Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14 " ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ "

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14 " ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ""

Transcript

1 Άσκηση Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Παράδοση 6//9 Αν υοθέσουμε ως στο τρισορθογώνιο σύστημα αξόνων yz ο άξονας των z συμίτει με τη διεύθυνση της κατακόρυφου, να γράψετε αναλυτικά (με την βοήθεια των ˆˆ ˆ i, j, k ) το διάνυσμα του βάρους Β ου κατευθύνεται ρος τα κάτω και έχει μέτρο 7(Ν). Να υολογίσετε το διάνυσμα της ροής τ, του βάρους αυτού ως ρος την αρχή των αξόνων, γνωρίζοντας ότι το βάρος εφαρμόζεται στην άκρη ενός ανύσματος d ˆi ˆj (m) Δίνεται ότι το διάνυσμα της ροής ροκύτει αό το εξωτερικό γινόμενο του διανύσματος d εί το διάνυσμα της δύναμης ου στην ερίτωση αυτή είναι το βάρος. Δηλ.: τ d Β Να σχεδιάσετε τα ανύσματα d και τ στο είεδο y. Τι αρατηρείτε; Το βάρος B βρίσκεται στον άξονα των z και κατευθύνεται ρος τα κάτω (τον αρνητικό ημιάξονα των z). Θα ρέει στη συνέχεια να γράψουμε το βάρος διανυσματικά με τη βοήθεια των μοναδιαίων διανυσμάτων iˆ, ˆjk,, ˆ για να μορέσουμε να υολογίσουμε στην συνέχεια το εξωτερικό γινόμενο. Έτσι, γράφουμε για το διάνυσμα B του βάρους: B(,, 7) ή B (iˆ ˆj7 kˆ ). iˆ ˆj kˆ Η ροή δίνεται αό το εξωτερικό γινόμενο τ d B iˆ 4 ˆj 7 Η γραφική αράσταση τ 4 y d - δείχνει ότι το διάνυσμα της ροής τ είναι ράγματι κάθετο στο διάνυσμα d. Θεματική Ενότητα ΦΥΕ4 Εργασία & Λύσεις Σελίδα αό 4

2 Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Άσκηση Σε ένα τρισορθογώνιο σύστημα αξόνων yz, με μοναδιαία διανύσματα στους άξονες ˆˆ i, j, k ˆ αντίστοιχα, μια δύναμη F (6 ˆi - ˆj) N δρα σε ένα σωμάτιο το οοίο μετατοίζεται κατά s ( ˆi ˆj ) m Δεδομένου ότι το έργο W ροκύτει αό το εσωτερικό γινόμενο των διανυσμάτων F και s, ( W F s ) να υολογίσετε το έργο ου αράγει η δύναμη στο σωμάτιο και τη γωνία μεταξύ των διανυσμάτων F και s. F (6 ˆi - ˆj) N s ( ˆi ˆj ) m W F s (6 ˆi - ˆj). ( ˆi ˆj ) 8 ˆˆ i i - ˆˆ j j 8-6 J F s 6 6 cosϕ.8 F s 6. ϕ 7 Άσκηση. Υολογίστε τις γωνίες α,β,γ ου ικανοοιούν τις εξισώσεις sinα cos β tanγ 4sinα cos β tanγ 6sinα cos β tanγ 9 όου α <, β, γ <. Δίνονται τα διανύσματα a iˆ kˆ, b iˆ ˆj kˆ και λ a µ b νc αν και μόνο αν λ µ ν c iˆ ˆjkˆ. Να αοδείξετε ότι Θεματική Ενότητα ΦΥΕ4 Εργασία & Λύσεις Σελίδα αό 4

3 Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Θεματική Ενότητα ΦΥΕ4 Εργασία & Λύσεις Σελίδα αό α β γ sin α α α β β β cos, και 64 tan γ γ γ. Η σχέση c b a ν µ λ δίνει το ομογενές σύστημα εξισώσεων ν µ λ ν µ ν µ λ του οοίου η ορίζουσα των συντελεστών είναι Άρα η μοναδική λύση του συστήματος είναι η ζητούμενη μηδενική. Το αντίστροφο ροφανώς ισχύει.

4 Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Άσκηση 4 Να λυθεί και να διερευνηθεί για τις διάφορες τιμές των αραμέτρων λ y z 4 ky z ky z 7 λ,k R το σύστημα λ k k k ( λ) Για k και λ / έχουμε μία και μοναδική λύση 4 k ( 8 k) y 4( λ) k k( λ 4) k και κατά συνέεια λ 4 7 z λ k 4 7 ( 8 9k) ( λ) k, y 4( λ) k( λ) k y 4 και z z k ( λ 4) k( λ) 4 Για k το σύστημα γίνεται λ y z 4 z z 7 άρα αδύνατον. Για k και λ / το σύστημα γίνεται y z 4 ky z ky z 7 με Έχουμε ότι ( k) 89 για k 8/9 ( λ ) y k 4 4 για k 8/9 z Θεματική Ενότητα ΦΥΕ4 Εργασία & Λύσεις Σελίδα 4 αό 4

5 Τα και Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 z μηδενίζονται για 8 k Άρα το σύστημα έχει άειρες λύσεις για k ενώ είναι αδύνατο για k 9 9 Άσκηση 5 Να βρεθούν οι αντίστροφες των αρακάτω συναρτήσεων και να αρασταθούν γραφικά (χρησιμοοιείστε τουλάχιστον σημεία): α) f ( ) -, β) γ) δ) f ( ) - f, ( ) (), / f( ), α) β) α) β) γ) Θεματική Ενότητα ΦΥΕ4 Εργασία & Λύσεις Σελίδα 5 αό 4

6 Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 δ) γ) δ) Θεματική Ενότητα ΦΥΕ4 Εργασία & Λύσεις Σελίδα 6 αό 4

7 Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Άσκηση 6 Συμληρώστε τα στοιχεία του ίνακα ου λείουν. g ( ) f( ) ( f g)( )???? Πρώτη σειρά: ( f g)( ) g ( ) Δεύτερη σειρά: g ( ) ( f g)( ) g ( ) g ( ) g ( ) Τρίτη σειρά: ( f g)( ) g ( ) g ( ) Τέταρτη σειρά: ( f g)( ) f( ) f( ) Θεματική Ενότητα ΦΥΕ4 Εργασία & Λύσεις Σελίδα 7 αό 4

8 Άσκηση 7 Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4. Με βάση το διλανό σχήμα να υολογίσετε τα όρια: a. lim( α β) b. θ lim( α β ) θ β c. lim θ θ α Α Β. Να υολογίσετε τα όρια (αν υάρχουν): γ a. - lim f( ), lim f( ), lim f( ) όου f( ) >- b. 5 lim 9 c. Κανόνας de L Hospital: lim f( ), lim g ( ), R, και υάρχει το όριο Αν { } Αν lim g ( ) όριο f ( ) (εερασμένο ή άειρο) τότε lim f( ) ή -, lim g ( ) lim g ( ) f( ) f ( ) lim g ( ) lim g ( ) f ( ) (εερασμένο ή άειρο) τότε ή -, R { } lim g ( ) και υάρχει το, f( ) f ( ) lim g ( ) Χρησιμοοιείστε όου μορείτε τον κανόνα de L Hospital για να υολογίσετε τα όρια: I. II. III. IV. sin lim sin lim lim ln lim (υόδειξη: χρησιμοοιείστε το. Εκφράζουμε τα α και β ως συνάρτηση των γωνιών. γ γ cosθ α α cosθ, Έτσι έχουμε: f( ) cos sin sinθ β β θ β γ θ α γ cosθ Γ β ln f ( ) e και το III.) α Θεματική Ενότητα ΦΥΕ4 Εργασία & Λύσεις Σελίδα 8 αό 4

9 Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 θ θ θ θ ( ) ( ) ( ) θ θ θ ( sinθ)( sinθ) ( ) sinθ sinθ lim( α β) γ lim γ lim γ lim cosθ cosθ cosθ cosθ sinθ sin θ cos θ cosθ γ lim γ lim γ lim γ cosθ sinθ cosθ sinθ sinθ. α β άρα lim( α β ) lim( γ ) γ θ θ θ θ β lim lim sinθ sin α a. b. lim f( ) lim 5 lim f( ) lim lim f( ) lim ( ) 5 5 lim f( ) 4 lim f( ) lim ( ) 4 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) lim lim lim lim lim lim 9 6 c. 5 Εομένως δεν υάρχει το όριο lim 9 sin cos I. lim lim sin cos II. lim lim lim cos Δεν υάρχει, εομένως δεν εφαρμόζεται sin sin sin ( lim lim( ) lim( ) ) ln / III. lim ln lim lim lim ( ) / / IV. ln ln lim ln lim lim e lim e e e Θεματική Ενότητα ΦΥΕ4 Εργασία & Λύσεις Σελίδα 9 αό 4

10 Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Άσκηση 8. Μια εξίσωση f( y, ) ορίζει την y ως λεγμένη (ή ελεγμένη) συνάρτηση του και συνήθως δεν μορούμε να λύσουμε ως ρος y και στη συνέχεια να αραγωγίσουμε για να dy βρούμε την y. Για αράδειγμα η εξίσωση y y δεν μορεί να λυθεί ως ρος y d για να βρούμε την y. Σε αυτές τις εριτώσεις υολογίζουμε την y ως συνάρτηση και των δύο μεταβλητών y και ως εξής: Θεωρώντας την y ως συνάρτηση του, αραγωγίζουμε την εξίσωση ου δίνεται ως ρος και λύνουμε τη σχέση ου ροκύτει ως ρος y. Με τον ίδιο τρόο βρίσκουμε αραγώγους ανώτερης τάξης. Έτσι για την εξίσωση y y y y έχουμε y y y y y y. Έτσι για βρίσκουμε ότι y -. y a. Αοδείξτε ότι y - για στο αράδειγμα της εκφώνησης 4 b. Δείξτε ότι οι καμύλες 5y y y και y 5 y τέμνονται κάθετα στην αρχή των αξόνων.. Στην ειδική θεωρία της σχετικότητας η (κινητική) ενέργεια ου έχει ένα σωμάτιο δίνεται αό / την σχέση Τ ( γ ) mc όου γ υ, υ η ταχύτητα του σωματίου, c η ταχύτητα c του φωτός στο κενό (σταθερά) και m η μάζα του σωματίου (σταθερά). Δείξτε ότι όσο μεγάλη και αν είναι η (κινητική) ενέργεια Τ ου έχει ένα σωμάτιο, η ταχύτητά του δεν μορεί να υερβεί την ταχύτητα του φωτός στο κενό c.. a. y y y y y y y y ( )( ) ( ) ( y )( y y ) y Έτσι y y y y b. Για κάθε καμύλη θα βρούμε την εξίσωση της εφατομένης στο,y y y y y y y y y y y 5 ( ) 5 y y Άρα y η εξίσωση της εφατομένης 5 y 5 5 y y yy 5 4 ( ) y y Άρα η εξίσωση της εφατομένης είναι y y Θεματική Ενότητα ΦΥΕ4 Εργασία & Λύσεις Σελίδα αό 4

11 Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Προφανώς εειδή 5 οι δυο ευθείες είναι κάθετες 5. Θα εκφράσουμε την ταχύτητα ως συνάρτηση της κινητικής ενέργειας Τ και στη συνέχεια θα βρούμε το όριο της υ όταν Τ. Τ Τ Τ mc γ ( γ ) / mc υ mc υ υ υ c c c Τ Τ Τ mc mc mc limυ lim c c T T Τ Τ lim T mc mc / c / c / Θεματική Ενότητα ΦΥΕ4 Εργασία & Λύσεις Σελίδα αό 4

12 Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Άσκηση 9 Δίνεται η συνάρτηση, f( ) ( e ) a. Να υολογίσετε τα όρια lim ln ( e ) και lim( ln ) b. Να αοδείξετε ότι η f είναι συνεχής στο c. Να βρείτε την εξίσωση της εφατομένης της γραφικής αράστασης της f στο σημείο (,) a. ( ) u u e u> e ( e ) u lim lim lim lim e u u u u u u> ln u ( ln u) lim( ln ) lim ( uln u) lim lim u u / u u ( / u) / u lim lim ( u) u / u u b. Έχουμε ότι ( e ) ( e ) lim f( ) lim( e ) ln lim ln lim lim ln Είσης f() άρα η f συνεχής στο c. Για ( ) ( ) f( ) f() e ln e ln f ( ) lim lim lim ( e ) ( e ) ( e ) ln / / / lim lim ln lim lim lim lim ( e ) ( ) lim lim Εομένως η εξίσωση της ευθείας είναι η y Θεματική Ενότητα ΦΥΕ4 Εργασία & Λύσεις Σελίδα αό 4

13 Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Άσκηση d k Η εξίσωση ου εριγράφει την κίνηση ενός σώματος είναι η: m [], όου η μεταβλητή ου καθορίζει τη θέση, m η μάζα του σώματος (σταθερά) και k mω όου ω σταθερά. a. Να δοκιμάσετε αν οι αρακάτω σχέσεις ικανοοιούν την εξίσωση της κίνησης, δηλαδή αν είναι λύσεις της εξίσωσης κίνησης: A cos(ωt), Β sin(ωt) και A cos(ωt)β sin(ωt) b. Βρείτε τις τιμές του για τις οοίες η αράγωγος dυ d d ταχύτητα του σώματος ου ορίζεται ως υ γίνεται άειρη όου υ(t) η a. Αν η A cos ωt, είναι λύση, θα ρέει να υολογίσουμε την δεύτερη αράγωγό της και κάνοντας τις αντικαταστάσεις στην [], να ροκύτει ταυτότητα b. d d Έτσι: Acosωt Aωsin ωt Aω cosωt Η αντικατάσταση στην εξίσωση της κίνησης [] δίνει: m( Aω cos ωt) kacosωt Αντικαθιστούμε την τιμή του k και έχουμε: maω cosωt mω Acosωt. Ισχύει. Άρα η A cos ωt, είναι λύση. Ομοίως δοκιμάζουμε την B sin ωt. d d Bsinωt Bωcosωt Bω sinωt Η αντικατάσταση στην [] δίνει: m( ω Bsin ωt) kbsinωt mω Bsinωt mω Bsinωt Ισχύει. Άρα η Β sin(ωt), είναι λύση. Με τον ίδιο τρόο ροχωράμε και διαιστώνουμε ως και η A cos ωt B sin ωt είναι λύση της εξίσωσης []. d d A cos(ωt) Aωsin( ωt) Aω cos(ωt) dυ dυ/ α Aω cos(ωt) ωcot( ωt) d d/ υ Aωsin( ωt) Θεματική Ενότητα ΦΥΕ4 Εργασία & Λύσεις Σελίδα αό 4

14 Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Οι τιμές όου αειρίζεται είναι εκείνες για τις οοίες ο αρανομαστής γίνεται μηδέν δηλαδή sin( ω t) εομένως cos( ω t) ± ± A d d Β sin(ωt) Bωcos( ωt) Bω sin( ωt) dυ dυ/ α Bω sin(ωt) ωtan( ωt) d d/ υ Bωcos( ωt) Οι τιμές όου αειρίζεται είναι εκείνες για τις οοίες ο αρανομαστής γίνεται μηδέν δηλαδή cos( ω t) εομένως sin( ω t) ± ± B d A cos(ωt)β sin(ωt) Aωsin( ωt) Bωcos( ωt) d A B t ω cos(ωt) ω sin( ω ) α Aω Bω ωt d d/ υ Aωsin( ωt) Bωcos( ωt) dυ dυ/ cos(ωt) sin( ) Οι τιμές όου αειρίζεται είναι εκείνες για τις οοίες ο αρανομαστής γίνεται μηδέν B Aωsin( ωt) Bωcos( ωt) Bcos( ωt) Asin( ωt) tan( ωt) A sin( ωt) B B B δηλαδή sin ( ωt) co ( sωt) (sin ( ωt)) cos( ωt) A A A ωt sin ( ) B A B εομένως A A cos(ωt)β sin(ωt)a sin( ωt) Β sin(ωt) B A B A B B sin( ωt) A B B B A B Θεματική Ενότητα ΦΥΕ4 Εργασία & Λύσεις Σελίδα 4 αό 4

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. 1 (γ) lim. 1/ x

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. 1 (γ) lim. 1/ x ΠΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ Ι 00-00 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. (0 µον.) Να υολογισθούν τα όρια:

Διαβάστε περισσότερα

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ) ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα

Διαβάστε περισσότερα

είναι γραµµικώς ανεξάρτητοι, αποτελούν βάση του υποχώρου των πινάκων Β άρα η διάστασή του είναι 2. και 2

είναι γραµµικώς ανεξάρτητοι, αποτελούν βάση του υποχώρου των πινάκων Β άρα η διάστασή του είναι 2. και 2 ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 Ιουλίου 6 Αό τα κάτωθι Θέµατα καλείσθε να λύσετε το ο ου εριλαµβάνει ερωτήµατα αό όλη την ύλη του µαθήµατος, ενώ αό τα Θέµατα,, 4 και 5 µορείτε να ειλέξετε

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις) ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 17 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Ααντήσεις) ΘΕΜΑ Α Α1. Αόδειξη σχολικού βιβλίου σελ 135 Α. α. Ψευδής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 5- ΛΥΣΕΙΣ Οι ασκήσεις της Εργασίας αυτής βασίζονται στην ύλη των Ενοτήτων 9 του συγγράµατος «Λογισµός Μιας Μεταβλητής»

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Ααντήσεις ΘΕΜΑ ο Α. Σχολικό βιβλίο, σελίδα 6. B. Σχολικό βιβλίο, σελίδες 97 και

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών)

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών) ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σουδών) η Σειρά Ασκήσεων //7 Ι. Σ. Ράτης Ειστροφή µέχρι //7. Η σχέση διασοράς για τη ζώνη αγωγιµότητας Ε c c () ενός κυβικού ηµιαγώγιµου

Διαβάστε περισσότερα

Εργασία 1 ΑΝ ΙΙΙ 07_08

Εργασία 1 ΑΝ ΙΙΙ 07_08 Εργασία ΑΝ ΙΙΙ 7_8 () t =,sin,cos t t t, t [,9], Για την αραμετρική καμύλη: ( ) Α Να βρεθεί η συνάρτηση μήκους τόξου και μια ισοδύναμη φυσική αραμετρική καμύλη q() s = (()) t s Β Να βρεθεί το σημείο Px

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Στασίνου 6, Γραφ., Στρόβολος, Λευκωσία Τηλ. 57-78 Φαξ: 57-79 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 7 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Παρασκευή, 9/5/7 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΜΕΡΟΣ Α ln( x). Να υολογίσετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΟΡΙΑ - ΣΥΝΕΧΕΙΑ 1 Να υολογίσετε τα όρια: 9 i) ii) ( ) 9 iii) 1 1 1 iv) 7 10 5 15 t t t 1 v) vi) t (t )(t ) 1 1 9 i) (ημ συν) ) 1 7 συν vii) 1 ημ viii) 1 5 i) ii) ημ 6 1 009, άν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 6 Αό τα κάτωθι Θέµατα καλείσθε να λύσετε το ο ου εριλαµβάνει ερωτήµατα αό όλη την ύλη του

Διαβάστε περισσότερα

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία f ( t ) ίνεται η συνεχής συνάρτηση f : [, + ) R µε: f ( ) = + ( + ), > t Α ) να δείξετε ότι: α) f ( ) = ln +, > β) f ( ) = Β) να µελετηθεί η µονοτονία και τα ακρότατα της f Γ) να δείξετε ότι η C f είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ http://eepgr/pli/pli/studetshtm ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ), - ΕΡΓΑΣΙΑ ΣΤ Τα κάτωθι ροβλήµατα ροέρχονται αό την ύλη και των συγγραµµάτων της

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Χαρακτηριστικά μεγέθη της αλής αρμονικής ταλάντωσης είναι: Α) Αομάκρυνση (x ή y): ονομάζεται η αόσταση του σώματος κάθε χρονική στιγμή αό την θέση ισορροίας (x= ή y=) Β) Το λάτος της

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..9: Ασύμτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση. ΘΕΜΑ Β Να βρείτε

Διαβάστε περισσότερα

Πανελλαδικές Εξετάσεις 2017

Πανελλαδικές Εξετάσεις 2017 Πανελλαδικές Εξετάσεις 7 Μαθηματικά Προσανατολισμού 9/6/7 ΘΕΜΑ Α Προτεινόμενες λύσεις Α. Έστω, Δ, με

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων εανάληψης 1. ίνεται το ολυώνυµο Ρ(x) = x 3 x 2 4x + 4 Να αοδείξετε ότι ο αριθµός ρ = 1 είναι ρίζα του ολυωνύµου i Να βρείτε το ηλίκο της διαίρεσης του ολυωνύµου Ρ(x) µε το ολυώνυµο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. ΛΟΓΙΣΜΟΣ Ι - ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΩΝ : Χρήστος Βοζίκης

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. ΛΟΓΙΣΜΟΣ Ι - ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΩΝ : Χρήστος Βοζίκης ΤΜΗΜΑ Β ΕΞΕΤΑΣΤΙΚΗ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΚΑ. ΕΤΟΣ 5-6 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, ΦΕΒΡΟΥΑΡΙΟΥ 6 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΛΟΓΙΣΜΟΣ Ι - ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι

Διαβάστε περισσότερα

ΜΔΕ Άσκηση 6 Α. Τόγκας

ΜΔΕ Άσκηση 6 Α. Τόγκας Πρόβλημα 15. Για κάθε μια αό τις ακόλουθες αρχικές τιμές θερμοκρασίας i) να βρεθεί η λύση στην μορφή μια σειράς Fourier της εξίσωσης της θερμότητας με εριοδικές συνοριακές συνθήκες u t = u x x < x

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Α) Να αοδείξετε ότι: α) Η συνάρτηση f() = ln, [,] αντιστρέφεται και να ορίσετε την f. β) ln d + d =. Β) Δίνεται η συνάρτηση α) h() h(), για κάθε [, + ). = d. Να αοδείξετε

Διαβάστε περισσότερα

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ Λύσεις θεμάτων ροσομοίωσης- ο /7 ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ

Διαβάστε περισσότερα

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Δίνεται η εξίσωση: z (εφθ)z + =, θ (, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη ραγματικοί αριθμοί. β) Έστω z,z οι ρίζες της αραάνω εξίσωσης. Αν ισχύει

Διαβάστε περισσότερα

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ ΘΕΜΑ Ο Μιγαδικοί i Δίνεται ο μιγαδικός και έστω w α. Να ρεθεί ο μιγαδικός w όταν w. Να δείετε ότι w i γ. Αν η εικόνα του κινείται στον κύκλο κέντρου, και ακτίνας και Μ είναι η εικόνα του w στο μιγαδικό

Διαβάστε περισσότερα

F = y n cos xˆx + sin xŷ. W OABO = F d r. ds + sin(x)dy ds. dy ds = 1 π. ) n 1 cos(s) + sin(s)ds. dy ds = 0. ds = 1 &

F = y n cos xˆx + sin xŷ. W OABO = F d r. ds + sin(x)dy ds. dy ds = 1 π. ) n 1 cos(s) + sin(s)ds. dy ds = 0. ds = 1 & Μηχανική Ι Εργασία #4 Μουζλάνοβ Γεώργιος Αριθμός Μητρώου:478 3 Οκτωβρίου 6 Άσκηση Αό τα δεδομένα της άσκησης έχουμε τα εξής: F = y n cos ˆ + sin ŷ Το έργο στην κλειστή διαδρομή O A B O είναι το κλειστό

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. εφχ = εφθ χ = κ + θ χ = κ π + θ ( τύποι λύσεων σε ακτίνια )

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. εφχ = εφθ χ = κ + θ χ = κ π + θ ( τύποι λύσεων σε ακτίνια ) ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ηµχ = ηµθ χ = 0 0 κ + θ ή χ = 0 0 κ + 80 0 - θ ( τύοι λύσεων σε µοίρες ) χ = κ + θ ή χ = κ + - θ ( τύοι λύσεων σε ακτίνια ) κ ακέραιος συνχ = συνθ χ = 0 0 κ ± θ ( τύοι λύσεων

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Θέμα Εαναλητικό Διαγώνισμα Άλγεβρας Β Λυκείου Α. Αν α>0 με α, τότε για οοιουσδήοτε θ, θ,θ>0 και κ ισχύει log ( θ θ ) = log θ + log θ (7 μονάδες) α α α Β. Να χαρακτηρίσετε τις ροτάσεις ου ακολουθούν, γράφοντας

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ. 1.Να βρείτε τους αριθμούς: i)ημ ii)συν( ) ΛΥΣΗ i)διαιρώντας το 1125 με το 360 βρίσκω.

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ. 1.Να βρείτε τους αριθμούς: i)ημ ii)συν( ) ΛΥΣΗ i)διαιρώντας το 1125 με το 360 βρίσκω. ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Να βρείτε τους αριθμούς: i)ημ5 0 ii)συν(-660 0 ) i)διαιρώντας το 5 με το 60 βρίσκω και εομένως 0 0 0 5 60 5 5 60 5 5 0 0 0 0 0 ii) ( 660 ) ( 70 60 ) ( 60 60 ) 0 (60 ) Να

Διαβάστε περισσότερα

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy ΔΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Εφαρμογή Να υολογιστεί το ολοκλήρωμα : cos sin dd Ολοκληρώνουμε ρώτα ως ρος θεωρώντας το σαν σταθερά (αρατηρούμε ότι το «εσωτερικό» ολοκλήρωμα είναι ως ρος, δηλαδή ρώτα εμφανίζεται το

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ

ΣΥΝΑΡΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ. Χρησιμοοιώντας τα στοιχεία του αρακάτω ίνακα, να γίνει η γραφική αράσταση της μάζας (Μ), του όγκου (V) και της αραγωγής γλυκόζης (G) σαν συνάρτηση της ηλικίας (α). Για οιες αό αυτές

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύου «Σωστό - Λάθος». * Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ Λ. * Αν = α + βi και αβ 0, τότε = α β i. Σ Λ. * Αν = κ + λi κ, λ R, τότε Re () =

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα. Ποια συνάρτηση ονομάζεται αρχική ή αράγουσα της f στο ; Μονάδες 4 Α. Να διατυώσετε το θεώρημα Rolle. Μονάδες (1+1+1+1)4 Α3. Να διατυώσετε και να

Διαβάστε περισσότερα

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 6 Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις 1. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Περιοδική συνάρτηση Μια συνάρτηση f με εδίο ορισμού Α λέγεται εριοδική, όταν υάρχει T τέτοιος ώστε για κάθε x A να

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση 1 η (6/11/014) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς των Ειμελητών των φακέλων του

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις...

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις... ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία... 16 Παραδείγματα... 6 Ασκήσεις... 33 ΕΝΟΤΗΤΑ : ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ... 39 Θεωρία... 39 Ερωτήσεις...

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αοστολής στους Φοιτητές: 7 Αριλίου 9 Ημερομηνία αράδοσης της Εργασίας: 9 Μαΐου 9 Πριν αό την λύση

Διαβάστε περισσότερα

[1] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. z : Παρατηρούμε ότι sin

[1] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. z : Παρατηρούμε ότι sin [] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ. Τμήμα Α (α) Για τη συνάρτηση f () : Παρατηρούμε ότι si u= y x και v x u = ycos x, u = si x, v =, v =. x y x y = οότε Οι ανωτέρω ρώτες μερικές

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 1, Στρόβολος 3, Λευκωσία Τηλ. 357-37811 Φαξ: 357-3791 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Πέμτη, 3/5/13

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυο Yοβολής Αξιολόγησης ΓΕ O φοιτητής συμληρώνει την ενότητα «Υοβολή Εργασίας» και αοστέλλει το έντυο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος συμληρώνει

Διαβάστε περισσότερα

Ράβδος σε σκαλοπάτι. = Fημθ και Fy

Ράβδος σε σκαλοπάτι. = Fημθ και Fy Ράβδος σε σκαλοάτι Ράβδος μήκους ύψους ακουμά σε σκαλοάτι όως φαίνεται στο σχήμα. Το κάτω άκρο της είναι σε εαφή με λείο κατακόρυφο εμόδιο το οοίο μορεί να κρατείται σταερό σε οοιαδήοτε έση. Μεταξύ ράβδου

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία

Διαβάστε περισσότερα

( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135

( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135 ΘΕΜΑ Α Α. Σχολικό βιβλίο, σελίδα 5 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ 07 Α. α. Ψ β. Δίνεται αντιαράδειγμα στο σχολικό βιβλίο σελίδα 99, αράγραφος: «Παράγωγος και συνέχεια». Α.

Διαβάστε περισσότερα

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις. Ονομασίες Ορισμοί Ο τριγωνομετρικός κύκλος έχει ακτίνα R. Αρχή μέτρησης των τόξων (γωνιών) είναι το Α, είτε κατά τη θετική φορά (αριστερόστροφα)

Διαβάστε περισσότερα

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης.

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης. Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μάκος Σύρος Πανούσης Γιώργος Πααθανάση Κέλλυ Ραμαντάνης Βαγγέλης Σαμάνης Νίκος Τόλης Ευάγγελος -1-01 18808Δίνεται η εξίσωση x y 7 Γραμμικά

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου Ζήτηµα ο Α. Αν η συνάρτηση f είναι αραγωγίσιµη σ ένα σηµείο x του εδίου ορισµού της να γραφεί η εξίσωση της εφατοµένης της γραφικής αράστασης της f

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αοστολής στον Φοιτητή: 9 Mαίου 7 Ηµεροµηνία Παράδοσης της Εργασίας αό τον Φοιτητή: Ιουνίου 7 Άσκηση. ( µον.) ίνεται το σύστηµα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Προτεινόμενες Λύσεις

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Προτεινόμενες Λύσεις ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ (κωδικός μαθήματος: 37) Ημερομηνία και ώρα εξέτασης: Πέμτη, 3

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 5 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.) Λύση: f ( ) ( ) ( ) ( )! f α) Ο τύος της σειράς µε κέντρο

Διαβάστε περισσότερα

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 ΜΑΪΟΥ 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) (Ενδεικτικές Ααντήσεις)

Διαβάστε περισσότερα

lim f x lim g x. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α

lim f x lim g x. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 16 ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Α1. Έστω µια συνάρτηση f αραγωγίσιµη σε ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο οοίο όµως η

Διαβάστε περισσότερα

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά.

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά. ΕΙΣΑΓΩΓΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΕΛΑΤΗΡΙΑ. Ένα σώμα μάζας m = kg βρίσκεται άνω σε λείο δάεδο και είναι δεμένο στο ένα άκρο οριζόντιου ελατηρίου σταθεράς k = N/m, το άλλο άκρο του οοίου είναι στερεωμένο σε κατακόρυφο

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής ου έχει μελετήσει το κεφάλαιο αυτό θα ρέει: Να γνωρίζει την έννοια της εριοδικής συνάρτησης,και να μορεί να σχεδιάζει τις γραφικές αραστάσεις των συναρτήσεων y= αημ(ωx), y=ασυν(ωx). Να μορεί

Διαβάστε περισσότερα

Λύσεις των θεμάτων. Παρασκευή 9 Ιουνίου 2017 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Λύσεις των θεμάτων. Παρασκευή 9 Ιουνίου 2017 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Παρασκευή 9 Ιουνίου 7 Λύσεις των θεμάτων Έκδοση η (/6/7, 6:3) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ 1 Δίνεται το ευθύγραμμο τμήμα ΑΒ Αν ισχύει η ισότητα AB + BK- ΒΛ = AM- AK, να αοδείξετε ότι τα σημεία Κ, Λ και Μ είναι συνευθειακά Δίνεται τρίγωνο ΑΒΓ Αν είναι ΒΔ = κ ΑΒ+ ΑΓ και ΓΕ ( 1+ κ ) = AB+ ΑΓ, να

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ Ελευθέριος Πρωτοαάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ ΑΣΚΗΣΗ ίνεται η συνάρτηση f µε f() = 5 4 +α, όου α R και το είναι ρίζα της εξίσωσης f() =. α) Να βρείτε το α R. β) Να λύσετε

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Ααντήσεις Ειμέλεια: Ομάδα Μαθηματικών http://www.othisi.gr ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7 Παρασκευή, 9 Ιουνίου 7 Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση (8 µον) Χρησιµοοιώντας την αντικατάσταση acosθ, ή ataθ, για µια κατάλληλη

Διαβάστε περισσότερα

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi 8 λλαγή µεταβλητής στο τριλό ολοκλήρωµα Υενθυµίζουµε ( Θεωρηµα ) το γενικό τύο αλλαγής µεταβλητής στο ολλαλό ολοκλήρωµα: f ( y) dy= f ( g( x) ) det J g( x) dx (), Β= g n όου, Β Jodan µετρήσιµα υοσύνολα

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Περιοδικό ΕΥΚΛΕΙΔΗΣ Β E.M.E. (τεύχος 4) ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Κώστα Βακαλόουλου ΕΙΣΑΓΩΓΗ Αν κάοιος θέλει να άψει να φοβάται το κεφάλαιο της Τριγωνομετρίας, ρέει ν αοφασίσει να διαβάσει ροσεκτικά τους

Διαβάστε περισσότερα

z έχει µετασχ-z : X(z)= 2z 2

z έχει µετασχ-z : X(z)= 2z 2 ΨΕΣ-Μετασχ- Λύσεις Ασκήσεων Σ.Φωτόουλος ΑΣΚΗΣΗ 4. Βρείτε τον µετασχηµατισµό- των σηµάτων ου φαίνονται στο αρακάτω σχήµα Α4. εκφράζοντάς τους σε όσο το δυνατόν αλούστερη-συµαγέστερη µορφή. a a a -->...

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου

Διαβάστε περισσότερα

7.1. Το ορισµένο ολοκλήρωµα

7.1. Το ορισµένο ολοκλήρωµα Κ Χριστοδουλίδης: Μαθηµατικό Συµλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 7 Το ορισµένο ολοκλήρωµα 7 Το ορισµένο ολοκλήρωµα Για το αόριστο ολοκλήρωµα βρήκαµε ότι: Αν η συνάρτηση F ( είναι µια αρχική συνάρτηση

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2 ΒΑΣΙΚΑ ΟΡΙΑ Έστω μια συνάρτηση f η οοία ορίζεται όσο κοντά θέλουμε στο,δηλαδή ορίζεται τουλάχιστον σ ένα αό τα σύνολα (α, ) (,β) ή (α, ) ή (,β). Όταν οι τιμές της f()ροσεγγίζουν όσο θέλουμε τον ραγματικό

Διαβάστε περισσότερα

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2.

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2. 99 ΘΕΜΑΤΑ. α) ίνεται η συνάρτηση f ορισµένη και δύο φορές αραγωγίσιµη στο διάστηµα µε τιµές στο (, + ). Να δειχθεί ότι η συνάρτηση g µε g() = lnf(),, έχει την ιδιότητα «g (), για κάθε» αν και µόνο αν ισχύει

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΘΕΜΑ Β. Β1.. Η f παραγωγίσιμη στο πεδίο ορισμού της R (διότι. x άρα. x 1 0 για κάθε x R)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΘΕΜΑ Β. Β1.. Η f παραγωγίσιμη στο πεδίο ορισμού της R (διότι. x άρα. x 1 0 για κάθε x R) ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεώρημα σελ. σχολ. βιβλ. 6 Α. Θεωρία σελ. σχολ. βιβλ. 4 Α. Θεωρία σελ. σχολ. βιβλ. 46-47 Α4. Λ, Σ, Λ, Σ, Σ ΘΕΜΑ

Διαβάστε περισσότερα

Ένα σώμα εκτελεί ταυτόχρονα τρεις (3) απλές αρμονικές ταλαντώσεις, που έχουν ίδια διεύθυνση, ίδια θέση ισορροπίας και εξισώσεις:

Ένα σώμα εκτελεί ταυτόχρονα τρεις (3) απλές αρμονικές ταλαντώσεις, που έχουν ίδια διεύθυνση, ίδια θέση ισορροπίας και εξισώσεις: Εφαρμογή: ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ Ένα σώμα εκτελεί ταυτόχρονα τρεις () αλές αρμονικές ταλαντώσεις, ου έχουν ίδια διεύθυνση, ίδια θέση ισορροίας και εξισώσεις: x1 ( t) = 0.1 ηµ 99 t (S.I.) ( ) ηµ ( ) x t =

Διαβάστε περισσότερα

Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους.

Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους. Άσκηση. Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους. α) y, β) y, γ) y, δ) y, ε) y ( ) Να προσδιοριστούν γραφικά και µε

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Μαθηματικά Β μέρος Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σουδών και Σουδών Οικονομίας & Πληροφορικής Λύσεις των

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΚΩΛΕΤΤΗ 9- -68 8464 84767 www.iraklitos.gr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» β) Το ραγματικό και το φανταστικό μέρος της f ( ) γράφονται uy (, ) = y και v(, y) = y Οι ρώτες μερικές

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

ΜΑΘΗΜΑ ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΙΑ ΜΑΘΗΜΑ 7.5 ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ. Θεώρηµα Rlle Αν µια συνάρτηση f είναι : Θεωρία Σχόλια Μέθοδοι Ασκήσεις (Αναζητώ ρίζα) συνεχής σε κλειστό διάστηµα [α, β] αραγωγίσιµη στο ανοικτό (α, β) f (α) f

Διαβάστε περισσότερα

= (2)det (1)det ( 5)det 1 2. u

= (2)det (1)det ( 5)det 1 2. u www.maths.gr, Ενδεικτικές Λύσεις ης Εργασίας ΦΥΕ4 έτους -. Οι Λύσεις είναι για την βοήθεια των φοιτητών, σε ΘΕΜΑ ο 5 6 4 6 4 5 det 4 5 6 ()det ()det ()det 8 9 7 9 7 8 7 8 9 ()( ) ()( 6 ) ()( ) 5 4 4 det

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ Σχολικό βιβλίο: Ααντήσεις Λύσεις Κεφάλαιο ο: Συστήματα Γραμμικά συστήματα Α ΟΜΑΔΑΣ Έχουμε: y i 6 + y + y y Άρα, η λύση του συστήματος

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις ΙI: Η Εξίσωση Schrödinger για σωμάτιο σε κεντρικό δυναμικό.

Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις ΙI: Η Εξίσωση Schrödinger για σωμάτιο σε κεντρικό δυναμικό. Πανειστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙI: Η Εξίσωση Schöinge για σωμάτιο σε κεντρικό δυναμικό.. Ακτινική εξίσωση Η εξίσωση Schöinge για ένα σωμάτιο το

Διαβάστε περισσότερα

Το θεώρηµα Αλλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων

Το θεώρηµα Αλλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων 8 Το θεώρηµα λλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων Όως έχουµε ήδη αναφέρει η δεύτερη βασική µέθοδος υολογισµού ολλαλών ολοκληρωµάτων είναι αυτή της αλλαγής µεταβλητής, την οοία έχουµε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αοστολής στον Φοιτητή: Mαΐου 6 Ηµεροµηνία Παράδοσης της Εργασίας αό τον

Διαβάστε περισσότερα

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3)

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3) ΘΕΜΑΤΑ Έστω f µια ραγµατική συνάρτηση µε τύο f() α) Αν η f είναι συνεχής, να αοδείξετε ότι α - 9 α,, > β) Να βρείτε την εξίσωση της εφατοµένης της γραφικής αράστασης C f της συνάρτησης f στο σηµείο Α(4,

Διαβάστε περισσότερα

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi 18 Αλλαγή µεταβλητής στο τριλό ολοκλήρωµα Υενθυµίζουµε ( Θεωρηµα ) το γενικό τύο αλλαγής µεταβλητής στο ολλαλό ολοκλήρωµα: f ( y) dy= f ( g( x) ) det J g( x) dx (1), Β= g Α Α n όου Α, Β R Jodan µετρήσιµα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2015

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΣΕΠΤΕΜΒΡΙΟΥ 0 ΟΝΟΜΑΤΕΠΩΝΥΜΟ. ΘΕΜΑ Α Στις αρακάτω ροτάσεις να ειλέξετε την σωστή αάντηση A. Σε μια αλή αρμονική ταλάντωση η αομάκρυνση και η ειτάχυνση την ίδια χρονική

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος Κεφάλαιο 1 Βασικές έννοιες Κεφάλαιο 2 Ταξινόμηση των διαφορικών εξισώσεων πρώτης τάξης... 20

Περιεχόμενα. Πρόλογος Κεφάλαιο 1 Βασικές έννοιες Κεφάλαιο 2 Ταξινόμηση των διαφορικών εξισώσεων πρώτης τάξης... 20 Περιεχόμενα Πρόλογος... 7 Κεφάλαιο Βασικές έννοιες... Διαφορικές εξισώσεις... Συμβολισμοί... Λύσεις... Προβλήματα αρχικών και συνοριακών τιμών... Κεφάλαιο Ταξινόμηση τν διαφορικών εξισώσεν ρώτης τάξης...

Διαβάστε περισσότερα

Φσζική Γ Λσκείοσ. Θεηικής & Τετμολογικής Καηεύθσμζης. Μηταμικές Ταλαμηώζεις Οι απαμηήζεις. Καλοκαίρι Διδάζκωμ: Καραδημηηρίοσ Μιτάλης

Φσζική Γ Λσκείοσ. Θεηικής & Τετμολογικής Καηεύθσμζης. Μηταμικές Ταλαμηώζεις Οι απαμηήζεις. Καλοκαίρι Διδάζκωμ: Καραδημηηρίοσ Μιτάλης Φσζική Γ Λσκείοσ Θεηικής & Τετμολογικής Καηεύθσμζης Μηταμικές Ταλαμηώζεις Οι ααμηήζεις Καλοκαίρι - Διδάζκωμ: Καραδημηηρίοσ Μιτάλης http://perifysikhs.wordpress.com Πηγή: Study4exams.gr Οι Ααμτήσεις στις

Διαβάστε περισσότερα

(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0

(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0 ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.5 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 05 Γιάννης Ζαµέλης Μαθηµατικός 855 B (Αναρτήθηκε 08 4 ) ίνονται τα διανύσµατα ακαι µε ( α, ) = και α =, = α) Να ρείτε το εσωτερικό γινόµενο α (Μονάδες 8)

Διαβάστε περισσότερα

Δίνονται οι συναρτήσεις: f ( x)

Δίνονται οι συναρτήσεις: f ( x) http://eler.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές ααντήσεις 6 ης Γρατής Εργασίας ΠΛΗ 00-0: Άσκηση (5 μον.) (Για το ερώτημα (α) συμβουλευθείτε τα εδάφια. και. και για το (β) το εδάφιο. του συγγράμματος

Διαβάστε περισσότερα

2 η ΕΡΓΑΣΙΑ Παράδοση

2 η ΕΡΓΑΣΙΑ Παράδοση η ΕΡΓΑΣΙΑ Παράδοση --8 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση η Υπολογίστε τα κάτωθι όρια: cos α) β) γ) δ) ε) sin 5 α) Εφαρμόζουμε τον κανόνα L Hospital μια φορά (απροσδιοριστία της μορφής /)

Διαβάστε περισσότερα

Γ 2 κριτ.οµοιοτ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΙΑΒΑΘΜΙΣΜΕΝΗΣ ΥΣΚΟΛΙΑΣ ΓΕΝΙΚΟ ΛΥΚΕΙΟ / ΤΑΞΗ : Β ΛΥΚΕΙΟΥ. ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ «Θέµατα Β»

Γ 2 κριτ.οµοιοτ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΙΑΒΑΘΜΙΣΜΕΝΗΣ ΥΣΚΟΛΙΑΣ ΓΕΝΙΚΟ ΛΥΚΕΙΟ / ΤΑΞΗ : Β ΛΥΚΕΙΟΥ. ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ «Θέµατα Β» ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΙΑΒΑΘΜΙΣΜΕΝΗΣ ΥΣΚΟΛΙΑΣ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ «Θέµατα Β» Άσκηση GI_V_GEO 899 [Παράγραφος 8.] Στο αρακάτω σχήµα τα τµήµατα ΑΕ και Β τέµνονται στο Γ. Να αοδείξετε ότι τα τρίγωνα

Διαβάστε περισσότερα

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Σ Χ Ο Λ Η Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Ω Ν Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Κ Α Ι Φ Υ Σ Ι Κ Ω Ν Ε Π Ι Σ Τ Η Μ Ω Ν Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ Εαναλητική εξέταση στο µάθηµα ΕΙ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ x. Η f είναι συνεχής στο x0. lim lim 1. Παρατηρούμε, δηλαδή, ότι μια

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ x. Η f είναι συνεχής στο x0. lim lim 1. Παρατηρούμε, δηλαδή, ότι μια ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΘΕΜΑ A A. Αοδεικνύουμε το θεώρημα στην ερίτωση ου είναι f () >. Έστω, με. Θα δείξουμε ότι f ( ) f ( ). Πράγματι, στο διάστημα [, ] η f ικανοοιεί

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 16 Ε_.ΜλΘΟ(α) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Πέµτη 7 Ιανουαρίου 16 ιάρκεια Εξέτασης:

Διαβάστε περισσότερα

ΕΑΠ ΣΠΟΥ ΕΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Θ.Ε. ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΠΛΗ-12)

ΕΑΠ ΣΠΟΥ ΕΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Θ.Ε. ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΠΛΗ-12) ΕΑΠ ΣΠΟΥ ΕΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Θ.Ε. ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΠΛΗ-) ΛΥΣΕΙΣ 5 ΗΣ ΕΡΓΑΣΙΑΣ, - Eνότητες: 8,9,,,, αό το βιβλίο «ΛΟΓΙΣΜΟΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ» Γ. άσιου. Παράδοση της εργασίας µεχρι τις 9 /4/

Διαβάστε περισσότερα

( 1) G MT. g RT 1.3. Η τιμή της εκκεντρότητας είναι: όπου E είναι η νέα μηχανική ενέρεγεια του δορυφόρου. Έτσι έχουμε

( 1) G MT. g RT 1.3. Η τιμή της εκκεντρότητας είναι: όπου E είναι η νέα μηχανική ενέρεγεια του δορυφόρου. Έτσι έχουμε 6 th Intenationa Physics Oypiad. Saaanca (España) 5 ΘΕΜΑ : «ΜΟΙΡΑΙΟΣ» ΔΟΡΥΦΟΡΟΣ. και. GM g R M G g R 4 R g / 4.. /s. g R g R E M g R G E. Η τιμή της κάθετης αόστασης αό το δορυφόρο στο μεγάλο άξονα της

Διαβάστε περισσότερα

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ 1. Ορισµός Έστω µία συνάρτηση f µε εδίο ορισµού Α και A Θα λέµε ότι η f είναι εριοδική όταν υάρχει ραγµατικός αριθµός Τ > 0 έτσι ώστε για κάθε Α να ισχύει : i)

Διαβάστε περισσότερα

Α=5 m ω=314 rad/sec=100π rad/sec

Α=5 m ω=314 rad/sec=100π rad/sec ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΠΡΩΤΟΥ ΚΕΦΑΛΑΙΟΥ 1. Ασκήσεις με τα χαρακτηριστικά της κίνησης. Μικρές ασκήσεις ου αναφέρονται στους ορισμούς της εριόδου, της συχνότητας, του λάτους και της ενέργειας της ταλάντωσης.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΠΑΡΑΣΚΕΥΗ 9 6 17 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ Θέμα Α Α1 Παραομή στο σχολικό βιβλίο σελίδα 135.

Διαβάστε περισσότερα

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά Διάνυσμα: έχει μέτρο, διεύθυνση και φορά Πολλά φυσικά μεγέθη είναι διανυσματικά (π.χ. δύναμη, ταχύτητα, επιτάχυνση, γωνιακή ταχύτητα, ροπή, στροφορμή ) Συμβολισμός του διανύσματος: Συμβολισμός του μέτρου

Διαβάστε περισσότερα

Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ

Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ Γωνίες με την ίδια τελική λευρά Γωνίες με άθροισμα 180 - Γωνίες με διαφορά 180 - Γωνίες αντίθετες Γωνίες με άθροισμα 90 - Γωνίες με διαφορά 90 Γωνίες με την ίδια

Διαβάστε περισσότερα

1.Να βρείτε την συνάρτηση f(x) για την οποία ισχύει ότι f 2 (x).f (χ)=χ 2 +1,χ 0 και περνάει από την αρχή των αξόνων.

1.Να βρείτε την συνάρτηση f(x) για την οποία ισχύει ότι f 2 (x).f (χ)=χ 2 +1,χ 0 και περνάει από την αρχή των αξόνων. 1.Να βρείτε την συνάρτηση f(x) για την οοία ισχύει ότι f 2 (x).f (χ)χ 2 +1,χ 0 και ερνάει αό την αρχή των αξόνων. f x f x x + 1 (1) x 0 H f(x) ερνάει αό το (0, 0) f(0) 0 (2) (1) x Άρα οι συναρτήσεις διαφέρουν

Διαβάστε περισσότερα

Αναγωγή στο 1ο τεταρτημόριο

Αναγωγή στο 1ο τεταρτημόριο ΑΛΓΕΒΡΑ ΒΛ ΤΡΙΓΩΝΟΜΕΤΡΙΑ - ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 1-1. -175663 Βασικές Τριγωνομετρικές ταυτότητες Αν 0

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Πρόσημο τριγωνομετρικών αριθμών Το ρόσημο των τριγωνομετρικών αριθμών μιας γωνίας (ή τόξου) καθ αό το τεταρτημόριο στο οοίο βρίσκεται

Διαβάστε περισσότερα