( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x"

Transcript

1

2 Η ΑΝΕΠ Η Η Ν Ω Ν Ω ΑΘΗ Α ΑΝIV Ε ε ά ει Ν επ ε β ί 5 (3-9-5) Επώ : Ό α: ΑΝ Ν: ΘΕ ΑΝ Τα π α Chebyshev T ( ) α π ω μ ( ) y y y (,,, ) π [,] Η ω α α α π α μ / d d T ( ) Tm ( ) [ T ( )] Α απ f ( ) 3, [,], α α π α π α Chebyshev: T ( ), T ( ), T ( ), T ( ) 4 3 (5 ) 3 3 ΘΕ ΑΝ Να π α ω aplace u α [, ], α : u(, y) u(, y) u(,) α u(, ) (5 ) ΘΕ ΑΝ3 Να α α όourier F (k) ω α ω μ α) β) f ( ) cos (5 ) (5 )Ν 5 f() 5 ΘΕ ΑΝ4 Να πα α ω π α α μ - - u u y u(,) 3 5 e (5 )

3 Η ΑΝΕΠ Η Η Ν Ω Ν Ω ΑΘΗ Α ΑΝIV Ε Ν π β ί Ν6 (5-9-6) Επώ : Ό α: ΑέΝ έν: ΘΕ ΑΝ α ω egedre ( ) y y y [,] α [ ( ),,,,3,] έ Να α ω egedre iouville α α α λ Να α απ e α π α π α egedre : P ( ) α P ( ) έ α α π P, P m m Φέ5 ) ΘΕ ΑΝ Να α π α α π α α α α α π κ y y [, ] α α y() α y( ) y ( ) (έ ) Σ α α α απ α α π α f ( ) [, ] Φέ5 ) ΘΕ ΑΝ3 Θ ω α β α π α π ω π a α bέ Η π α (, y, t ) α π ω y b t a π / / y α π α π π α α α π α : (, y) ( a, y) α (,) (, b) έ π πα απ ω π α α y y ω α α (tνί) π α α απ (, y,) ( a / )cos( y/ b) (3έ5 ) ΘΕ ΑΝ3 Να α α Fourier κ h( ) cos ep[ i( y)] dy π α α (έ5 ) ΗΝ αν η Ν α η Ν ί α Ν3Νώ Α ΗΝΕΠ Α

4 Η Α ΕΠ Η Η Ω Ω ΑΘΗ Α Α IV Ε π µβ ί υ 7 (3-9-7) Επώ υµ : Ό µα: Α : ΘΕ Α A α α υ π µα µ : 4 y + λy µ : y () y ( ) Να µ υ π µα α α χ υ α π υ απ α B υ χ α α α απ υχ υ α αυ υ π µα υ f ( c ), π υ c υχα α µ -µ α α [, ] α : cos + cos (35 ) ΘΕ Α Να φ α µ φ iouville α ω π µα α µ α α α χ υ υ α π α µα µ υ α υ α υ αµ ; a ( ) y + y + (4 λ ) y, y() y (), y () y() + y () b y + ( ) y + ( λ si y ), y() + y (), y() (5 ) Η α η α η ί α 3 ώ Α Η ΕΠ Χ Α

5 Ε ΘΕ Α a 4 4 y + λy y + λy Η ω α µ φ iouville µ υ υ w ( ) 4 Η αφ αυ ω α µ α υ α α α χ µ φ y ( ) e ρ Επ χ υµ αµ µ υ α υ, απ π µα Sturm-iouville π π α α α π µα χ υ α π α µα µ, α λ χα α π υ υµ α α ρ + 4λ ρ ± i λ ik ik ω λ k, α χ µ φ y ( ) ce + de α α απ α α α α υµ µ α υ µ φ α ω y ( ) Asi( k) + Bcos( k) α α π πα ω y ( ) kacos( k) kbsi( k) π π υ α υ y () χ υµ y() Asi + Bcos B B Ά α y ( ) Asi( k) π υ α υ y ( ) χ υµ cos( k) k ( + ) π,,,,3, α α µ α α µ π µα χ µ α α ( y() y ( ) ) y ( ) Asi( k ) Ά α π,,,, k ( + ) π µ µα α α α π υµ υ α αυ α απ α π υπ χ α χ µ χω π π ω α y ( ) Bcos( ) π υ α µ α π Ά α α χ υµ ( yy, ) wyd ( ) ( ) 4A si ( kd ) 4A cos ( kd ) 4 [ cos(4 )] 4 [ cos(4 )] Ad A + kd A A + kd π 4A A + si(4 k ) 4A A + si[ ( + ) ] 4k 4k 4A A + si( π ( + )) si 4A A A 4k ( yy, ) A A α µ υ Ά α υ α α χ υ µ φ (+ ) π y ( ) si( k ) si,,,3,

6 b Η υ f ( c ) α απ α ω υ α ω µ υ * (+ ) π c ( y, f ) wy ( ) ( fd ) ( ) 4 si cd 4 c (+ ) π si d (+ ) (+ ) (+ ) π π π si d cos cos (+ ) π (+ ) π ωµα ( + ) π α * (+ ) π c ( y, f ) wy ( ) ( fd ) ( ) 4 si cd 4 c (+ ) π 4c si d ( ) + π π : f ( ) c cy ( ) c + π si (+ ) π 4 ( ) 4 c ( + ) π ( + ) si π

7 ΘΕ Α ( ) y + y + (4 λ ) y, y() y (), y () y() + y () Η µ φ iouville α py + py + ( λw u) y µ υ ( ) ω α µ φ iouville µ w ( ) 4, u ( ) µ υ α µ α χω y() y () y() y() y () y() + y () y () y () p() det( S) p() Ά α µπ µ α π µ µ α α α χ π α µα µ y + ( ) y + ( λ si y ), y() + y (), y() Έχ υ α π α µα µ α χ αµ α µ φ iouville α χ υµ y ( ) y + (si y ) λy ( ), ( ) ( ), ( ), ( ) si a b w c b d a µ ( ) e e a ( ) d d d d l + + c µ ( ) e e ee ee l+ + c l c c µ ( ) µ ( ) e α α µ p ( ) a ( ) ( ) e e p ( ) b ( ) µ ( ) ( ) e e w ( ) µ ( ) e si u ( ) c ( ) µ ( ) e

8 Η Α ΕΠ Η Η Ω Ω ΑΘΗ Α Α IV Επ π υχ ω α Φ β υα υ 8 (6--8) ΘΕ Α A α α υ π µα µ 6 y + λy µ y () y ( ) Να φ µ φ iouville α α υ α π α µα µ υ α υ α υ αµ ; Να υπ µ υ π µα α υ α π υ απ α B Να α απ υ υ α αυ υ π µα υ f ( ) µ [, ] α + cos cos Η α η α η α 3 ώ Α Η ΕΠ Χ Α

9 a 6 6 y + λy y + λy Η α µ φ iouville µ υ υ w ( ) 6 Η αφ αυ α µ α υ α α α µ φ y ( ) e ρ Επ υµ αµ µ υ α υ, απ π µα Sturm-iouville π π α α α π µα υ α π α µα µ, α λ α α π υ υµ α α ρ + 6λ ρ ± i4 λ ik 4 ik 4 Α λ k, α µ φ y ( ) ce + de α α απ α α α α υµ µ α υ µ φ α y ( ) Asi(4 k) + Bcos(4 k) α α π πα y ( ) 4kAcos(4 k) 4kBsi(4 k) Απ π υ α υ y () υµ y () Ak 4 cos Bk 4 si Ak 4 A Ά α y ( ) Bcos(4 k) α y ( ) 4kB si(4 k) Απ υ α υ y ( ) υµ si(4 k) 4 k π,,,,3, α α µ α α µ π µα µ α α ( y() y ( ) ) y ( ) Bcos(4 k ) Ά α π,,,, k 4 π µ µα α α α π υµ υ α αυ α απ α Θα µ αφ π π α α α υµ π π α π α k α y ( ) B Θα υµ α µ υ ( yy, ) wyd ( ) ( ) 6Bd 6B ( yy, ) 6B B 4 Γ α π π π υ α πα α υπ µα µα π υ α φ α υµ + ( yy, ) wyd ( ) ( ) 6B cos (4 kd ) 8 B [ cos(8 kd )] π 8B + si(8 k ) 8B + si( ) 8B 8k 8k α µ υ ( yy, ) 8B B 8 Ά α υ α α υ µ φ y ( ) 4 π y ( ) cos(4 k ) cos,,,3, 8 8

10 b Η υ f ( ) α απ α υ α Γ α α υµ * c ( y, f ) wy ( ) ( fd ) ( ) 4 ( + d ) 3 3 f ( ) cy ( ) + + Γ α α υµ * π 4 π π c ( y, f ) wy ( ) ( fd ) ( ) 4 cos ( + d ) cos d cos d + µα π π cos d si π π Γ α π µα α α µ α z Ά α : π π π π cos d z cos zdz d( z si z) sizdz π π π π π zsiz sizdz sizdz cosz π π π [ cosπ cos ] [( ) ] π π α π : c 3 4 ( ) [( ) ] [( ) ] π π 3 3 o cy π ( ) π f ( ) cy ( ) + ( ) 3 + [( ) ] cos 3 π f ( ) + + [( ) ]cos π 3 4 π f ( ) + cos π,3,5, π

11 Η Α ΕΠ Η Η Ω Ω ΑΘΗ Α Α IV Ε α π µβ υ 8 (6-9-8) ΘΕ Α A α α υ π µα µ 6 y + λy µ y () y ( ) Να µ υ π µα α α υ α π υ απ α B υ α α α απ υ υ α αυ υ π µα υ f ( c ) ( ) µ µ [, ] α c υ α α α α si cos (35 ) ΘΕ Α α aguerre y + ( ) y λy µ [, ) Να α απ υ υ 5 e α π α π υ υµα aguerre: ( ) α ( ) α υ α π ( ), (!) δ m m (5 ) Η α η α η α 3 ώ Α Η ΕΠ Χ Α

12 ΘΕ Α a 6 6 y + λy y + λy Η α µ φ iouville µ υ υ w ( ) 6 Η αφ αυ α µ α υ α α α µ φ y ( ) e ρ Επ υµ αµ µ υ α υ, απ π µα Sturm-iouville π π α α α π µα υ α π α µα µ, α λ α α π υ υµ α α ρ + 6λ ρ ± i4 λ ik 4 ik 4 Α λ k, α µ φ y ( ) ce + de α α απ α α α α υµ µ α υ µ φ α y ( ) Asi(4 k) + Bcos(4 k) Απ π υ α υ y () υµ y() Asi + Bcos B Ά α y ( ) Asi(4 k) Απ υ α υ y ( ) υµ si(4 k) 4 k π,,,3, α µ y ( ) Asi(4 k ) Ά α π,,, k 4 π µ µα α α α π υµ υ α αυ α απ α α υπ µα µα π υ α φ α υµ ( y, y ) w( ) y ( ) d 6A si (4 k ) d 8 A [ cos(8 k )] d 8π 8A si(8 k ) 8A si( ) 8A 8k 8k α µ υ ( yy, ) 8A A 8 Ά α υ α α υ µ φ π y ( ) si(4 k ) si,,,3, 8 8 b Η υ f ( c ) ( ) α απ α υ α f ( ) cy ( ) * π c ( y, f ) wy ( ) ( fd ) ( ) 6 si c ( d ) 8 8c π 8c π π si ( d ) si d si d µα π si d cos [ cos( ) cos ] ( ) π π π π π

13 π Γ α π µα α α µ α z Ά α : π π π π si d z si zdz d( z cos z) coszdz π π π π π zcosz coszdz ( π cos( π) ) si z ( π( ) ) π π π ( ) π α 8c π π c ( y, f ) si d si d 8c 8c ( ) + ( ) π π π ΘΕ Α a ( ) b, ( ) ( ) µ ( ) e e e e A e e Ae a w ( ) µ ( ) e b d d ( ) d a lc + l 5 ( ) c ( ) f e c ( f, ) (, ) Ά α ( f, ) c f w fd ee d * 5 (, ) ( ) ( ) ( ) (, ) 6 ( f, ) * 5 c (, f) w ( ) ( fd ) ( ) e ( e ) d (, ) 6 6 ( ) 6 e + e d ( ) e e ( e ) 6e 6 lim ( ) lim lim lim c f ( e ) cc

14

15

16

*❸341❸ ❸➈❽❻ ❸&❽❼➅❽❼❼➅➀*❶❹❻❸ ➅❽❹*➃❹➆❷❶*➈❹1➈. Pa X b P a µ b b a ➁❽❽❷➂➂%&'%➁❽➈❽)'%➁❽❽'*➂%➁❽➄,-➂%%%,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻ ,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻

*❸341❸ ❸➈❽❻ ❸&❽❼➅❽❼❼➅➀*❶❹❻❸ ➅❽❹*➃❹➆❷❶*➈❹1➈. Pa X b P a µ b b a ➁❽❽❷➂➂%&'%➁❽➈❽)'%➁❽❽'*➂%➁❽➄,-➂%%%,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻ ,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻ *❸34❸ ➁❽❽❷➂➂%&'%➁❽➈❽)'%➁❽❽'*➂%➁❽➄,-➂%%%,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻ -3*98❻➀*➁❽4❹❹** ~ N( µσ, )**σ **-❹➄❹8❹* µ*➆4❹➂➂*➁➆*❽➀➂❹➄*➂➂* *➁3 Pa ( < b) * ➀8*-9❼4➂❸*-❹❶➀➈-❸❸*-❽4&➄❹➈*➀8*-❹3➀9❼*8❽*-❽❼➄➂➀3*❸❽4&➄❹➈*❹➄❽3*➀&❼➄❽3❸❹*❻3➂

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

υφ υ., Β ί,. υ, Βί φ υ α π ί αμ υ Γ α - α ί υ. α. πί. V ( α μ μ μ α, α α π ία μ ί α πα μ υπ ) π αμ α 8 α, α φ μα α υ α ί υ α Βαφ π. α ί α, π ( α ί), φ

υφ υ., Β ί,. υ, Βί φ υ α π ί αμ υ Γ α - α ί υ. α. πί. V ( α μ μ μ α, α α π ία μ ί α πα μ υπ ) π αμ α 8 α, α φ μα α υ α ί υ α Βαφ π. α ί α, π ( α ί), φ Φ Γ Θ ΓΓ Γ ON Β Γ Θ Γ Ω Γ φ α α (..) Θ α ία ί α α ί α (φ μα α Ο αμ υ π φα α ) π υ α α α μ αφ απ υ υ υ υ υ (φ μα υ α α α αμ υ α υ Ο υ φυ υ). Β α ί α ί α υ α ί α α α Θ α ία, α α ία μ μ α ί π GR 16 α GR 17.

Διαβάστε περισσότερα

* * * * * * * * * * * * * * * * * * * * * * * * * Ν ΖΖ.ΖΖΖΖΖ.ΖΖΖΖΖΖΖ Ν.ΖΖΖΖ.ΖΖΖΖΖΖΖΖΖΖΖΖΖ

* * * * * * * * * * * * * * * * * * * * * * * * * Ν ΖΖ.ΖΖΖΖΖ.ΖΖΖΖΖΖΖ Ν.ΖΖΖΖ.ΖΖΖΖΖΖΖΖΖΖΖΖΖ . Ν, Φ Γ Ω ( υ α α α α α υ ) * * * * * * * * * * * * * * * * * * * * * * * * * Χ. Ω Ν Γ ΖΖΖΖΖΖΖΖΖΖΖΖΖΖΖ.ΖΖΖ.ΖΖ.Ζ 2-8 Ν Ω Θ Ζ..ΖΖ.. 8-23 Ν ΖΖ.ΖΖΖΖΖ.ΖΖΖΖΖΖΖ. 23-29 Ν.ΖΖΖΖ.ΖΖΖΖΖΖΖΖΖΖΖΖΖ. 29-51 Ν Φ ΖΖΖΖΖΖΖΖΖΖΖΖ.ΖΖΖΖ.ΖΖ.

Διαβάστε περισσότερα

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6. Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω

Διαβάστε περισσότερα

Η Ε Β ΕΘΕ 20 α υα ί υ 2014 Ε ΗΓΗ Η «Ε Γ Ω ΧΕ Ω : πα χ μ π π π αμ χ α α απ υ α π χ α μα ;» Φ : μ Β.. ΕΘΕ, φ α μ υ Θ α ία, π μ α ί α, f.alexakos@yahoo.gr Γ μα α : π π ΓΕΩ ΕΕ. Ε, μ Β μ α ΕΕ/.Β. Θ α ία, goumas.kostas@gmail.com

Διαβάστε περισσότερα

XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA

XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA ό π ω ς ε γ κ ρ ί θ η κ ε α π ό τ ο δ ι ο ι κ η τ ι κ ό σ υ μ β ο ύ λ ι ο τ η ς ε τ α ι ρ ί α ς τ η ν 30 η Μ α ρ τ ί ο υ 2 0 1

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006 ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί

Διαβάστε περισσότερα

Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής

Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής Εφαρμογές της κβαντομηχανικής ΠΙΑΣ Ελεύθερο σωματίδιο σε μια διάσταση Σωματίδιο κινούμενο ελεύθερα στον άξονα σε σταθερό δυναμικό ανεξάρτητο του : V ˆ( () V ξίσωση Schrödinger: d d H ˆ H ˆ ˆ() () () d

Διαβάστε περισσότερα

Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ

Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ Α Ρ Η Θ Μ Ο : 6.984 ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ ΔΙΑΓΩΝΙΜΟΤ η ε λ Π ά η ξ α ζ ή κ ε ξ α ζ η η ο ε ί θ ν ζ η κ ί α ( 2 1 ) η ν π κ ή λ α Μ α ξ η ί ν π, ε κ έ ξ α Γ ε π η έ ξ α, η ν π έ η ν π ο δ

Διαβάστε περισσότερα

Αόριστο ολοκλήρωμα. επαληθεύει την παραπάνω ισότητα.

Αόριστο ολοκλήρωμα. επαληθεύει την παραπάνω ισότητα. Αόριστο ολοκλήρωμα Αντιπαράγωγος μίας συνάρτησης f() ορισμένης σε ένα διάστημα [α,β] λέγεται κάθε συνάρτηση F() που επαληθεύει την ισότητα F( ) f ( ) F( ) c επαληθεύει την παραπάνω ισότητα. Αόριστο ολοκλήρωμα

Διαβάστε περισσότερα

www.smarterglass.com 978 65 6190 sales@smarterglass.com &&$'()!"#$%$# !!"# "#$%&'! &"# $() &() (, -. #)/ 0-.#! 0(, 0-. #)/ 1!2#! 13#25 631% -. #)/ 013#7-8(,83%&)( 2 %! 1%!#!#2!9&8!,:!##!%%3#9&8!,:!#,#!%63

Διαβάστε περισσότερα

6 Α σ Ε Ε Ε ΓΑ Α Ε Α: Η σ σ ς σ ς & σ ώ : A χ ς: : Σ Π σ

6 Α σ Ε Ε Ε ΓΑ Α Ε Α: Η σ σ ς σ ς & σ ώ : A χ ς: : Σ Π σ 6 Α σ Ε Ε Ε ΓΑ Α Ε Α: Η σ σ ς σ ς & σ ώ : A χ ς: 2016-2017 : Σ Π σ ισα ω ή: Η ο σι ή ο ο ο ί αι ίσσ ι ισ ο ία ς ς α ά ' ί ς ώσσας, αι βασι ό α ς α ά α θ ώ ι έ ι. Καθώς ο έ α θ ος ό ος ς ι ό έσο ο ί α α

Διαβάστε περισσότερα

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ

Διαβάστε περισσότερα

14PROC

14PROC Β Γ Ω Γ. Β/. Ω Β/ Β. & Γ Θ Ω α. Β/ : α & 2 α.. : 104 37 α φ ί : Γ. π υ φ : 210 52.37.312 FAX : 210 52.36.769 E-mail : d5.b1@1990.syzefxis.gov.gr α 13/05/2014. π.:β5 1074406 2014 14PROC002048988 2014-05-14

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

Β Χ! Χ ( # %! Δ % ) %

Β Χ! Χ ( # %! Δ % ) % ! # % & ( ) #! % +,. /!, 0. 1 2 (( / 4 5 / 6 5 78 8 / #. 9. : ;. ( 1.< < =. 9 > :? 9 : Α Β Χ! Χ ( # %! Δ % ) % )! & %! Χ! Δ! Ε Χ % Ε &! Β & =! ) Χ Δ!! Δ ) % # # ( ) Δ Β Φ Α :? ) 9:? Γ Η Φ Α :? Ι 9: ϑ,.

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου

Διαβάστε περισσότερα

= +. 2 c = JK = evk, S E V V ( ) 1 2

= +. 2 c = JK = evk, S E V V ( ) 1 2 Σ α Μηχα, Ε ε α Ι υ υ, 6/6/. ( α ο Η υ α υ α υ υ Ising π β α απ φ α ( β Q e e = +. (α α φ α π α ( S / α α ( C/ α spin υ α α α α πα α υ. ( α απ π α αφ α α α α α S / α C/ α α >.. ( α ο.5 Α α π υ α Landau

Διαβάστε περισσότερα

.1. 8,5. µ, (=,, ) . Ρ( )... Ρ( ).

.1. 8,5. µ, (=,, ) . Ρ( )... Ρ( ). ΡΧΗ 1Η Ε ε Γ Α Ο ΗΡ Ε Ε Ε Ε Η Ε Ο Ε Ο Ε Η 14 Ο Ο 2001 Ε Ε Ο Ε Ο Η Ε Η εε : Η Ο ΧΕ Η Ο Ο Ε εά : Ε (6) Ε Α 1ο Α.1. π µ µ ά : Ρ ( ) = Ρ ( ) Ρ ( ). 8,5 Α.2. µ π µπ µ π µ µ, (=,, ) : Ρ ( )... 1 Ρ( ) 2 Ρ( )...

Διαβάστε περισσότερα

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1

ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1 (1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

! # % ) + +, #./ )

! # % ) + +, #./ ) ! # % & ( ) + +, #./0. 1 + 2 + 2 5 2 3 40. ) 6 1+ + + 7 ! # % (% ) + # #, %. / 0 # 1 2, 3 4 5 6 3 7 00 5 8, 6 8 3 9 0: 5.;, 6 #! #, 8, 3 04 5 6 < ; = >!? >, 3? 5! # % & ( Α! 1 6, 3 7 2 Α0 : 6 Β Χ Α :,

Διαβάστε περισσότερα

Έστω μια συνεχής (και σχετικά ομαλή) συνάρτηση f( x ), x [0, L]

Έστω μια συνεχής (και σχετικά ομαλή) συνάρτηση f( x ), x [0, L] c Σειρές Fourier-Μετασχηματισμός Fourier Έστω μια συνεχής (και σχετικά ομαλή) συνάρτηση f( ) [ ] για την οποία ξέρουμε ότι f() = f( ) =. Μια τέτοια συνάρτηση μπορούμε πάντα να τη γράψουμε : π f( ) = A

Διαβάστε περισσότερα

ΕΧ Γ Ε ΒΕ Β (.Ε..) ΘΗ Χ ΓΓ Ω Γ & & ΒΗΓ Ε Γ Η ΓΓ ΦΗ Χ Ω Ε Γ Ω Ε Γ Φ, Ε ΤΗ Ε Ε Η Ε ΕΧ Ε. Ε Η Χ Ω Ε Γ Ω ΘΗ, 2015 1. Ε Ε Η Χ Η Ε Γ Σ π π υ α υ α α α α α α µ α απ α α µ π π µα α υπ α α µ π φα µ α α α υ υα µ

Διαβάστε περισσότερα

15PROC

15PROC Δ Ω Δ Δ - Δ Ω Δ Ω & Δ INFORMATICS DEVELOPMEN T AGENCY Digitally signed by INFORMATICS DEVELOPMENT AGENCY Date: 2015.02.09 10:47:54 EET Reason: Location: Athens Ε Δ Δ. Δ/.. Δ/ / π : : : : : :. 11 546 55,

Διαβάστε περισσότερα

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο ΠΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛ ΙΑΣ ΠΟΛ Υ ΤΕΧ ΝΙΚ Η ΣΧ ΟΛ Η ΤΜΗΜΑ ΜΗΧ ΑΝΟΛ ΟΓ Ω Ν ΜΗΧ ΑΝΙΚ Ω Ν Β ΙΟΜΗΧ ΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ Π Π Σ ΣΥ ΝΟΠ Τ Ι Κ Η Ε Κ Θ Ε ΣΗ ΠΕ 4 Α Ν Α ΠΤ Υ Ξ Η Κ Α Ι ΠΡ Ο Σ Α Ρ Μ Ο Γ Η ΕΝ Τ Υ ΠΟ Υ Κ Α

Διαβάστε περισσότερα

15SYMV

15SYMV Α Η Ο Α Ω ι ύθ ση: Οι ο ο ι ού ή α: ο ηθ ιώ Α ιθ. βάσ ως : 44/2014 Α Η ια α ο ή σιώ ια α ο ή έ α ισ ασ ι ώ ασιώ ο ί ι ια ώ α ασ άσ ο α ισ ίο ι αιώς Χ ό ος α ά ισης ης σύ βασης :22 β ίο 2014 ό ος : ι ό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 009 Θέμα (0 μονάδες) Έστω U = (, y, z, w) = z, y = w υποσύνολο του και V ο υπόχωρος

Διαβάστε περισσότερα

#""$%% 3 η!"&'"$% "( " '$#&" A. 16, ε!"

#$%% 3 η!&'$% (  '$#& A. 16, ε! 14PROC002117 2014-10-09!"!" #""$%%!"&'"$% "( " '$#&" A. 16, 546 2 ε!" # #"$% )% ι*. 16/2012 #%'" &"+ #"!,&"'!ι *ι ι- () * ι 4X4 DIESEL.ι $/. & ι/ι #ι ' CPV 4114121-45 () 1&( $"&% 4+4 DIESEL 52 ( 24.2198/94)

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

16PROC

16PROC INFORMATICS ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ DEVELOPMEN T AGENCY ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΔΗΜΟΣ ΝΕΑΣ ΣΜΥΡΝΗΣ 16PROC005500104 2016-12-02 Δ/ΝΣΗ : ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΤΜΗΜΑ : ΚΤΙΡΙΑΚΩΝ ΕΡΓΩΝ & ΥΠΑΙΘΡΙΩΝ ΧΩΡΩΝ ΠΛΗΡ. : Ηλίας Βασιλάς

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) =α συνεπώς: 2α 4βα+β = 2βα+ 2α 1 2α 4βα+β + 2βα 2α+ 1= 0. α 1= ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ Α 3. Σχολικό βιβλίο σελ.

( ) ( ) ( ) ( ) =α συνεπώς: 2α 4βα+β = 2βα+ 2α 1 2α 4βα+β + 2βα 2α+ 1= 0. α 1= ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ Α 3. Σχολικό βιβλίο σελ. ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 9/4/6 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΟΜΑ ΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΚΑΙ ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4

! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4 ! #!! # % % & ( ) + & # % #&,. /001 2 & 3 4 ! # % & (! ) & (! (! + & (!, % (! +.! / 0 1 0 2 3 4 1 0 5 6 % 7 8!, %! + 0! # % 0 1 9. 2! 1. 2 8 2 5 : ; 0 % &! & ( ) ; < =2 8 0 ; 0/ =2 8 0 8 2 8 & 8 2 0 8

Διαβάστε περισσότερα

! #! # # % & % # # # # %!! ( &) & #& % %!! # # # # +,! % # )! #! ) # # # ( # % # # + ) # + # ( ( & ) # &! #!. % #! /! # ) & #! & # # ) ) # + # % # ( # ) & #!! # + & % # / # + # & #! ) 0. & ( %.1! 2 2 #

Διαβάστε περισσότερα

r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ

r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ε Κ Π Α Ι Ο Ε Υ Τ Ι Κ Ο Ι Ο Ρ Υ Μ Α Κ Α Β Α Λ Α Σ Σ Χ Ο Λ Η Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ν Ε Φ Α Ρ Μ Ο Γ Ώ Ν Τ Μ Η Μ Α Η Λ Ε Κ Τ Ρ Ο Λ Ο Γ Ι Α Σ i l t r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ ΑΥΤΟΜΑΤ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΕΡΓΑΣΙΑ 6 - ΛΥΣΕΙΣ Άσκηση. (6 µον.) Ελέγξτε ποια από τα επόµενα σύνολα είναι διανυσµατικοί χώροι

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 9ς (Μ, (έ) Ν,) ΣΥΓΓΡΑΦΕΙΣ Αή

Διαβάστε περισσότερα

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας Ροπογεννήτριες (mome geerig fucios), πιθανογεννήτριες (robbiliy geerig fucios) και χαρακτηριστικές συναρτήσεις (chrcerisic fucios) Η ροπογεννήτρια συνάρτηση της τμ είναι η πραγματική συνάρτηση πραγματικής

Διαβάστε περισσότερα

«Π ς το οιητι ά, ς το ια ιστο ία:

«Π ς το οιητι ά, ς το ια ιστο ία: ΜΑ: «Πα ή ιος Μαθη ι ός ια ω ισ ός η ιο ι ής αφής ης ι ής α α ίας σό η ας ω Φύ ω...φ. αι ο ο ίο Παι ίας, Έ ας αι ησ ά ω Π.Π.. «Π ς το οιητι ά, ς το ια ιστο ία: έχ ι φύ ο η α ιά;» Η ι ή α α ία σό ας ύ....

Διαβάστε περισσότερα

3. Κεφάλαιο Μετασχηματισμός Fourier

3. Κεφάλαιο Μετασχηματισμός Fourier 3 Κεφάλαιο 3 Ορισμοί Ο μετασχηματισμός Fourir αποτελεί την επέκταση των σειρών Fourir στη γενική κατηγορία των συναρτήσεων (περιοδικών και μη) Όπως και στις σειρές οι συναρτήσεις θα εκφράζονται με τη βοήθεια

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

14PROC

14PROC Α Α Α Α Α Α Ω Ω Ω Ω Α Α Α Α Α Α Α Α Α Ω Α. α α έο α ούσι οφο ί ς : Α. Α ι ιώ ς έφω ο : 210 3443252 α : 210 3442365 e-mail: aalikiotis@minedu.gov.gr α ια θ ί έχ ι: αθ ός Ασφα ίας: α ούσι, 29-05-2014 Α.

Διαβάστε περισσότερα

15SYMV

15SYMV Α Η Ο Α Ω ι ύθ ση: Οι ο ο ι ού ή α : ο ηθ ιώ Α ιθ. βάσ ως :06/2015 ια ο ήθ ια οι ού ασ ια ού ο ισ ού ια ις α ά ς ο ια ώ ο α ά σ ο ώ ο α ισ ίο ι αιώς. ό ος α ά ισης ης σύ βασης : 27 α ο α ίο 2015 ό ος :

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ 1 Δίνεται το ευθύγραμμο τμήμα ΑΒ Αν ισχύει η ισότητα AB + BK- ΒΛ = AM- AK, να αοδείξετε ότι τα σημεία Κ, Λ και Μ είναι συνευθειακά Δίνεται τρίγωνο ΑΒΓ Αν είναι ΒΔ = κ ΑΒ+ ΑΓ και ΓΕ ( 1+ κ ) = AB+ ΑΓ, να

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ : ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ : ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Κ: Κορίνθου 55 Κ: Κανακάρη, Τηλ. 6 65.36 Fa. 6 65.366 ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ : ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Βλέπε

Διαβάστε περισσότερα

14SYMV

14SYMV Το γο χ α ο ο α απ Ευ πα Έ (ΕΤΠ ) α απ Ε ο Π ου Ε α α ου γα α Δ υ υ α α α α Kardjali α α α α υ α π π π α φα α αυ α υ α αε ΔMedicinetΕ Η Η Η 4... & Θ Η Γ Η Η Δ Γ Ε : 14SYMV002124685 2014-06-24 Το γο χ α

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Α, Β, Γ Δύ Τός 16ς (Φ, Χ, (ό)) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 16ς (Φ, Χ, (ό))

Διαβάστε περισσότερα

Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14 " ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ "

Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14  ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Άσκηση Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Παράδοση 6//9 Αν υοθέσουμε ως στο τρισορθογώνιο σύστημα αξόνων yz ο άξονας των z συμίτει με τη διεύθυνση της κατακόρυφου, να γράψετε αναλυτικά (με την

Διαβάστε περισσότερα

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0. ΘΕΜΑ 5 ο Έστω συνάρτηση f :[0, + ) παραγωγίσιμη στο διάστημα [0, + ) για την οποία ισχύει : 2 -f(t) 2f()+f ()= 2 e dt και f(0) = 0. i) Να δείξετε ότι + f() 0 για κάθε є [0, + ). ii) Να δείξετε ότι η f

Διαβάστε περισσότερα

15SYMV Α ιθ. βάσ ως : 09/2015

15SYMV Α ιθ. βάσ ως : 09/2015 Α Η Ο Α Ω ι ύθ ση: Οι ο ο ι ού ή α : ο ηθ ιώ Α ιθ. βάσ ως : 09/2015 ια ο ήθ ια οι ού ασ ια ού ο ισ ού ια ις α ά ς ο ια ώ ο α ά σ ο ώ ο α ισ ίο ι αιώς. ό ος α ά ισης ης σύ βασης : 27 α ο α ίο 2015 ό ος

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ. & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Βασικά σημεία Μη γραμμικές εξισώσεις με πραγματικές ρίζες. Μέθοδος

Διαβάστε περισσότερα

ΑΔΑ: ΒΖΔΜΟΡ1Υ-Ν2Χ 2010/75/ (IPPC) / : : 3570, 2723/ Fax:

ΑΔΑ: ΒΖΔΜΟΡ1Υ-Ν2Χ 2010/75/ (IPPC) / : : 3570, 2723/ Fax: INFORMATICS DEVELOPMEN T AGENCY Digitally signed by INFORMATICS DEVELOPMENT AGENCY Date: 2015.06.11 10:58:15 EEST Reason: Location: Athens ΑΔΑ: ΒΖΔΜΟΡ1Υ-Ν2Χ Ω Δ Δ 2010/75/ (IPPC) Δ Ω Δ Δ - Δ/ XΩ Δ/ KAI

Διαβάστε περισσότερα

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΚΑΤΑΛΟΓΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΕΣΤ ΙΚΑΝΟΤΗΤΩΝ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΩΡΟΜΙΣΘΙΟΥ ΠΡΟΣΩΠΙΚΟΥ ΒΟΗΘΟΙ ΤΗΛΕΞΥΠΗΡΕΤΗΣΗΣ (ΑΡ. ΠΡΟΚΗΡΥΞΗΣ: 2/2017) (ΛΕΥΚΩΣΙΑ

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (Νο2) ΧΡΗΣΙΜΕΣ ΣΧΕΣΕΙΣ έ ώ ό έ ώ. ώ ό. ί ό ό 1, 1,2,, 1,,,,,,, 1,2,,, V ό V V. ή ό ί ά ύ. ό, ί ί ή έ ύ.

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (Νο2) ΧΡΗΣΙΜΕΣ ΣΧΕΣΕΙΣ έ ώ ό έ ώ. ώ ό. ί ό ό 1, 1,2,, 1,,,,,,, 1,2,,, V ό V V. ή ό ί ά ύ. ό, ί ί ή έ ύ. ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (Νο) ΧΡΗΣΙΜΕΣ ΣΧΕΣΕΙΣ έ ώ ό έ ώ 0,,,, i i i i i i ό i i i Έ ώ,,, ό,,, ί ώ ό. ί ό ό,,,,,,,,,,, V ό V 0 V 0,,, ύ ώ ό ή ό ό ή ό ί ά ύ ό, ί ί ή έ ύ ό ό, ί ί ή έ ύ ό ύ ό ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

Aula 01. Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes

Aula 01. Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes Aula 01 Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes #, 1! # % & ()!! + (). /0 0, 2 3 4, # 0, 0! %! 5 1! 1 6 7 8 9 0 0 #. 0 ) 0 #6 # 2,, :& 3; < 23,,,,,, #, 6# 5 =0 8 0 66

Διαβάστε περισσότερα

15PROC

15PROC Γ Γ & Η Η ΓΓ Η 6 Γ.. Η Η, Η - Γ Η Η : Γ Φ ΗΘ Ω Η Φ : ΓΓ Η Θ., Φ. Θ Φ.,. Χ. / Η Η.. 24100 Η : 27213-63128,130 F Χ : 27210-46129 E-MAIL:promithies@nosokomeiokalamatas.gr Θ ΧΗ ΓΩ Η Ω Η Χ Γ Γ INFORMATICS DEVELOPMEN

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου

Διαβάστε περισσότερα

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { } Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το

Διαβάστε περισσότερα

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x ΘΕΜΑ A ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. Δίνεται η συνάρτηση f με τύπο: f ( ) ln,,. Να δείξετε ότι η f είναι αντιστρέψιμη και να βρείτε το πεδίο ορισμού της αντίστροφής της.. Να δικαιολογήσετε ότι η εξίσωση f ( ) a, a,

Διαβάστε περισσότερα

ENERGIA - POTENZA - CORRELAZIONE

ENERGIA - POTENZA - CORRELAZIONE ENERGIA e POENZA: ENERGIA - POENZA - CORRELAZIONE Energia in (, ) : (, ) ( ) Poenza media in (, ) : P(, ) E = d (, ) (, + Δ ) E E = = Δ Segnali periodici: Δ = = periodo Segnali di energia (es: un impulso):

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Ηµεροµηνία αποστολής στον φοιτητή: Iανουαρίου 005. Τελική ηµεροµηνία αποστολής από τον φοιτητή: 8 Φεβρουαρίου

Διαβάστε περισσότερα

,00-20, ,00-19, ,00-18, ,00-17,00

,00-20, ,00-19, ,00-18, ,00-17,00 Χ ή ο Πά η Ά ια «σ ι ά» ο φί ο ο ή σ «αθ ι ή θ ία» αία ό σ, φ σι ά, ις Πα ε ή ιες Ε ε άσεις. Ή α ια ο ιά, ιαφο ι ή α ό α ές ο ί α σ θήσ ι, αφού έο οι αθ ές ά ο αι σ αθή α α ί ο ας σ ο ές σ ώ ό, α ό α α

Διαβάστε περισσότερα

x y Ax By Εξίσωση Κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου

x y Ax By Εξίσωση Κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου ΚΥΚΛΟΣ Εξίσωση Κύκλου Έστω Oy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο O(, ) και ακτίνα ρ έχει εξίσωση y y ε Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου y ρ στο σημείο του

Διαβάστε περισσότερα

14SYMV

14SYMV 14SYMV002471155 2014-12-12 INFORMATIC S DEVELOPME NT AGENCY Γ Digitally signed by INFORMATICS DEVELOPMENT AGENCY Date: 2014.06.13 16:21:21 EEST Reason: Location: Athens ΝΝΝ Φ Ω Ω Ω Θ ΣΝ Ω Ω Θ Ω,Ν ΣΝ α

Διαβάστε περισσότερα

ί α α I. Β α μ α π α μ α μ π φα α υ α υ αμ α ία ( α. μ3) : ία & α μα μα - αμ υ α ) α α Θ π μα α 79 (55) * 107

ί α α I. Β α μ α π α μ α μ π φα α υ α υ αμ α ία ( α. μ3) : ία & α μα μα - αμ υ α ) α α Θ π μα α 79 (55) * 107 / 3 ELECσδOWAσσ 10616000 10% I 1960 3 3 400 1220 1073000 2 εogδeah 1974 3 2 1 1 1966 1739/87 / 1 3 1966 I & 3 : 63 20 43 144 30 114 247 122 125 367 177 20 5 24 5 19 79 55 * 55 107 107 30 15 15 62 32 30

Διαβάστε περισσότερα

Ό α ο ά ος θ α ύ ι ια ι ό α. ύ α σ ο ιβά ο ος, ό α οσφέ ι έ α όσιο α αθό. θ ι ή ά α, ό α θ ί ι ήσ οι ό ό. ο όσι ο ό, ο ί α α ήσ ι οι ο ο ι ή ία αι ό α

Ό α ο ά ος θ α ύ ι ια ι ό α. ύ α σ ο ιβά ο ος, ό α οσφέ ι έ α όσιο α αθό. θ ι ή ά α, ό α θ ί ι ήσ οι ό ό. ο όσι ο ό, ο ί α α ήσ ι οι ο ο ι ή ία αι ό α ά ος- ό οι Ό α ο ά ος θ α ύ ι ια ι ό α. ύ α σ ο ιβά ο ος, ό α οσφέ ι έ α όσιο α αθό. θ ι ή ά α, ό α θ ί ι ήσ οι ό ό. ο όσι ο ό, ο ί α α ήσ ι οι ο ο ι ή ία αι ό α, ι έο, οσφέ ι έ α ι ι ι ό α αθό, ια ό ο

Διαβάστε περισσότερα

?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θεωρητικής Κατεύθυνσης Αρχαία Ελληνικά - Άγνωστο Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θεωρητικής Κατεύθυνσης Αρχαία Ελληνικά - Άγνωστο Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θεωρητικής Κατεύθυνσης Αρχαία Ελληνικά - Άγνωστο Γ Λυκείου Επιμέλεια: ΑΓΓΕΛΙΚΗ ΚΑΡΑΓΙΑΝΝΗ ΕΛΕΝΗ ΜΑΥΡΙΔΟΥ ΧΡΙΣΤΙΝΑ ΠΕΤΡΑ ΦΙΛΙΠΠΟΣ ΠΑΠΑΧΑΡΑΛΑΜΠΙΔΗΣ

Διαβάστε περισσότερα

ΜΑΣ 303: Μεπικέρ Διαφοπικέρ Εξισώσειρ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. u bu au, u au bu. c U du 0, d a b

ΜΑΣ 303: Μεπικέρ Διαφοπικέρ Εξισώσειρ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. u bu au, u au bu. c U du 0, d a b ΜΑΣ 33: Μεπικέρ Διαφοπικέρ Εξισώσειρ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Σελ 4 Φξεζηκνπνηώληαο ηελ αιιαγή κεηαβιεηώλ u bu cu Λύση: Έρνπκε κε ηελ αιιαγή κεηαβιεηώλ Άξα ε δνζείζα ΜΔΕ γξάθεηαη σο ή b b u( U ( u bu U u U bu θαη

Διαβάστε περισσότερα

Γλαηηδεά Άζΰ ίλα. 1. δ αΰωΰά Σα ΰθω Ϊ ηαμ δαθτ ηα α

Γλαηηδεά Άζΰ ίλα. 1. δ αΰωΰά Σα ΰθω Ϊ ηαμ δαθτ ηα α ΗΙΗ ΗΟΑΙΑ ΑΙΗΙΟ ΗΗ Εφαοα Μαα όηαμ Γρα Άερα αυαο Χώρο Μαα Καφε α Επ α εχοογα ώ TETY Εφαρα αα θσβα ΙΙ: Γλαηηδεά Άζΰίλα Ύζβ: αυα α ααα, αα αυ, α πα, ααα α π, πυ α υ Δαυαοί χρο α δααα. δαΰωΰά Σα ΰθωΪ ηαμ δαθτηαα

Διαβάστε περισσότερα

Homework#13 Trigonometry Honors Study Guide for Final Test#3

Homework#13 Trigonometry Honors Study Guide for Final Test#3 Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.

Διαβάστε περισσότερα

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#% " #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @

Διαβάστε περισσότερα

There are no translations available.

There are no translations available. There are no translations available. Η συγκρότηση της παρακάτω Ειδικής Επταμελούς Επιτροπής για την πλήρωση μιας (1) θέσης ΔΕΠ στη βαθμίδα του Αναπληρωτή Καθηγητή στογνωστικό αντικείμενο «Πληροφορι κή

Διαβάστε περισσότερα

Επαλληλία-Υπέρθεση Κυμάτων. Επαλληλία (υπέρθεση) Κυμάτων. Επαλληλία (Υπέρθεση) Κυμάτων. Επαλληλία: Συμβολή κυμάτων. Συμβολή αρμονικών κυμάτων

Επαλληλία-Υπέρθεση Κυμάτων. Επαλληλία (υπέρθεση) Κυμάτων. Επαλληλία (Υπέρθεση) Κυμάτων. Επαλληλία: Συμβολή κυμάτων. Συμβολή αρμονικών κυμάτων Γραμμικά φαινόμενα μηχανικών κυμάτων Επαηία-Υπέρθεση Κυμάτων Υπέρθεση (επαηία) κυμάτων (superpositio) Συμβοή (χωρική) κυμάτων (iterferece) (stadig waves) Κανονικοί τρόποι ταάντωσης (ormal modes) Διακροτήματα

Διαβάστε περισσότερα

Ασκήσεις στα Μαθηματικά της Γ Γυμνασίου 4. Παραγοντοποίηση

Ασκήσεις στα Μαθηματικά της Γ Γυμνασίου 4. Παραγοντοποίηση Ασκήσεις στα Μαθηματικά της Γ Γυμνασίου 4. Παραγοντοποίηση 1 ΠΑΡΑΔΕΙΓΜΑΤΑ a. 15αχ 12χ + 3χ = 3 5αχ 3 4χ+3= 3 (5αχ 4χ+1) Όταν πάλι έχουμε ίδιες μεταβλητές θα βγάζουμε κοινό παράγοντα την κοινή μεταβλητή

Διαβάστε περισσότερα

14SYMV

14SYMV 1 υ πα Έ υ πα α φ α π υ ΤΠΟΤΡΓ ΙΟ ΤΓ ΙΑ ΑΝΑΘ ΣΟΤΑ ΑΡΧΗ : ΓΕΝΙΚΟ ΝΟΟΚΟΜΕΙΟ ΚΟΡΙΝΘΟΤ 6 Η ΤΓ ΙΟΝΟΜΙΚΗ Π ΡΙΦ Ρ ΙΑ Π ΛΟΠΟΝΝΗΟΤ ΙΟΝΙΩΝ ΠΡΟΜΗΘ ΙΑ : ΝΗΩΝ ΗΠ ΙΡΟΤ & ΤΣΙΚΗ ΛΛΑ Α υηία δεσμ Πλκςπκζκΰδ ησμ : ΓΕΝΙΚΟ

Διαβάστε περισσότερα

Βαθιές Θεµελιώσεις Πάσσαλοι υπό Οριζόντια Φόρτιση

Βαθιές Θεµελιώσεις Πάσσαλοι υπό Οριζόντια Φόρτιση Απόκριση Θεµελιώσεων µε Πασσάλους υπό Οριζόντια Φόρτιση Απόκριση Πασσάλων υπό Οριζόντια Φόρτιση Μενονωµένος Πάσσαλος Οµάδα Πασσάλων Φέρουσα Ικανότητα Μέθοδος Broms Υπολογισµός Καµπύλης Απόκρισης Μέθοδος

Διαβάστε περισσότερα

14SYMV

14SYMV Η Η Η Α Α ΧΑ Ω Η Α ΧΑ Ω Γ ηγο ου Ε α. 50 α Κ. φα ανά η Χαν ά Κ τη 73135 η.: 28213-41747 Fax: 28210-72070 www.dlt-chania.gr, email: dimlimeniko@chania.gr 14SYMV001933765 2014-03-19 ΧΑ Α 28-6-2013 Α.. :

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 5

Λύσεις Σειράς Ασκήσεων 5 Λύσεις Σειράς Ασκήσεων 5 Άσκηση 1 (α) Ακολουθεί η απόδειξη της προδιαγραφής (0) { A[X] = x A[Y] = y X Y (1) { A[Y] = y A[X] + Α[Υ] A[Y] = x X Y (2) A[X] := A[X] + A[Y]; (3) { A[Y] = y A[X] A[Y] = x X Y

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 2. H εξίσωση θερµότητας.

KΕΦΑΛΑΙΟ 2. H εξίσωση θερµότητας. Εισαγωγή KΕΦΑΛΑΙΟ H εξίσωση θερµότητας Εστω Ω είναι ανοικτό σύνολο του µε γνωστή θερµοκρασία στο σύνορό του Ω κάθε χρονική στιγµή και γνωστή αρχική θερµοκρασία σε κάθε σηµείο του Ω Τότε οι φυσικοί νόµοι

Διαβάστε περισσότερα

13SYMV

13SYMV Α Η Η υ πα α φ α π υ ( ) 13SYMV001809529 2013-12-27 Θ 24 /12 /2013..:2977 Η Η Η Α Α Φ Α Η Η Η Α Θ Θ 1 ου Γ Δ Θ Γ Φ Θ Ε π Δ Η Ω Η Η Γ Η Η Ω Φ Θ Ε Ποσού 822.220,56 Ευρώ με ΦΠΑ α 1 Χ... 4 Θ... 4 Γ... 8 Χ

Διαβάστε περισσότερα

14PROC

14PROC 1 K ς, 17-12-2014 Α ιθ. :3415 Α Α Α Α, Α Α Α Α ή α ο θ ιώ Α. / : Αθ ι ό ο ύ ο Έ α ι έο ο ι ού σ α ίο Α α ό α Α. Α : : ασί ς ς : 0-25316 / : -28655 /. Α. : pkkos1@kos.gr Ω Α Α Α Ω Ω Α Α Ω Α Α Ω Ω Α Α Α

Διαβάστε περισσότερα

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1

Διαβάστε περισσότερα

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6 # % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν

Διαβάστε περισσότερα

# % &) /! 0! 1 &!2 0

# % &) /! 0! 1 &!2 0 ! # % & ()! +,). &) /!0!1 &!2 0 34 5 3 6 7 #895 # 0 &:! :!!!). : ()&! : : () &! 0 &! ) ) & < => ():.!:?!! )! >&!() :!! ΑΒ :Χ))?>) :.!Β > )!&! )? Χ():! :0 ; !!) Α) & &Ε& /! &:> ) :Φ!&). >! Γ Β!& Η>:?Γ&!Η>&

Διαβάστε περισσότερα

Λύσεις ασκήσεων 6. Οι συντελεστές του αναπτύγματος υπολογίζονται ως εξής: = y( ( 1) = 2 L. L n. = 0 Αναζητούμε αρμονική λύση για y(x) λόγω ΣΣ

Λύσεις ασκήσεων 6. Οι συντελεστές του αναπτύγματος υπολογίζονται ως εξής: = y( ( 1) = 2 L. L n. = 0 Αναζητούμε αρμονική λύση για y(x) λόγω ΣΣ Λύσεις ασκήσεων 6. y + y, y() y( ) Αναζητούμε αρμονική λύση για y(x) λόγω ΣΣ λ k > y(x) As(kx) + Bsi(kx) y() A y() Bsi(k) B k,,,.. y (x) Bsi ( x ),,,.. ιδιοσυναρτήσεις Αν λ τετριμένη λύση. Οι ιδιοσυναρτήσεις

Διαβάστε περισσότερα

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή Κεφ. 4: Ολοκλήρωση 4. Εισαγωγή 4. Εξισώσεις ολοκλήρωσης Newto Cotes 4.. Κανόνας τραπεζίου 4.. Πρώτος και δεύτερος κανόνας Simpso 4.. Πολλαπλά ολοκληρώματα 4. Ολοκλήρωση Gauss 4.. Πολυώνυμα Legedre, Chebyshev,

Διαβάστε περισσότερα

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ Α θ ή ν α, 7 Α π ρ ι λ ί ο υ 2 0 1 6 Τ ε ύ χ ο ς Δ ι α κ ή ρ υ ξ η ς Α ν ο ι κ τ ο ύ Δ ι ε θ ν ο ύ ς Δ ι α γ ω ν ι σ μ ο ύ 0 1 / 2 0 1 6 μ ε κ ρ ι τ ή ρ ι ο κ α τ α κ ύ ρ ω σ η ς τ η ν π λ έ ο ν σ υ μ

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 215-16. Λύσεις ενδέκατου φυλλαδίου ασκήσεων. 1. Λύστε το πρόβλημα συνοριακών συνθηκών u xx + u yy =, u(x, ) = u(x, π) =, u(, y) =, u(a, y) = sin 2y + 4 sin 5y, < x

Διαβάστε περισσότερα

Εξισώσεις για αρμονικά μεταβαλλόμενες ακουστικές ποσότητες

Εξισώσεις για αρμονικά μεταβαλλόμενες ακουστικές ποσότητες Εξισώσεις για αρμονικά μεταβαλλόμενες ακουστικές ποσότητες 1. Τοπική μορφή νόμου Newton για μιγαδικές ακουστικές ποσότητες Η τοπική μορφή του νόμου Newton που συσχετίζει την ταχύτητα σωματιδίων με την

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη 5 Εκτίμηση φάσματος ισχύος Συνάφεια Παραδείγματα Στοχαστικά Διανύσματα Autoregressive model with exogenous inputs (ARX y( t + a y( t +... + a y( t n = bu( t +...

Διαβάστε περισσότερα