Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1

2

3

4

5

6

7

8

9

10

11 (G) = 4 1 (G) = 3 (G) = 6 6 W G G C = {K 2,i i = 1, 2,...} (C[, 2]) (C[, 2]) {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G

12 u v G (G) = 2 O 1 O 2, O 3, O 4, O 5, O 6, O 7 O 8, O 9 A (G, {v}, {v}) B (G,, {v}) C (G, {v}, ) G C[, 2] B0 B4 B1, B2 B3 F 1, F 2 F 4

13

14 V V (V, E) G G V (G) E(G) V (G) E(G) {x, y} E(G) x y {x, y} G V (G) u, v {u, v} E(G) k 1 P k = ( {u 1,..., u k+1 }, { {u1, u 2 },..., {u k, u k+1 } }) u 1 u k+1 P k k 1 C k = ( {u 1,..., u k }, { {u 1, u 2 },..., {u k 1, u k }, {u k, u 1 } } k 1 K k = ( {u 1,..., u k }, { {u i, u j } 1 i < j k }) A, B k l K k,l = (A B, { {u, v} u A v B } ) S V (G) S G[S] = ( S, { {u, v} E(G) {u, v} S })

15 F E(G) F G[F ] = ( e F e, F ) G G G e E(G) G G u, v V (G) G {u, v} E(G) u G N G (u) = {e E(G) u e} e \ {u} u G G (u) = N G (u) G δ(g) = { G (u) u V (G)} G (G) = { G (u) u V (G)} d d d u, v V (G) G G u, v V 1,..., V k G[V i ] 1 i k G u, v V (G) G G G Γ G R 2 Γ G G F e F e = V (G) F G L 1 = l 1 1,..., l 1 p L 2 = l 2 1,..., l 2 q L 1 L 2 l 1 1,..., l 1 p, l 2 1,..., l 2 q L 1 L 2 n 2 n Σ Σ Σ G

16 L L w Σ w L L Σ G G Σ G L G I L L L G G I G k k G G w Σ w

17 G R 3 R 3 Γ R 3 Π = {x i 1 i k} Γ y : [0, ) Γ t(y) [0, ) i {1, 2,, k} y(t(y)) = x i (t(y)) y(t) t Γ x i (t) i k t(y) k Γ Γ G = (V, E)

18 u v p(v) v r(v) v s(u, v) {u, v} u v S e E(G) e e S S E(S, i) i S i S E(S, i)

19 E(S, 0) = i 1 E i i Q i = E(S, i 1) E i E(S, i) Q i E(G)\Q i S E(S, i) = E(G) i G i S E i i S E(S, i) Q i i i i 1 i j E(S, i) E(S, j) S G (S) G S (G) = { G (S) S G} E(G) = (G) = 0 G (T ) = 2 T e

20 G (G) T (T ) = 3 (T ) (T ) K 3,3 (K 3,3 ) = 4 (K 3,3 ) = 5 G (G) (H) = 2 (G) = 3 H G G (G) (G) (G) (G) G = (V, E) G e G {x, y} E {x, u xy } {u xy, y} u xy V (G) = (G e ) G n G e E (G) = (G n )

21 G (G) 1 (G) (G) + 1 (G) (G) (G) + 1 (G) (G) (G) + 1 k k + 1 k k + 1 (G) (G) (G) (G)

22

23 d

24 k k k G G (G) k > 1 G (G) 3 u u G (G) T (T ) = 2

25 G (G) G G (G) = (G) G (G) = 4 G (G) = 4 1 (G) = 3 (G) = 6 G n s {1,..., n 1} s (G) s n 1 (G) = (G) G 1 (G) = 3 G s (G) (G) s {1,..., n 1}

26 G (G) G G (G) = 4 G (G) k k G X V (G) v X k v X \ {v} X = {u V (H) H (u) = 6} 6 H 6 H G (G) + 1 = {k G k } H (H) = 7

27 G S i {1,..., S } G[E(S, i)] (G), (G) (G) (G), (G) (G) S G (G) = 2 (G) = 3 G

28 G (G) (G) S G = (V, E) i i i E(S, i 1) C E(S, i) = E(G) \ E(C) E(S, i) E(G) \ E(S, i) q G q q q (G) (G) G (G) = (G) C q = 0 0 (G) = (G)

29 G S G (S) = k S G (S ) k k G k (G) k {,,,,, }

30 G (A 0, Z 0 ),..., (A n, Z n ), A i E(G) Z i V (G) 0 i n A 0 = A n = E(G) A i Z i = ( e A i e) ( e E(G)\A i e) 0 i n Z i 0 i n Z i Z i 1 A i = A i 1 Z i Z i 1 A i e e E(G) \ A i 1 Z i Z i = (Z i 1 \ {u}) {v} u Z i 1 v V (G) \ Z i 1 {u, v} E(G) \ A i 1 u A i 1 A i = A i 1 {e} {u, v} v Z i = Z i 1 A i = A i 1 {e} e E(G) \ A i 1 Z i 1

31 S = (A 0, Z 0 ),..., (A n, Z n ) G G (S) = { Z i 0 i n} (G) = { G (S) S G} G X 0,..., X n E(G) X 0 = X n = E(G) X i \ X i i n X i A i G X E(G) G (X) = ( e) ( e X e E(G)\X X 0,..., X n G k G (X i ) k 0 i n G (G) k G k S = (A 0, Z 0 ),..., (A n, Z n ) G G (S) k G (A i ) Z i 0 i k G (A i ) k A 0,..., A n k G k k X = X 0,..., X n G k 0 i n ( G(X i ) + 1) 0 i n X i e)

32 X G (X i 1 X i ) G (X i ) 1 i n X = X 0, X 1,..., X i 1, X i 1 X i, X i+1,..., X n, k X, Y G (X Y ) + G (X Y G (X) + G (Y ) G (X i 1 X i ) G (X i 1 ) k X = X 0, X 1,..., X i 1, X i 1 X i, X i+1,..., X n, k X i 1 X i X i 1 X i 1 = X i X i 1 X i X i \ X i 1 = 1 X G δ(g) 2 X 0,..., X n G k X i \ X i 1 = {e i } 1 i n S A i = A i 1 {e i } 1 i n S j {1,..., n} A j = {e 1,..., e j 1 } A i = A i 1 {e i } 1 i j Z i k 0 i j G (X j 1 ) = Z j G (X j 1 ) e j X j \ X j 1 X j 1 e j G (X j 1 ) e j G (X j 1 ) k Z j+1 = Z j e j A j+1 = A j e j e j e j G (X j 1 ) v e j v v G (X j ) u e j u G (X j 1 ) \ G (X j ) u E(G)\X j Z j+1 = (Z j \{u}) {v} A j+1 = A j e j u e j v k S (X i 1 X i ) \ X i 1 1 X i+1 \ (X i 1 X i ) 1 (X i 1 X i ) \ X i 2 1 X i \ (X i 1 X i ) 1

33 G G (G ) = (G) S G G k G k G k G k (G) (G) G G S α : {1,..., S } V (G) α(i) = G (E(S, i)) α α(i) α(j) + α(i) α(j) α(i) + α(j), S i S j < i

34 (G) (G), (G), (G), (G) (G) G (G) = (G) G {,,,,, } W i K i K i K j i = j K i K j i < j (W ) = 281 (W ) = 290 W

35 T (T ) = (T ) k 4 G (G) = 4k + 1 (G) = 4k + 2 G (G) = 4 (G) = 5

36

37 G (G) (G), {,,,, } G {,,,, } α (G) = (G) (G) α (G) = 1, 5 G

38 G G G G n α (G) = ( n) T (T ) (T ) 2 (T ) 2 T α (T ) < 2

39 {α (G) G n } = 2 n

40

41 G = (V, E) u V e = {x, y} E u xy V G G \ u = (V \ {u}, {{u 1, u 2 } E u 1, u 2 u}) u G \ e = (V, E \ {e}) e G/e = (V \ {x, y} {u x,y }, {{u 1, u 2 } E u 1, u 2 {x, y}} {{u xy, v} v N G (x) N G (y) \ {x, y}}) e u xy H G H G G H G G G H G G G H G

42 ,, G G H G H G C = {K 2,i i = 1, 2,...} k 2,i K 2,j k 2,i K 2,j i j k 2,i K 2,j i, j K 2,1 K 2,2 K 2,3 C = {K 2,i i = 1, 2,...} C C {,, } H G G C H C C C G 1, G 2,... C G i, G j G i G j C C (C) G \ C (C) C T (T ) = {K 3 } {,, } P (P) = {K 5, K 3,3 } C G \ C (C) C C G \ C

43 (C) G C O (C) O G (C) C C[, k] = {G G (G) k} {,,,,,,,, } k k 1 C[, k], C[, k] C[, k] C[, k], C[, k] C[, k] k 1, (C[, 1]) ({u, v}, {{u, v}}) (C[, 2]) = {K 3, T } T (C[, k]) (C[, k]) (C[, k]) k = 1, 2 (C[, 2]) K 3 T T

44 C (C[, 1]) = {K 3, K 1,3 } C[, 1] (C[, 1]) (C[, 1]) (C[, 1]) (C[, 1]) (C[, 1]) (C[, 1]) C (C) (C) (C) (C) (C[, 2]) (C[, 2])

45 (C[, 2]) (C[, 2]) (C[, 3]) (C[, 3]) (C[, 2])

46

47 f : G N n(g) m(g) n(g) = V (G) m(g) = E(G) (G) G (G) = { G (u) u V }

48 G G G = (V, E) X 1,..., X r V i=1,...,r X i = V {x, y} E i {1,..., r} {x, y} X i 1 i j k r X i X k X j G k X 1,..., X r { X i i = 1,..., r} = k 1 (G) = k { X i i = 1,..., r} P n e 1,..., e n X i = e i i = 1,..., n (P ) = 1 C u u u X i (C) = 1 G (G) = (G) + 1 H G H G

49 G P = X 1,..., X r k P i, j, k 1 i < j < k r X i, X j, X k X i X j X k k 1 k k 1 G (G) G (G) (G) (G) + 1 G u 1 u 3 u 6 u 2 u 5 u 4 {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G (G) = (G)

50 G P = X 1,..., X r P i {1,..., r} G[X 1 X i ] G (G) k k 1 G (G) 2 (G) + 1 G P k C 2k + 1 C 2k + 3 (G) (G) + 2 G S k G S 2k + 3 G (G) (G) 2 (G) + 3 X 1,..., X r G

51 G X i X i X i, X j i j = 1 X j X i X k X i X k X j X i G G = (V, E) G X 1,..., X r V T V (T ) = {1,..., r} i=1,...,r X i = V {x, y} E i {1,..., r} {x, y} X i i, j, k {1,..., r} j T i k X i X k X j G k ( X 1,..., X r, T ) k 1 (G) = k G (G) = (G) = 2 G (G) = (G) + 1 k k

52 u 2 u3 u 4 u 8 u 9 u 10 u 1 u 5 u 6 u 7 u 11 G u 1 u 2 u 3 u 3 u 4 u 5 u 4 u 5 u 6 u 4 u 6 u 7 u 4 u 6 u 8 u 8 u 9 u 9 u 10 u 11 u 9 u 10 u 2 u 4 u 5 u 6 u 8 u 1 u 3 u 4 u 4 u 3 u 5 u 6 u u 8 9 u 6 u 7 u 9 u 11 G G = (V, E) X 1,..., X r V G i=1,...,r X i = V {x, y} E x X F (y) y X F (x) F (u) = { i {1,..., r} u X i } G k X 1,..., X r k 1 (G) = k G = (V, E) V = n L = u 1,..., u n u L L L V G u 1, u 2, u 3, u 4, u 5, u 6, u 7, u 8, u 9, u 10 G 1 (G) = (G) + 1

53 u 8 u 10 u 9 u 7 u 5 u 6 u 1 u 2 u 3 u 4 G = (V, E) V = n L = u 1,..., u n (G, L) = { i j {u i, u j } E} G k L (G, L) = k (G) = k G = (V, E) G G G E G G G G (G) = { (G ) G G} (G) = 2 G (G) (G) G (G) = (G)

54 G G = (V, E) E = m L = e 1,..., e m e i L ( ) ( ) L (e i ) = e j e j 1 j i i<j m L (L) = { L (e) e E} G (G) = {(L) L } E = 1 (G) = 0 { u 1 } { u 2, u2 } { u 3, u3 } { u 4, u3 } { u 5, u5 } { u 6, u5 } { u 7, u7 } u 8, { u7 } { u 9, u9 } { u 10, u9 } u 2 G (G) (G) G (G) = (G) (G) (G) G P = {p 1,..., p r } G ΛG = (V (G) {p 1,..., p r}, E(G) {{p 1, p 1},..., {p r, p r}} {p 1,..., p r} V (G) = Λ 1 G = (V (G) \ P, {{u 1, u 2 } E u 1, u 2 P }) G (G) = (ΛG) (G) = (Λ 1 G) G (G) (G) (G) + 1

55 (G) = (G) + 1 (G) = (G) (G) (G) + 2 (G) = (G) (G) = (G) + 1 (G) (G) (G) (G) (G) + 1

56

57 k k G = (V, E) V k V V 1, V 2 { } {x, y} E x V 1, y V 2 k k k

58 k G (G) = (G)+1 k k k k k C G C k (G) k k T n (T ) O(n) k T T T (T ) O(n n)

59 k A (G) = k {,, } (T ) T A (T ), (T ) k T G n (G) 3 O(n) k C G H G H G O(n 3 ) n = V (G) C (C) O 1,..., O (C) G G C O i G O i (C) O(n 3 ) n G C C (C) C (C) C[, k] C[, k] C[, k] C O(n 3 )

60 G (G) 2 (G) 2 (G) 3 k G = (V, E) (G) k V (G) k C C k 1 k G k 1 (G) k G = (V, E) O( V + E ) 1 k k Π L Π Σ G N Σ (I, k) L Π I Π k I

61 k G k k k G k k (G) k k G n(g) k n(g) Π A O(f(k) p(n)) f p n Π F P T A : G N H G H G (H) (G) C[, k] = {G G (G) k} k N k G k k (G) k : G N k (C[, k]) g : N N g(k) = (C[, k]) G G

62 (C[, k]) g(k) (G) k O(g(k) n 3 ) k k l G = (V, E) P l (G) k (G) k O(2 p(k) n) p n = V G O(n 2 ) l k (k) (G) O(2 p(k) n 2 ) k 2 ko(1) n G = (V, E) (G) k (G) k (G) k k

63 O = {C i, i N} G G C, C O C C C C G G C[, 2]

64 B u C v B u v C u v G (G) = 2 (G, S, S ) G S S V (G) G = (G, S, S ) G G S

65 K 2,3 K + 2,3 K 4 O 1 S S S G S S S S (G, S, S ) S = {v 1,..., v S } S = {v 1,..., v S }. (G, S, S ) G u u E = {{v 1, u },..., {v S, u }} E = {{v 1, u },..., {v S, u }}. G S, S V (G) (S 1, S 2 ) G S (G, S, S )

66 O 2 O3 O 4 O 5 O 6 O 7 O 2, O 3, O 4, O 5, O 6, O 7 E(S, i) = E i E(S, i) E = i E(S, i) = E(G) \ E i (G, S 1, S 2 ) (S 1, S 2 ) G (G, S 1, S 2 ) (G, S 1, S 2 ) (G) = (G,, ) G (G) (G) G E E E(G) G (E, E ) G E = A 1,..., A r i {1,..., r 1} E A i E(G) \ E i {1,..., r 1} A i+1 \ A i 1 A 1 = E

67 O8 O 9 O 8, O 9 A r = E(G) \ E (E, E ) G i {1,..., r} G[A i ] (E, E ) G A 1 A r (E, E ) E G i {1,..., r 1} E i G (E, i) = G (A i ) + q i q i A i 2 A i \ A i 1 A i E G (E) = { G (E, i) i {1,..., r 1}} G S, S V (G) (G, S, S ) (E, E ) (G, S, S ) (G, S, S ) (E, E ) (G, S, S ) (E, E )

68 G (G, S, S ) = (G, S, S ) G = (G, S, S ) (S 1, S 2 ) S k S i {1,..., S } E i = E(S, i) \ E(S, i 1) L i E i i {1,..., S } i S e L i e L = L 1 L S E = A 0,..., A r E(G ) A 0 = A i = A i 1 {e i } e i i L A s = E s {1,..., S } A t = E t {1,..., S } E = A s,..., A t (E, E ) G E (E) S G (E ) j {0,..., E } i j A j \ A j 1 E ij h j A hj \ A hj 1 L ij E h j,..., j G (E, h j ) l {h j + 1,..., j} G (A l ) G (A hj ) q l = 0 G (E, h j ) k G (E ) k q hj q hj = 0 G (E, h j ) = G (A hj ) S G (A hj ) i j S S k G (E, h j ) k q hj = 1 i j S p(x) s(y, x) x x G (A hj ) G (A hj ) i j G (A hj ) + 1 k G (E, h j ) k S G (A hj ) = G (A hj 1) \ {y} (h j 1) G (A hj 1) G (A hj ) k 1 G (E, h j ) k G (E, E ) E = A 1,..., A r G (E) = k E

69 E (E, E ) E = A 1,..., A r k i {1,..., r 1} V (A i ) V (A i+1 ) A i E(G ) V (A i ) (E, E ) i V (A i ) V (A i+1 ) L = e 1,..., e n E(G ) \ A i A i j i A j = A j A i+1 = A i {e 1 } A i+2 = A i {e 1, e 2 },..., A i+n = A i {e 1,..., e n } j i + n A j = A j {e 1,..., e n } j = 1,..., n G (A i+j ) = G (A i) j i + n G (A j ) G (A j) k (S, S ) G S k S S p(u ) S s(u, vi ) 2 S S S 0 E(S, 2 S ) = A 1 u V = V (G ) \ S \ {u } l u {1,..., r} u V (A lu ) L = u 1,..., u V V i j l ui l uj i {1,..., V } u i e i A lui 1 \ A lui v i e i E v i G (A lui 1) u i u i G (A lui ) E = {e 1,..., e V } A j j {1,..., r} A j 1 E < A j E i {1,..., V } S i v i G (A lui ) S i p(u i ) s(v i, u i ) S i G (A lui 1) \ G (A lui ) S = S 0 S 1 S V E A j j = 1,..., l u1 S i {1,..., V 1} A j j {l ui,..., l ui+1 1} V (A lui ) A j j {l u V,..., r} V (A lu V )

70 A j j {1,..., r} G (A j ) G S mj m j (A E ) \ (A j 1 E ) A E A j A A 1 = E A j G (A j +1) G S mj +1 A j +1 G (A j +1) G (A j ) m j +1 = m j A j +1 {e mj +1 } = (A j +1 E ) \ (A j E ) v mj +1 G (A j ) v mj +1 G (A j +1) u mj +1 G (A j +1) G (A j +1) = G (A j ) {u mj +1 } S mj +1 p(u mj +1 ) v mj +1 G (A j +1) u mj +1 G (A j +1) G (A j +1) = G (A j ) v mj +1 G (A j +1) G (A j +1) = ( G (A j ) \ {v mj +1 }) {u mj +1 } S mj +1 s(v mj +1, u mj +1 ) V S (i) i S V S = V S (1),..., V S (r) i S j V S (i) = V (A luj ) i {1,..., S } G [V S (i)] i {1,..., 2 S } i 2 S + 1,..., r G [V S (i + 1)] (i + 1) S r(u) G [V S (i+1)] = G [V S (i)] r(u) u V S (i) v u G (A luj 1) \ G (A luj ) j {1,..., V } u A luj {u, v} A luj V S (i) = V (A luj ) p(u) S {u, v} v V S (i) p(u) G [V S (i+1)]

71 s(v j, u j ) j {1,..., V } G [V S (i + 1)] G [V S (i)] u j v V S (i) i v j v j G (A luj ) s(v j, u j ) v j u V S (i) = V (A luj ) v j G (A luj ) u A luj {v j, u} A luj (i + 1) S G [V S (i + 1)] S (S 1, S 2 ) S 0 v V S u u i {1,..., V 1} E(S, S 0 S i 1 + 1) = = E(S, S 0 S i 1 + S i ) = A lui+1 1 i = V E(S, S 0 S V ) = A r S S 2 S S = G (E, 1) k j > 2 S G k (j +1) p(u i ) i {i,..., V } G (A lui 1) G (A lui 1) < k p(u i ) k G (A lui 1) = k u i G (A lui ) = G (A lui 1) {u i } G (A lui ) = k + 1 u i G (A lui ) = G (A lui 1) G (E, l ui ) = G (A lui ) + 1 = k + 1 S k (G 1, S1, S1 ) (G 2, S2, S2 ) (G 1, S1, S1 ) (G 2, S2, S2 ) (G 1, S1, S1 ) r (G 2, S2, S2 ) ϕ : V (G 2 ) V (G 1 ) v V (G 1 ) G 2 [ϕ 1 (v)] {v, u} E(G 1 ) G 2 [ϕ 1 (v) ϕ 1 (u)] ϕ(s 2 ) = S 1

72 ϕ(s 2 ) = S 1 G 1, G 2 G 1 G 2 (G 1,, ) r (G 2,, ) G G G G/e e = {x, y} u e ϕ : V (G) V (G/e) ϕ(x) = ϕ(y) = u e ϕ(u) = u u V (G) V (G/e) ϕ (G/e,, ) r (G,, ) G 1, G 2 ϕ : V (G 2 ) V (G 1 ) (G 1,, ) r (G 2,, ) G 2 G 2 G 1 σ : V (G 2) V (G 1 ) x, y V (G 2) {x, y} E(G 2) {σ(x), σ(y)} E(G 1 ) v V (G 1 ) G 2 [ϕ 1 (v)] u v σ(u v ) = v σ {x, y} E(G 1 ) G 2 [ϕ 1 (v) ϕ 1 (u)] σ (G 1, S1, S1 ) (G 2, S2, S2 ) (G 1, S1, S1 ) r (G 2, S2, S2 ) (G 1, S1, S1 )) (G 2, S2, S2 )) E = A 1,..., A r (E2, E2 ) G 2 = (G 2, S2, S2 ) k (E1, E1 ) G 1 = (G 2, S2, S2 ) k ϕ (G 1, S1, S1 ) r(g 2, S2, S2 ) ψ ϕ ψ(u 2 ) = u 1 ψ(u 2 ) = u 1 ψ (G 1, S 1 {u 1 }, S 1 {u 1 }) r (G 2, S 2 {u 2 }, S 2 {u 2 }) f = {x, y} E(G 1 ) E f E(G 2 ) ψ 1 (x) ψ 1 (y) E f e f E = {e f f E(G 1 )} E = A 1 E,..., A r E G 1 i {1,..., r 1} G 1 (E, i) G 2 (E, i)

73 v v v v v A (G, {v}, {v}) (C[, 2]) D 1 = O 1 O 12 O 1 O 2,..., O 9 O 10 O 11 O 12 O 10 : A v O 11 : B v O 12 : C v D 1 (C[, 2]) D 1 (C[, 2]) D 1 (C[, 2])

74 v v v v v v v v v v v v B (G,, {v}) v v v v v v C (G, {v}, ) G C[, 2] G G

75 B C G C[, 2] B 4 B 0 B 0 B 1 B 3 B 4 x B 2 w c 1 c 2 B2 c 3 c 4 B 3 B 4 y F 1 F2 F 4 G C[, 2] B 0 B 4 B 1, B 2 B 3 F 1, F 2 F 4

76

77

78

79

80

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

1529 Ν. 29(ΙΙ)/95. E.E. Παρ. 1(H) Αρ. 2990,

1529 Ν. 29(ΙΙ)/95. E.E. Παρ. 1(H) Αρ. 2990, E.E. Παρ. 1(H) Αρ. 2990, 21.7.95 1529 Ν. 29(ΙΙ)/95 περί Συμπληρωματικύ Πρϋπλγισμύ Νόμς (Αρ. 4) τυ 1995 εκδίδεται με δημσίευση στην Επίσημη Εφημερίδα της Κυπριακής Δημκρατίας σύμφωνα με τ Άρθρ 52 τυ Συντάγματς.

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x.

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x. ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Ορισός (Τυχαία Μεταβλητή). Οοάζουε τυχαία εταβλητή (τ..) κάθε απεικόιση Χ: Ω για τη οποία το σύολο { ω Ω : Χ(ω) x} έχει προσδιορίσιη πιθαότητα για κάθε x. Τούτο σηαίει ότι η ατίστροφη

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *&

! # $%%&$$'($)*#'*#&+$ $&#! #, &,$-.$! $-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *& ! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *& '*$$%!#*#&-!5!&,-/+#$!&- &"/ "$,&/#!6$7,&78 "$% &$&'#-/+#!5*% 3 +!$ 9 &$*,2"%& #$- 3 '*$%#

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

! " # $ % # "& #! $! !! % " # '! $ % !! # #!!! ) " ***

!  # $ % # & #! $! !! %  # '! $ % !! # #!!! )  *** ! " # $ % # # $ # # "& # $! $! #!! % " # '! $ % "!! $ "!!! # ( #!!! ) #! " *** # .....5.......9..........9.....4.3....... 9.4. -...3.......36....36......4.3....45.3......46.3......5.3.3....59.3.4.......65

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ - ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα

Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες

Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες Εσωτερικά και Εξωτερικά ευθέα Γινόμενα Α 1. Έστω η κυκλική ομάδα

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Μερικές Διαφορικές Εξισώσεις

Μιχάλης Παπαδημητράκης. Μερικές Διαφορικές Εξισώσεις Μιχάλης Παπαδημητράκης Μερικές Διαφορικές Εξισώσεις Περιεχόμενα 1 Γενικά. 1 1.1 Μερικές διαφορικές εξισώσεις............................ 1 1.2 Διαφορικοί τελεστές................................. 2 1.3

Διαβάστε περισσότερα

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,

Διαβάστε περισσότερα

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία 0 3 10 71 < < 3 1 7 ; (y k ) 0 LU n n M (2; 4; 1; 2) 2 n 2 = 2 2 n 2 n 2 = 2y 2 n n ' y = x [a; b] [a; b] x n = '(x n 1 ) (x n ) x 0 = 0 S p R 2 ; S p := fx 2 R 2 : kxk p = 1g; p = 1; 2; 1 K i

Διαβάστε περισσότερα

Συστήματα διατήρησης πίεσης

Συστήματα διατήρησης πίεσης Περιεχόμενα Συστήματα διατήρησης πίεσης Σελίδα Δοχεία διαστολής για εφαρμογές θέρμανσης, ψύξης και ηλιακά συστήματα reflex NG και N 4 reflex S 5 reflex G 6 reflex G - Εξαρτήματα για δοχεία διαστολής 7

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΑΛΟΓΗΡΑΤΟΥ Ζ. - ΜΟΝΟΒΑΣΙΛΗΣ Θ. ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ Μεγιστοποίηση εμβαδού με τον περιορισμό της περιμέτρου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ 4.. Εισαγωγή Στην προσομοίωση σε πολλές περιπτώσεις είναι απαραίτητη η δημιουργία δειγμάτων τυχαίων μεταβλητών που ακολουθούν κάποια καθορισμένη

Διαβάστε περισσότερα

Ανταλλακτικά για Laptop Lenovo

Ανταλλακτικά για Laptop Lenovo Ανταλλακτικά για Laptop Lenovo Ημερομηνία έκδοσης καταλόγου: 6/11/2011 Κωδικός Προϊόντος Είδος Ανταλλακτικού Μάρκα Μοντέλο F000000884 Inverter Lenovo 3000 C200 F000000885 Inverter Lenovo 3000 N100 (0689-

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 27/02/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/1/2015

Διαβάστε περισσότερα

Συνήθεις ιαφορικές Εξισώσεις. Πρόχειρες σηµειώσεις. Αλκης Τερσένοβ. 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2

Συνήθεις ιαφορικές Εξισώσεις. Πρόχειρες σηµειώσεις. Αλκης Τερσένοβ. 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2 Συνήθεις ιαφορικές Εξισώσεις 215 Πρόχειρες σηµειώσεις Αλκης Τερσένοβ Περιεχόµενα 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2 2. Συστήµατα ιαφορικών Εξισώσεων Πρώτης Τάξης... 22 2.1 ιαφορικές Εξισώσεις Ανώτερης

Διαβάστε περισσότερα

Παραδοχές - Φορτία. Οροφοι : 3 Υπόγεια: 0. Επικάλυψη δαπέδων= 0.80[kN/m²], Τοίχοι σε δάπεδα= 0.00[KN/m²] γg=1.35, γq=1.50. I, α=0.160g=1.

Παραδοχές - Φορτία. Οροφοι : 3 Υπόγεια: 0. Επικάλυψη δαπέδων= 0.80[kN/m²], Τοίχοι σε δάπεδα= 0.00[KN/m²] γg=1.35, γq=1.50. I, α=0.160g=1. Παράδειγμα εκτύπωσης FEDRA... Παραδοχές - Φορτία Ονομασία Εργου-Μελέτης Διεύθυνση έργου Μηχανικός Μελετητής Παράδειγμα εκτύπωσης FEDRA ΙΩΑΝΝΙΝΑ Μηχανικός Α... Γενικά Χαρακτηριστικά Κτιρίου Οροφοι Οροφοι

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ Τµ. Επιστήµης των Υλικών Συνάρτηση Κατανοµής Ορισµός F(x) = P(X x) = f(t) x t x f(t)dt, X διακριτή τ.µ., X συνεχής τ.µ. Ιδιότητες 0 F(x). 2 F είναι αύξουσα συνάρτηση. 3 F είναι συνεχής εκ δεξιών. 4 lim

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Κλίση συνάρτησης f Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Αν σε κάθε σημείο Px, y,z ενός τμήματος Δ του χώρου μία τιμή, ορίζεται μια συνάρτηση. f x, y,z : Δ, Δ αντιστοιχίσουμε την οποία ονομάζουμε σημειακή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Το Πρόβλημα της Συνάντησης Πολλών Πρακτόρων

ΚΕΦΑΛΑΙΟ 5 Το Πρόβλημα της Συνάντησης Πολλών Πρακτόρων k 2 n k n k n n k n k k S S k 2 n O(n) O(k n) O(kn) O( n) ) O(k n) O(n) O( n) O(n) O( k) O(n k) O( k) O( n n n k n k > 2 Ω( n + k) k n n k k n n n/2 S = d 1,..., d k m > 1 j 1 m, j k k S S O(k n) k n k

Διαβάστε περισσότερα

ẋ = f(x) n 1 f i (i = 1, 2,..., n) x i (i = 1, 2,..., n) x(0) = x o x(t) t > 0 t < 0 x(t) x o U I xo I xo : α xo < t < β xo α xo β xo x(t) t β t α + x f(x) = 0 x x x x V 1 x x o V 1 x(t) t > 0 x o V 1

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΦΑΡΜΟΓΗ ΑΝΕΛΑΣΤΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΣΟΜΟΙΩΜΑΤΟΣ ΒΛΑΒΗΣ ΣΤΟΙΧΕΙΩΝ ΤΟΙΧΟΠΟΙΙΑΣ ΣΕ ΥΠΟ ΚΛΙΜΑΚΑ ΚΤΙΡΙΑ ΤΟΙΧΟΠΟΙΙΑΣ ΥΠΟΒΑΛΛΟΜΕΝΑ

Διαβάστε περισσότερα

Πολλαπλασιαστές Lagrange Δυνάμεις δεσμών

Πολλαπλασιαστές Lagrange Δυνάμεις δεσμών ΦΥΣ - Διαλ.08 Πολλαπλασιαστές Lagrange Δυνάμεις δεσμών q q Το μεγάλο πλεονέκτημα του Lagrangian φορμαλισμού είναι ότι δεν χρειάζεται να υπολογισθούν οι δυνάμεις των δεσμών Ø Υπάρχουν περιπτώσεις που χρειαζόμαστε

Διαβάστε περισσότερα

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2

Διαβάστε περισσότερα

103 Α Α Α % Α 22 22 15,777 15.53 33.5 11,839 11.67 25.9

103 Α Α Α % Α 22 22 15,777 15.53 33.5 11,839 11.67 25.9 %- & Α -Η Η Α- Ω Ο Α Ο Ω Ο Α Ο Α Ο Ο Ο Α ΧΟ Η Α Ο Η / ΧΟ Η Ο Α... Α..Α.... Ο Α... Α..Α.. 127 Α Α Α Α Α Α Α % Α 21 21 20,924 18.40 36.8 19,434 17.15 34.2 127 Α Α Α Α Α Α Α %.. α 2 2 18,978 16.57 33.0 17,638

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά

Διαβάστε περισσότερα

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΣΗΣ ΘΝΗΣΙΜΟΤΗΤΑΣ ΙΩΑΝΝΗΣ Σ. ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ, ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014

Διαβάστε περισσότερα

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος =, όπου ~ N ( 0, και όλα τα μεταξύ τους ανεξάρτητα Τότε = (,, = ( 0, ( 0, f x f

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Λύσεις

Ασκήσεις Επανάληψης Λύσεις Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Στοιχεία Θεωρίας Συνόλων Θεωρούµε Ω το σύνολο αναφοράς. σ-άλγεβρα Εστω A είναι µια κλάση υποσυνόλων του Ω. τ.ω. A είναι µη κενή. 2 A A A c A. 3 A, A 2,... A A A 2...

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

ΠΡOΣΚΛΗΣΗ ΕΚΔHΛΩΣΗΣ ΕΝΔΙΑΦEΡΟΝΤΟΣ - ΣΥΜΒΑΣΙΟYΧΟΙ ΥΠΑΛΛΗΛΟΙ ΟΜΑΔΑ ΚΑΘΗΚΟΝΤΩΝ I - ΟΔΗΓΟΙ (ΑΝΔΡΕΣ/ΓΥΝΑΙΚΕΣ) EPSO/CAST/S/8/2014 I.

ΠΡOΣΚΛΗΣΗ ΕΚΔHΛΩΣΗΣ ΕΝΔΙΑΦEΡΟΝΤΟΣ - ΣΥΜΒΑΣΙΟYΧΟΙ ΥΠΑΛΛΗΛΟΙ ΟΜΑΔΑ ΚΑΘΗΚΟΝΤΩΝ I - ΟΔΗΓΟΙ (ΑΝΔΡΕΣ/ΓΥΝΑΙΚΕΣ) EPSO/CAST/S/8/2014 I. ΠΡOΣΚΛΗΣΗ ΕΚΔHΛΩΣΗΣ ΕΝΔΙΑΦEΡΟΝΤΟΣ - ΣΥΜΒΑΣΙΟYΧΟΙ ΥΠΑΛΛΗΛΟΙ ΟΜΑΔΑ ΚΑΘΗΚΟΝΤΩΝ I - ΟΔΗΓΟΙ (ΑΝΔΡΕΣ/ΓΥΝΑΙΚΕΣ) EPSO/CAST/S/8/2014 I. ΕΙΣΑΓΩΓΗ Κατόπιν αιτήματος των θεσμικών οργάνων της Ευρωπαϊκής Ένωσης, η Ευρωπαϊκή

Διαβάστε περισσότερα

Α 9.543 9.720-177 -1,8% Α Α 3.327 5.644-2.317-41,1% Α 9.448 9.629-181 -1,9% Α Α 3.758 3.174 584 18,4% Page 1 of 8

Α 9.543 9.720-177 -1,8% Α Α 3.327 5.644-2.317-41,1% Α 9.448 9.629-181 -1,9% Α Α 3.758 3.174 584 18,4% Page 1 of 8 Ο Ο Α Α Α Α 817 Α % Α 10.338 10.651-313 -2,9% Α Α Α 817 Α % Α 8.708 8.136 572 7,0% Α Α Α 817 Α % Α. Α. % 8.981 8.651 330 3,8% Α Α Α 817 Α % Α. Α. % 10.078 10.430-352 -3,4% Α Α Α 817 Α % Α. Α.. 9.288 Α

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. 1. Γενικά. 2. Πεδία Ορισµού

ΣΥΝΑΡΤΗΣΕΙΣ. 1. Γενικά. 2. Πεδία Ορισµού ΣΥΝΑΡΤΗΣΕΙΣ 1 Γενικά Συνάρτηση είνι µι διδικσί µε την οοί φτιάχνουµε διτετγµέν ζεύγη ριθµών της µορφής (x,y) σύµφων µε ένν συγκεκριµένο κνόν ου ονοµάζετι τύος της συνάρτησης y= f (x) Πράδειγµ: ίνετι η

Διαβάστε περισσότερα

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) ϕ = ϕ 1 + C(t) dt 2 ϕ = 0

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) ϕ = ϕ 1 + C(t) dt 2 ϕ = 0 u = (u, v, w) ω ω = u = 0 ϕ u u = ϕ u = 0 ϕ 2 ϕ = 0 u t = u ω 1 ρ Π + ν 2 u Π = p + (1/2)ρ u 2 + ρgz ω = 0 ( ϕ t + Π) = 0 ϕ t + Π = C(t) C(t) C(t) = 0 C(t) ϕ = ϕ 1 + C(t) dt C(t) ϕ ϕ 1 ϕ = ϕ 1 p ρ + ϕ

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. της 6ης Νοεμβρίου 2006

ΑΠΟΦΑΣΗ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. της 6ης Νοεμβρίου 2006 18.11.2006 EL Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 320/53 ΑΠΟΦΑΣΗ ΤΗΣ ΕΠΙΤΡΟΠΗΣ της 6ης Νοεμβρίου 2006 για την κατάρτιση των καταλόγων τρίτων χωρών και εδαφών από τα οποία επιτρέπονται οι εισαγωγές

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3. ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ Έστω Χ = (Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ. Χ την: F(x) = P(X 1 x 1,, X x ), x = (x 1,,x ) T 1. 0 F(x) 1, x.. Η F είναι μη

Διαβάστε περισσότερα

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0)

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π Δ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) 3Νο ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 1 Να μελετήσετε

Διαβάστε περισσότερα

Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr

Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr Προς: Μαθητές Α, Β & Γ Λυκείου / Κάθε ενδιαφερόμενο Αγαπητοί Φίλοι Όπως σίγουρα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 8η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 1ης ΙΟΥΛΙΟΥ 1994 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ II

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 1ης ΙΟΥΛΙΟΥ 1994 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ II Ν. 55()/94 ΠΑΑΤΑ ΠΩΤ ΤΣ ΕΠΣΣ ΕΕΔΑΣ ΤΣ ΔΚΑΤΑΣ Α. 2889 της 1ης ΥΛΥ 1994 ΝΘΕΣΑ ΕΣ II πεί Συμπλημτκύ Πϋπλγμύ Νόμς (Α. 19) τυ 1994 εκδίδετ με δημίευη τη Επίημη Εφημείδ της Κυπκής Δημκτίς ύμφ με τ Άθ 52 τυ Συτάγμτς.

Διαβάστε περισσότερα

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Ανέπτυξα την παρακάτω μεθοδολογία που με βοήθησε να ανταπεξέλθω στο

Διαβάστε περισσότερα

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ] συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

Κυρτή Ανάλυση. Ενότητα: Συνδυαστικά ϑεωρήµατα για κυρτά σύνολα στον Ευκλείδειο χώρο. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Κυρτή Ανάλυση. Ενότητα: Συνδυαστικά ϑεωρήµατα για κυρτά σύνολα στον Ευκλείδειο χώρο. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Συνδυαστικά ϑεωρήµατα για κυρτά σύνολα στον Ευκλείδειο χώρο Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ο χάρτης το γράφημα Σχήμα 5.3

ο χάρτης το γράφημα Σχήμα 5.3 KΕΦΑΛΑΙΟ 5 ΓΡΑΦΗΜΑΤΑ 5.1. Ανακάλυψη Ο W. Leibniz, σε επιστολή του το 1679 προς τον C. Huygens, παρατήρησε ότι "μας χρειάζεται ένα άλλο είδος ανάλυσης, γεωμετρικής ή γραμμικής, που να ασχολείται απ' ευθείας

Διαβάστε περισσότερα

Οδηγός προϊόντων 2012 Edition GR

Οδηγός προϊόντων 2012 Edition GR Οδηγός προϊόντων 2012 Edition GR Reflex Βασιστείτε σε μας! Το όνομα Reflex είναι πασίγνωστο στην Ευρώπη και σε ολόκληρο τον κόσμο ως κορυφαία επιλογή για συστήματα ελέγχου πίεσης σε εφαρμογές θέρμανσης,

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 3 Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 3 Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα / 77 Επαναληπτικές

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Χαράλαµπος Α. Χαραλαµπίδης 21 εκεµβρίου 2009 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Ορισµός (α) Εστω (X, Y) διακριτή διδιάστατη τυχαία µεταβλητή µε συνάρτηση πιθανότητας

Διαβάστε περισσότερα

!"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%' " (&! #!$"/001

!#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%'  (&! #!$/001 !"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. ') '#*#(& )!#)! ##%' " (&! #!$"/001 ')!' &'# 2' '#)!( 3(&/004&' 5#(& /006 # '#)! 7!+8 8 8 #'%# ( #'## +,-'!$%(' & ('##$%('9&#' & ('##$%('9')

Διαβάστε περισσότερα

Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα

Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα 1. Χρονική απόκριση συστημάτων αυτομάτου ελέγχου Στα περισσότερα συστήματα αυτομάτου ελέγχου χρησιμοποιείται ως ανεξάρτητη μεταβλητή ο χρόνος,

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΥΠΟΛΟΓΙΣΜΩΝ

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΥΠΟΛΟΓΙΣΜΩΝ ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΥΠΟΛΟΓΙΣΜΩΝ x x x y y x y?? Ευριπίδης Μάρκου Ευάγγελος Κρανάκης Άρης Παγουρτζής Ντάννυ Κριζάνκ ΕΥΡΙΠΙΔΗΣ ΜΑΡΚΟΥ Τµήµα Πληροφορικής µε Εφαρµογές στη Βιοϊατρική Πανεπιστήµιο

Διαβάστε περισσότερα

+ 1 n 5 (η) {( 1) n + 1 m

+ 1 n 5 (η) {( 1) n + 1 m Κεφάλαιο Τοπολογία του. Στοιχεία Θεωρίας Ορισµός Αν α και ɛ > ονοµάζουµε ɛ-περιοχή του α ή περιοχή κέντρου α και ακτίνας ɛ και συµβολίζουµε N α (ɛ) το σύνολο όλων των αριθµών που έχουν απόσταση από το

Διαβάστε περισσότερα

ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Α' ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) 1 ΠΙΝΑΚΕΣ- ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Α' Ομάδας i) 3x7 ii) π.χ. το στοιχείο α 12 μας πληροφορεί ότι η ομάδα «ΝΙΚΗ» έχει 6 νίκες. x = -7, y = 8, ω = 8..i) x

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΙΑΓΩΝΙΣΜΑ Β

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΙΑΓΩΝΙΣΜΑ Β ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΙΑΓΩΝΙΣΜΑ Β ΘΕΜΑ 1 ο Α. Να σημειώσετε με σωστό η λάθος: 1. Ο συμβολομεταφραστής είναι πρόγραμμα που μετατρέπει ένα πρόγραμμα από γλώσσα υψηλού επιπέδου

Διαβάστε περισσότερα

Γραφείο Εναρμόνισης στην Εσωτερική Αγορά (ΓΕΕΑ) Στοιχεία για τη διαδικασία ενώπιον του ΓΕΕΑ Στοιχεία αναγνώρισης Αιτούντος / Αντιπροσώπου:

Γραφείο Εναρμόνισης στην Εσωτερική Αγορά (ΓΕΕΑ) Στοιχεία για τη διαδικασία ενώπιον του ΓΕΕΑ Στοιχεία αναγνώρισης Αιτούντος / Αντιπροσώπου: Γραφείο Εναρμόνισης στην Εσωτερική Αγορά (ΓΕΕΑ) Μόνο για το ΓΕΕΑ: Ημερομηνία παραλαβής Αριθ. σελίδων Μεταγενέστερη επέκταση της προστασίας σύμφωνα με το Πρωτόκολλο της Μαδρίτης 0 (υποχρεωτικό) Στοιχεία

Διαβάστε περισσότερα

Παρατηρήσεις, Συµπληρώσεις και Ασκήσεις στο πρώτο µέρος του 1 ου κεφαλαίου της Ανάλυσης (ενότητες 1.1, 1.2, 1.3)

Παρατηρήσεις, Συµπληρώσεις και Ασκήσεις στο πρώτο µέρος του 1 ου κεφαλαίου της Ανάλυσης (ενότητες 1.1, 1.2, 1.3) ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ /ΝΣΗ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΡΗΤΗΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ.Ε. Ν. ΗΡΑΚΛΕΙΟΥ ηµήτριος I. Μπουνάκης Σχολικός Σύµβουλος Μαθηµατικών

Διαβάστε περισσότερα

-! () $M ' 1' /W /,9 /' 1 :c Q \/0,> Z 1/0 " 1! GDP * &'() =! P[\ 01, '!R W! :,Q (Sachs&Warner,1995) a' / Qbc,,, J L bc, [1] (Pomeranz,2000) R

-! () $M ' 1' /W /,9 /' 1 :c Q \/0,> Z 1/0  1! GDP * &'() =! P[\ 01, '!R W! :,Q (Sachs&Warner,1995) a' / Qbc,,, J L bc, [1] (Pomeranz,2000) R 18 5 2016 9 ( ) JournalofCapitalUniversityofEconomicsandBusines Vol 18,No 5 Sep 2016 DOI:10 13504/j cnki isn1008-2700 2016 05 006! F

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 0 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΞΕΤΑΣΕΩΝ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία µμου δεν στοχεύει απλά στο κυνήγι

Διαβάστε περισσότερα

Στοιχεία Πιθανοτήτων και Στοχαστικών Διαδικασιών

Στοιχεία Πιθανοτήτων και Στοχαστικών Διαδικασιών Α Στοιχεία Πιθανοτήτων και Στοχαστικών Διαδικασιών Α.1 Εισαγωγικά Το παρόν παράρτημα δεν έχει σαν στόχο να καλύψει αναλυτικά την ύλη της Θεωρίας Πιθανοτήτων και Στοχαστικών Διαδικασιών. Υπάρχει στη βιβλιογραφία

Διαβάστε περισσότερα

Plantronics Explorer 10. Εγχειρίδιο χρήσης

Plantronics Explorer 10. Εγχειρίδιο χρήσης Plantronics Explorer 10 Εγχειρίδιο χρήσης Περιεχόμενα Λίγα λόγια για τον αγοραστή 3 Περιεχόμενα συσκευασίας 4 Επισκόπηση ακουστικού 5 Η ασφάλεια προέχει 5 Σύζευξη και φόρτιση 6 Σύζευξη 6 Ενεργοποίηση της

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ Μαρτίου 00 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική

Διαβάστε περισσότερα

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική 1 Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική Οµοιοπολικοί δεσµοί στο πυρίτιο Κρυσταλλική δοµή Πυριτίου ιάσταση κύβου για το Si: 0.543 nm Εισαγωγή στη Μικροηλεκτρονική

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ Παράδοση 7 ΕΠΙΛΟΓΗ ΣΕ ΣΥΝΘΗΚΕΣ ΚΙΝΔΥΝΟΥ Συνεπής επιλογή σε συνθήκες βεβαιότητας Αν οι προτιμήσεις ικανοποιούν Πληρότητα Αντανακλαστικότητα (Aυτοπάθεια) Μεταβατικότητα Συνέχεια

Διαβάστε περισσότερα

Στο Κεφάλαιο 5 µελετώντας την προβολή του τρισδιάστατου χώρου στο επίπεδο της κάµερας εξετάστηκε

Στο Κεφάλαιο 5 µελετώντας την προβολή του τρισδιάστατου χώρου στο επίπεδο της κάµερας εξετάστηκε Κεφάλαιο 6 Αποκοπή (clipping) Στο Κεφάλαιο 5 µελετώντας την προβολή του τρισδιάστατου χώρου στο επίπεδο της κάµερας εξετάστηκε η διαδικασία προβολής µεµονωµένων σηµείων και µόνο προς το τέλος του κεφαλαίου

Διαβάστε περισσότερα

ΖΩΓΡΑΦΙΖΩ ΤΗΝ ΕΥΡΩΠΗ. Συμβούλιο της Ευρωπαϊκής Ένωσης

ΖΩΓΡΑΦΙΖΩ ΤΗΝ ΕΥΡΩΠΗ. Συμβούλιο της Ευρωπαϊκής Ένωσης ΖΩΓΡΑΦΙΖΩ ΤΗΝ ΕΥΡΩΠΗ Συμβούλιο της Ευρωπαϊκής Ένωσης 2013 Η παρούσα έκδοση εκπονήθηκε από τη Γενική Γραμματεία του Συμβουλίου, παρέχεται δε αποκλειστικά και μόνο προς ενημέρωση. Τα θεσμικά όργανα της ΕΕ

Διαβάστε περισσότερα

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων 11 1 i) ii) 1 1 1 0 1 1 0 0 0 x = 0 x +x 4 +x 5 = x = 1 Λύνοντας ως προς x και στη συνέχεια ως προς x 4, ϐρίσκουµε ότι η γενική λύση του συστήµατος είναι η 5άδα

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Μετρικοποιησιµότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m.

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m. Σηµειώσεις Συναρτησιακής Ανάλυσης Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Περιεχόµενα 1. Το ϑεώρηµα κατηγορίας του Baire 4 2. Χώροι Banach 5 3. Φραγµένοι γραµµικοί τελεστές 8 4. Χώροι πεπερασµένης

Διαβάστε περισσότερα

Κεφάλαιο 6 ιανυσµατικοί χώροι...1

Κεφάλαιο 6 ιανυσµατικοί χώροι...1 6. ιανυσµατικοί χώροι Σελίδα από 5 Κεφάλαιο 6 ιανυσµατικοί χώροι ιανυσµατικοί χώροι... 6. ιανυσµατικοί χώροι... 6. Υποχώροι...7 6. Γραµµικοί συνδυασµοί... 6. Γραµµική ανεξαρτησία...9 6.5 Άθροισµα και ευθύ

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Χημικές Διεργασίες: Χημική Ισορροπία η σύνδεση με τη Θερμοδυναμική

Χημικές Διεργασίες: Χημική Ισορροπία η σύνδεση με τη Θερμοδυναμική : Χημική Ισορροπία η σύνδεση με τη Θερμοδυναμική Η Θερμοδυναμική σε μία τάξη Θεμελιώδης συνάρτηση: F(U, S, V) = 0 Ενέργεια, ικανότητα παραγωγής έργου Εντροπία, μη ικανότητα παραγωγής έργου, μη διαθεσιμότητα

Διαβάστε περισσότερα

Положeніе чcтнhz ри1зы прес hz вlчцы нaшеz бцdы ко влахeрнэ. 2. hlas Byz. / ZR

Положeніе чcтнhz ри1зы прес hz вlчцы нaшеz бцdы ко влахeрнэ. 2. hlas Byz. / ZR 2.7. Μνήµη τής εν Βλαχέρναις Καταθέσεως τής τιµίας Εσθήτος τής Υπεραγίας Θεοτόκου. Положeніе чcтнhz ри1зы прес hz вlчцы нaшеz бцdы ко влахeрнэ. 2. hlas Byz. / ZR.. Φρένα καθαραντες καί νούν Byzantská tradícia:,

Διαβάστε περισσότερα

Συνολική Ζήτηση, Δημοσιονομική Πολιτική και Εξωτερικός Τομέας

Συνολική Ζήτηση, Δημοσιονομική Πολιτική και Εξωτερικός Τομέας Συνολική Ζήτηση, Δημοσιονομική Πολιτική και Εξωτερικός Τομέας - Βασικά Ζητήματα Δημοσιονομικής Πολιτικής (1) Σταθεροποιητική Πολιτική (2) Σημασία Δημοσιονομικού Ελλείμματος (3) Επιπτώσεις Δημόσιου Χρέους

Διαβάστε περισσότερα

Mixed Distributions = + k k. = n. k k k. ρ k Χ Χ ] e [ ] Χ i

Mixed Distributions = + k k. = n. k k k. ρ k Χ Χ ] e [ ] Χ i p d d Mxd Dstrbutos ρν ( ( ρ Ν( ρ ( ρ ρ ρ ( L ( ρ [ ρ ( ( ρ ( ]! " # $&% ' * - 3 4&5 6 7 8 9: ;A@CB < DFE G IKJLNM OFP QRS TU V S WTNX ρ Y[Z!\LZ!]^]`_ ab!c L! d!! ρ ( ρ Ρ( ρ ρ gh Cḧ l l ρ log L ρ log!

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών & Φυσικών Επιστημών Τομέας Μαθηματικών

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών & Φυσικών Επιστημών Τομέας Μαθηματικών Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών & Φυσικών Επιστημών Τομέας Μαθηματικών Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Μαθηματική προτυποποίηση στις σύγχρονες επιστήμες και την

Διαβάστε περισσότερα

σ (9) = i + j + 3 k, σ (9) = 1 6 k.

σ (9) = i + j + 3 k, σ (9) = 1 6 k. Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

! " # $ $! % # & ' +, " -./010 " % %

!  # $ $! % # & ' +,  -./010  % % ! " # $ $! % # & ' # ( + ) *!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! " ##$%$& $!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Διαβάστε περισσότερα

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από Διάλεξη 3: 19.10.2016 Θεωρία Γραφημάτων Γραφέας: Βασίλης Λίβανος Διδάσκων: Σταύρος Κολλιόπουλος 3.1 Ακμοδιαχωριστές, Τομές, Δεσμοί Ορισμός 3.1 Ακμοδιαχωριστής (Edge-eparator) ενός γραφήματος G = (V, E)

Διαβάστε περισσότερα

ΓΗΣ ΕΠΙΣΗΜΟΥ ΕΦΗΜΕΡΙΔΟΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ύττ* *Αρ. 870 της 23ης ΑΠΡΙΛΙΟΥ 1971 ΝΟΜΟΘΕΣΙΑ

ΓΗΣ ΕΠΙΣΗΜΟΥ ΕΦΗΜΕΡΙΔΟΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ύττ* *Αρ. 870 της 23ης ΑΠΡΙΛΙΟΥ 1971 ΝΟΜΟΘΕΣΙΑ ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΝ ΓΗΣ ΕΠΙΣΗΜΥ ΕΦΗΜΕΡΙΔΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ ύττ* *Αρ. 87 της 2ης ΑΠΡΙΛΙΥ 1971 ΝΜΘΕΣΙΑ ΜΕΡΣ Ι Ό περί Τελνειακών Δασμών και Φόρν Καταναλώσες ('Επιβλή και Επιστρφή τύταιν) (Τρππιητικός) (Άρ. 2) Νόμς

Διαβάστε περισσότερα