Neboj{a Ikodinovi} UVOD U MATEMATI^KU LOGIKU

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Neboj{a Ikodinovi} UVOD U MATEMATI^KU LOGIKU"

Transcript

1 Neboj{a Ikodinovi} UVOD U MATEMATI^KU LOGIKU BULOVE ALGEBRE, ISKAZNA LOGIKA, LOGIKA PRVOG REDA Beograd 2014

2 Sadr`aj PREDGOVOR BULOVE ALGEBRE DEFINICIJA BULOVE ALGEBRE Primeri Bulovih algebri Izomorfizam Bulovih algebri NEKOLIKO IZVEDENIH BULOVIH ZAKONA BULOVI IZRAZI I LOGI^KI VEZNICI URE\EWE BULOVE ALGEBRE Atomi Bulove algebre i reprezentacija kona~nih Bulovih algebri 25 STONOVA TEOREMA REPREZENTACIJE BULOVIH ALGEBRI ZADACI ISKAZNA LOGIKA SINTAKSA I SEMANTIKA ISKAZNE LOGIKE Iskazne formule Istinitosne vrednosti iskaznih formula Zadovoqive formule i tautologije Lindenbaumova algebra Normalne forme Potpuni sistemi veznika SEMANTI^KA POSLEDICA Teorema kompaktnosti SINTAKSNA POSLEDICA

3 4 Prirodna dedukcija Hilbertov sistem za dedukciju TEOREMA POTPUNOSTI Teorema saglasnosti Teorema slabe potpunosti Teorema o postojawu modela Teorema jake potpunosti ZADACI LOGIKA PRVOG REDA SINTAKSA I SEMANTIKA LOGIKE PRVOG REDA Relacija zadovoqewa Modeli i kontramodeli re~enica, odnosno teorija Vaqane formule Preneks normalna forma SEMANTI^KA POSLEDICA Teorema kompaktnosti SINTAKSNA POSLEDICA TEOREMA POTPUNOSTI ZADACI LITERATURA

4 Predgovor Kwiga je napisana na osnovu predavawa koje je autor dr`ao u okviru predmeta Uvod u matemati~ku logiku... U Beogradu, godine Autor 5

5 Bulove algebre Definicija Bulove algebre Uop{teno govore}i, Bulove algebre treba zami{qati kao strukture ~ije se operacije pona{aju poput dobro poznatih skupovnih operacija, tj. zadovoqavaju ista svojstva kao skupovne operacije. Zato najpre navodimo osnovne primere Bulovih algebri, koji }e nam ujedno biti i polazi{te skoro svih daqih razmatrawa. PRIMER 1. Neka je U proizvoqan skup. Ako partitivni skup P(U), tj. skup svih podskupova skupa U, posmatramo zajedno sa operacijama: unije, : P(U) P(U) P(U), (X, Y ) X Y, X, Y P(U), preseka, : P(U) P(U) P(U), (X, Y ) X Y, X, Y P(U) i komplementirawa, c : P(U) P(U), X X c = U \ X, X P(U). i elementima i U, koji svakako imaju poseban status me u ostalim elementima iz P(U), dobijamo tipi~an primer Bulove algebre. Ovu Bulovu algebru ozna~avamo sa (P(U),,, c,, U) (pri ~emu zapravo nabrajamo sve ono {to je sa~iwava). Ve} smo napomenuli da }e nas zanimati osobine navedenih operacija. Kao posebno zna~ajne isti~emo slede}e poznate jednakosti 1 : A X (Y Z) = (X Y ) Z A X (Y Z) = (X Y ) Z K X Y = Y X K X Y = Y X D X (Y Z) = (X Y ) (X Z) D X (Y Z) = (X Y ) (X Z) N X = X N X U = X C X X c = U C X X c = koje va`e za sve X, Y, Z P(U). 1 Jednakosti su ozna~ene po~etnim slovom ustaqenih termina koji se koriste za odgovaraju}e osobine operacija, pri ~emu uz slova stoje i oznake operacija na koje se osobine odnose. U skladu sa tim i ~itamo oznake: A asocijativnost unije; D distributivnost unije prema preseku, N neutralni element za presek, C odnos komplementirawa i preseka, itd. 7

6 8 Ove identiteti nisu slu~ajno izabrani jer se ispostavqa da su ostali skupovni identiteti posledice navedenih. Za sada navodimo samo jedan primer. Iz navedenih osobina izve{}emo identitet X X = X, X P(U). X X (N ) = (X X) (C ) = (X X) (X X c ) (D ) = X (X X c ) (C ) = X U (N ) = X Posebno je va`an slede}i specijalan slu~aj algebre (P(U),,, c,, U). Ako je U jedno~lan skup, na primer U = { }, onda je P(U) = {, { }} = {, U} i operacije mo`emo prikazati slede}im tablicama. U U U U U U U U U c U Ako ozna~imo sa 0 i interpretiramo kao neta~no, { } sa 1 i interpretiramo kao ta~no, i preozna~imo operacije, sa, sa i c sa, dobijamo redom tablice poznatih logi~kih operacija na skupu {0, 1}: disjunkcije, konjunkcije i negacije Oznake operacija koje koristimo za ovu specijalnu Bulovu algebru uglavnom se koriste prilikom op{tih razmatrawa o Bulovim algebrama. Mi }emo u narednoj definiciji slediti taj princip, pri ~emu }emo pomenute oznake malo stilizovati da bi se razlikovale od ovih koje }emo koristiti za logi~ke operacije. Osobine skupovnih operacija istaknute u prethodnom primeru uzimamo za aksiome Bulovih algebri. Definicija 1. Bulova algebra je struktura (B,,,, 0, 1) koju ~ine neki skup B, dve binarne operacije 2, : B B B, jedna unarna : B B i dva razli~ita elementa 0 i 1 iz B, pri ~emu proizvoqni elementi x, y, z iz B ispuwavaju slede}e uslove: A x (y z) = (x y) z A x (y z) = (x y) z K x y = y x K x y = y x D x (y z) = (x y) (x z) D x (y z) = (x y) (x z) C x x = 1 C x x = 0 N x 0 = x N x 1 = x Skup B se naziva domen ili skup nosa~ Bulove algebre B. 2 Na srpskom jeziku, binarne operacije Bulove algebre uglavnom se nazivaju kao i odgovaraju}e skupovne, odnosno logi~ke operacije: unija, odn. disjunkcija, presek, odn. konjunkcija. Na engleskom jeziku, koji se danas smatra univerzalnim jezikom i nau~ne komunikacije, pomenute operacije imaju nova imena: meet (a ne union, odn. disjuntion), join (a ne intersection, odn. conjunction).

7 9 Primeri Bulovih algebri PRIMER 2. Sa osnovnim primerima Bulovih algebri ve} smo se upoznali. Re~ je o takozvanim algebrama partitivnog skupa (P(U),,, c,, U), gde je U bilo koji skup. Kada je U jedno~lan skup, odgovaraju}u algebru partitivnog skupa nazivamo algebrom iskaznog ra~una. Uzimaju}i u obzir razmatrawa i oznake iz prethodnog primera, algebru iskaznog ra~una ozna~avamo sa 2 = ({0, 1},,,, 0, 1). Primetimo da se operacije Bulove algebre 2 mogu opisati i na jo{ jedan na~in ukoliko 0 i 1 shvatimo kao brojeve. Naime, za x, y {0, 1}, imamo da je x y = max{x, y}, x y = min{x, y}, (pri ~emu se oslawamo na uobi~ajeni poredak 0 < 1), kao i da je x = 1 x ( je znak za oduzimawe). Dakle, mo`emo pisati i da je 2 = ({0, 1}, max, min, 1, 0, 1), pri ~emu 1 shvatamo kao oznaku funkcije koja o~ekuje argument zdesna. Jednakosti iz prethodne definicije u ovoj notaciji postaju: A max{x, max{y, z}} = max{max{x, y}, z} A min{x, min{y, z}} = min{min{x, y}, z} K max{x, y} = max{y, x} K min{x, y} = min{y, x} max{x, min{y, z}} = min{max{x, y}, max{x, z}} D D min{x, max{y, z}} = max{min{x, y}, min{x, z}} C max{x, 1 x} = 1 C min{x, 1 x} = 0 N max(x, 0) = x N min{x, 1} = x i direktno se mo`e proveriti da va`e za bilo koje x, y {0, 1}. Mi }emo se u nastavku povremeno oslawati i na ove opise operacija algebre 2. PRIMER 3. Zanimqiv primer Bulove algebre dobijamo razmatraju}i skup D n svih prirodnih delilaca nekog prirodnog broja n koji je proizvod razli~itih prostih brojeva (dakle, n nije deqiv kvadratom nekog prostog broja). Nije te{ko pokazati, koriste}i elementarna svojstva najmaweg zajedni~kog sadr`aoca i najve}eg zajedni~kog delioca, da je D n = (D n, nzs, nzd, n/, 1, n) jedna Bulova algebra (komplement elementa x D n je n/x), tj. da za bilo koje x, y, z va`e slede}e jednakosti: A nzs(x, nzs(y, z)) = nzs(nzs(x, y), z) A nzd(x, nzd(y, z)) = nzd(nzd(x, y), z) K nzs(x, y) = nzs(y, x) K nzd(x, y) = nzd(y, x) D nzs(x, nzd(y, z)) = nzd(nzs(x, y), nzs(x, z)) ( D nzd(x, nzs(y, z)) = nzs(nzd(x, y), nzd(x, z)) C nzs x, n ) ( = n C nzd x, n ) = 1 x x N nzs(x, 1) = x N nzd(x, n) = x Kompletan dokaz navedenih jednakosti prepu{tamo ~itaocima. Ovde navodimo samo detaqnije uputstvo. Neka su p 1,..., p k me usobno razli~iti prosti brojevi i neka je n = p 1 p k. x = p a1 1 pa k k, za neke a 1,..., a k {0, 1}. Ako je x = p a1 1 pa k k Tada se svaki element x D n mo`e zapisati u obliku i y = pb1 1 pb k a i, b i {0, 1}, i = 1,..., k, onda je nzs(x, y) = p max{a1,b1} 1 p max{a k,b k } k i nzd(x, y) = p min{a1,b1} 1 p min{a k,b k } k. Komplement elementa x jeste n x = p1 a p 1 a k k. Sada je jednostavno proveriti svaku od navedenih jednakosti kori{}ewem odgovaraju}ih jednakosti iz prethodnog primera. k,

8 10 PRIMER 4. Ako je U bilo koji skup, Bulovu algebru obrazuje i bilo koji neprazan podskup B od P(U) koji je zatvoren za uniju, presek i komplement: ako X, Y B, onda X Y, X Y, X c B. Primetimo da iz zatvorenosti skupa B za navedene operacije, sledi da, U B. Bulove algebre dobijene na ovaj na~in nazivaju se poqa skupova ili algebre skupova. Uobi~ajeno je da se sa B ozna~ava i odgovaraju}a Bulova algebra, kada se podrazumeva da su wene operacije zapravo skupovne operacije. Algebra partitivnog skupa je specijalan slu~aj poqa skupova. Navodimo jo{ nekoliko primera poqa skupova. Podskup X od U je kokona~an (kofinitan) ako je wegov komplement X c = U \ X kona~an. Skup svih podskupova od U koji su kona~ni ili kokona~ni predstavqa jedno poqe skupova, koje se naziva i Fre{eova algebra ili algebra kona~no-kokona~nih skupova i obele`ava se sa F(U). Nije te{ko proveriti da je skup F(U) zatvoren za uniju, presek i komplement. Zaista, ako X, Y F(U), da bismo dokazali da X Y F(U) razlikujemo slede}e slu~ajeve. 1. slu~aj: i X i Y su kona~ni. Tada je X Y kona~an pa pripada F(U). 2. slu~aj: i X i Y su kokona~ni. Tada su U \X i U \Y kona~ni, pa je kona~an i wihov presek (U \X) (U \Y ). Prema De Morganovom zakonu je (U \X) (U \Y ) = U \(X Y ), odakle zakqu~ujemo da je X Y kokona~an skup pa pripada F(U). 3. slu~aj: X kona~an i Y je kokona~an 3. Kako je U \(X Y ) = (U \X) (U \Y ) U \Y i U \ Y je kona~an skup, zakqu~ujemo da je X Y kokona~an, pa pripada F(U). Prepu{tamo ~itaocima da doka`u da je F(U) zatvoren za presek i komplement. Ako je U kona~an skup, onda je F(U) = P(U). Me utim, ako je U beskona~an skup, onda se Fre{eova algebra razlikuje od P(U). Va`no je primetiti da je F(U) = U ukoliko je U beskona~an skup (za{to?), {to zna~i da postoje Bulove algebre bilo koje beskona~ne kardinalnosti 4. Razmotrimo i jedno poqe podskupova skupa realnih brojeva R. Pod levo-poluzatvorenim intervalima podrazumevamo podskupove od R koji su oblika (, b), b R, ili [a, b), a, b R, a < b, ili [a, + ), a R, ili (, + ) = R. Kona~ne unije levo-poluzatvorenih intervala obrazuju poqe skupova (proverite!). PRIMER 5. Ako su B 1 = (B 1, 1, 1, 1, 0 1, 1 1 ) i B 2 = (B 2, 2, 2, 2, 0 2, 1 2 ) dve Bulove algebre, na prirodan na~in defini{emo Bulovu algebru nad B 1 B 2. Neka su i binarne operacije na B 1 B 2 date redom sa: (x 1, x 2 ) (y 1, y 2 ) = (x 1 1 y 1, x 2 2 y 2 ) i (x 1, x 2 ) (y 1, y 2 ) = (x 1 1 y 1, x 2 2 y 2 ), i neka je komplementirawe definisano sa (x 1, x 2 ) = (x 1 1, x 2 2 ). Jednostavno se proverava da je (B 1 B 2,,,, (0 1, 0 2 ), (1 1, 1 2 )) Bulova algebra. Ova Bulova algebra naziva se proizvod algebri B 1 i B 2, i obele`ava se sa B 1 B 2. Na primer, operacije Bulove algebre 2 2 date su slede}im tablicama. 3 Mogli smo pretpostaviti i da je X kokona~an, a Y je kona~an i do{li bismo do istog zakqu~ka. 4 Stvari stoje druga~ije kada su u pitawu kona~ne Bulove algebre. Naime, kardinalnost kona~ne Bulove algebre, kao {to }emo videti, mo`e biti samo stepen broja 2.

9 11 (0, 0) (0, 1) (1, 0) (1, 1) (0, 0) (0, 0) (0, 1) (1, 0) (1, 1) (0, 1) (0, 1) (0, 1) (1, 1) (1, 1) (1, 0) (1, 0) (1, 1) (1, 0) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (0, 0) (0, 1) (1, 0) (1, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 1) (0, 0) (0, 1) (0, 0) (0, 1) (1, 0) (0, 0) (0, 0) (1, 0) (1, 0) (1, 1) (0, 0) (0, 1) (1, 0) (1, 1) x x (0, 0) (1, 1) (0, 1) (1, 0) (1, 0) (0, 1) (1, 1) (0, 0) PRIMER 6. Neka je I proizvoqan neprazan skup. Na skupu 2 I, svih funkcija iz I u skup 2 = {0, 1} koji je ure en tako da je 0 < 1, definisa}emo dve binarne operacije, f g(x) = max{f(x), g(x)} i f g(x) = min{f(x), g(x)}, i jednu unarnu operaciju, f (x) = 1 f(x). Ako su 0, 1 : I 2 funkcije definisane sa 0(x) = 0 i 1(x) = 1, onda je (2 I,,,, 0, 1) Bulova algebra, tj. za proizvoqne f, g, h 2 I va`e jednakosti: A f (g h) = (f g) h A f (g h) = (f g) h K f g = g f K f g = g f D f (g h) = (f g) (f h) D f (g h) = (f g) (f h) C f f = 1 C f f = 0 N f 0 = f N f 1 = f Umesto detaqnog obrazlo`ewa za{to va`e navedene jednakosti, upu}ujemo ~itaoca na primer 2, uz napomenu da, na primer, dokaz jednakosti K podrazumeva dokaz da za svako x I va`i f g(x) = g f(x), tj. da za svako x I, va`i max{f(x), g(x)} = max{g(x), f(x)} ({to je trivijalno). Izomorfizam Bulovih algebri Iako smo se trudili da definiciju Bulovih algebri ilustrujemo {to ve}im brojem razli~itih primera, me u navedenim Bulovim algebrama postoje one koje su razlikuju samo prividno, {to }emo detaqnije objasniti u narednom primeru. PRIMER 7. Posmatrajmo dve prividno razli~ite Bulove algebre: algebru partitivnog skupa (P({a, b}),,, c,, {a, b}) i Bulovu algebru (D 6, nzs, nzd, 6/, 1, 6), o kojoj smo uop{teno pisali u primeru 3. Primetimo najpre da obe algebre imaju isti broj elemenata: P({a, b}) = {, {a}, {b}, {a, b}} i D 6 = {1, 2, 3, 6}. Ako pa`qivije pogledamo odgovaraju}e tablice operacija, uo~i}emo da su u su{tini istog oblika. {a} {b} {a, b} {a} {b} {a, b} {a} {a} {a} {a, b} {a, b} {b} {b} {a, b} {b} {a, b} {a, b} {a, b} {a, b} {a, b} {a, b} nzs {a} {b} {a, b} {a} {a} {a} {b} {b} {b} {a, b} {a} {b} {a, b} nzd x {a, b} {a} {b} {b} {a} {a, b} x c x 6/x Obostrano-jednozna~nu korespondenciju 1, {a} 2, {b} 3, {a, b} 6 mo`emo shvatiti i kao preozna~avawe elemenata jedne algebre elementima druge algebre,

10 12 pri ~emu to preozna~avawe ~uva i tablice operacija: kada se sadr`aj svakog poqa tablice jedne algebre preozna~i na pomenuti na~in, dobija se odgovaraju}a tablica druge algebre. Izlo`imo ova zapa`awa malo stro`e. Naime, navedena korespondencija jeste zapravo jedna bijekcija f : P({a, b}) D 6, f = ( {a} {b} {a, b} ^iwenica da se preozna~avawem svih poqa tablice za dobija tablica za nzs, jednostavno se opisuje jednakostima f(x y) = nzs(f(x), f(y)), za sve x, y P({a, b}). ). x f f(x) nzs f(x)... y x y f... f(y) f(x y) =... f(y) nzs(f(x), f(y)) Analogno dolazimo i do jednakosti f(x y) = nzd(f(x), f(y)) i f(x c ) = n/f(x). Iz upravo navedenih razloga, date Bulove algebre identifikujemo kao algebre istog oblika, tj. kao izomorfne 5 algebre. Funkcija f naziva se izomorfizam izme u ovih Bulovih algebri. Da li postoji jo{ neki izomorfizam izme u navedenih Bulovih algebri? Definicija 2. B 1 = (B 1, 1, 1, 1, 0 1, 1 1 ) i B 2 = (B 2, 2, 2, 2, 0 2, 1 2 ) su izomorfne Bulove algebre ako postoji bijekcija f : B na B 2 takva da za sve x, x 1, x 2 B 1 va`i: 1. f(x 1 1 x 2 ) = f(x 1 ) 2 f(x 2 ); 2. f(x 1 1 x 2 ) = f(x 1 ) 2 f(x 2 ); 3. f(x 1 ) = f(x) 2 ; 4. f(0 1 ) = 0 2 ; 5. f(1 1 ) = 1 2. Bijekcija koja zadovoqava nabrojane osobine naziva se izomorfizam. Da su B 1 i B 2 izomorfne, ozna~avamo sa B 1 = B2. Ako `elimo da 1-1 istaknemo da je f : B 1 na B 2 izomorfizam odgovaraju}ih Bulovih algebri, pi{emo f : B 1 = B2. 5 Re~ izomorfan je gr~kog porekla: izos = neizmewen, stalan, jednak; morfe = oblik.

11 13 PRIMER 8. Neka je U kona~an skup koji ima k elemenata, k 2 i neka je n proizvod k me usobno razli~itih prostih brojeva. Tada su Bulove algebre (P(U),,, c,, U) i D n = (D n, nzs, nzd, n/, 1, n) izomorfne. Da bismo to dokazali, potrebno je uo~iti izomorfizam me u wima. Oslawaju}i se na razmatrawa iz primera 3, nije te{ko otkriti funkciju koja }e biti izomorfizam. Neka je U = {u 1,..., u k } i n = p 1 p k. Defini{imo funkciju f : P(U) D n, na slede}i na~in: f(a) = p χ A(u 1) 1 p χ A(u k ) k, gde je χ A : U {0, 1} karakteristi~na funkcija skupa A P(U). Ostavqamo ~itaocima da doka`u da je f tra`eni izomorfizam. Dokaze naredne dve teoreme prepu{tamo ~itaocima. Teorema 1. Ako je U = V, onda su Bulove algebre (P(U),,, c,, U) i (P(V ),,, c,, V ) izomorfne. Uputstvo. Ako je U = V, onda postoji bijekcija f : U 1-1 na V. Pokazati da je funkcija F : P(U) P(V ), data sa F (X) = f[x] = {f(x) x X}, X P(U), tra`eni izomorfizam. Teorema 2. Neka su B 1, B 2 i B 3 Bulove algebre. Tada je B 1 = B1 ; ako je B 1 = B2, onda je B 2 = B1 ; ako je B 1 = B2 i B 2 = B3, onda je B 1 = B3. Uputstvo. Dokazi navedenih svojstava zasnovani su na slede}im ~iwenicama: identi~ko preslikavawe 6 je izomorfizam; inverzna funkcija izomorfizma tako e je izomorfizam; kompozicija dva izomorfizma tako e je izomorfizam. Nekoliko izvedenih Bulovih zakona Iako smo na po~etku ovog poglavqa istakli da operacije Bulove algebre imaju ista svojstva kao skupovne operacije, to se ne mo`e direktno videti na osnovu izabranih aksioma budu}i da su izabrana samo neka od svojstava skupovnih operacija. Na kraju odeqka }emo pokazati da su aksiome dobro 6 id : B 1 B 1, id(x) = x, x B 1

12 14 izabrane. Za sada }emo samo delimi~no u~vrstiti ovo uverewe, dokazuju}i neka dodatna svojstva analogna dobro poznatim svojstvima skupovnih operacija. Dokaza}emo pre svega one zakonitosti koje }e nam u nastavku zna~ajno olak{ati ra~un u Bulovim algebrama. Lema 1. Neka je (B,,,, 0, 1) Bulova algebra. Za proizvoqne elemente x i y iz B va`i: [I ] x x = x, [I ] x x = x, [zakoni idempotentnosti]; [1 ] x 1 = 1, [0 ] x 0 = 0; [A ] x (x y) = x, [A ] x (x y) = x, [zakoni apsorpcije]. DOKAZ. 7 x x x x = (x x) 1 [N ] = (x x) 0 [N ] = (x x) (x x ) [C ] = (x x) (x x ) [C ] = x (x x ) [D ] = x (x x ) [D ] = x 0 [C ] = x 1 [C ] = x [N ] = x [N ] x 1 = x (x x ) [C ] x 0 = x (x x ) [C ] = (x x) x [A ] = (x x) x [A ] = x x [I ] = x x [I ] = 1 [N ] = 0 [N ] x (x y) x (x y) = (x 1) (x y) [N ] = (x 0) (x y) [N ] = x (1 y) [D ] = x (0 y) [D ] = x (y 1) [K ] = x (y 0) [K ] = x 1 [1 ] = x 0 [0 ] = x [N ] = x [N ] Naredna teorema je veoma korisna prilikom dokazivawa nekih zakona Bulovih algebri. Ona zapravo tvrdi da je komplementirawe potpuno odre eno zakonima C i C. 7 Ako pa`qivije analiziramo identitete leme 1 i wihove dokaze, uo~i}emo izvesne analogije koje su posledica takozvanog principa dualnosti. Naime, ako u nekom Bulovom identitetu simbole,, 0 i 1 zamenimo redom simbolima,, 1 i 0, dobijamo tzv. dualni identitet. Princip dualnosti ka`e: ako se neki identitet mo`e izvesti iz aksioma Bulovih algebri, onda se mo`e izvesti i wemu dualni identitet. Obrazlo`ewe je jednostavno: svaka aksioma Bulove algebre ima svoj dual, pa ako u dokazu nekog identiteta, svako pozivawe na neku aksiomu zamenimo pozivawem na dulanu aksiomu, dobijamo dokaz dualnog identiteta.

13 15 Teorema 3. [Teorema o jedinstvenosti komplementa] Neka je (B,,,, 0, 1) Bulova algebra i x i y proizvoqni elementi iz B. Ako je x y = 1 i x y = 0, onda je y = x. DOKAZ. Neka je (1) x y = 1 i (2) x y = 0. x = x 1 [N ] y = y 1 [N ] = x (x y) [(1)] = y (x x ) [C ] = (x x) (x y) [D ] = (y x) (y x ) [D ] = (x x ) (x y) [K ] = (x y) (y x ) [K ] = 0 (x y) [C ] = 0 (y x ) [(2)] = (x y) 0 [K ] = (y x ) 0 [K ] = x y [N ] = y x [N ] = x y [K ] Iz dokazanih jednakosti zakqu~ujemo da je x = y. Lema 2. Neka je (B,,,, 0, 1) Bulova algebra. Za proizvoqne elemente x i y iz B va`i: 1. (x ) = x [zakoni involucije]; 2. 0 = 1, 1 = 0; 3. (x y) = x y, (x y) = x y [De Morganovi zakoni]. DOKAZ. Svi navedeni zakoni su jednostavne posledice prethodne teoreme. Kao ilustraciju navodimo dokaz De Morganovog zakona (x y) = x y. Prema teoremi o jedinstvenosti komplementa dovoqno je dokazati da za proizvoqne x i y iz B va`e jednakosti (x y) (x y ) = 1 i (x y) (x y ) = 0. Nave{}emo samo osnovne korake dokaza ovih jednakosti: (x y) (x y ) (x y) (x y ) = ((x y) x ) ((x y) y ) = (x (x y )) (y (x y )).. = (y (x x )) (x (y y )) = (y (x x )) (x (y y )) = (y 1) (x 1) = (y 0) (x 0) = 1 1 = 0 0 = 1 = 0

14 16 Na osnovu dokazanih identiteta, izdvajamo dva va`na zapa`awa. Prvo, ra~un sa konstantama 0 i 1 isti je u svakoj Bulovoj algebri i obavqa se u skladu sa tablicama 8 algebre 2 navedenim u primeru 1. Drugo zapa`awe se odnosi na primenu De Morganovih zakona. Naime, De Morganov zakon je veoma koristan identitet kojim je uspostavqena veza me u svim operacijama neke Bulove algebre. Kao ilustraciju wegove primene, pokazujemo da je bijekcija 1-1 f : B 1 na B 2 izomorfizam Bulovih algebri B 1 = (B 1, 1, 1, 1, 0 1, 1 1 ) i B 2 = (B 2, 2, 2, 2, 0 2, 1 2 ) ukoliko zadovoqava uslove 1 i 3 definicije 2, jer su preostali uslovi posledice ova dva: f(x 1 1 x 2 ) = f ( (x x 1 2 ) 1) = (f(x1 ) 2 2 f(x 2 ) 2 ) 2 = f(x 1 ) 2 f(x 2 ); f(0 1 ) = f(x 1 x 1 ) = f(x) 2 f(x) 2 = 0 2 ; f(1 1 ) = f(x 1 x 1 ) = f(x) 2 f(x) 2 = Analogno se pokazuje da je bijekcija f : B 1 na B 2 izomorfizam ukoliko va`e uslovi 2 i 3 definicije 2. Lema 3. Neka su B 1 = (B 1, 1, 1, 1, 0 1, 1 1 ) i B 2 = (B 2, 2, 2, 2, 0 2, 1 2 ) 1-1 Bulove algebre. Bijekcija f : B 1 na B 2 je izomorfizam Bulovih algebri B 1 i B 2 ukoliko za sve x, x 1, x 2 B 1 va`i: 1. f(x 1 1 x 2 ) = f(x 1 ) 2 f(x 2 ); 2. f(x 1 ) = f(x) 2. Da bismo jednostavnije formulisali jo{ jedno korisno tvr ewe, uvodimo slede}e oznake: neka x 0 ozna~ava x, a x 1 ozna~ava x. Pored toga, koristi}emo uobi~ajeni na~in kra}eg zapisivawa izraza x 1 x k i x 1 x k redom zapisima k x i i k x i, pri ~emu izostavqamo zagrade imaju}i na umu i=1 i=1 asocijativnost odgovaraju}ih operacija. Lema 4. Neka je (B,,,, 0, 1) proizvoqna Bulova algebra. Tada za svako n 1 i proizvoqne x 1,..., x n B va`i: (x a1 1 xa n n ) = 1. (a 1,...,a n ) 2 n DOKAZ. Dokaz izvodimo indukcijom po n. Ako je n = 1, onda je a 2 xa = x 0 x 1 = x x = 1. 8 Tablice mo`emo izvesti iz aksioma K, K, N, N, jednakosti [1 ], [0 ] (lema 1) i jednakosti 0 = 1, 1 = 0 (lema 2).

15 Dokaz zavr{avamo slede}im nizom jednakosti, pri ~emu polazimo od jednakosti koja zapravo predstavqa induktivnu pretpostavku. ( Pored toga, koristimo i o~iglednu posledicu distributivnosti: x i x = k (x i x). k ) i=1 i=1 1 = (x a1 1 xa n n ) (a 1,...,a n ) 2 n = 1 xa n n ) (x 0 n+1 x 1 n+1) = = (a 1,...,a n ) 2 n (x a1 (a 1,...,a n ) 2 n (a 1,...,a n,a n+1 ) 2 n+1 ( x a 1 1 xa n n x 0 ) n+1 (a 1,...,a n ) 2 n ( x a 1 1 xa n n x a ) n+1 n+1 17 ( x a 1 1 xa n n x 1 ) n+1 Odeqak zavr{avamo tvr ewem koje daje svojevrsnu algebarsku karakterizaciju jednakosti u Bulovim algebrama. Lema 5. Neka je (B,,,, 0, 1) proizvoqna Bulova algebra. Tada za proizvoqne x, y B va`i: x = y akko (x y) (x y ) = 1. DOKAZ. ( ) Ako je x = y, onda je (x y) (x y ) = (x x) (x x ) = x x = 1. ( ) Pretpostavimo da je (x y) (x y ) = 1. Tada je x = x 1 y = y 1 = x [(x y) (x y )] = y [(x y) (x y )] = (x x y) (x x y ) = (y x y) (y x y ) = (x y) 0 = (x y) 0 = x y = x y odakle sledi da je x = y. Bulovi izrazi i logi~ki veznici Uop{teno govore}i, Bulove funkcije jesu funkcije definisane algebarskim izrazima svojstvenim Bulovim algebrama. Iako }emo se kasnije detaqnije, stro`e i uop{tenije baviti algebarskim izrazima, smatramo da

16 18 }e biti vi{estruko korisno (i za prou~avawe Bulovih algebri i za sadr`aje narednih poglavqa) pone{to precizirati na ovom mestu. Precizirajmo najpre pojam izraza u kontekstu Bulovih algebri, tj. pojam Bulovog izraza. Bulove izraze gradimo kao i bilo koju drugu vrstu izraza: pomo}u promenqivih, konstanti (0 i 1) i odgovaraju}ih operacija (, i ), koriste}i pri tome zagrade kada je potrebno. Iako su izrazi zapisani pomo}u kona~no mnogo pomenutih simbola, ne `elimo da ograni~imo broj razli~itih promenqivih koje se mogu pojavqivati u nekom izrazu, pa zato pretpostavqamo da nam je na raspolagawu prebrojivo mnogo promenqivih. Promenqive }emo ozna~avati malim slovima latinice, sa ili bez indeksa: x, y, z, x 1, y 1, z 1, x 2,... Bulove izraze gradimo primenom narednih pravila kona~an broj puta 9 : svaka promenqiva, kao i konstanta 0 i 1 jeste jedan Bulov izraz; ako je α Bulov izraz, onda je i α Bulov izraz; ako su α i β Bulovi izrazi, onda su i (α β) i (α β) Bulovi izrazi. Navodimo nekoliko primera Bulovih izraza: x, (x 0), x, (1 0), ((x y ) z), Bulove izraze ozna~ava}emo malim gr~kim slovima: α, β, γ,... Zapis α(x 1,..., x n ) koristimo kada `elimo da istaknemo da su sve promenqive koje se pojavquju u izrazu α neke od promenqivih x 1,..., x n. Vrednost nekog Bulovog izraza mo`emo odrediti u bilo kojoj Bulovoj algebri B ako znake,,, 0 i 1 interpretiramo odgovaraju}im operacijama, odnosno konstantama iz B i ako promenqivama dodelimo neke vrednosti iz domena te Bulove algebre. Vrednost izraza α(x 1,..., x n ) u Bulovoj algebri B kada se promenqivama x 1,..., x n redom dodele vrednosti a 1,..., a n B ozna~avamo sa α B (a 1,..., a n ), pri ~emu }emo izostavqati gorwi indeks kada se podrazumeva o kojoj Bulovoj algebri B je re~. PRIMER 9. U narednoj tabeli izra~unate su vrednosti Bulovog izraza x y u nekim konkretnim Bulovim algebrama, za konkretne vrednosti promenqivih. 9 Definicija Bulivih izraza je induktivna: najpre su odre eni najjednostavniji Bulovi izrazi (promenqive i konstante su Bulovi izrazi), a zatim je opisano kako se formiraju slo`eniji Bulovi izrazi. Tako, polaze}i od najjednostavnijih Bulovih izraza pomo}u ovih pravila gradimo nove izraze, koje daqe koristimo za izgradwu jo{ slo`enijih izraza. 10 Potreba za zagradama prilikom zapisivawa izraza je poznata. Me utim, da bi se pojednostavilo zapisivawe, uobi~ajeno je da se usvajaju razne konvencije o brisawu suvi{nih zagrada (tj. onih ~ije izostavqawe ne uti~e na ~itqivost izraza). Mi ove konvencije ne}emo navoditi, jer }e ih ~italac svakako uo~iti u nastavku teksta.

17 19 (P({a, b}),,, c,, {a, b}) 2 = ({0, 1},,,, 0, 1) (D 6, nzs, ( nzd, 6/, 1, 6) n ) x c y x y nzs x, y x = {a}, y = {b} x = 0, y = 0 x = ( 2, y = 6 n ) x c y = {b} x y = 1 nzs x, y = 6 x = {b}, y = {a, b} x = 1, y = 0 x = ( 3, y = 1 n ) x c y = {a, b} x y = 0 nzs x, y = 3 Bulovi zakoni (identiteti), od koji su neki uzeti za aksiome, a neki su iz wih izvedeni, jesu zapravo jednakosti dva Bulova izraza koje su uvek ta~ne, koju god Bulovu algebru da izaberemo i koje god elemente iz te algebre da dodelimo promenqivama. U narednim tvr ewima dokaza}emo neke op{te rezultate koji se odnose na Bulove zakone. Pre toga uvodimo nekoliko oznaka. Neka je α bilo koji Bulov izraz i x promenqiva. Ozna~imo sa α(x/0) (odnosno α(x/1)) izraz koji se dobija iz α kada sva pojavqivawa promenqive x zamenimo konstantom 0 (odnosno 1). O~igledno je da ukoliko se promenqiva x ne pojavquje u izrazu α, onda je α(x/0) = α(x/1) = α. Lema 6. Ako je α bilo koji Bulov izraz, onda jednakost α = (α(x/0) x ) (α(x/1) x) va`i u bilo kojoj Bulovoj algebri. DOKAZ. Dokaz sprovodimo indukcijom po slo`enosti izraza, {to zna~i da }emo najpre dokazati da tvr ewe va`i za najjednostavnije Bulove izraze (promenqive i konstante), a zatim da va`i i za slo`enije, pod pretpostavkom da je ta~no za izraze od kojih je taj izraz sastavqen. Ako je α promenqiva razli~ita od x, ili konstanta 0 ili 1, onda je α(x/0) = α(x/1) = α, pa va`i: (α(x/0) x ) (α(x/1) x) = (α x ) (α x) = α (x x ) = α 1 = α. Ako je α promenqiva x, onda je α(x/0) = 0 i α(x/1) = 1, pa je (α(x/0) x ) (α(x/1) x) = (0 x ) (1 x) = 0 x = x = α. Neka je α oblika θ. Prema induktivnoj pretpostavci tvr ewe va`i za θ pa je θ = (θ(x/0) x ) (θ(x/1) x), odakle dobijamo:

18 20 α = θ = ( (θ(x/0) x ) (θ(x/1) x) ) = (θ(x/0) x) (θ(x/1) x ) = ( θ(x/0) θ(x/1) ) ( θ(x/0) x ) ( θ(x/1) x ) ( x x ) = ( θ(x/0) θ(x/1) (x x ) ) ( θ(x/0) x ) (θ(x/1) x ) = ( θ(x/0) θ(x/1) x ) ( θ(x/0) θ(x/1) x ) ( θ(x/0) x ) ( θ(x/1) x ) = (θ(x/0) x ) (θ(x/1) x) = (θ (x/0) x ) (θ (x/1) x) = (α(x/0) x ) (α(x/1) x). Neka je α oblika θ 1 θ 2. Prema induktivnoj pretpostavci tvr ewe va`i za θ i, pa je θ i = (θ i (x/0) x ) (θ i (x/1) x), i = 1, 2. Odavde dobijamo: α = θ 1 θ 2 = (θ 1 (x/0) x ) (θ 1 (x/1) x) (θ 2 (x/0) x ) (θ 2 (x/1) x) = ( (θ 1 (x/0) θ 2 (x/0)) x ) ((θ 1 (x/1) θ 2 (x/1)) x) = ( (θ 1 θ 2 )(x/0) x ) ((θ 1 θ 2 )(x/1) x) = ( α(x/0) x ) (α(x/1) x). Slu~aj kada je α oblika θ 1 θ 2, prepu{tamo ~itaocima. Iz prethodne leme izvodimo veoma va`nu teoremu poznatu kao teorema o kanonskoj disjunktivnoj normalnoj formi. Teorema 4. Ako je α(x 1,..., x n ) Bulov izraz, onda jednakost (KDNF ) α(x 1,..., x n ) = va`i u svakoj Bulovoj algebri. n ) (a 1,...,a n ) 2 n (α(a 1,..., a n ) x a1 1 xa n DOKAZ. Dokaz izvodimo indukcijom po n. Slu~aj n = 1 neposredna je posledica prethodne leme. Pretpostavimo da je tvr ewe ta~no za izraze sa n promenqivih.

19 21 α(x 1,..., x n, x n+1 ) = ( α(x 1,..., x n, 0) x 0 ( n+1) α(x1,..., x n, 1) x 1 ) n+1 = (α(a 1,..., a n, 0) x a1 1 xa n n ) x 0 n+1 (a 1,...,a n ) 2 n (α(a 1,..., a n, 1) x a1 1 xan n ) x 1 n+1 (a 1,...,a n) 2 n ( = α(a1,..., a n, a n+1 ) x a 1 1 xan n x a ) n+1 n+1 (a 1,...,a n,a n+1 ) 2 n+1 Izraz sa desne strane jednakosti iz prethodne teoreme naziva se kanonska disjunktivna normalna forma izraza α(x 1,..., x n ). Imaju}i na umu upravo dokazanu jednakost, zakqu~ujemo da je svaki Bulov izraz su{tinski odre en svojim vrednostima na skupu {0, 1}. Podse}amo da je nebitno iz koje Bulove algebre dolaze konstante 0 i 1, jer je ra~un sa wima uvek isti i obavqa se u skladu sa tablicama operacija algebre 2. Ovaj zakqu~ak isti~e centralnu ulogu algebre 2 u teoriji Bulovih algebri, bar kada su u pitawu Bulovi zakoni. Teorema 5. Neka su α i β proizvoqni Bulovi izrazi. Zakon α = β va`i u svakoj Bulovoj algebri akko va`i u Bulovoj algebri 2. DOKAZ. Na osnovu leme 5, umesto jednakosti α = β mo`emo posmatrati (α β) (α β ) = 1. Drugim re~ima, dokaza}emo da za svaki Bulov izraz θ, zakon θ = 1 va`i u svakoj Bulovoj algebri akko va`i u Bulovoj algebri 2. ( ) Trivijalno. ( ) Pretpostavimo da θ = 1 va`i u Bulovoj algebri 2. Neka su sve promenqive koje se pojavquju u izrazu θ neke od promenqivih x 1,..., x n. Tada za sve (a 1,..., a n ) 2 n, va`i θ(a 1,..., a n ) = 1. Ako uzimemo u obzir kanonsku disjunktivnu normalnu formu izraza θ, zakqu~ujemo da je θ(x 1,..., x n ) = (θ(a 1,..., a n ) x a1 1 xa n n ) (a 1,...,a n ) 2 n = (1 x a1 1 xa n n ) (a 1,...,a n ) 2 n = (x a1 1 xan n ) = 1 (a 1,...,a n) 2 n

20 22 Posledwa jednakost dokazana je u lemi 4. PRIMER 10. Prema prethodnoj teoremi, da bismo dokazali da u svakoj Bulovoj algebri va`i zakon x (y (y x)) = (x y), dovoqno je proveriti da li on va`i u algebri 2. x y y y x y (y x) x (y (y x)) x x y (x y) Upore uju}i rezultate u odgovaraju}im kolonama, zakqu~ujemo da navedeni zakon va`i u Bulovoj algebri 2. Teorema 4 ima jo{ dosta zna~ajnih posledica. Izdvajamo neke od wih. Ako je B bilo koja Bulova algebra, onda svaki Bulov izraz α(x 1,..., x n ) odre uje jednu funkciju iz B n u B, odnosno jednu n-arnu operaciju skupa B: B n (a 1,..., a n ) α B (x 1,..., x n ) B. Ovakvih funkcija ukupno ima 2 2n, jer toliko ima n-arnih operacija na skupu {0, 1}. Na primer, ako je α(x 1, x 2 ) neki Bulov izraz sa dve promenqive, onda se funkcija (x 1, x 2 ) α B (x 1, x 2 ), mo`e prikazati u slede}em obliku: α B (x 1, x 2 ) = (f(0, 0) x 1 x 2 ) (f(0, 1) x 1 x 2) (f(1, 0) x 1 x 2 ) (f(1, 1) x 1 x 2 ), gde je f jedna od slede}ih 16 binarnih operacija skupa {0, 1} (oznake u narednim tabelama objasni}emo u primeru 12) Iz prethodnih razmatrawa zakqu~ujemo da posebno zna~ajno mesto zauzimaju funkcije α 2 : 2 n 2, 2 n (x 1,..., x n ) α 2 (x 1,..., x n ) 2. Svaka ovakva funkcija naziva se istinitosna funkcija ili n-arni logi~ki veznik. O~igledno, svaka funkcija f : 2 n 2 se mo`e shvatiti kao jedan n-arni logi~ki veznik, jer postoji Bulov izraz α(x 1,..., x n ) takav da je f(x 1,..., x n ) = α 2 (x 1,..., x n ), za sve x 1,..., x n 2.

21 23 PRIMER 11. Neka je f : 2 3 2, funkcija (du`ine tri) data slede}om tabelom. x 1 x 2 x 3 f(x 1, x 2, x 3 ) Uo~avaju}i za koje vrednosti argumenata funkcija f ima vrednost 1 jednostavno nalazimo Bulov izraz α(x 1, x 2, x 3 ) koji odre uje ovu funkciju: α(x 1, x 2, x 3 ) = (x 1 x 2 x 3 ) (x 1 x 2 x 3 ) (x 1 x 2 x 3) (x 1 x 2 x 3 ). Sre ivawem izraza sa desne strane, dobijamo da je α(x 1, x 2, x 3 ) = (x 1 x 2 ) (x 1 x 3 ). Ovaj Bulov izraz odre uje jedan va`an ternarni veznik: if x 1 then x 2 else x 3. PRIMER 12. Navode}i tablice za svih {esnaest binarnih logi~kih veznika, posebnim znacima su ozna~eni samo neki od wih. Pored konjunkcije ( ) i disjunkcije ( ), istaknuti su i slede}i veznici: nili, Luka{ijevi~eva strelica (ni ni ); ekvivalencija ( ako i samo ako ); iskqu~na disjunkcija (ili ili, ali ne oba); ni, [eferova strelica (nije ili nije ); implikacija (ako, onda ; je dovoqan uslov za ); obratna implikacija ( ako ; je potreban uslov za ). Ovi binarni veznici su izdvojeni zbog svog zna~aja u iskaznoj logici, o ~emu }emo dataqnije pisati u narednom poglavqu. Ure ewe Bulove algebre Za bilo koji skup U, inkluzija je jedno ure ewe skupa P(U). Nije te{ko pokazati da za proizvoqne X, Y P(U) va`i: X Y akko X Y = Y akko X Y = X. Navedene ekvivalencije ukazuju na to kako se mo`e definisati ure ewe bilo koje Bulove algebre. Pre nego {to ga defini{emo, dokaza}emo da va`i tvr- ewe analogno drugoj ekvivalenciji.

22 24 Lema 7. Neka je (B,,,, 0, 1) Bulova algebra. Za proizvoqne elemente x i y iz B va`i: x y = y akko x y = x. DOKAZ. ( ) Ako je x y = y, onda je x y = x (x y) = x, pri ~emu posledwa jednakost va`i na osnovu zakona apsorpcije. ( ) Obrnuto dokazujemo potpuno analogno: ako je x y = x, onda je x y = (x y) y = y. Ako je (B,,,, 0, 1) proizvoqna Bulova algebra, binarnu relaciju na B defini{emo na slede}i na~in: x y akko x y = y. Pri tome, prema prethodnoj lemi, imamo na umu da je: x y akko x y = y akko x y = x. Lema 8. Relacija je relacija poretka (ure ewe) domena Bulove algebre. DOKAZ. (Refleksivnost) Za bilo koji element x iz B va`i x x = x, tj. x x. (Antisimetri~nost) Pretpostavimo da je x y i y x. Tada je x y = y (jer je x y) i y x = x (jer je y x), odakle sledi x = y zbog (K ). (Tranzitivnost) Neka je x y i y z, tj. x y = y i y z = z. Tada je: x z = x (y z) = (x y) z = y z = z, tj. x z. Strogo ure ewe odre eno relacijom ozna~ava}emo sa. Lema 9. U Bulovoj algebri (B,,,, 0, 1), element 0 je najmawi, a 1 najve}i u odnosu na. DOKAZ. Za svako x B va`i: x 0 = x, tj. 0 x, i x 1 = 1, tj. x 1. Lema 10. Ako je (B,,,, 0, 1) proizvoqna Bulova algebra, za bilo koje elemente x, y i z iz B va`i: 1.1. x x y i y x y; 1.2. ako je x z i y z, onda je x y z; 2.1. x y x i x y y; 2.2. ako je z x i z y, onda je z x y. DOKAZ Iz jednakosti x (x y) = (x x) y = x y, sledi da je x x y. Analogno se dokazuje da je y x y Neka je x z i y z, tj. x z = z i y z = z. Tada je (x y) z = x (y z) = x z = z, odnosno x y z. Tvr ewa 2.1 i 2.2 analogno se dokazuju i dokaze prepu{tamo ~itaocima.

23 Tvr ewe 1.1 prethodne leme ka`e da je x y gorwe ograni~ewe skupa {x, y} u odnosu na, dok 2.1 tvrdi da je x y i najmawe gorwe ograni~ewe. Drugim re~ima, x y je supremum (najmawe gorwe ograni~ewe) skupa {x, y}, x y = sup{x, y}. Analogno tome, prema 2.1 i 2.2, x y je infimum (najve}e dowe ograni~ewe) skupa {x, y}, x y = inf{x, y}. Atomi Bulove algebre i reprezentacija kona~nih Bulovih algebri U bilo kojoj algebri partitivnog skupa (P(U),,, c,, U), jedno~lani skupovi, tj. singltoni {u}, u U, jesu minimalni elementi skupa P(U) \ { } u odnosu na inkluziju, i kao takvi poseduju niz karakteristi~nih osobina. [tavi{e, oni predstavqaju i svojevrsni gradivni materijal od koga su sastavqeni svi drugi elementi iz P(U)\{ }. Ovo zapa`awe donekle potkrepquje ~iwenica da singltoni reprezentuju elemente skupa U, odnosno da je {u} X akko u X, za bilo koje u U i bilo koje X P(U) \ { }. U proizvoqnoj Bulovoj algebri sli~nu ulogu ima}e tzv. atomi, naravno ukoliko ih razmatrana algebra uop{te ima. Definicija 3. Element a je atom Bulove algebre B, ako je 0 a i ne postoji element x B\{0} takav da je x a. Drugim re~ima, atom je svaki minimalni element skupa B \ {0} u odnosu na. PRIMER 13. Atomi Bulove algebre (P(U),,, c,, U) jesu singltoni {u}, u U. Postoje i Bulove algebre koje nemaju atoma. U primeru 4 naveli smo da kona~ne unije levo-poluzatvorenih intervala skupa R obrazuju jedno poqe skupova. Ova Bulova algebra nema atoma, jer za svaki levo-poluzatvoreni interval, postoji drugi takav inteval koji je strogo sadr`an u prvom. U narednoj lemi izdvajamo neke zna~ajne osobine atoma. Lema 11. Neka je B = (B,,,, 0, 1) Bulova algebra i a bilo koji wen atom. 1. Za svaki element x B va`i a x = 0 ili a x = a. Specijalno, ako je a 1 atom u B razli~it od a, onda je a a 1 = Ako je a x 1 x 2 x n, za neke x 1, x 2,..., x n B, onda postoji k {1,..., n} takav da je a x k. Specijalno, za svaki element x B va`i a x ili a x, ali ne oba. DOKAZ. 1. Za bilo koji element x va`i 0 a x a, odakle sledi da je a x = 0 ili a x = a, jer je a atom, pa ne mo`e biti 0 a x a. Neka su a i a 1 razli~iti atomi. Kako je a atom, prema upravo dokazanom imamo da je a a 1 = 0 ili a a 1 = a. Po{to je i a 1 atom, dobijamo i da je a a 1 = 0 25

24 26 ili a a 1 = a 1. Kako je a 0, a 1 0 i a a 1, zakqu~ujemo da mora biti a a 1 = Neka je a x 1 x 2 x n. Ako bi za svako k {1,..., n} bilo a x k, imali bismo (prema 1) da je a x k = 0. Me utim, tada je a = a (x 1 x 2 x n ) = (a x 1 ) (a x 2 ) (a x n ) = = 0, {to je nemogu}e, jer je a atom. Kako za bilo koje x va`i a 1 = x x, prema upravo dokazanom imamo da je a x ili a x. Naravno da ne mo`e biti a x i a x, jer bi tada bilo i a x x = 0. Definicija 4. Bulova algebra (B,,,, 0, 1) je atomi~na ako za svaki element x B \ {0} postoji atom a takav da je a x. PRIMER 14. Algebre partitivnog skupa (P(U),,, c,, U), gde je U bilo koji skup, jesu atomi~ne Bulove algebre. Kona~ne unije levo-poluzatvorenih intervala skupa R obrazuju poqe skupova koje ne mo`e biti atomi~na Bulova algebra, jer uop{te nema atoma. Teorema 6. Svaka kona~na Bulova algebra je atomi~na. DOKAZ. Neka je B = (B,,,, 0, 1) kona~na Bulova algebra ({to zna~i da je B kona~an skup). Pretpostavimo da B nije atomi~na. To zna~i da postoji element x B \ {0} za koji ne postoji atom a takav da je a x. Specijalno, x nije atom, {to zna~i da postoji x 1 B takav da je 0 x 1 x. Tako e, ni x 1 nije atom, pa postoji x 2 B da je 0 x 2 x 1. O~igledno, ovaj postupak mo`emo neograni~eno nastaviti. Me utim, to nije mogu}e ako je B kona~na Bulova algebra. Ve} smo rekli da atomi u atomi~nim Bulovim algebrama u izvesnom smislu predstavqaju gradivni materijal pomo}u koga se dobijaju svi drugi elementi razli~iti od 0. To se najboqe vidi na primeru kona~nih algebri partitivnog skupa. Ako je U kona~an skup, onda je svaki X iz P(U) \ { } zapravo unija singltona (atoma) {u}, u X. Ovo zapa`awe se prirodno prenosi na sve kona~ne Bulove algebre ({to }e pokazati naredna teorema): ako operaciju neke kona~ne Bulove algebre nazovemo unijom, onda je svaki element x ove algebre unija atoma koji se nalaze ispod wega. Ova analogija nas navodi na pomisao da su kona~ne Bulove algebre zapravo izomorfne sa kona~nim algebrama skupova. Teorema 7. Neka je (B,,,, 0, 1) kona~na Bulova algebra i A B skup wenih atoma. Tada su Bulove algebre (B,,,, 0, 1) i (P(A),,, c,, A) izomorfne.

25 27 DOKAZ. Primetimo najpre da je Bulova algebra B atomi~na, jer je kona~na (teorema 6). Uzimaju}i u obzir razmatrawe pre formulacije teoreme, prirodno je pretpostaviti da }e tra`eni izomorfizam predstavqati funkcija f : B P(A), definisana sa f(x) = {a A a x}, x B. To }emo u nastavku i dokazati. f je 1-1 funkcija. Neka su x 1 i x 2 razli~iti elementi iz B. Tada je x 1 x 2 ili x 2 x 1 (jer bi u suprotnom elementi morali biti jednaki). Nije te{ko pokazati da je tada x 1 x 2 0 ili x 1 x 2 0. Zaista, ako bi bilo x 1 x 2 = 0 i x 1 x 2 = 0, imali bismo x 1 = x 1 1 = x 1 (x 2 x 2) = (x 1 x 2 ) (x 1 x 2) = (x 1 x 2 ) 0 = x 1 x 2, tj. x 1 x 2, kao i x 2 = x 2 1 = x 2 (x 1 x 1) = (x 2 x 1 ) (x 2 x 1) = (x 2 x 1 ) 0 = x 2 x 1, tj. x 2 x 1. Ukoliko je x 1 x 2 0, onda postoji a A takav da je a x 1 x 2, jer je B atomi~na Bulova algebra. Tada je a x 1, pa a f(x 1 ), ali je i a x 2, pa a x 2, tj. a f(x 2 ). Dakle, f(x 1 ) f(x 2 ). Analogno se dobija da iz x 1 x 2 0, sledi f(x 1 ) f(x 2 ). f je na funkcija. Neka je Y P(A) proizvoqan skup atoma. Ako je Y =, onda je f(0) = Y. Pretpostavimo da je Y. Kako je B kona~an skup, kona~an je i skup A, pa mo`emo uzeti da je Y = {a 1,..., a n }, za neke a 1,..., a n A. Neka je x = a 1 a n. Dokaza}emo da je f(x) = Y. S obzirom na to da je a i x = a 1 a n, za svako i {1,..., n}, zakqu~ujemo da je Y f(x). Da bismo dokazali i obrnutu inkluziju, izabra}emo proizvoqan atom a f(x), tj. atom takav da je a a 1 a n. Tada, prema osobini 2 leme 11, imamo da je a a i, za neko i {1,..., n}. Po{to su i a i a i atomi, zakqu~ujemo da mora biti a = a i, tj. a Y. Dakle, f(x) Y. f je izomorfizam. Na osnovu leme 3, dovoqno je dokazati da za proizvoqne x, x 1, x 2 B va`i f(x 1 x 2 ) = f(x 1 ) f(x 2 ) i f(x ) = f(x) c. f(x 1 x 2 ) = {a A a x 1 x 2 } (!) ={a A a x 1 ili a x 2 } = {a A a x 1 } {a A a x 2 } = f(x 1 ) f(x 2 ) Jednakost (!) va`i na osnovu osobine 2 leme 11, kao i iz ~iwenice da je x 1 x 2 = sup{x 1, x 2 }. f(x ) = {a A a x } = {a A a x} = A \ {a A a x} = f(x) c Ove jednakosti slede iz ~iwenice da za svaki atom a i bilo koji element x va`i ili a x ili a x, ali nikako oba.

26 28 Posledica 1. Svaka kona~na Bulova algebra ima 2 n elemenata, za neki prirodan broj n. Posledica 2. Izomorfne su svake dve kona~ne Bulove algebre sa istim brojem elemenata. Stonova teorema reprezentacije Bulovih algebri U prethodnom odeqku pokazali smo da se svaka kona~na Bulova algebra mo`e shvatiti kao algebra partitivnog skupa nekog kona~nog skupa (preciznije, skupa svojih atoma). Prirodno se name}e pitawe da li mo`emo dokazati sli~an rezultat za bilo koju Bulovu algebru. Ne mo`emo o~ekivati da }e svaka Bulova algebra biti izomorfna nekoj algebri partitivnog skupa, iz jednostavnog razloga, jer postoje prebrojive Bulove algebre 11, dok su algebre partitivnog skupa kona~ne ili neprebrojive. Ipak, mo`emo poku{ati da ih opi{emo (do na izomorfizam) kao poqa skupova. Ve} na prvi pogled se vidi da dokaz kojim su okarakterisane kona~ne Bulove algebre ne mo`emo direktno uop{titi na sve Bulove algebre (jer postoje one koje nisu atomi~ne). Ipak neka zajedni~ka nit se mo`e prona}i. U slu~aju kona~nih Bulovih algebri, svaki wen element je shva}en kao skup atoma, a znamo da je svaki skup potpuno odre en elementima koje sadr`i. U op{tem slu~aju, razmi{qa}emo dualno: elemente neke Bulove algebre B poku{a}emo da reprezentujemo skupovima (podskupovima od B) koji sadr`e taj element. Nastoja}emo da odredimo kolekciju U P(B) pogodnu da bilo koji element a iz B reprezentujemo skupom svih skupova iz U koji sadr`e a, tj. skupom {X U a X}. Pritom, potrebno je da navedena reprezentacija elemenata ~uva operacije i konstante odgovaraju}ih Bulovih algebri Bulove algebre B i algebre partitivnog skupa nad P(U). Preciznije, funkcija f : B P(U), f(a) = {X U a X}, a B, treba da zadovoqava slede}e uslove: 1. f(a b) = f(a) f(b), tj. {X U a b X} = {X U a X} {X U b X}; 2. f(a b) = f(a) f(b), tj. {X U a b X} = {X U a X} {X U b X}; 3. f(a ) = f(a) c, tj. {X U a X} = {X U a X} c ; 4. f(0) =, tj. {X U 0 X} = ; 11 Na primer, Fre{eova algebra F(N) (algebra kona~no-kokona~nih skupova) nad skupom prirodnih brojeva N je prebrojiva (videti primer 4).

27 29 5. f(1) = U, tj. {X U 1 X} = U. Da li mo`emo da odredimo (tj. da li postoji) skup U koji ostvaruje sve na{e zamisli? Navedeni zahtevi bi}e ispuweni ako svaki X iz U zadovoqava slede}e uslove 12 : 1.1. ako a b X, onda a X ili b X; 1.2. ako a X, onda za bilo koji b B, a b X; 2.1. ako a b X, onda a X i b X; 2.2. ako a X i b X, onda a b X; 3. a X akko a X; 4. 0 X; 5. 1 X. Neki od navedenih uslova su posledice ostalih, pa se ovaj spisak mo`e skratiti. 1.2 } 2.2 {{ 3 4} Primetimo najpre da je uslov 1.2 ekvivalentan uslovu: ( ) ako a X i a b, onda b X. Zaista, pretpostavimo da va`i 1.2, da a X i a b. Kako je b = a b, odmah dobijamo da b X. Obrnuto, pretpostavimo da va`i ( ), da a X i da je b B proizvoqan. Kako je a a b, zakqu~ujemo da a b X. Lako se uo~ava i da je uslov 2.1 posledica uslova ( ). Uslov 1.1 posledica je uslova 2.2, 3 i 4. Zaista, pretpostavimo da a b X, ali da a X i b X. Tada prema uslovu 3 sledi da a X i b X, i daqe, prema 2.2, da a b = (a b) X. Pozivaju}i se jo{ jednom na uslov 2.2 dobijamo da (a b) (a b) = 0 X, {to protivre~i uslovu 4. Primetimo da se umesto uslova 5 mo`e postaviti slabiji zahtev da skup X bude neprazan, i da }e tada iz ( ) slediti 5. Sumiraju}i prethodna razmatrawa, u narednoj definiciji izdvajamo kakve bismo podskupove od B `eleli da sadr`i U. Re~ je tzv. ultrafilterima. 12 Na osnovu navedenih uslova vidimo da zamisao ne mo`emo ostvariti za U = P(B).

28 30 Definicija 5. Neka je B proizvoqna Bulova algebra. Skup X B je ultrafilter u B ukoliko va`e slede}i uslovi: F1 1 F ; F2 0 F ; F3 ako a F i a b, onda b F ; F4 ako a F i b F, onda a b F ; F5 a F akko a F. Skup X je filter ako zadovoqava uslove F1F4. Naravno, odmah se name}e pitawe da li u svakoj Bulovoj algebri uop{te postoje ultrafilteri. Naredna teorema daje potvrdan odgovor. [tavi{e, pokaza}emo da svaki podskup od B koji ima svojstvo kona~nog preseka generi{e po jedan ultrafilter u B. Definicija 6. Podskup K B ima svojstvo kona~nog preseka, ako za svaki izbor kona~no mnogo elemenata x 1,..., x n iz K va`i x 1 x n 0. Teorema 8. [Teorema o ultrafilteru] Za svaki podskup K B koji ima svojstvo kona~nog preseka, postoji ultrafilter F K u B koji ga sadr`i, tj. K F K. Dokaz teoreme je naizgled duga~ak, ali samo zato {to }emo tri puta proveravati pojedine uslove definicije 5. Savetujemo ~itaocu da najpre pro~ita dokaz preska~u}i provere pomenutih uslova. DOKAZ. Defini{imo najpre skup F = {x B x 1 x n x, za neko n N i neke x 1,..., x n K}. O~igledno je K F. Jednostavno je proveriti da skup F zadovoqava uslove F1F4 prethodne definicije, dok uslov F5 ne mora zadovoqavati. F1 O~igledno 1 F, jer je 1 najve}i element Bulove algebre. F2 Po{to K ima svojstvo kona~nog preseka, ne postoje n N i x 1,..., x n K takvi da je x 1 x n 0. Dakle, 0 F. F3 Pretpostavimo da a F i a b. Iz a F sledi da postoje n N i x 1,..., x n K takvi da je x 1 x n a. Kako je tada i x 1 x n b, sledi da b F. F4 Ako a, b F, onda postoje n, m N i x 1,..., x n, y 1,..., y m K takvi da je x 1 x n a i y 1 y m b. Iz ove dve nejednakosti dobijamo da je x 1 x n y 1 y m a b, pa a b F.

29 Kqu~nu ideju za nastavak dokaza dobijamo ako uo~imo da se ultrafilteru ne mo`e dodati nijedan novi element iz B, a da dobijeni nadskup i daqe bude ultrafilter. Zaista, uslov F5 je ekvivalentan slede}em uslovu: za svaki element a B, ili a ili a pripada ultrafilteru, a nikako ne mogu pripadati oba, zbog uslova F2 i F4. Jednostavno se uo~ava da je ultrafilter maksimalan, u smislu inkluzije, podskup od B koji zadovoqava uslove F1F4. Dakle, o~ekivana je primena Cornove leme 13 (tj. aksiome izbora) u nastavku dokaza. Neka je F = {X B F X i X zadovoqava uslove F1 F4}. Tada je F, jer F F. Dokaza}emo da ure ewe (F, ) zadovoqava uslov Cornove leme, tj. da svaki lanac ima gorwe ograni~ewe. Neka je L F lanac, tj. za proizvoqne X 1, X 2 L va`i X 1 X 2 ili X 2 X 1. Pokaza}emo da def X L = L F. Po{to za svako X L, va`i F X, zakqu~ujemo da je F X L. F1 Za svako X L va`i 0 X, odakle sledi da 0 X L. F2 Za svako X L va`i 1 X, odakle sledi da 1 X L. F3 Pretpostavimo da a X L i a b. Iz a X L = L, sledi da postoji X L tako da je a X, pa po{to X zadovoqava uslov F3, zakqu~ujemo da b X, a samim tim i da b X L. F4 Neka su a, b X L proizvoqni. Tada postoje X 1, X 2 L takvi da a X 1 i b X 2. Kako je X 1 X 2 ili X 2 X 1, imamo da a, b X 1 ili a, b X 2, odakle sledi da a b X 1 ili a b X 2. Koji god slu~aj da nastupi, bi}e a b X L. Dakle, X L F. Kako je za svako X L, X X L, zakqu~ujemo da je X L gorwe ograni~ewe u (F, ) lanca L. Prema Cornovoj lemi, postoji maksimalan element F K u (F, ). Ostaje jo{ da se poka`e da F K zadovoqava svojstvo F5 (jer svojstva F1F4 trivijalno zadovoqava budu}i da F K F). Da bismo dokazali da F K zadovoqava svojstvo F5, pretpostavi}emo suprotno, da postoji z B takav da z F K i z F K. Neka je 31 F z K = {x B u z x, za neko u F K }. Primetimo najpre da je F F K FK z i z F K z. Nije te{ko proveriti da zadovoqava uslove F1 F4. F z K 13 Cornova lema: Ako u nekom parcijalno ure enom skupu svaki lanac ima gorwe ograni~ewe (majorantu), onda u tom parcijalnom ure ewu postoji maksimalan element. Cornova lema je ekvivalentna aksiomi izbora.

30 32 F1 O~igledno je da 1 F z K, jer je 1 z 1 i 1 F K. F2 Tako e, 0 F z K, jer bi u suprotnom postojao u F K takav da je u z 0, odakle bismo imali u z, pa bi moralo biti i z F K suprotno pretpostavci da z F K. F3 Ako a F z K i a b, onda postoji u F K takav da je u z a b, pa b F z K. F4 Ako a, b F z K, onda postoje u 1, u 2 F K takvi da je u 1 z a i u 2 z b, pa kako je (u 1 z) (u 2 z) = (u 1 u 2 ) z a b i u 1 u 2 F K, sledi da a b F z K. Dakle, F z K F i pri tome F K F z K, {to nije mogu}e jer je F K maksimalan. Da zakqu~imo, F K je ultrafilter Bulove algebre B koji sadr`i skup K. Posledica 3. Za svaki element a B \ {0}, postoji ultrafilter u B koji ga sadr`i. Vratimo se sada na po~etak. Neka je B proizvoqna Bulova algebra i U skup svih ultrafiltera ove algebre. Sada znamo da funkcija f : B P(U), f(a) = {X U a X}, a B, zadovoqava slede}e uslove: 1. f(a b) = f(a) f(b); 2. f(a b) = f(a) f(b); 3. f(a ) = f(a) c ; 4. f(0) =, tj. {X U 0 X} = ; 5. f(1) = U, tj. {X U 1 X} = U. [tavi{e, ova funkcija je i 1-1. Zaista, ako su a, b B razli~iti, a b, onda je a b 0 ili a b 0. U slu~aju da je a b 0, prema prethodnoj posledici, postoji ultrafilter F {a,b} koji sadr`i i a i b, a samim tim ne sadr`i a. Dakle, F {a,b} f(a) i F {a,b} f(b), odakle sledi da je f(a) f(b). Do istog zakqu~ka dolazimo polaze}i od pretpostavke a b 0. Skup f[b] = {f(a) a B} P(U) predstavqa jedno poqe skupova koje je izomorfno sa B. Na ovaj na~in je dokazana teorema koja je uzeta za naslov ovog odeqka. Teorema 9. [Stonova teorema reprezentacije] Svaka Bulova algebra izomorfna je nekom poqu skupova. Ova teorema zapravo u potpunosti opravdava tvrdwu sa po~etka poglavqa da su Bulovim algebrama okarakterisana sva algebarska svojstva skupovnih operacija.

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia. Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

Bulove jednačine i metodi za njihovo

Bulove jednačine i metodi za njihovo Matematički fakultet Univerzitet u Beogradu Bulove jednačine i metodi za njihovo rešavanje Master rad Mentor: Slavko Moconja Student: Nevena Dordević Beograd, 2017. Sadržaj 1 Uvod 2 2 Bulova algebra 3

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

Marija Stani} Neboj{a Ikodinovi} TEORIJA BROJEVA Zbirka zadataka

Marija Stani} Neboj{a Ikodinovi} TEORIJA BROJEVA Zbirka zadataka Marija Stani} Neboj{a Ikodinovi} TEORIJA BROJEVA Zbirka zadataka 2004 Sadr`aj Predgovor 5 1. Funkcija ceo deo 7 1.1. Zadaci........................... 10 2. Deqivost celih brojeva 22 2.1. Zadaci...........................

Διαβάστε περισσότερα

Diskretna matematika. Prof. dr Olivera Nikolić

Diskretna matematika. Prof. dr Olivera Nikolić Diskretna matematika Prof. dr Olivera Nikolić onikolic@singidunum.ac.rs 1 OSNOVNI POJMOVI MATEMATIČKE LOGIKE 2 1. Diskretna matematika 2. Kontinualna matematika 3 Pojam diskretne matematike Diskretna matematika

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

1 Algebarske operacije i algebraske strukture

1 Algebarske operacije i algebraske strukture 1 Algebarske operacije i algebraske strukture Defnicija 1.1 Neka su I i A skupovi. I-familija elemenata skupa A, ili familija elemenata iz A indeksirana skupom I, je funkcija a : I A koju radije zapisujemo

Διαβάστε περισσότερα

10 Iskazni račun - deduktivni sistem za iskaznu logiku

10 Iskazni račun - deduktivni sistem za iskaznu logiku 10 Iskazni račun - deduktivni sistem za iskaznu logiku Definicija 20 Iskazni račun je deduktivni sistem H = X, F orm, Ax, R, gde je X = S {,, (, )}, gde S = {p 1, p 2,..., p n,... }, F orm je skup iskaznih

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

2. Tautologije; Bulove funkcije (SDNF, SKNF)

2. Tautologije; Bulove funkcije (SDNF, SKNF) III dvoqas veжbi Vladimir Balti 2. Tautologije; Bulove funkcije SDNF, SKNF) Tautologije Teorijski uvod Navedimo neke tautologije zajedno sa Ƭihovim nazivima) koje se qesto koriste. naziv formula zakon

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 1

ELEMENTARNA MATEMATIKA 1 Na kolokviju nije dozvoljeno koristiti ni²ta osim pribora za pisanje. Zadatak 1. Ispitajte odnos skupova: C \ (A B) i (A C) (C \ B). Rje²enje: Neka je x C \ (A B). Tada imamo x C i x / A B = (A B) \ (A

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Matematička logika. novembar 2012

Matematička logika. novembar 2012 Predikatska logika 1 Matematička logika Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia novembar 2012 1 različiti nazivi: predikatska logika, logika prvog

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

Matematiqka logika u raqunarstvu, Januar 3. februar 2016.

Matematiqka logika u raqunarstvu, Januar 3. februar 2016. Matematiqka logika u raqunarstvu, Januar 3. februar 2016. 1. Na jeziku L = { }, gde je binarni relacijski simbol, posmatrajmo teoriju T koju qine sledee dve aksiome teorije skupova: x y (y x); i xy (x

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f}

Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f} Inverzna korespondencija Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa f 1 = {(b, a) B A (a, b) f} nazivamo inverznom korespondencijom korespondencije f. A f B A f 1 B

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

FUNKCIJE - 2. deo. Logika i teorija skupova. 1 Logika FUNKCIJE - 2. deo

FUNKCIJE - 2. deo. Logika i teorija skupova. 1 Logika FUNKCIJE - 2. deo FUNKCIJE - 2. deo Logika i teorija skupova 1 Logika FUNKCIJE - 2. deo Inverzna korespondencija Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa f 1 = {(b, a) B A (a, b) f}

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Deljivost 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Rešenje: Nazovimo naš izraz sa I.Važi 18 I 2 I 9 I pa možemo da posmatramo deljivost I sa 2 i 9.Iz oblika u kom je dat

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R. Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Granične vrednosti realnih funkcija i neprekidnost

Granične vrednosti realnih funkcija i neprekidnost Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Funkcije. Predstavljanje funkcija

Funkcije. Predstavljanje funkcija Funkcije narna relacija f je funkcionalna relacija ako važi: ( ) za svaki a postoji jedinstven element b takav da (a, b) f. Definicija. Funkcija 1 je uredjena trojka (,, f) gde f zadovoljava uslov: Činjenicu

Διαβάστε περισσότερα

1. Dušan Adnad ević i Zoran Kadelburg, Matematička analiza I, Naučna knjiga, Beograd, 1990.

1. Dušan Adnad ević i Zoran Kadelburg, Matematička analiza I, Naučna knjiga, Beograd, 1990. PREDGOVOR Predavanja su namenjena studentima koji polažu ispit iz predmeta Matematička analiza. Materijal je u nastajanju, iz nedelje u nedelju se dodaju novi sadržaji, moguće su i izmene u prethodno unešenom

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Osnovno svojstvo iskaza, ma kako složen bio, jeste da je on ili tačan, ili netačan.

Osnovno svojstvo iskaza, ma kako složen bio, jeste da je on ili tačan, ili netačan. Iskazna algebra Osnovno svojstvo iskaza, ma kako složen bio, jeste da je on ili tačan, ili netačan. Da bi se pravila za odred ivanje istinitosti precizno formalizovala, uvodi se sledeća matematička struktura.

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Relacije poretka ure denja

Relacije poretka ure denja Relacije poretka ure denja Relacija na skupu A je relacija poretka na A ako je ➀ refleksivna ➁ antisimetrična ➂ tranzitivna Umesto relacija poretka često kažemo i parcijalno ured enje ili samo ured enje.

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

1 Aksiomatska definicija skupa realnih brojeva

1 Aksiomatska definicija skupa realnih brojeva 1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna

Διαβάστε περισσότερα

Dimenzija vektorskog prostora

Dimenzija vektorskog prostora UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Marija Delić Dimenzija vektorskog prostora -master rad- Mentor: Akademik Prof. dr Stevan Pilipović Novi Sad,

Διαβάστε περισσότερα

U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije.

U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije. Šta je to relacija? U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije. Na primer, često se javlja potreba da se izvesni objekti uporede

Διαβάστε περισσότερα

8 Predikatski račun kao deduktivni sistem

8 Predikatski račun kao deduktivni sistem 26 8 Predikatski račun kao deduktivni sistem Neka je L neki jezik prvog reda. Da bismo odredili predikatski račun K L tipa L, prvo ćemo se dogovoriti šta će biti azbuka nad kojom radimo. Znamo da se svaka

Διαβάστε περισσότερα

1 Svojstvo kompaktnosti

1 Svojstvo kompaktnosti 1 Svojstvo kompaktnosti 1 Svojstvo kompaktnosti U ovoj lekciji će se koristiti neka svojstva realnih brojeva sa kojima se čitalac već upoznao tokom kursa iz uvoda u analizu. Na primer, važi Kantorov princip:

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Binarne relacije. Definicija. Uopštena binarna relacija je uredjena trojka (A, B, ρ) gde je ρ A B; (A, B) je tip ove binarne relacije.

Binarne relacije. Definicija. Uopštena binarna relacija je uredjena trojka (A, B, ρ) gde je ρ A B; (A, B) je tip ove binarne relacije. Binarne relacije Definicija. Uopštena binarna relacija je uredjena trojka (A, B, ρ) gde je ρ A B; (A, B) je tip ove binarne relacije. Kaže se i da je ρ binarna relacija sa skupa A u skup B (kao u [MP]).

Διαβάστε περισσότερα

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova. Pojam skupa U matematici se pojam skup ne definiše eksplicitno. On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

Kardinalni brojevi i Lebegova mera

Kardinalni brojevi i Lebegova mera Prirodno-matematički fakultet, Univerzitet u Nišu, Srbija http://wwwpmfniacyu/mii Matematika i informatika 1 (1-2) (2008), 41-50 Kardinalni brojevi i Lebegova mera Dragan S Dor dević U ovom radu prikazujemo

Διαβάστε περισσότερα

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici Meko računarstvo Student: Indeks:. Poja fazi skupa. Vrednost fazi funkcije pripadnosti je iz skupa/opsega: a) {0, b) R c) N d) N 0 e) [0, ] f) [-, ] 2. Poja fazi skupa 2. Na slici je prikazan grafik: a)

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα