ως βάση ( ανοικτών ) περιοχών του όλα τα σύνολα

Διαβάστε περισσότερα

π B = B και άρα η π είναι ανοικτή απεικόνιση.

π B = B και άρα η π είναι ανοικτή απεικόνιση. 3 Παράρτημα 2 Παρατηρήσεις, ασκήσεις και Διορθώσεις Παράγραφος ) Σελίδα, : Παρατηρούμε τα ακόλουθα για το χώρο πηλίκο / Y : Y = / Y και (α) { } (β) = Y / Y { } Επίσης από τον τύπο () έπεται ιδιαίτερα ότι

Διαβάστε περισσότερα

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους.

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους. 7 3.5 Το θεώρημα Hah-Baach σε τοπολογικούς διανυσματικούς χώρους. Εξετάζουμε καταρχήν τη σχέση μεταξύ ενός μιγαδικού διανυσματικού χώρου E και του υποκείμενου πραγματικού χώρου E R. Έστω E μιγαδικός διανυσματικός

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω (, ) και (, ) {( x, ) : x και } χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται χώρος με

Διαβάστε περισσότερα

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές. 6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται

Διαβάστε περισσότερα

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)].

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)]. 3 Ασκήσεις ) Έστω διανυσματικός χώρος, C κυρτό και C. (α) Αποδείξτε ότι τα ακόλουθα είναι ισοδύναμα: (ι) e( C) = +,(ιι), = = και (ιιι) Το σύνολο C \{ } είναι κυρτό. (β) Επίσης αποδείξτε ότι αν e( C) και

Διαβάστε περισσότερα

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον Χώροι πηλίκα Έστω διανυσματικός χώρος και Y διανυσματικός υπόχωρος του. Για κάθε θεωρούμε το σύμπλοκο σχετικά με τον Y, = + y y Y = + Y ορ { : } δηλαδή το είναι η παράλληλη μεταφορά του Y κατά το διάνυσμα.

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω ( X, ) και (, ) X Y {( x, ) : x X και Y} Y χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται

Διαβάστε περισσότερα

Κ X κυρτό σύνολο. Ένα σημείο x Κ

Κ X κυρτό σύνολο. Ένα σημείο x Κ 8 5 Το θεώρημα Kre-Mlm Βασικές ιδιότητες συμπαγών και κυρτών συνόλων. Ορισμός 5. Έστω X διανυσματικός χώρος και Κ X κυρτό σύνολο. Ένα σημείο x Κ λέγεται ακραίο ( extreme ) σημείο του Κ, αν δεν είναι γνήσιος

Διαβάστε περισσότερα

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν 3 4.3 Τελείως κανονικοί χώροι ( ). 3 2 Έχοντας υπόψιν το Λήμμα του Urysoh, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν κανονικός χώρος, x και κλειστό ώστε x. Υπάρχει τότε συνεχής συνάρτηση f :, ώστε

Διαβάστε περισσότερα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για

Διαβάστε περισσότερα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για

Διαβάστε περισσότερα

3Τοπολογικοί διανυσματικοί χώροι. y A, για κάθε λ [ 0,1]

3Τοπολογικοί διανυσματικοί χώροι. y A, για κάθε λ [ 0,1] 0 3Τοποογικοί διανυσματικοί χώροι 3. Βασικές έννοιες και ορισμοί. Έστω E διανυσματικός χώρος υπεράνω του σώματος K ( K Rή C) = και A E. (α) Το A έγεται κυρτό αν, για κάθε x, y A, για κάθε [ 0,] ισχύει

Διαβάστε περισσότερα

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό 81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( ) Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά

Διαβάστε περισσότερα

Y είναι τοπολογία. Αυτή περιέχει το και

Y είναι τοπολογία. Αυτή περιέχει το και 8.3 Σχετική τοπολογία και υπόχωροι. Ορισμός.37. Έστω X, τ.χ. Αν U : U X, τότε η οικογένεια είναι μια τοπολογία στο σύνολο, η οποία ονομάζεται η σχετική ( ή επαγόμενη ) τοπολογία του. Ο χώρος, ονομάζεται

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

f x 0 για κάθε x και f 1

f x 0 για κάθε x και f 1 06 4.2 Το Λήμμα του Uysoh το Λήμμα της εμφύτευσης και το θεώρημα μετρικοποίησης του Uysoh. Ο κύριος στόχος αυτής της παραγράφου είναι η απόδειξη ενός θεμελιώδους αποτελέσματος γνωστού ως το Λήμμα του Uysoh.

Διαβάστε περισσότερα

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ). Κεφάλαιο 4 Συναρτήσεις μεταξύ μετρικών χώρων 4.1 Συνεχείς συναρτήσεις Εστω (X, ρ) και (Y, σ) δύο μετρικοί χώροι. Στην 2.2 δώσαμε τον ορισμό της συνέχειας μιας συνάρτησης f : X Y σε κάποιο σημείο x 0 X:

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος 73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b

Διαβάστε περισσότερα

5 Σύγκλιση σε τοπολογικούς χώρους

5 Σύγκλιση σε τοπολογικούς χώρους 121 5 Σύγκλιση σε τοπολογικούς χώρους Στο κεφάλαιο αυτό πρόκειται να μελετήσουμε την έννοια της σύγκλισης σε γενικούς τοπολογικούς χώρους, πέραν των μετρικών χώρων. Όπως έχουμε ήδη διαπιστώσει ( πρβλ.

Διαβάστε περισσότερα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα 33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.

Διαβάστε περισσότερα

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος). 4 Τοπολογικοί χώροι. Στοιχειώδεις έννοιες της τοπολογίας Στην παράγραφο αυτή εισάγουμε τις βασικές έννοιες της τοπολογίας, δηλαδή αυτές του ανοικτού και κλειστού συνόλου, της κλειστότητας και του εσωτερικού

Διαβάστε περισσότερα

3Τοπολογικοί διανυσματικοί χώροι. y A, για κάθε λ [ 0,1]

3Τοπολογικοί διανυσματικοί χώροι. y A, για κάθε λ [ 0,1] 20 3Τοποογικοί διανυσματικοί χώροι 3. Βασικές έννοιες και ορισμοί. Έστω διανυσματικός χώρος υπεράνω του σώματος K ( K Rή C) = και A. (α) Το A έγεται κυρτό αν, για κάθε x, y A, για κάθε [ 0,] ισχύει ότι

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ. και την ΟΙΚΟΝΟΜΙΑ»

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ. και την ΟΙΚΟΝΟΜΙΑ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ σε ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ και την ΟΙΚΟΝΟΜΙΑ» Εφαρμογές

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1), Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο

Διαβάστε περισσότερα

f I X i I f i X, για κάθεi I.

f I X i I f i X, για κάθεi I. 47 2 Πράξεις σε τοπολογικούς χώρους 2. Η τοπολογία γινόμενο Σε προηγούμενη παράγραφο ορίσαμε την τοπολογία γινόμενο στο καρτεσιανό γινόμενο Y δύο τοπολογικών χώρων Y, ( παράδειγμα.33 () ). Στην παρούσα

Διαβάστε περισσότερα

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν.

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν. 93 4 Διαχωριστικά αξιώματα Στο κεφάλαιο αυτό εισάγουμε τα λεγόμενα διαχωριστικά αξιώματα και εξετάζουμε τις βασικές ιδιότητές τους. Ένα από αυτά το έχουμε ήδη εισαγάγει δηλαδή το αξίωμα Husdorff ( ορισμός

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη)

Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη) Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 009 (μπορεί να περιέχουν λάθη) (L) Θέμα 1 α) i Ένα σύνολο A X λέγεται γραμμικά ανεξάρτητο αν κάθε πεπερασμένο υποσύνολό του είναι γραμμικά ανεξάρτητο.

Διαβάστε περισσότερα

H idiìthta prosèggishc kai to prìblhma thc bˆshc se q rouc Banach. Andreac Mhtropouloc

H idiìthta prosèggishc kai to prìblhma thc bˆshc se q rouc Banach. Andreac Mhtropouloc H idiìthta prosèggishc kai to prìblhma thc bˆshc se q rouc Banach Andreac Mhtropouloc Tm ma Majhmatik n Panepist mio Ajhn n Aj na 2012 Perieqìmena 1 Περιγραφή της εργασίας 1 1.1 Το πρόβλημα..................................

Διαβάστε περισσότερα

1.2 Βάσεις και υποβάσεις.

1.2 Βάσεις και υποβάσεις. . Βάσεις και υποβάσεις. Το «καθήκον» του ορισμού μιας τοπολογίας διευκολύνεται αν είμαστε σε θέση να περιγράψουμε αρκετά ανοικτά σύνολα τα οποία να παραγάγουν όλα τα ανοικτά σύνολα. Ορισμός.9. Έστω X,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

2. d(x, y) = 0 x = y. 3. d(x, y) = d(y, x)

2. d(x, y) = 0 x = y. 3. d(x, y) = d(y, x) Τελεστές σε χώρους Hilbert Γεωργάτος Σπυρίδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Επιτροπή Επιβλέπων: Φελουζής Ευάγγελος - Αναπληρωτής Καθηγητής Μέλη : Τσολομύτης Αντώνιος - Καθηγητής Νικολόπουλος Χρήστος

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (

Διαβάστε περισσότερα

L 2 -σύγκλιση σειρών Fourier

L 2 -σύγκλιση σειρών Fourier Κεφάλαιο 7 L -σύγκλιση σειρών Fourier 7.1 Χώροι Hilbert 7.1.1 Χώροι µε εσωτερικό γινόµενο και χώροι Hilbert Ορισµός 7.1.1. Εστω X γραµµικός χώρος πάνω από το K. Μια συνάρτηση, : X X K λέγεται εσωτερικό

Διαβάστε περισσότερα

Το Θεώρημα Stone - Weierstrass

Το Θεώρημα Stone - Weierstrass Το Θεώρημα Stone - Weierstrass Θεώρημα 1 Έστω ¹ X συμπαγής χώρος Hausdorff και έστω C R (X η πραγματική άλγεβρα όλων των συνεχών συναρτήσεων f : X R. Έστω ότι ένα υποσύνολο A C R (X (1 το A είναι υπάλγεβρα

Διαβάστε περισσότερα

Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα

Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα Χαράλαμπος Μαγιάτης Ανάλυση & Κβαντική Θεωρία Πληροφορίας Σεμινάριο Τμήματος Μαθηματικών ΕΚΠΑ 17/05/2019 1 / 56 Hilbert C

Διαβάστε περισσότερα

x, y = x 1 y 1 + x 2 y 2 + x 3 y 3. x k y k. k=1 k=1

x, y = x 1 y 1 + x 2 y 2 + x 3 y 3. x k y k. k=1 k=1 Σημειώσεις για τους χώρους Hilbert και άλλα Αριστείδης Κατάβολος Από το βιβλίο «Εισαγωγή στη Θεωρία Τελεστών», εκδ. «Συμμετρία», 2008. Περιεχόμενα I Χώροι Hilbert 1 1 Εσωτερικά γινόμενα 1 1.0.1 Παραδείγματα.........................

Διαβάστε περισσότερα

B = F i. (X \ F i ) = i I

B = F i. (X \ F i ) = i I Κεφάλαιο 3 Τοπολογία μετρικών χώρων Ομάδα Α 3.1. Εστω (X, ρ) μετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το G \ F είναι

Διαβάστε περισσότερα

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί. Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις7: Γραμμικές Απεικονίσεις Βασικά σημεία Ορισμός και παραδείγματα γραμμικών απεικονίσεων Σύνθεση γραμμικών απεικονίσεων, ισομορφισμοί Κάθε γραμμική απεικόνιση f : V W, όπου

Διαβάστε περισσότερα

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2...

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2... ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Β.ΒΛΑΧΟΥ, Α. ΣΟΥΡΜΕΛΙΔΗΣ Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών Φθινόπωρο 2013 1 Θα θέλαμε να αναφέρουμε ότι για την συγγραφή αυτών των σημειώσεων χρησιμοποιήσαμε ιδιαίτερα α)το βιβλίο

Διαβάστε περισσότερα

j=1 x n (i) x s (i) < ε.

j=1 x n (i) x s (i) < ε. Κεφάλαιο 5 Πληρότητα 5.1 Πλήρεις μετρικοί χώροι Ορισμός 5.1.1 (πλήρης μετρικός χώρος). Ενας μετρικός χώρος (X, ρ) λέγεται πλήρης (complete) αν κάθε ρ βασική ακολουθία (x n ) στον X είναι ρ συγκλίνουσα.

Διαβάστε περισσότερα

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας Δώδεκα Αποδείξεις του Θεμελιώδους Θεωρήματος της Άλγεβρας Mία εκδοχή της αρχικής απόδειξης του Gauss f ( z) = T ( z) + iu ( z) T = r cos φ + Ar 1 cos(( 1) φ + α) + + L cosλ U = r si φ + Ar 1 si(( 1) φ

Διαβάστε περισσότερα

ονομάζεται τότε χώρος πηλίκο. διατηρεί τα συμπληρώματα συνόλων, ένα σύνολο F είναι είναι κλειστό στον.

ονομάζεται τότε χώρος πηλίκο. διατηρεί τα συμπληρώματα συνόλων, ένα σύνολο F είναι είναι κλειστό στον. 67 2.3 Χώροι πηλίκο και τοπολογία πηλίκο Στην παρούσα παράγραφο θα δείξουμε πως μπορούμε μέσω μιας απεικόνισης ενός δεδομένου τοπολογικού χώρου επί ενός συνόλου να εισαγάγουμε τοπολογία στο σύνολο, την

Διαβάστε περισσότερα

ii

ii Σημειώσεις Γενικής Τοπολογίας Σημειώσεις Μ. Γεραπετρίτη από τις παραδόσεις (διορθώσεις, 2016) Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013 ii Περιεχόμενα 1 Τοπολογικοί Χώροι 3 1.1 Ανοικτά σύνολα,

Διαβάστε περισσότερα

Sunarthsiak Anˆlush. Shmei seic gia metaptuqiakì mˆjhma

Sunarthsiak Anˆlush. Shmei seic gia metaptuqiakì mˆjhma Sunarthsiak Anˆlush Shmei seic gia metaptuqiakì mˆjhma Μ. Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης νοιξη 2004 2 Perieqìmena 1 Εισαγωγικά 7 1.1 Διατάξεις............................... 7 1.2

Διαβάστε περισσότερα

Je rhma John L mma Dvoretzky-Rogers

Je rhma John L mma Dvoretzky-Rogers Kefˆlaio 2 Je rhma Joh L mma Dvoretzky-Rogers 2.1 Elleiyoeidèc mègistou ìgkou eìc kurtoô s matoc Ορισμός 2.1.1. Ελλειψοειδές στον R είναι ένα κυρτό σώμα της μορφής { } (2.1.1) E = x R x, v i 2 : 1, όπου

Διαβάστε περισσότερα

Καλώς ήρθατε στην Συναρτησιακή Ανάλυση! http://eclass.uoa.gr/courses/math495/ Εαρινό Εξάμηνο 2015-16 Γραμμικοί χώροι K είναι το σώμα R ή C. Ορισμός Ενα X /0 λέγεται K-γραμμικός χώρος αν είναι εφοδιασμένο

Διαβάστε περισσότερα

S n = ( 1, 0] 1 + b 1 a1 + b 1 I 1 I 2 I 3...,

S n = ( 1, 0] 1 + b 1 a1 + b 1 I 1 I 2 I 3..., ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΕΜ Χειμερινό εξάμηνο 017-18 ΜΕΜ31-ΤΟΠΟΛΟΓΙΑ 1, 3Η ΔΙΑΛΕΞΗ ΣΥΝΤΟΜΗ ΕΠΑΝΑΛΗΨΗ ΤΗΣ ΤΟΠΟΛΟΓΙΑΣ ΤΟΥ R ΔΙΔΑΣΚΩΝ: Ι.Δ. ΠΛΑΤΗΣ 1. Ανοικτα και κλειστα συνολα του R Το σύνολο R των πραγματικών

Διαβάστε περισσότερα

= lim. (P QP ) n x, x. E(Ex) = lim. (P QP ) m P x = Ex, EP x = lim

= lim. (P QP ) n x, x. E(Ex) = lim. (P QP ) m P x = Ex, EP x = lim Άσκηση: Η προβολή στην τομή δύο υποχώρων Αν P, Q είναι δύο ορθές προβολές σε έναν χώρο Hilbert H και R = P Q είναι η προβολή στην τομή im P im Q, δείξτε ότι, για κάθε x H, Rx = lim (P QP ) x = lim (P Q)

Διαβάστε περισσότερα

convk. c i c i t i. c i u i c < c i φ i (F (ω)) c < ( ) c i m i < i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1

convk. c i c i t i. c i u i c < c i φ i (F (ω)) c < ( ) c i m i < i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 Ολοκλήρωση συναρτήσεων με τιμές σε χώρους Baach Αν (Ω, S, µ είναι χώρος μέτρου και (X, είναι χώρος Baach, μια συνάρτηση F : Ω X θα λέγεται ασθενώς μετρήσιμη (αντίστοιχα, ασθενώς ολοκληρώσιμη αν για κάθε

Διαβάστε περισσότερα

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m.

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m. Σηµειώσεις Συναρτησιακής Ανάλυσης Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Περιεχόµενα 1. Το ϑεώρηµα κατηγορίας του Baire 4 2. Χώροι Banach 5 3. Φραγµένοι γραµµικοί τελεστές 8 4. Χώροι πεπερασµένης

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνθήκες αριθµησιµότητας Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα

(which is named Tsirelson s space and is denoted with T ) and the space T [(A n, log 2 (n+1) ) n=1 ]

(which is named Tsirelson s space and is denoted with T ) and the space T [(A n, log 2 (n+1) ) n=1 ] ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΜΠΑΚΟΓΙΑΝΝΗ ΧΑΡΙΚΛΕΙΑ ΜΕΙΚΤΟΙ ΧΩΡΟΙ ΤΥΠΟΥ TSIRELSON ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΧΩΡΩΝ BANACH ΙΩΑΝΝΙΝΑ, 203 2 3 ΠΕΡΙΛΗΨΗ Σε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

n = dim N (A) + dim R(A). dim V = dim ker L + dim im L.

n = dim N (A) + dim R(A). dim V = dim ker L + dim im L. Γραμμική Άλγεβρα ΙΙ Διάλεξη 9 Γραμμικοί Ισομορφισμοί Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 19/3/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 9 19/3/2014 1 / 12 Γραμμικές απεικονίσεις και υπόχωροι Εικόνα

Διαβάστε περισσότερα

Καλώς ήρθατε στους Γραμμικούς Τελεστές! http://eclass.uoa.gr/courses/math122/ Εαρινό Εξάμηνο 2014-15 Χώροι με εσωτερικό γινόμενο Ορισμός Εστω E K-γραμμικός χώρος (K = R ή C). Ενα εσωτερικό γινόμενο (inner

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

Τίτλος: Συμπάγεια, Θεωρήματα Σταθερού Σημείου, και Εφαρμογές στην Οικονομική Θεωρία

Τίτλος: Συμπάγεια, Θεωρήματα Σταθερού Σημείου, και Εφαρμογές στην Οικονομική Θεωρία ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Δ.Π.Μ.Σ. «ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ σε ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ και την ΟΙΚΟΝΟΜΙΑ» ΚΤΙΡΙΟ Α, ος ΟΡΟΦΟΣ, ΠΟΛΥΤΕΧΝΕΙΟΥΠΟΛΗ ΖΩΓΡΑΦΟΥ,

Διαβάστε περισσότερα

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας

Διαβάστε περισσότερα

Πραγματική Ανάλυση Πέτρος Βαλέττας Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών

Πραγματική Ανάλυση Πέτρος Βαλέττας Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Πραγματική Ανάλυση Πέτρος Βαλέττας Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών 2010-11 Περιεχόμενα I Μετρικοί χώροι 1 1 Μετρικοί χώροι 3 1.1 Ορισμός και παραδείγματα........................... 3 1.2 Χώροι με

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-Art ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες *

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα

Μιχάλης Παπαδημητράκης. Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα Μιχάλης Παπαδημητράκης Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα 1 Παράγωγος στο. Ας θυμηθούμε ότι μια μιγαδική συνάρτηση f ορισμένη σε ένα υποσύνολο του μιγαδικού επιπέδου λέμε ότι είναι

Διαβάστε περισσότερα

Αρµονική Ανάλυση ( ) Φυλλάδιο Ασκήσεων 3

Αρµονική Ανάλυση ( ) Φυλλάδιο Ασκήσεων 3 Αρµονική Ανάλυση (2017 2018) Φυλλάδιο Ασκήσεων 3 0. (α) Εστω f L (T). είξτε ότι σ n ( f ) f n N. (ϐ) Εστω f L (T). είξτε ότι (γ) είξτε ότι S n ( f ) f + n k=1 sin(kt) k n k= n [Υπόδειξη: Για το (γ) ϑεωρήστε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΤΡΙΑΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Ας θυμηθούμε από την περασμένη φορά ότι ένα σύνολο M σε έναν μετρικό χώρο (X, d είναι συμπαγές όταν: αν έχουμε οποιαδήποτε ανοικτά σύνολα που καλύπτουν

Διαβάστε περισσότερα

Πραγµατική Ανάλυση ( ) Ασκήσεις - Κεφάλαιο 3

Πραγµατική Ανάλυση ( ) Ασκήσεις - Κεφάλαιο 3 Πραγµατική Ανάλυση (2015-16) Ασκήσεις - Κεφάλαιο 3 Οµάδα Α 1. Εστω (X, ρ) µετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το

Διαβάστε περισσότερα

h(x, y) = card ({ 1 i n : x i y i

h(x, y) = card ({ 1 i n : x i y i Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

1 + t + s t. 1 + t + s

1 + t + s t. 1 + t + s Κεφάλαιο 1 Μετρικοί χώροι Ομάδα Α 1.1. Εστω (X, ) χώρος με νόρμα. Δείξτε ότι η νόρμα είναι άρτια συνάρτηση και ικανοποιεί την ανισότητα x y x y για κάθε x, y X. Υπόδειξη. Για κάθε x X έχουμε x = ( 1)x

Διαβάστε περισσότερα

Συµπαγείς τελεστές. Κεφάλαιο Τελεστές πεπερασµένης τάξης. n. Γράφουµε rank(t ) = n. Αν οι E, F είναι χώροι µε νόρµα, συµβολίζουµε

Συµπαγείς τελεστές. Κεφάλαιο Τελεστές πεπερασµένης τάξης. n. Γράφουµε rank(t ) = n. Αν οι E, F είναι χώροι µε νόρµα, συµβολίζουµε Κεφάλαιο 3 Συµπαγείς τελεστές 3.1 Τελεστές πεπερασµένης τάξης Ορισµός 3.1.1 Μια γραµµική απεικόνιση T : E F µεταξύ δύο γραµµικών χώρων E, F λέγεται τάξης n (n N) αν ο υπόχωρος T (E) = im T έχει διάσταση

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 14, 30 Απριλίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Χώροι με εσωτερικό γινόμενο (Ευκλείδειοι χώροι) 2. Βέλτιστες προσεγγίσεις

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

Καλώς ήρθατε στην Τοπολογία! http://eclass.uoa.gr/courses/math451/ Χειμερινό Εξάμηνο 2015-16 Υπενθύμιση: Η τοπολογία της ομοιόμορφης σύγκλισης Εστω K ένα σύνολο (π.χ. K = [a,b]) και f n,f : K R φραγμένες

Διαβάστε περισσότερα

Μελέτη Μερικών Διαφορικών Εξισώσεων σε Χώρους Sobolev

Μελέτη Μερικών Διαφορικών Εξισώσεων σε Χώρους Sobolev ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Γενικό τμήμα-τομέας Εφαρμοσμένων και Υπολογιστικών Μαθηματικών Διπλωματική εργασία Μελέτη Μερικών Διαφορικών Εξισώσεων σε Χώρους Sobolev Λιαντράκη Σοφία Επιβλέπων καθηγητής: Κανδυλάκης

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις6: Βάση και Διάσταση Βασικά σημεία Βάση διανυσματικού χώρου (ορισμός, παραδείγματα, μοναδικότητα συντελεστών) Θεώρημα (ύπαρξη, πρώτη μορφή) Έστω V K μη μηδενικός με K πεπερασμένο

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συµπάγεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

Διαβάστε περισσότερα

2

2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ο ΧΩΡΟΣ JAMES TREE - Η ΚΑΤΑΣΚΕΥΗ ΕΝΟΣ ΚΑΘΟΛΙΚΑ ΑΔΙΑΣΠΑΣΤΟΥ ΧΩΡΟΥ BANACH Κουζούμη Φωτεινή Μεταπτυχιακή Διατριβή ΙΩΑΝΝΙΝΑ, 206 2 3 Η παρούσα

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

Γραμμική Αλγεβρα ΙΙ Διάλεξη 7 Βάσεις Διάσταση Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 7/3/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 7 7/3/ / 1

Γραμμική Αλγεβρα ΙΙ Διάλεξη 7 Βάσεις Διάσταση Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 7/3/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 7 7/3/ / 1 Γραμμική Άλγεβρα ΙΙ Διάλεξη 7 Διάσταση Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 7/3/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 7 7/3/2014 1 / 1 Εάν ένα υποσύνολο S του διανυσματικού χώρου V παράγει το V,

Διαβάστε περισσότερα

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Κυρτή Ανάλυση. Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Υπερεπίπεδα στήριξης και διαχωριστικά ϑεωρήµατα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Προσεγγίσεις της µονάδας και Αθροισιµότητα

Προσεγγίσεις της µονάδας και Αθροισιµότητα Κεφάλαιο 6 Προσεγγίσεις της µονάδας και Αθροισιµότητα 6. Οικογένειες καλών πυρήνων και προσεγγίσεων της µονάδας Σε αυτήν την παράγραφο ϑα ασχοληθούµε µε µέσες τιµές µιας ολοκληρώσιµης συνάρτησης f οι οποίες

Διαβάστε περισσότερα

Εφαρμογές του μεταθετικού Θεωρήματος Gelfand-Naimark σε μη μεταθετικές C* άλγεβρες

Εφαρμογές του μεταθετικού Θεωρήματος Gelfand-Naimark σε μη μεταθετικές C* άλγεβρες Εφαρμογές του μεταθετικού Θεωρήματος Gelfand-Naimark σε μη μεταθετικές C* άλγεβρες 1 Εξάρτηση του φάσματος από την άλγεβρα Έστω A άλγεβρα Banach με μονάδα 1 και B Ď A κλειστή υπάλγεβρα που περιέχει την

Διαβάστε περισσότερα

8. Πολλαπλές μερικές παράγωγοι

8. Πολλαπλές μερικές παράγωγοι 94 8 Πολλαπλές μερικές παράγωγοι Οι μερικές παράγωγοι,,, αν υπάρχουν, μιας συνάρτησης : U R R ( U ανοικτό είναι αυτές συναρτήσεις από το U στο R, επομένως μπορεί να ορισθεί για αυτές η έννοια της μερικής

Διαβάστε περισσότερα