Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1

2

3

4

5

6

7

8

9

10

11 (G) = 4 1 (G) = 3 (G) = 6 6 W G G C = {K 2,i i = 1, 2,...} (C[, 2]) (C[, 2]) {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G

12 u v G (G) = 2 O 1 O 2, O 3, O 4, O 5, O 6, O 7 O 8, O 9 A (G, {v}, {v}) B (G,, {v}) C (G, {v}, ) G C[, 2] B0 B4 B1, B2 B3 F 1, F 2 F 4

13

14 V V (V, E) G G V (G) E(G) V (G) E(G) {x, y} E(G) x y {x, y} G V (G) u, v {u, v} E(G) k 1 P k = ( {u 1,..., u k+1 }, { {u1, u 2 },..., {u k, u k+1 } }) u 1 u k+1 P k k 1 C k = ( {u 1,..., u k }, { {u 1, u 2 },..., {u k 1, u k }, {u k, u 1 } } k 1 K k = ( {u 1,..., u k }, { {u i, u j } 1 i < j k }) A, B k l K k,l = (A B, { {u, v} u A v B } ) S V (G) S G[S] = ( S, { {u, v} E(G) {u, v} S })

15 F E(G) F G[F ] = ( e F e, F ) G G G e E(G) G G u, v V (G) G {u, v} E(G) u G N G (u) = {e E(G) u e} e \ {u} u G G (u) = N G (u) G δ(g) = { G (u) u V (G)} G (G) = { G (u) u V (G)} d d d u, v V (G) G G u, v V 1,..., V k G[V i ] 1 i k G u, v V (G) G G G Γ G R 2 Γ G G F e F e = V (G) F G L 1 = l 1 1,..., l 1 p L 2 = l 2 1,..., l 2 q L 1 L 2 l 1 1,..., l 1 p, l 2 1,..., l 2 q L 1 L 2 n 2 n Σ Σ Σ G

16 L L w Σ w L L Σ G G Σ G L G I L L L G G I G k k G G w Σ w

17 G R 3 R 3 Γ R 3 Π = {x i 1 i k} Γ y : [0, ) Γ t(y) [0, ) i {1, 2,, k} y(t(y)) = x i (t(y)) y(t) t Γ x i (t) i k t(y) k Γ Γ G = (V, E)

18 u v p(v) v r(v) v s(u, v) {u, v} u v S e E(G) e e S S E(S, i) i S i S E(S, i)

19 E(S, 0) = i 1 E i i Q i = E(S, i 1) E i E(S, i) Q i E(G)\Q i S E(S, i) = E(G) i G i S E i i S E(S, i) Q i i i i 1 i j E(S, i) E(S, j) S G (S) G S (G) = { G (S) S G} E(G) = (G) = 0 G (T ) = 2 T e

20 G (G) T (T ) = 3 (T ) (T ) K 3,3 (K 3,3 ) = 4 (K 3,3 ) = 5 G (G) (H) = 2 (G) = 3 H G G (G) (G) (G) (G) G = (V, E) G e G {x, y} E {x, u xy } {u xy, y} u xy V (G) = (G e ) G n G e E (G) = (G n )

21 G (G) 1 (G) (G) + 1 (G) (G) (G) + 1 (G) (G) (G) + 1 k k + 1 k k + 1 (G) (G) (G) (G)

22

23 d

24 k k k G G (G) k > 1 G (G) 3 u u G (G) T (T ) = 2

25 G (G) G G (G) = (G) G (G) = 4 G (G) = 4 1 (G) = 3 (G) = 6 G n s {1,..., n 1} s (G) s n 1 (G) = (G) G 1 (G) = 3 G s (G) (G) s {1,..., n 1}

26 G (G) G G (G) = 4 G (G) k k G X V (G) v X k v X \ {v} X = {u V (H) H (u) = 6} 6 H 6 H G (G) + 1 = {k G k } H (H) = 7

27 G S i {1,..., S } G[E(S, i)] (G), (G) (G) (G), (G) (G) S G (G) = 2 (G) = 3 G

28 G (G) (G) S G = (V, E) i i i E(S, i 1) C E(S, i) = E(G) \ E(C) E(S, i) E(G) \ E(S, i) q G q q q (G) (G) G (G) = (G) C q = 0 0 (G) = (G)

29 G S G (S) = k S G (S ) k k G k (G) k {,,,,, }

30 G (A 0, Z 0 ),..., (A n, Z n ), A i E(G) Z i V (G) 0 i n A 0 = A n = E(G) A i Z i = ( e A i e) ( e E(G)\A i e) 0 i n Z i 0 i n Z i Z i 1 A i = A i 1 Z i Z i 1 A i e e E(G) \ A i 1 Z i Z i = (Z i 1 \ {u}) {v} u Z i 1 v V (G) \ Z i 1 {u, v} E(G) \ A i 1 u A i 1 A i = A i 1 {e} {u, v} v Z i = Z i 1 A i = A i 1 {e} e E(G) \ A i 1 Z i 1

31 S = (A 0, Z 0 ),..., (A n, Z n ) G G (S) = { Z i 0 i n} (G) = { G (S) S G} G X 0,..., X n E(G) X 0 = X n = E(G) X i \ X i i n X i A i G X E(G) G (X) = ( e) ( e X e E(G)\X X 0,..., X n G k G (X i ) k 0 i n G (G) k G k S = (A 0, Z 0 ),..., (A n, Z n ) G G (S) k G (A i ) Z i 0 i k G (A i ) k A 0,..., A n k G k k X = X 0,..., X n G k 0 i n ( G(X i ) + 1) 0 i n X i e)

32 X G (X i 1 X i ) G (X i ) 1 i n X = X 0, X 1,..., X i 1, X i 1 X i, X i+1,..., X n, k X, Y G (X Y ) + G (X Y G (X) + G (Y ) G (X i 1 X i ) G (X i 1 ) k X = X 0, X 1,..., X i 1, X i 1 X i, X i+1,..., X n, k X i 1 X i X i 1 X i 1 = X i X i 1 X i X i \ X i 1 = 1 X G δ(g) 2 X 0,..., X n G k X i \ X i 1 = {e i } 1 i n S A i = A i 1 {e i } 1 i n S j {1,..., n} A j = {e 1,..., e j 1 } A i = A i 1 {e i } 1 i j Z i k 0 i j G (X j 1 ) = Z j G (X j 1 ) e j X j \ X j 1 X j 1 e j G (X j 1 ) e j G (X j 1 ) k Z j+1 = Z j e j A j+1 = A j e j e j e j G (X j 1 ) v e j v v G (X j ) u e j u G (X j 1 ) \ G (X j ) u E(G)\X j Z j+1 = (Z j \{u}) {v} A j+1 = A j e j u e j v k S (X i 1 X i ) \ X i 1 1 X i+1 \ (X i 1 X i ) 1 (X i 1 X i ) \ X i 2 1 X i \ (X i 1 X i ) 1

33 G G (G ) = (G) S G G k G k G k G k (G) (G) G G S α : {1,..., S } V (G) α(i) = G (E(S, i)) α α(i) α(j) + α(i) α(j) α(i) + α(j), S i S j < i

34 (G) (G), (G), (G), (G) (G) G (G) = (G) G {,,,,, } W i K i K i K j i = j K i K j i < j (W ) = 281 (W ) = 290 W

35 T (T ) = (T ) k 4 G (G) = 4k + 1 (G) = 4k + 2 G (G) = 4 (G) = 5

36

37 G (G) (G), {,,,, } G {,,,, } α (G) = (G) (G) α (G) = 1, 5 G

38 G G G G n α (G) = ( n) T (T ) (T ) 2 (T ) 2 T α (T ) < 2

39 {α (G) G n } = 2 n

40

41 G = (V, E) u V e = {x, y} E u xy V G G \ u = (V \ {u}, {{u 1, u 2 } E u 1, u 2 u}) u G \ e = (V, E \ {e}) e G/e = (V \ {x, y} {u x,y }, {{u 1, u 2 } E u 1, u 2 {x, y}} {{u xy, v} v N G (x) N G (y) \ {x, y}}) e u xy H G H G G H G G G H G G G H G

42 ,, G G H G H G C = {K 2,i i = 1, 2,...} k 2,i K 2,j k 2,i K 2,j i j k 2,i K 2,j i, j K 2,1 K 2,2 K 2,3 C = {K 2,i i = 1, 2,...} C C {,, } H G G C H C C C G 1, G 2,... C G i, G j G i G j C C (C) G \ C (C) C T (T ) = {K 3 } {,, } P (P) = {K 5, K 3,3 } C G \ C (C) C C G \ C

43 (C) G C O (C) O G (C) C C[, k] = {G G (G) k} {,,,,,,,, } k k 1 C[, k], C[, k] C[, k] C[, k], C[, k] C[, k] k 1, (C[, 1]) ({u, v}, {{u, v}}) (C[, 2]) = {K 3, T } T (C[, k]) (C[, k]) (C[, k]) k = 1, 2 (C[, 2]) K 3 T T

44 C (C[, 1]) = {K 3, K 1,3 } C[, 1] (C[, 1]) (C[, 1]) (C[, 1]) (C[, 1]) (C[, 1]) (C[, 1]) C (C) (C) (C) (C) (C[, 2]) (C[, 2])

45 (C[, 2]) (C[, 2]) (C[, 3]) (C[, 3]) (C[, 2])

46

47 f : G N n(g) m(g) n(g) = V (G) m(g) = E(G) (G) G (G) = { G (u) u V }

48 G G G = (V, E) X 1,..., X r V i=1,...,r X i = V {x, y} E i {1,..., r} {x, y} X i 1 i j k r X i X k X j G k X 1,..., X r { X i i = 1,..., r} = k 1 (G) = k { X i i = 1,..., r} P n e 1,..., e n X i = e i i = 1,..., n (P ) = 1 C u u u X i (C) = 1 G (G) = (G) + 1 H G H G

49 G P = X 1,..., X r k P i, j, k 1 i < j < k r X i, X j, X k X i X j X k k 1 k k 1 G (G) G (G) (G) (G) + 1 G u 1 u 3 u 6 u 2 u 5 u 4 {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G (G) = (G)

50 G P = X 1,..., X r P i {1,..., r} G[X 1 X i ] G (G) k k 1 G (G) 2 (G) + 1 G P k C 2k + 1 C 2k + 3 (G) (G) + 2 G S k G S 2k + 3 G (G) (G) 2 (G) + 3 X 1,..., X r G

51 G X i X i X i, X j i j = 1 X j X i X k X i X k X j X i G G = (V, E) G X 1,..., X r V T V (T ) = {1,..., r} i=1,...,r X i = V {x, y} E i {1,..., r} {x, y} X i i, j, k {1,..., r} j T i k X i X k X j G k ( X 1,..., X r, T ) k 1 (G) = k G (G) = (G) = 2 G (G) = (G) + 1 k k

52 u 2 u3 u 4 u 8 u 9 u 10 u 1 u 5 u 6 u 7 u 11 G u 1 u 2 u 3 u 3 u 4 u 5 u 4 u 5 u 6 u 4 u 6 u 7 u 4 u 6 u 8 u 8 u 9 u 9 u 10 u 11 u 9 u 10 u 2 u 4 u 5 u 6 u 8 u 1 u 3 u 4 u 4 u 3 u 5 u 6 u u 8 9 u 6 u 7 u 9 u 11 G G = (V, E) X 1,..., X r V G i=1,...,r X i = V {x, y} E x X F (y) y X F (x) F (u) = { i {1,..., r} u X i } G k X 1,..., X r k 1 (G) = k G = (V, E) V = n L = u 1,..., u n u L L L V G u 1, u 2, u 3, u 4, u 5, u 6, u 7, u 8, u 9, u 10 G 1 (G) = (G) + 1

53 u 8 u 10 u 9 u 7 u 5 u 6 u 1 u 2 u 3 u 4 G = (V, E) V = n L = u 1,..., u n (G, L) = { i j {u i, u j } E} G k L (G, L) = k (G) = k G = (V, E) G G G E G G G G (G) = { (G ) G G} (G) = 2 G (G) (G) G (G) = (G)

54 G G = (V, E) E = m L = e 1,..., e m e i L ( ) ( ) L (e i ) = e j e j 1 j i i<j m L (L) = { L (e) e E} G (G) = {(L) L } E = 1 (G) = 0 { u 1 } { u 2, u2 } { u 3, u3 } { u 4, u3 } { u 5, u5 } { u 6, u5 } { u 7, u7 } u 8, { u7 } { u 9, u9 } { u 10, u9 } u 2 G (G) (G) G (G) = (G) (G) (G) G P = {p 1,..., p r } G ΛG = (V (G) {p 1,..., p r}, E(G) {{p 1, p 1},..., {p r, p r}} {p 1,..., p r} V (G) = Λ 1 G = (V (G) \ P, {{u 1, u 2 } E u 1, u 2 P }) G (G) = (ΛG) (G) = (Λ 1 G) G (G) (G) (G) + 1

55 (G) = (G) + 1 (G) = (G) (G) (G) + 2 (G) = (G) (G) = (G) + 1 (G) (G) (G) (G) (G) + 1

56

57 k k G = (V, E) V k V V 1, V 2 { } {x, y} E x V 1, y V 2 k k k

58 k G (G) = (G)+1 k k k k k C G C k (G) k k T n (T ) O(n) k T T T (T ) O(n n)

59 k A (G) = k {,, } (T ) T A (T ), (T ) k T G n (G) 3 O(n) k C G H G H G O(n 3 ) n = V (G) C (C) O 1,..., O (C) G G C O i G O i (C) O(n 3 ) n G C C (C) C (C) C[, k] C[, k] C[, k] C O(n 3 )

60 G (G) 2 (G) 2 (G) 3 k G = (V, E) (G) k V (G) k C C k 1 k G k 1 (G) k G = (V, E) O( V + E ) 1 k k Π L Π Σ G N Σ (I, k) L Π I Π k I

61 k G k k k G k k (G) k k G n(g) k n(g) Π A O(f(k) p(n)) f p n Π F P T A : G N H G H G (H) (G) C[, k] = {G G (G) k} k N k G k k (G) k : G N k (C[, k]) g : N N g(k) = (C[, k]) G G

62 (C[, k]) g(k) (G) k O(g(k) n 3 ) k k l G = (V, E) P l (G) k (G) k O(2 p(k) n) p n = V G O(n 2 ) l k (k) (G) O(2 p(k) n 2 ) k 2 ko(1) n G = (V, E) (G) k (G) k (G) k k

63 O = {C i, i N} G G C, C O C C C C G G C[, 2]

64 B u C v B u v C u v G (G) = 2 (G, S, S ) G S S V (G) G = (G, S, S ) G G S

65 K 2,3 K + 2,3 K 4 O 1 S S S G S S S S (G, S, S ) S = {v 1,..., v S } S = {v 1,..., v S }. (G, S, S ) G u u E = {{v 1, u },..., {v S, u }} E = {{v 1, u },..., {v S, u }}. G S, S V (G) (S 1, S 2 ) G S (G, S, S )

66 O 2 O3 O 4 O 5 O 6 O 7 O 2, O 3, O 4, O 5, O 6, O 7 E(S, i) = E i E(S, i) E = i E(S, i) = E(G) \ E i (G, S 1, S 2 ) (S 1, S 2 ) G (G, S 1, S 2 ) (G, S 1, S 2 ) (G) = (G,, ) G (G) (G) G E E E(G) G (E, E ) G E = A 1,..., A r i {1,..., r 1} E A i E(G) \ E i {1,..., r 1} A i+1 \ A i 1 A 1 = E

67 O8 O 9 O 8, O 9 A r = E(G) \ E (E, E ) G i {1,..., r} G[A i ] (E, E ) G A 1 A r (E, E ) E G i {1,..., r 1} E i G (E, i) = G (A i ) + q i q i A i 2 A i \ A i 1 A i E G (E) = { G (E, i) i {1,..., r 1}} G S, S V (G) (G, S, S ) (E, E ) (G, S, S ) (G, S, S ) (E, E ) (G, S, S ) (E, E )

68 G (G, S, S ) = (G, S, S ) G = (G, S, S ) (S 1, S 2 ) S k S i {1,..., S } E i = E(S, i) \ E(S, i 1) L i E i i {1,..., S } i S e L i e L = L 1 L S E = A 0,..., A r E(G ) A 0 = A i = A i 1 {e i } e i i L A s = E s {1,..., S } A t = E t {1,..., S } E = A s,..., A t (E, E ) G E (E) S G (E ) j {0,..., E } i j A j \ A j 1 E ij h j A hj \ A hj 1 L ij E h j,..., j G (E, h j ) l {h j + 1,..., j} G (A l ) G (A hj ) q l = 0 G (E, h j ) k G (E ) k q hj q hj = 0 G (E, h j ) = G (A hj ) S G (A hj ) i j S S k G (E, h j ) k q hj = 1 i j S p(x) s(y, x) x x G (A hj ) G (A hj ) i j G (A hj ) + 1 k G (E, h j ) k S G (A hj ) = G (A hj 1) \ {y} (h j 1) G (A hj 1) G (A hj ) k 1 G (E, h j ) k G (E, E ) E = A 1,..., A r G (E) = k E

69 E (E, E ) E = A 1,..., A r k i {1,..., r 1} V (A i ) V (A i+1 ) A i E(G ) V (A i ) (E, E ) i V (A i ) V (A i+1 ) L = e 1,..., e n E(G ) \ A i A i j i A j = A j A i+1 = A i {e 1 } A i+2 = A i {e 1, e 2 },..., A i+n = A i {e 1,..., e n } j i + n A j = A j {e 1,..., e n } j = 1,..., n G (A i+j ) = G (A i) j i + n G (A j ) G (A j) k (S, S ) G S k S S p(u ) S s(u, vi ) 2 S S S 0 E(S, 2 S ) = A 1 u V = V (G ) \ S \ {u } l u {1,..., r} u V (A lu ) L = u 1,..., u V V i j l ui l uj i {1,..., V } u i e i A lui 1 \ A lui v i e i E v i G (A lui 1) u i u i G (A lui ) E = {e 1,..., e V } A j j {1,..., r} A j 1 E < A j E i {1,..., V } S i v i G (A lui ) S i p(u i ) s(v i, u i ) S i G (A lui 1) \ G (A lui ) S = S 0 S 1 S V E A j j = 1,..., l u1 S i {1,..., V 1} A j j {l ui,..., l ui+1 1} V (A lui ) A j j {l u V,..., r} V (A lu V )

70 A j j {1,..., r} G (A j ) G S mj m j (A E ) \ (A j 1 E ) A E A j A A 1 = E A j G (A j +1) G S mj +1 A j +1 G (A j +1) G (A j ) m j +1 = m j A j +1 {e mj +1 } = (A j +1 E ) \ (A j E ) v mj +1 G (A j ) v mj +1 G (A j +1) u mj +1 G (A j +1) G (A j +1) = G (A j ) {u mj +1 } S mj +1 p(u mj +1 ) v mj +1 G (A j +1) u mj +1 G (A j +1) G (A j +1) = G (A j ) v mj +1 G (A j +1) G (A j +1) = ( G (A j ) \ {v mj +1 }) {u mj +1 } S mj +1 s(v mj +1, u mj +1 ) V S (i) i S V S = V S (1),..., V S (r) i S j V S (i) = V (A luj ) i {1,..., S } G [V S (i)] i {1,..., 2 S } i 2 S + 1,..., r G [V S (i + 1)] (i + 1) S r(u) G [V S (i+1)] = G [V S (i)] r(u) u V S (i) v u G (A luj 1) \ G (A luj ) j {1,..., V } u A luj {u, v} A luj V S (i) = V (A luj ) p(u) S {u, v} v V S (i) p(u) G [V S (i+1)]

71 s(v j, u j ) j {1,..., V } G [V S (i + 1)] G [V S (i)] u j v V S (i) i v j v j G (A luj ) s(v j, u j ) v j u V S (i) = V (A luj ) v j G (A luj ) u A luj {v j, u} A luj (i + 1) S G [V S (i + 1)] S (S 1, S 2 ) S 0 v V S u u i {1,..., V 1} E(S, S 0 S i 1 + 1) = = E(S, S 0 S i 1 + S i ) = A lui+1 1 i = V E(S, S 0 S V ) = A r S S 2 S S = G (E, 1) k j > 2 S G k (j +1) p(u i ) i {i,..., V } G (A lui 1) G (A lui 1) < k p(u i ) k G (A lui 1) = k u i G (A lui ) = G (A lui 1) {u i } G (A lui ) = k + 1 u i G (A lui ) = G (A lui 1) G (E, l ui ) = G (A lui ) + 1 = k + 1 S k (G 1, S1, S1 ) (G 2, S2, S2 ) (G 1, S1, S1 ) (G 2, S2, S2 ) (G 1, S1, S1 ) r (G 2, S2, S2 ) ϕ : V (G 2 ) V (G 1 ) v V (G 1 ) G 2 [ϕ 1 (v)] {v, u} E(G 1 ) G 2 [ϕ 1 (v) ϕ 1 (u)] ϕ(s 2 ) = S 1

72 ϕ(s 2 ) = S 1 G 1, G 2 G 1 G 2 (G 1,, ) r (G 2,, ) G G G G/e e = {x, y} u e ϕ : V (G) V (G/e) ϕ(x) = ϕ(y) = u e ϕ(u) = u u V (G) V (G/e) ϕ (G/e,, ) r (G,, ) G 1, G 2 ϕ : V (G 2 ) V (G 1 ) (G 1,, ) r (G 2,, ) G 2 G 2 G 1 σ : V (G 2) V (G 1 ) x, y V (G 2) {x, y} E(G 2) {σ(x), σ(y)} E(G 1 ) v V (G 1 ) G 2 [ϕ 1 (v)] u v σ(u v ) = v σ {x, y} E(G 1 ) G 2 [ϕ 1 (v) ϕ 1 (u)] σ (G 1, S1, S1 ) (G 2, S2, S2 ) (G 1, S1, S1 ) r (G 2, S2, S2 ) (G 1, S1, S1 )) (G 2, S2, S2 )) E = A 1,..., A r (E2, E2 ) G 2 = (G 2, S2, S2 ) k (E1, E1 ) G 1 = (G 2, S2, S2 ) k ϕ (G 1, S1, S1 ) r(g 2, S2, S2 ) ψ ϕ ψ(u 2 ) = u 1 ψ(u 2 ) = u 1 ψ (G 1, S 1 {u 1 }, S 1 {u 1 }) r (G 2, S 2 {u 2 }, S 2 {u 2 }) f = {x, y} E(G 1 ) E f E(G 2 ) ψ 1 (x) ψ 1 (y) E f e f E = {e f f E(G 1 )} E = A 1 E,..., A r E G 1 i {1,..., r 1} G 1 (E, i) G 2 (E, i)

73 v v v v v A (G, {v}, {v}) (C[, 2]) D 1 = O 1 O 12 O 1 O 2,..., O 9 O 10 O 11 O 12 O 10 : A v O 11 : B v O 12 : C v D 1 (C[, 2]) D 1 (C[, 2]) D 1 (C[, 2])

74 v v v v v v v v v v v v B (G,, {v}) v v v v v v C (G, {v}, ) G C[, 2] G G

75 B C G C[, 2] B 4 B 0 B 0 B 1 B 3 B 4 x B 2 w c 1 c 2 B2 c 3 c 4 B 3 B 4 y F 1 F2 F 4 G C[, 2] B 0 B 4 B 1, B 2 B 3 F 1, F 2 F 4

76

77

78

79

80

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x.

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x. ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Ορισός (Τυχαία Μεταβλητή). Οοάζουε τυχαία εταβλητή (τ..) κάθε απεικόιση Χ: Ω για τη οποία το σύολο { ω Ω : Χ(ω) x} έχει προσδιορίσιη πιθαότητα για κάθε x. Τούτο σηαίει ότι η ατίστροφη

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *&

! # $%%&$$'($)*#'*#&+$ $&#! #, &,$-.$! $-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *& ! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *& '*$$%!#*#&-!5!&,-/+#$!&- &"/ "$,&/#!6$7,&78 "$% &$&'#-/+#!5*% 3 +!$ 9 &$*,2"%& #$- 3 '*$%#

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία 0 3 10 71 < < 3 1 7 ; (y k ) 0 LU n n M (2; 4; 1; 2) 2 n 2 = 2 2 n 2 n 2 = 2y 2 n n ' y = x [a; b] [a; b] x n = '(x n 1 ) (x n ) x 0 = 0 S p R 2 ; S p := fx 2 R 2 : kxk p = 1g; p = 1; 2; 1 K i

Διαβάστε περισσότερα

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,

Διαβάστε περισσότερα

Συστήματα διατήρησης πίεσης

Συστήματα διατήρησης πίεσης Περιεχόμενα Συστήματα διατήρησης πίεσης Σελίδα Δοχεία διαστολής για εφαρμογές θέρμανσης, ψύξης και ηλιακά συστήματα reflex NG και N 4 reflex S 5 reflex G 6 reflex G - Εξαρτήματα για δοχεία διαστολής 7

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΑΛΟΓΗΡΑΤΟΥ Ζ. - ΜΟΝΟΒΑΣΙΛΗΣ Θ. ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ Μεγιστοποίηση εμβαδού με τον περιορισμό της περιμέτρου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ 4.. Εισαγωγή Στην προσομοίωση σε πολλές περιπτώσεις είναι απαραίτητη η δημιουργία δειγμάτων τυχαίων μεταβλητών που ακολουθούν κάποια καθορισμένη

Διαβάστε περισσότερα

Ανταλλακτικά για Laptop Lenovo

Ανταλλακτικά για Laptop Lenovo Ανταλλακτικά για Laptop Lenovo Ημερομηνία έκδοσης καταλόγου: 6/11/2011 Κωδικός Προϊόντος Είδος Ανταλλακτικού Μάρκα Μοντέλο F000000884 Inverter Lenovo 3000 C200 F000000885 Inverter Lenovo 3000 N100 (0689-

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 27/02/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/1/2015

Διαβάστε περισσότερα

Συνήθεις ιαφορικές Εξισώσεις. Πρόχειρες σηµειώσεις. Αλκης Τερσένοβ. 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2

Συνήθεις ιαφορικές Εξισώσεις. Πρόχειρες σηµειώσεις. Αλκης Τερσένοβ. 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2 Συνήθεις ιαφορικές Εξισώσεις 215 Πρόχειρες σηµειώσεις Αλκης Τερσένοβ Περιεχόµενα 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2 2. Συστήµατα ιαφορικών Εξισώσεων Πρώτης Τάξης... 22 2.1 ιαφορικές Εξισώσεις Ανώτερης

Διαβάστε περισσότερα

Παραδοχές - Φορτία. Οροφοι : 3 Υπόγεια: 0. Επικάλυψη δαπέδων= 0.80[kN/m²], Τοίχοι σε δάπεδα= 0.00[KN/m²] γg=1.35, γq=1.50. I, α=0.160g=1.

Παραδοχές - Φορτία. Οροφοι : 3 Υπόγεια: 0. Επικάλυψη δαπέδων= 0.80[kN/m²], Τοίχοι σε δάπεδα= 0.00[KN/m²] γg=1.35, γq=1.50. I, α=0.160g=1. Παράδειγμα εκτύπωσης FEDRA... Παραδοχές - Φορτία Ονομασία Εργου-Μελέτης Διεύθυνση έργου Μηχανικός Μελετητής Παράδειγμα εκτύπωσης FEDRA ΙΩΑΝΝΙΝΑ Μηχανικός Α... Γενικά Χαρακτηριστικά Κτιρίου Οροφοι Οροφοι

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ Τµ. Επιστήµης των Υλικών Συνάρτηση Κατανοµής Ορισµός F(x) = P(X x) = f(t) x t x f(t)dt, X διακριτή τ.µ., X συνεχής τ.µ. Ιδιότητες 0 F(x). 2 F είναι αύξουσα συνάρτηση. 3 F είναι συνεχής εκ δεξιών. 4 lim

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Κλίση συνάρτησης f Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Αν σε κάθε σημείο Px, y,z ενός τμήματος Δ του χώρου μία τιμή, ορίζεται μια συνάρτηση. f x, y,z : Δ, Δ αντιστοιχίσουμε την οποία ονομάζουμε σημειακή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Το Πρόβλημα της Συνάντησης Πολλών Πρακτόρων

ΚΕΦΑΛΑΙΟ 5 Το Πρόβλημα της Συνάντησης Πολλών Πρακτόρων k 2 n k n k n n k n k k S S k 2 n O(n) O(k n) O(kn) O( n) ) O(k n) O(n) O( n) O(n) O( k) O(n k) O( k) O( n n n k n k > 2 Ω( n + k) k n n k k n n n/2 S = d 1,..., d k m > 1 j 1 m, j k k S S O(k n) k n k

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΦΑΡΜΟΓΗ ΑΝΕΛΑΣΤΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΣΟΜΟΙΩΜΑΤΟΣ ΒΛΑΒΗΣ ΣΤΟΙΧΕΙΩΝ ΤΟΙΧΟΠΟΙΙΑΣ ΣΕ ΥΠΟ ΚΛΙΜΑΚΑ ΚΤΙΡΙΑ ΤΟΙΧΟΠΟΙΙΑΣ ΥΠΟΒΑΛΛΟΜΕΝΑ

Διαβάστε περισσότερα

ẋ = f(x) n 1 f i (i = 1, 2,..., n) x i (i = 1, 2,..., n) x(0) = x o x(t) t > 0 t < 0 x(t) x o U I xo I xo : α xo < t < β xo α xo β xo x(t) t β t α + x f(x) = 0 x x x x V 1 x x o V 1 x(t) t > 0 x o V 1

Διαβάστε περισσότερα

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2

Διαβάστε περισσότερα

103 Α Α Α % Α 22 22 15,777 15.53 33.5 11,839 11.67 25.9

103 Α Α Α % Α 22 22 15,777 15.53 33.5 11,839 11.67 25.9 %- & Α -Η Η Α- Ω Ο Α Ο Ω Ο Α Ο Α Ο Ο Ο Α ΧΟ Η Α Ο Η / ΧΟ Η Ο Α... Α..Α.... Ο Α... Α..Α.. 127 Α Α Α Α Α Α Α % Α 21 21 20,924 18.40 36.8 19,434 17.15 34.2 127 Α Α Α Α Α Α Α %.. α 2 2 18,978 16.57 33.0 17,638

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. 1. Γενικά. 2. Πεδία Ορισµού

ΣΥΝΑΡΤΗΣΕΙΣ. 1. Γενικά. 2. Πεδία Ορισµού ΣΥΝΑΡΤΗΣΕΙΣ 1 Γενικά Συνάρτηση είνι µι διδικσί µε την οοί φτιάχνουµε διτετγµέν ζεύγη ριθµών της µορφής (x,y) σύµφων µε ένν συγκεκριµένο κνόν ου ονοµάζετι τύος της συνάρτησης y= f (x) Πράδειγµ: ίνετι η

Διαβάστε περισσότερα

Α 9.543 9.720-177 -1,8% Α Α 3.327 5.644-2.317-41,1% Α 9.448 9.629-181 -1,9% Α Α 3.758 3.174 584 18,4% Page 1 of 8

Α 9.543 9.720-177 -1,8% Α Α 3.327 5.644-2.317-41,1% Α 9.448 9.629-181 -1,9% Α Α 3.758 3.174 584 18,4% Page 1 of 8 Ο Ο Α Α Α Α 817 Α % Α 10.338 10.651-313 -2,9% Α Α Α 817 Α % Α 8.708 8.136 572 7,0% Α Α Α 817 Α % Α. Α. % 8.981 8.651 330 3,8% Α Α Α 817 Α % Α. Α. % 10.078 10.430-352 -3,4% Α Α Α 817 Α % Α. Α.. 9.288 Α

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Στοιχεία Θεωρίας Συνόλων Θεωρούµε Ω το σύνολο αναφοράς. σ-άλγεβρα Εστω A είναι µια κλάση υποσυνόλων του Ω. τ.ω. A είναι µη κενή. 2 A A A c A. 3 A, A 2,... A A A 2...

Διαβάστε περισσότερα

ΠΡOΣΚΛΗΣΗ ΕΚΔHΛΩΣΗΣ ΕΝΔΙΑΦEΡΟΝΤΟΣ - ΣΥΜΒΑΣΙΟYΧΟΙ ΥΠΑΛΛΗΛΟΙ ΟΜΑΔΑ ΚΑΘΗΚΟΝΤΩΝ I - ΟΔΗΓΟΙ (ΑΝΔΡΕΣ/ΓΥΝΑΙΚΕΣ) EPSO/CAST/S/8/2014 I.

ΠΡOΣΚΛΗΣΗ ΕΚΔHΛΩΣΗΣ ΕΝΔΙΑΦEΡΟΝΤΟΣ - ΣΥΜΒΑΣΙΟYΧΟΙ ΥΠΑΛΛΗΛΟΙ ΟΜΑΔΑ ΚΑΘΗΚΟΝΤΩΝ I - ΟΔΗΓΟΙ (ΑΝΔΡΕΣ/ΓΥΝΑΙΚΕΣ) EPSO/CAST/S/8/2014 I. ΠΡOΣΚΛΗΣΗ ΕΚΔHΛΩΣΗΣ ΕΝΔΙΑΦEΡΟΝΤΟΣ - ΣΥΜΒΑΣΙΟYΧΟΙ ΥΠΑΛΛΗΛΟΙ ΟΜΑΔΑ ΚΑΘΗΚΟΝΤΩΝ I - ΟΔΗΓΟΙ (ΑΝΔΡΕΣ/ΓΥΝΑΙΚΕΣ) EPSO/CAST/S/8/2014 I. ΕΙΣΑΓΩΓΗ Κατόπιν αιτήματος των θεσμικών οργάνων της Ευρωπαϊκής Ένωσης, η Ευρωπαϊκή

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. της 6ης Νοεμβρίου 2006

ΑΠΟΦΑΣΗ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. της 6ης Νοεμβρίου 2006 18.11.2006 EL Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 320/53 ΑΠΟΦΑΣΗ ΤΗΣ ΕΠΙΤΡΟΠΗΣ της 6ης Νοεμβρίου 2006 για την κατάρτιση των καταλόγων τρίτων χωρών και εδαφών από τα οποία επιτρέπονται οι εισαγωγές

Διαβάστε περισσότερα

Положeніе чcтнhz ри1зы прес hz вlчцы нaшеz бцdы ко влахeрнэ. 2. hlas Byz. / ZR

Положeніе чcтнhz ри1зы прес hz вlчцы нaшеz бцdы ко влахeрнэ. 2. hlas Byz. / ZR 2.7. Μνήµη τής εν Βλαχέρναις Καταθέσεως τής τιµίας Εσθήτος τής Υπεραγίας Θεοτόκου. Положeніе чcтнhz ри1зы прес hz вlчцы нaшеz бцdы ко влахeрнэ. 2. hlas Byz. / ZR.. Φρένα καθαραντες καί νούν Byzantská tradícia:,

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3. ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ Έστω Χ = (Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ. Χ την: F(x) = P(X 1 x 1,, X x ), x = (x 1,,x ) T 1. 0 F(x) 1, x.. Η F είναι μη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 8η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη

Διαβάστε περισσότερα

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ] συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)

Διαβάστε περισσότερα

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες

Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Ανέπτυξα την παρακάτω μεθοδολογία που με βοήθησε να ανταπεξέλθω στο

Διαβάστε περισσότερα

Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr

Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr Προς: Μαθητές Α, Β & Γ Λυκείου / Κάθε ενδιαφερόμενο Αγαπητοί Φίλοι Όπως σίγουρα

Διαβάστε περισσότερα

ο χάρτης το γράφημα Σχήμα 5.3

ο χάρτης το γράφημα Σχήμα 5.3 KΕΦΑΛΑΙΟ 5 ΓΡΑΦΗΜΑΤΑ 5.1. Ανακάλυψη Ο W. Leibniz, σε επιστολή του το 1679 προς τον C. Huygens, παρατήρησε ότι "μας χρειάζεται ένα άλλο είδος ανάλυσης, γεωμετρικής ή γραμμικής, που να ασχολείται απ' ευθείας

Διαβάστε περισσότερα

Οδηγός προϊόντων 2012 Edition GR

Οδηγός προϊόντων 2012 Edition GR Οδηγός προϊόντων 2012 Edition GR Reflex Βασιστείτε σε μας! Το όνομα Reflex είναι πασίγνωστο στην Ευρώπη και σε ολόκληρο τον κόσμο ως κορυφαία επιλογή για συστήματα ελέγχου πίεσης σε εφαρμογές θέρμανσης,

Διαβάστε περισσότερα

Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα

Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα 1. Χρονική απόκριση συστημάτων αυτομάτου ελέγχου Στα περισσότερα συστήματα αυτομάτου ελέγχου χρησιμοποιείται ως ανεξάρτητη μεταβλητή ο χρόνος,

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Χαράλαµπος Α. Χαραλαµπίδης 21 εκεµβρίου 2009 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Ορισµός (α) Εστω (X, Y) διακριτή διδιάστατη τυχαία µεταβλητή µε συνάρτηση πιθανότητας

Διαβάστε περισσότερα

+ 1 n 5 (η) {( 1) n + 1 m

+ 1 n 5 (η) {( 1) n + 1 m Κεφάλαιο Τοπολογία του. Στοιχεία Θεωρίας Ορισµός Αν α και ɛ > ονοµάζουµε ɛ-περιοχή του α ή περιοχή κέντρου α και ακτίνας ɛ και συµβολίζουµε N α (ɛ) το σύνολο όλων των αριθµών που έχουν απόσταση από το

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΥΠΟΛΟΓΙΣΜΩΝ

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΥΠΟΛΟΓΙΣΜΩΝ ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΥΠΟΛΟΓΙΣΜΩΝ x x x y y x y?? Ευριπίδης Μάρκου Ευάγγελος Κρανάκης Άρης Παγουρτζής Ντάννυ Κριζάνκ ΕΥΡΙΠΙΔΗΣ ΜΑΡΚΟΥ Τµήµα Πληροφορικής µε Εφαρµογές στη Βιοϊατρική Πανεπιστήµιο

Διαβάστε περισσότερα

ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Α' ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) 1 ΠΙΝΑΚΕΣ- ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Α' Ομάδας i) 3x7 ii) π.χ. το στοιχείο α 12 μας πληροφορεί ότι η ομάδα «ΝΙΚΗ» έχει 6 νίκες. x = -7, y = 8, ω = 8..i) x

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΙΑΓΩΝΙΣΜΑ Β

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΙΑΓΩΝΙΣΜΑ Β ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΙΑΓΩΝΙΣΜΑ Β ΘΕΜΑ 1 ο Α. Να σημειώσετε με σωστό η λάθος: 1. Ο συμβολομεταφραστής είναι πρόγραμμα που μετατρέπει ένα πρόγραμμα από γλώσσα υψηλού επιπέδου

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

Παρατηρήσεις, Συµπληρώσεις και Ασκήσεις στο πρώτο µέρος του 1 ου κεφαλαίου της Ανάλυσης (ενότητες 1.1, 1.2, 1.3)

Παρατηρήσεις, Συµπληρώσεις και Ασκήσεις στο πρώτο µέρος του 1 ου κεφαλαίου της Ανάλυσης (ενότητες 1.1, 1.2, 1.3) ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ /ΝΣΗ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΡΗΤΗΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ.Ε. Ν. ΗΡΑΚΛΕΙΟΥ ηµήτριος I. Μπουνάκης Σχολικός Σύµβουλος Μαθηµατικών

Διαβάστε περισσότερα

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Κεφ. I Εισαγωγή.. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Η ανάγκη µαθηµατικής περιγραφής και µοντελοποίησης συστηµάτων τα οποία εξελίσσονται χρονικά κατά τρόπο που περιέχει, σε µικρό ή µεγάλο βαθµό, τυχαιότητα,

Διαβάστε περισσότερα

-! () $M ' 1' /W /,9 /' 1 :c Q \/0,> Z 1/0 " 1! GDP * &'() =! P[\ 01, '!R W! :,Q (Sachs&Warner,1995) a' / Qbc,,, J L bc, [1] (Pomeranz,2000) R

-! () $M ' 1' /W /,9 /' 1 :c Q \/0,> Z 1/0  1! GDP * &'() =! P[\ 01, '!R W! :,Q (Sachs&Warner,1995) a' / Qbc,,, J L bc, [1] (Pomeranz,2000) R 18 5 2016 9 ( ) JournalofCapitalUniversityofEconomicsandBusines Vol 18,No 5 Sep 2016 DOI:10 13504/j cnki isn1008-2700 2016 05 006! F

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 0 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΞΕΤΑΣΕΩΝ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία µμου δεν στοχεύει απλά στο κυνήγι

Διαβάστε περισσότερα

Plantronics Explorer 10. Εγχειρίδιο χρήσης

Plantronics Explorer 10. Εγχειρίδιο χρήσης Plantronics Explorer 10 Εγχειρίδιο χρήσης Περιεχόμενα Λίγα λόγια για τον αγοραστή 3 Περιεχόμενα συσκευασίας 4 Επισκόπηση ακουστικού 5 Η ασφάλεια προέχει 5 Σύζευξη και φόρτιση 6 Σύζευξη 6 Ενεργοποίηση της

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ Παράδοση 7 ΕΠΙΛΟΓΗ ΣΕ ΣΥΝΘΗΚΕΣ ΚΙΝΔΥΝΟΥ Συνεπής επιλογή σε συνθήκες βεβαιότητας Αν οι προτιμήσεις ικανοποιούν Πληρότητα Αντανακλαστικότητα (Aυτοπάθεια) Μεταβατικότητα Συνέχεια

Διαβάστε περισσότερα

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική 1 Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική Οµοιοπολικοί δεσµοί στο πυρίτιο Κρυσταλλική δοµή Πυριτίου ιάσταση κύβου για το Si: 0.543 nm Εισαγωγή στη Μικροηλεκτρονική

Διαβάστε περισσότερα

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m.

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m. Σηµειώσεις Συναρτησιακής Ανάλυσης Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Περιεχόµενα 1. Το ϑεώρηµα κατηγορίας του Baire 4 2. Χώροι Banach 5 3. Φραγµένοι γραµµικοί τελεστές 8 4. Χώροι πεπερασµένης

Διαβάστε περισσότερα

Κεφάλαιο 6 ιανυσµατικοί χώροι...1

Κεφάλαιο 6 ιανυσµατικοί χώροι...1 6. ιανυσµατικοί χώροι Σελίδα από 5 Κεφάλαιο 6 ιανυσµατικοί χώροι ιανυσµατικοί χώροι... 6. ιανυσµατικοί χώροι... 6. Υποχώροι...7 6. Γραµµικοί συνδυασµοί... 6. Γραµµική ανεξαρτησία...9 6.5 Άθροισµα και ευθύ

Διαβάστε περισσότερα

Χημικές Διεργασίες: Χημική Ισορροπία η σύνδεση με τη Θερμοδυναμική

Χημικές Διεργασίες: Χημική Ισορροπία η σύνδεση με τη Θερμοδυναμική : Χημική Ισορροπία η σύνδεση με τη Θερμοδυναμική Η Θερμοδυναμική σε μία τάξη Θεμελιώδης συνάρτηση: F(U, S, V) = 0 Ενέργεια, ικανότητα παραγωγής έργου Εντροπία, μη ικανότητα παραγωγής έργου, μη διαθεσιμότητα

Διαβάστε περισσότερα

ΖΩΓΡΑΦΙΖΩ ΤΗΝ ΕΥΡΩΠΗ. Συμβούλιο της Ευρωπαϊκής Ένωσης

ΖΩΓΡΑΦΙΖΩ ΤΗΝ ΕΥΡΩΠΗ. Συμβούλιο της Ευρωπαϊκής Ένωσης ΖΩΓΡΑΦΙΖΩ ΤΗΝ ΕΥΡΩΠΗ Συμβούλιο της Ευρωπαϊκής Ένωσης 2013 Η παρούσα έκδοση εκπονήθηκε από τη Γενική Γραμματεία του Συμβουλίου, παρέχεται δε αποκλειστικά και μόνο προς ενημέρωση. Τα θεσμικά όργανα της ΕΕ

Διαβάστε περισσότερα

Συνολική Ζήτηση, Δημοσιονομική Πολιτική και Εξωτερικός Τομέας

Συνολική Ζήτηση, Δημοσιονομική Πολιτική και Εξωτερικός Τομέας Συνολική Ζήτηση, Δημοσιονομική Πολιτική και Εξωτερικός Τομέας - Βασικά Ζητήματα Δημοσιονομικής Πολιτικής (1) Σταθεροποιητική Πολιτική (2) Σημασία Δημοσιονομικού Ελλείμματος (3) Επιπτώσεις Δημόσιου Χρέους

Διαβάστε περισσότερα

σ (9) = i + j + 3 k, σ (9) = 1 6 k.

σ (9) = i + j + 3 k, σ (9) = 1 6 k. Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις

Διαβάστε περισσότερα

Mixed Distributions = + k k. = n. k k k. ρ k Χ Χ ] e [ ] Χ i

Mixed Distributions = + k k. = n. k k k. ρ k Χ Χ ] e [ ] Χ i p d d Mxd Dstrbutos ρν ( ( ρ Ν( ρ ( ρ ρ ρ ( L ( ρ [ ρ ( ( ρ ( ]! " # $&% ' * - 3 4&5 6 7 8 9: ;A@CB < DFE G IKJLNM OFP QRS TU V S WTNX ρ Y[Z!\LZ!]^]`_ ab!c L! d!! ρ ( ρ Ρ( ρ ρ gh Cḧ l l ρ log L ρ log!

Διαβάστε περισσότερα

, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No.

, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No. 212 2 28 1 Pure and Applied Mathematics Feb. 212 Vol. 28 No. 1 P bkc (c[, 1]) P bkc (L p [, 1]) (1) ( (), 364) (G, β, u),,, P bkc (c[, 1]) P bkc (L p [, 1]),. ; ; O174.12 A 18-5513(212)1-99-1 1, [2]. 1965,

Διαβάστε περισσότερα

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/52779

Διαβάστε περισσότερα

n+1 v2 2 1 + x 3 1 + x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) =

n+1 v2 2 1 + x 3 1 + x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) = Κεφάλαιο 2 Λείες πολλαπλότητες Σύνοψη Παρουσιάζουμε τον ορισμό μιας λείας (διαφορικής) πολλαπλότητας και αναλύουμε δύο βασικά παραδείγματα, τη μοναδιαία σφαίρα και τον προβολικό χώρο. Στη συνέχεια, μελετάμε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ (Ηµεροµηνία αποστολής στον φοιτητή: Νοεµβρίου 4. Τελική ηµεροµηνία αποστολής από τον φοιτητή: εκεµβρίου 4)

Διαβάστε περισσότερα

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

!! #!!!$ #$! %!&' & (%!' #!% # *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2! # $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;

Διαβάστε περισσότερα

Μέθοδοι μιγαδικής ανάλυσης στην επίλυση μερικών διαφορικών εξισώσεων

Μέθοδοι μιγαδικής ανάλυσης στην επίλυση μερικών διαφορικών εξισώσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μέθοδοι μιγαδικής ανάλυσης στην επίλυση μερικών διαφορικών εξισώσεων Διπλωματική εργασία για την απόκτηση Μεταπτυχιακού Διπλώματος Ειδίκευσης

Διαβάστε περισσότερα

Ένα τεµάχιο πάγου επιπλέει σε νερό που περιέ χεται σε δοχείο, του οποίου ο πυθµένας είναι οριζόντιος.

Ένα τεµάχιο πάγου επιπλέει σε νερό που περιέ χεται σε δοχείο, του οποίου ο πυθµένας είναι οριζόντιος. Ένα τεµάχιο πάγου επιπλέει σε νερό που περιέ χεται σε δοχείο, του οποίου ο πυθµένας είναι οριζόντιος. i) Eάν ανασύρουµε τον πάγο από το νερό θα µεταβληθεί η πίεση στον πυθµένα του δοχείου; ii) Eάν προκαλέσουµε

Διαβάστε περισσότερα

T3F;F;EH5B3G";:>"65G"BEG;B683B:G"=3>"7:""9V6QH:M"

T3F;F;EH5B3G;:>65GBEG;B683B:G=3>7:9V6QH:M Φωτογραφικό και λοιπό ρεπορτάζ από τη συνεστίαση της 9/10/2014 µε οµιλητάς τους πρεσβευτάς και τους επικεφαλής της διπλωµατικής αποστολής 4 χωρών της ευρ.εν. ητοί της Σλοβακίας-Ουγγαρίας-Πολωνίας και Τσεχίας

Διαβάστε περισσότερα

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 4: Περιοδικό σύστημα των στοιχείων

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 4: Περιοδικό σύστημα των στοιχείων Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 4: Περιοδικό σύστημα των στοιχείων Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

: B. -.

: B. -. 2, rue Mercier, L-2985 Luxembourg (352) 29 29 42 670..: mp-ojs@opoce.cec.eu.int & : http://simap.eu.int :.1), (- ) :... : 30-32 :. : 104 33 : (- ) : :-. -. - B. -. : + 30210 88 19 139 + 30210 88 19 139

Διαβάστε περισσότερα

74,6 100 59,4 EΕ 25 = 63,1 % (2004) 10,5 EΕ-25 = 9,2 % (2004) 2,9 17,5 % (1999/2000) 0,13 SI) = 0,18 5 (2003) 82,0 EΕ- 25 = 100

74,6 100 59,4 EΕ 25 = 63,1 % (2004) 10,5 EΕ-25 = 9,2 % (2004) 2,9 17,5 % (1999/2000) 0,13 SI) = 0,18 5 (2003) 82,0 EΕ- 25 = 100 Παράρτηµα 1. Κατάλογος κοινών δεικτών βάσης, εκροών, αποτελεσµάτων και επιπτώσεων I. Κοινοί δείκτες βάσης 1. είκτες βάσης σε σχέση µε τους στόχους / Όχι *1 Οικονοµική ανάπτυξη Κατά κεφαλήν ΑΕΠ σε µονάδες

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤΑ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

ΤΡΑΤΑΛΟΣ Α.Ε ΤΙΜΟΚΑΤΑΛΟΓΟΣ ΧΟΝ ΡΙΚΗΣ ACE 2014 ΠΕΡΙΓΡΑΦΗ ΧΟΝ ΡΙΚΗ ΛΙΑΝΙΚΗ

ΤΡΑΤΑΛΟΣ Α.Ε ΤΙΜΟΚΑΤΑΛΟΓΟΣ ΧΟΝ ΡΙΚΗΣ ACE 2014 ΠΕΡΙΓΡΑΦΗ ΧΟΝ ΡΙΚΗ ΛΙΑΝΙΚΗ 626 ZZ HIGH QUALITY ΡΟΥΛΕΜΑΝ 1,5 3 70x48x35 (4.055) ΡΟΥΛΕΜΑΝ 120 204 88,4x30x26 (4.058) ΡΟΥΛΕΜΑΝ 200 340 ACE 104948/10 JLM ΡΟΥΛΕΜΑΝ 12 20,4 ACE 108 (8X22X7) ΡΟΥΛΕΜΑΝ 4 6,8 ACE 11749/10 ΡΟΥΛΕΜΑΝ 2,7 4,59

Διαβάστε περισσότερα

Ελαχιστοποίηση της Δαπάνης

Ελαχιστοποίηση της Δαπάνης Ελαχιστοποίηση της Δαπάνης - Στο πρωτογενές πρόβλημα μεγιστοποίησης της χρησιμότητας (UMP) υπό τον εισοδηματικό περιορισμό αντιστοιχεί το δυαδικό πρόβλημα ελαχιστοποίησης της δαπάνης (EMP) υπό τον περιορισμό

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΟ 9/2015. Της από 18-4-2015 Συνεδρίασης της Οικονοµικής Επιτροπής του ήµου Παρανεστίου.

ΠΡΑΚΤΙΚΟ 9/2015. Της από 18-4-2015 Συνεδρίασης της Οικονοµικής Επιτροπής του ήµου Παρανεστίου. ΠΡΑΚΤΙΚΟ 9/2015 Της από 18-4-2015 Συνεδρίασης της Οικονοµικής Επιτροπής του ήµου Παρανεστίου. Στο Παρανέστι και στο ηµοτικό Κατάστηµα σήµερα την 18 η Απριλίου 2015, ηµέρα Σάββατο και ώρα 17:30 π.µ., έχει

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ Τµήµατα ΧΗΜΕΙΑ 1. Φυτικής Παραγωγής 2. Επιστ. & Τεχνολ. Τροφίµων Τετάρτη 9.30-10.15 Παρασκευή 11.30 13.15 ΕΡΓΑΣΤΗΡΙΟ Φυτική Παραγωγή Πέµπτη 8.30-12.30 Επιστ. & Τεχνολ. Τροφίµων Τετάρτη

Διαβάστε περισσότερα

ΤΙΜΟΚΑΤΑΛΟΓΟΣ. ΤΙΜΗ ΡΟΛΟΥ /m2 LZ ΔΙΑΣΤΑΣΕΙΣ ΡΟΛΟΥ. PG 10 SE 5 ΠΛΑΤΟΣ : 1,22 m. ΜΗΚΟΣ : 50m PX 6 TX 1

ΤΙΜΟΚΑΤΑΛΟΓΟΣ. ΤΙΜΗ ΡΟΛΟΥ /m2 LZ ΔΙΑΣΤΑΣΕΙΣ ΡΟΛΟΥ. PG 10 SE 5 ΠΛΑΤΟΣ : 1,22 m. ΜΗΚΟΣ : 50m PX 6 TX 1 ΣΕΙΡΑ ΚΩΔΙΚΟΣ ΔΙΑΣΤΑΣΕΙΣ ΡΟΛΟΥ ΠΟΙΚΙΛΙΑ ΧΡΩΜΑΤΩΝ ΤΙΜΗ ΡΟΛΟΥ /m2 LZ 5 Abstract Hard Abstract Soft RT 2 PG 10 SE 5 FA PT ΠΛΑΤΟΣ : 1,22 m ΜΗΚΟΣ : 50m 20 6 PX 6 TX 1 2.684 44 2.684 44 Chic PA 21 3.020 50 CA

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης

Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης 1 Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης Έστω ότι έχουμε την συνάρτηση: f(x) = x + 3x 1 H γραφική της παράσταση είναι: Και την συνάρτηση f(x) = x + 3x + η οποία έχει προκύψει από την προηγούμενη αφού

Διαβάστε περισσότερα

Γραφείο Εναρμόνισης στην Εσωτερική Αγορά (ΓΕΕΑ) Στοιχεία για τη διαδικασία ενώπιον του ΓΕΕΑ Στοιχεία αναγνώρισης Αιτούντος / Αντιπροσώπου:

Γραφείο Εναρμόνισης στην Εσωτερική Αγορά (ΓΕΕΑ) Στοιχεία για τη διαδικασία ενώπιον του ΓΕΕΑ Στοιχεία αναγνώρισης Αιτούντος / Αντιπροσώπου: Γραφείο Εναρμόνισης στην Εσωτερική Αγορά (ΓΕΕΑ) Μόνο για το ΓΕΕΑ: Ημερομηνία παραλαβής Αριθ. σελίδων Μεταγενέστερη επέκταση της προστασίας σύμφωνα με το Πρωτόκολλο της Μαδρίτης 0 (υποχρεωτικό) Στοιχεία

Διαβάστε περισσότερα

III.5 Μέθοδοι Παραγοντοποίησης

III.5 Μέθοδοι Παραγοντοποίησης III.5 Μέθοδοι Παραγοντοποίησης III.5. Μέθοδος διάσπασης LU Η µέθοδος πραγµατοποίησης η διάσπασης διάσπασης ενός πίνακα Α στη µορφή LU αναφέρεται στο πρόβληµα της A=LU (III.5.) Όπου Ο L είναι κάτω τριγωνικός

Διαβάστε περισσότερα

ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ.

ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ. ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ. Η σύσταση του φλοιού ουσιαστικά καθορίζεται από τα πυριγενή πετρώματα μια που τα ιζήματα και τα μεταμορφωμένα είναι σε ασήμαντες ποσότητες συγκριτικά. Η δημιουργία των βασαλτικών-γαββρικών

Διαβάστε περισσότερα

( ) 1995.» 3 ( ). 10 ( ). 1975 1980 ( ) 1986, ( ) (1) 3,, ( ),,,,».,,,

( ) 1995.» 3 ( ). 10 ( ). 1975 1980 ( ) 1986, ( ) (1) 3,, ( ),,,,».,,, 1983 1995 23/83 51/83 39/84 79/86 94/86 135/88 51/89 138/91 67( ) / 92 100( ) / 92 2( ) / 93 70(1)/99 109(1)/99 119(1)/99 16(1)/01 20(1)/01 150(1)/02 102 ( ) /95 33/64 35/75 72/77 59/81.. 79/86... 2/86

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Άλγεβρα Β Λυκείου Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. y y 4 y

Διαβάστε περισσότερα

Υλικά Εσωτερικών Εγκαταστάσεων

Υλικά Εσωτερικών Εγκαταστάσεων Υλικά Εσωτερικών Εγκαταστάσεων Περιεχόμενα Κεφαλαίου.2 Αυτόματες Ασφάλειες Red Line - 3k, Καμπύλης C.3 Αυτόματες Ασφάλειες Red Line - 6k, Καμπύλης C.4 Αυτόματες Ασφάλειες Red Line - 6k, 80-125, Καμπύλης

Διαβάστε περισσότερα

Γραφική με Υπολογιστή Computer Graphics

Γραφική με Υπολογιστή Computer Graphics Γραφική με Υπολογιστή Computer Graphics 1. Βασικοίγραφικοίαλγόριθμοι 2. Αρχέςγραφικώνπλεγματικώνοθονώνraster 3. Μετασχηματισμοί2 και3 διαστάσεωνκαι συστήματασυντεταγμένων 4. Προβολέςκαιμετασχηματισμοίπαρατήρησης

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ

ΚΕΦΑΛΑΙΟ 3: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ : Η ΕΝΝΟΙΑ ΤΗΣ ΠΡΑΞΗΣ Μια συνάρτηση f : A B C αντιστοιχίζει σε κάθε ζεύγος (a,b) (με Γράφουμε τότε a A και b B ) ένα στοιχείο c C f(a,b)c Η συνάρτηση αυτή μπορεί να χαρακτηριστεί και

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #2: Ποιοτικά Χαρακτηριστικά Συστημάτων Κλειστού Βρόχου - Μόνιμα Σφάλματα Δημήτριος Δημογιαννόπουλος

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 1η Δια λεξη

Θεωρι α Γραφημα των 1η Δια λεξη Θεωρι α Γραφημα των η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 205 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των η Δια λεξη Φεβρουα ριος 205 / 22 Εισαγωγη Διδα σκων: Αντω νιος Συμβω νης ΣΕΜΦΕ, κτι

Διαβάστε περισσότερα