|
|
- Ἐπαφρᾶς Μέλιοι
- 9 χρόνια πριν
- Προβολές:
Transcript
1
2
3
4
5
6
7
8
9
10
11 (G) = 4 1 (G) = 3 (G) = 6 6 W G G C = {K 2,i i = 1, 2,...} (C[, 2]) (C[, 2]) {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G
12 u v G (G) = 2 O 1 O 2, O 3, O 4, O 5, O 6, O 7 O 8, O 9 A (G, {v}, {v}) B (G,, {v}) C (G, {v}, ) G C[, 2] B0 B4 B1, B2 B3 F 1, F 2 F 4
13
14 V V (V, E) G G V (G) E(G) V (G) E(G) {x, y} E(G) x y {x, y} G V (G) u, v {u, v} E(G) k 1 P k = ( {u 1,..., u k+1 }, { {u1, u 2 },..., {u k, u k+1 } }) u 1 u k+1 P k k 1 C k = ( {u 1,..., u k }, { {u 1, u 2 },..., {u k 1, u k }, {u k, u 1 } } k 1 K k = ( {u 1,..., u k }, { {u i, u j } 1 i < j k }) A, B k l K k,l = (A B, { {u, v} u A v B } ) S V (G) S G[S] = ( S, { {u, v} E(G) {u, v} S })
15 F E(G) F G[F ] = ( e F e, F ) G G G e E(G) G G u, v V (G) G {u, v} E(G) u G N G (u) = {e E(G) u e} e \ {u} u G G (u) = N G (u) G δ(g) = { G (u) u V (G)} G (G) = { G (u) u V (G)} d d d u, v V (G) G G u, v V 1,..., V k G[V i ] 1 i k G u, v V (G) G G G Γ G R 2 Γ G G F e F e = V (G) F G L 1 = l 1 1,..., l 1 p L 2 = l 2 1,..., l 2 q L 1 L 2 l 1 1,..., l 1 p, l 2 1,..., l 2 q L 1 L 2 n 2 n Σ Σ Σ G
16 L L w Σ w L L Σ G G Σ G L G I L L L G G I G k k G G w Σ w
17 G R 3 R 3 Γ R 3 Π = {x i 1 i k} Γ y : [0, ) Γ t(y) [0, ) i {1, 2,, k} y(t(y)) = x i (t(y)) y(t) t Γ x i (t) i k t(y) k Γ Γ G = (V, E)
18 u v p(v) v r(v) v s(u, v) {u, v} u v S e E(G) e e S S E(S, i) i S i S E(S, i)
19 E(S, 0) = i 1 E i i Q i = E(S, i 1) E i E(S, i) Q i E(G)\Q i S E(S, i) = E(G) i G i S E i i S E(S, i) Q i i i i 1 i j E(S, i) E(S, j) S G (S) G S (G) = { G (S) S G} E(G) = (G) = 0 G (T ) = 2 T e
20 G (G) T (T ) = 3 (T ) (T ) K 3,3 (K 3,3 ) = 4 (K 3,3 ) = 5 G (G) (H) = 2 (G) = 3 H G G (G) (G) (G) (G) G = (V, E) G e G {x, y} E {x, u xy } {u xy, y} u xy V (G) = (G e ) G n G e E (G) = (G n )
21 G (G) 1 (G) (G) + 1 (G) (G) (G) + 1 (G) (G) (G) + 1 k k + 1 k k + 1 (G) (G) (G) (G)
22
23 d
24 k k k G G (G) k > 1 G (G) 3 u u G (G) T (T ) = 2
25 G (G) G G (G) = (G) G (G) = 4 G (G) = 4 1 (G) = 3 (G) = 6 G n s {1,..., n 1} s (G) s n 1 (G) = (G) G 1 (G) = 3 G s (G) (G) s {1,..., n 1}
26 G (G) G G (G) = 4 G (G) k k G X V (G) v X k v X \ {v} X = {u V (H) H (u) = 6} 6 H 6 H G (G) + 1 = {k G k } H (H) = 7
27 G S i {1,..., S } G[E(S, i)] (G), (G) (G) (G), (G) (G) S G (G) = 2 (G) = 3 G
28 G (G) (G) S G = (V, E) i i i E(S, i 1) C E(S, i) = E(G) \ E(C) E(S, i) E(G) \ E(S, i) q G q q q (G) (G) G (G) = (G) C q = 0 0 (G) = (G)
29 G S G (S) = k S G (S ) k k G k (G) k {,,,,, }
30 G (A 0, Z 0 ),..., (A n, Z n ), A i E(G) Z i V (G) 0 i n A 0 = A n = E(G) A i Z i = ( e A i e) ( e E(G)\A i e) 0 i n Z i 0 i n Z i Z i 1 A i = A i 1 Z i Z i 1 A i e e E(G) \ A i 1 Z i Z i = (Z i 1 \ {u}) {v} u Z i 1 v V (G) \ Z i 1 {u, v} E(G) \ A i 1 u A i 1 A i = A i 1 {e} {u, v} v Z i = Z i 1 A i = A i 1 {e} e E(G) \ A i 1 Z i 1
31 S = (A 0, Z 0 ),..., (A n, Z n ) G G (S) = { Z i 0 i n} (G) = { G (S) S G} G X 0,..., X n E(G) X 0 = X n = E(G) X i \ X i i n X i A i G X E(G) G (X) = ( e) ( e X e E(G)\X X 0,..., X n G k G (X i ) k 0 i n G (G) k G k S = (A 0, Z 0 ),..., (A n, Z n ) G G (S) k G (A i ) Z i 0 i k G (A i ) k A 0,..., A n k G k k X = X 0,..., X n G k 0 i n ( G(X i ) + 1) 0 i n X i e)
32 X G (X i 1 X i ) G (X i ) 1 i n X = X 0, X 1,..., X i 1, X i 1 X i, X i+1,..., X n, k X, Y G (X Y ) + G (X Y G (X) + G (Y ) G (X i 1 X i ) G (X i 1 ) k X = X 0, X 1,..., X i 1, X i 1 X i, X i+1,..., X n, k X i 1 X i X i 1 X i 1 = X i X i 1 X i X i \ X i 1 = 1 X G δ(g) 2 X 0,..., X n G k X i \ X i 1 = {e i } 1 i n S A i = A i 1 {e i } 1 i n S j {1,..., n} A j = {e 1,..., e j 1 } A i = A i 1 {e i } 1 i j Z i k 0 i j G (X j 1 ) = Z j G (X j 1 ) e j X j \ X j 1 X j 1 e j G (X j 1 ) e j G (X j 1 ) k Z j+1 = Z j e j A j+1 = A j e j e j e j G (X j 1 ) v e j v v G (X j ) u e j u G (X j 1 ) \ G (X j ) u E(G)\X j Z j+1 = (Z j \{u}) {v} A j+1 = A j e j u e j v k S (X i 1 X i ) \ X i 1 1 X i+1 \ (X i 1 X i ) 1 (X i 1 X i ) \ X i 2 1 X i \ (X i 1 X i ) 1
33 G G (G ) = (G) S G G k G k G k G k (G) (G) G G S α : {1,..., S } V (G) α(i) = G (E(S, i)) α α(i) α(j) + α(i) α(j) α(i) + α(j), S i S j < i
34 (G) (G), (G), (G), (G) (G) G (G) = (G) G {,,,,, } W i K i K i K j i = j K i K j i < j (W ) = 281 (W ) = 290 W
35 T (T ) = (T ) k 4 G (G) = 4k + 1 (G) = 4k + 2 G (G) = 4 (G) = 5
36
37 G (G) (G), {,,,, } G {,,,, } α (G) = (G) (G) α (G) = 1, 5 G
38 G G G G n α (G) = ( n) T (T ) (T ) 2 (T ) 2 T α (T ) < 2
39 {α (G) G n } = 2 n
40
41 G = (V, E) u V e = {x, y} E u xy V G G \ u = (V \ {u}, {{u 1, u 2 } E u 1, u 2 u}) u G \ e = (V, E \ {e}) e G/e = (V \ {x, y} {u x,y }, {{u 1, u 2 } E u 1, u 2 {x, y}} {{u xy, v} v N G (x) N G (y) \ {x, y}}) e u xy H G H G G H G G G H G G G H G
42 ,, G G H G H G C = {K 2,i i = 1, 2,...} k 2,i K 2,j k 2,i K 2,j i j k 2,i K 2,j i, j K 2,1 K 2,2 K 2,3 C = {K 2,i i = 1, 2,...} C C {,, } H G G C H C C C G 1, G 2,... C G i, G j G i G j C C (C) G \ C (C) C T (T ) = {K 3 } {,, } P (P) = {K 5, K 3,3 } C G \ C (C) C C G \ C
43 (C) G C O (C) O G (C) C C[, k] = {G G (G) k} {,,,,,,,, } k k 1 C[, k], C[, k] C[, k] C[, k], C[, k] C[, k] k 1, (C[, 1]) ({u, v}, {{u, v}}) (C[, 2]) = {K 3, T } T (C[, k]) (C[, k]) (C[, k]) k = 1, 2 (C[, 2]) K 3 T T
44 C (C[, 1]) = {K 3, K 1,3 } C[, 1] (C[, 1]) (C[, 1]) (C[, 1]) (C[, 1]) (C[, 1]) (C[, 1]) C (C) (C) (C) (C) (C[, 2]) (C[, 2])
45 (C[, 2]) (C[, 2]) (C[, 3]) (C[, 3]) (C[, 2])
46
47 f : G N n(g) m(g) n(g) = V (G) m(g) = E(G) (G) G (G) = { G (u) u V }
48 G G G = (V, E) X 1,..., X r V i=1,...,r X i = V {x, y} E i {1,..., r} {x, y} X i 1 i j k r X i X k X j G k X 1,..., X r { X i i = 1,..., r} = k 1 (G) = k { X i i = 1,..., r} P n e 1,..., e n X i = e i i = 1,..., n (P ) = 1 C u u u X i (C) = 1 G (G) = (G) + 1 H G H G
49 G P = X 1,..., X r k P i, j, k 1 i < j < k r X i, X j, X k X i X j X k k 1 k k 1 G (G) G (G) (G) (G) + 1 G u 1 u 3 u 6 u 2 u 5 u 4 {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G (G) = (G)
50 G P = X 1,..., X r P i {1,..., r} G[X 1 X i ] G (G) k k 1 G (G) 2 (G) + 1 G P k C 2k + 1 C 2k + 3 (G) (G) + 2 G S k G S 2k + 3 G (G) (G) 2 (G) + 3 X 1,..., X r G
51 G X i X i X i, X j i j = 1 X j X i X k X i X k X j X i G G = (V, E) G X 1,..., X r V T V (T ) = {1,..., r} i=1,...,r X i = V {x, y} E i {1,..., r} {x, y} X i i, j, k {1,..., r} j T i k X i X k X j G k ( X 1,..., X r, T ) k 1 (G) = k G (G) = (G) = 2 G (G) = (G) + 1 k k
52 u 2 u3 u 4 u 8 u 9 u 10 u 1 u 5 u 6 u 7 u 11 G u 1 u 2 u 3 u 3 u 4 u 5 u 4 u 5 u 6 u 4 u 6 u 7 u 4 u 6 u 8 u 8 u 9 u 9 u 10 u 11 u 9 u 10 u 2 u 4 u 5 u 6 u 8 u 1 u 3 u 4 u 4 u 3 u 5 u 6 u u 8 9 u 6 u 7 u 9 u 11 G G = (V, E) X 1,..., X r V G i=1,...,r X i = V {x, y} E x X F (y) y X F (x) F (u) = { i {1,..., r} u X i } G k X 1,..., X r k 1 (G) = k G = (V, E) V = n L = u 1,..., u n u L L L V G u 1, u 2, u 3, u 4, u 5, u 6, u 7, u 8, u 9, u 10 G 1 (G) = (G) + 1
53 u 8 u 10 u 9 u 7 u 5 u 6 u 1 u 2 u 3 u 4 G = (V, E) V = n L = u 1,..., u n (G, L) = { i j {u i, u j } E} G k L (G, L) = k (G) = k G = (V, E) G G G E G G G G (G) = { (G ) G G} (G) = 2 G (G) (G) G (G) = (G)
54 G G = (V, E) E = m L = e 1,..., e m e i L ( ) ( ) L (e i ) = e j e j 1 j i i<j m L (L) = { L (e) e E} G (G) = {(L) L } E = 1 (G) = 0 { u 1 } { u 2, u2 } { u 3, u3 } { u 4, u3 } { u 5, u5 } { u 6, u5 } { u 7, u7 } u 8, { u7 } { u 9, u9 } { u 10, u9 } u 2 G (G) (G) G (G) = (G) (G) (G) G P = {p 1,..., p r } G ΛG = (V (G) {p 1,..., p r}, E(G) {{p 1, p 1},..., {p r, p r}} {p 1,..., p r} V (G) = Λ 1 G = (V (G) \ P, {{u 1, u 2 } E u 1, u 2 P }) G (G) = (ΛG) (G) = (Λ 1 G) G (G) (G) (G) + 1
55 (G) = (G) + 1 (G) = (G) (G) (G) + 2 (G) = (G) (G) = (G) + 1 (G) (G) (G) (G) (G) + 1
56
57 k k G = (V, E) V k V V 1, V 2 { } {x, y} E x V 1, y V 2 k k k
58 k G (G) = (G)+1 k k k k k C G C k (G) k k T n (T ) O(n) k T T T (T ) O(n n)
59 k A (G) = k {,, } (T ) T A (T ), (T ) k T G n (G) 3 O(n) k C G H G H G O(n 3 ) n = V (G) C (C) O 1,..., O (C) G G C O i G O i (C) O(n 3 ) n G C C (C) C (C) C[, k] C[, k] C[, k] C O(n 3 )
60 G (G) 2 (G) 2 (G) 3 k G = (V, E) (G) k V (G) k C C k 1 k G k 1 (G) k G = (V, E) O( V + E ) 1 k k Π L Π Σ G N Σ (I, k) L Π I Π k I
61 k G k k k G k k (G) k k G n(g) k n(g) Π A O(f(k) p(n)) f p n Π F P T A : G N H G H G (H) (G) C[, k] = {G G (G) k} k N k G k k (G) k : G N k (C[, k]) g : N N g(k) = (C[, k]) G G
62 (C[, k]) g(k) (G) k O(g(k) n 3 ) k k l G = (V, E) P l (G) k (G) k O(2 p(k) n) p n = V G O(n 2 ) l k (k) (G) O(2 p(k) n 2 ) k 2 ko(1) n G = (V, E) (G) k (G) k (G) k k
63 O = {C i, i N} G G C, C O C C C C G G C[, 2]
64 B u C v B u v C u v G (G) = 2 (G, S, S ) G S S V (G) G = (G, S, S ) G G S
65 K 2,3 K + 2,3 K 4 O 1 S S S G S S S S (G, S, S ) S = {v 1,..., v S } S = {v 1,..., v S }. (G, S, S ) G u u E = {{v 1, u },..., {v S, u }} E = {{v 1, u },..., {v S, u }}. G S, S V (G) (S 1, S 2 ) G S (G, S, S )
66 O 2 O3 O 4 O 5 O 6 O 7 O 2, O 3, O 4, O 5, O 6, O 7 E(S, i) = E i E(S, i) E = i E(S, i) = E(G) \ E i (G, S 1, S 2 ) (S 1, S 2 ) G (G, S 1, S 2 ) (G, S 1, S 2 ) (G) = (G,, ) G (G) (G) G E E E(G) G (E, E ) G E = A 1,..., A r i {1,..., r 1} E A i E(G) \ E i {1,..., r 1} A i+1 \ A i 1 A 1 = E
67 O8 O 9 O 8, O 9 A r = E(G) \ E (E, E ) G i {1,..., r} G[A i ] (E, E ) G A 1 A r (E, E ) E G i {1,..., r 1} E i G (E, i) = G (A i ) + q i q i A i 2 A i \ A i 1 A i E G (E) = { G (E, i) i {1,..., r 1}} G S, S V (G) (G, S, S ) (E, E ) (G, S, S ) (G, S, S ) (E, E ) (G, S, S ) (E, E )
68 G (G, S, S ) = (G, S, S ) G = (G, S, S ) (S 1, S 2 ) S k S i {1,..., S } E i = E(S, i) \ E(S, i 1) L i E i i {1,..., S } i S e L i e L = L 1 L S E = A 0,..., A r E(G ) A 0 = A i = A i 1 {e i } e i i L A s = E s {1,..., S } A t = E t {1,..., S } E = A s,..., A t (E, E ) G E (E) S G (E ) j {0,..., E } i j A j \ A j 1 E ij h j A hj \ A hj 1 L ij E h j,..., j G (E, h j ) l {h j + 1,..., j} G (A l ) G (A hj ) q l = 0 G (E, h j ) k G (E ) k q hj q hj = 0 G (E, h j ) = G (A hj ) S G (A hj ) i j S S k G (E, h j ) k q hj = 1 i j S p(x) s(y, x) x x G (A hj ) G (A hj ) i j G (A hj ) + 1 k G (E, h j ) k S G (A hj ) = G (A hj 1) \ {y} (h j 1) G (A hj 1) G (A hj ) k 1 G (E, h j ) k G (E, E ) E = A 1,..., A r G (E) = k E
69 E (E, E ) E = A 1,..., A r k i {1,..., r 1} V (A i ) V (A i+1 ) A i E(G ) V (A i ) (E, E ) i V (A i ) V (A i+1 ) L = e 1,..., e n E(G ) \ A i A i j i A j = A j A i+1 = A i {e 1 } A i+2 = A i {e 1, e 2 },..., A i+n = A i {e 1,..., e n } j i + n A j = A j {e 1,..., e n } j = 1,..., n G (A i+j ) = G (A i) j i + n G (A j ) G (A j) k (S, S ) G S k S S p(u ) S s(u, vi ) 2 S S S 0 E(S, 2 S ) = A 1 u V = V (G ) \ S \ {u } l u {1,..., r} u V (A lu ) L = u 1,..., u V V i j l ui l uj i {1,..., V } u i e i A lui 1 \ A lui v i e i E v i G (A lui 1) u i u i G (A lui ) E = {e 1,..., e V } A j j {1,..., r} A j 1 E < A j E i {1,..., V } S i v i G (A lui ) S i p(u i ) s(v i, u i ) S i G (A lui 1) \ G (A lui ) S = S 0 S 1 S V E A j j = 1,..., l u1 S i {1,..., V 1} A j j {l ui,..., l ui+1 1} V (A lui ) A j j {l u V,..., r} V (A lu V )
70 A j j {1,..., r} G (A j ) G S mj m j (A E ) \ (A j 1 E ) A E A j A A 1 = E A j G (A j +1) G S mj +1 A j +1 G (A j +1) G (A j ) m j +1 = m j A j +1 {e mj +1 } = (A j +1 E ) \ (A j E ) v mj +1 G (A j ) v mj +1 G (A j +1) u mj +1 G (A j +1) G (A j +1) = G (A j ) {u mj +1 } S mj +1 p(u mj +1 ) v mj +1 G (A j +1) u mj +1 G (A j +1) G (A j +1) = G (A j ) v mj +1 G (A j +1) G (A j +1) = ( G (A j ) \ {v mj +1 }) {u mj +1 } S mj +1 s(v mj +1, u mj +1 ) V S (i) i S V S = V S (1),..., V S (r) i S j V S (i) = V (A luj ) i {1,..., S } G [V S (i)] i {1,..., 2 S } i 2 S + 1,..., r G [V S (i + 1)] (i + 1) S r(u) G [V S (i+1)] = G [V S (i)] r(u) u V S (i) v u G (A luj 1) \ G (A luj ) j {1,..., V } u A luj {u, v} A luj V S (i) = V (A luj ) p(u) S {u, v} v V S (i) p(u) G [V S (i+1)]
71 s(v j, u j ) j {1,..., V } G [V S (i + 1)] G [V S (i)] u j v V S (i) i v j v j G (A luj ) s(v j, u j ) v j u V S (i) = V (A luj ) v j G (A luj ) u A luj {v j, u} A luj (i + 1) S G [V S (i + 1)] S (S 1, S 2 ) S 0 v V S u u i {1,..., V 1} E(S, S 0 S i 1 + 1) = = E(S, S 0 S i 1 + S i ) = A lui+1 1 i = V E(S, S 0 S V ) = A r S S 2 S S = G (E, 1) k j > 2 S G k (j +1) p(u i ) i {i,..., V } G (A lui 1) G (A lui 1) < k p(u i ) k G (A lui 1) = k u i G (A lui ) = G (A lui 1) {u i } G (A lui ) = k + 1 u i G (A lui ) = G (A lui 1) G (E, l ui ) = G (A lui ) + 1 = k + 1 S k (G 1, S1, S1 ) (G 2, S2, S2 ) (G 1, S1, S1 ) (G 2, S2, S2 ) (G 1, S1, S1 ) r (G 2, S2, S2 ) ϕ : V (G 2 ) V (G 1 ) v V (G 1 ) G 2 [ϕ 1 (v)] {v, u} E(G 1 ) G 2 [ϕ 1 (v) ϕ 1 (u)] ϕ(s 2 ) = S 1
72 ϕ(s 2 ) = S 1 G 1, G 2 G 1 G 2 (G 1,, ) r (G 2,, ) G G G G/e e = {x, y} u e ϕ : V (G) V (G/e) ϕ(x) = ϕ(y) = u e ϕ(u) = u u V (G) V (G/e) ϕ (G/e,, ) r (G,, ) G 1, G 2 ϕ : V (G 2 ) V (G 1 ) (G 1,, ) r (G 2,, ) G 2 G 2 G 1 σ : V (G 2) V (G 1 ) x, y V (G 2) {x, y} E(G 2) {σ(x), σ(y)} E(G 1 ) v V (G 1 ) G 2 [ϕ 1 (v)] u v σ(u v ) = v σ {x, y} E(G 1 ) G 2 [ϕ 1 (v) ϕ 1 (u)] σ (G 1, S1, S1 ) (G 2, S2, S2 ) (G 1, S1, S1 ) r (G 2, S2, S2 ) (G 1, S1, S1 )) (G 2, S2, S2 )) E = A 1,..., A r (E2, E2 ) G 2 = (G 2, S2, S2 ) k (E1, E1 ) G 1 = (G 2, S2, S2 ) k ϕ (G 1, S1, S1 ) r(g 2, S2, S2 ) ψ ϕ ψ(u 2 ) = u 1 ψ(u 2 ) = u 1 ψ (G 1, S 1 {u 1 }, S 1 {u 1 }) r (G 2, S 2 {u 2 }, S 2 {u 2 }) f = {x, y} E(G 1 ) E f E(G 2 ) ψ 1 (x) ψ 1 (y) E f e f E = {e f f E(G 1 )} E = A 1 E,..., A r E G 1 i {1,..., r 1} G 1 (E, i) G 2 (E, i)
73 v v v v v A (G, {v}, {v}) (C[, 2]) D 1 = O 1 O 12 O 1 O 2,..., O 9 O 10 O 11 O 12 O 10 : A v O 11 : B v O 12 : C v D 1 (C[, 2]) D 1 (C[, 2]) D 1 (C[, 2])
74 v v v v v v v v v v v v B (G,, {v}) v v v v v v C (G, {v}, ) G C[, 2] G G
75 B C G C[, 2] B 4 B 0 B 0 B 1 B 3 B 4 x B 2 w c 1 c 2 B2 c 3 c 4 B 3 B 4 y F 1 F2 F 4 G C[, 2] B 0 B 4 B 1, B 2 B 3 F 1, F 2 F 4
76
77
78
79
80
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
Θεωρία Γραφημάτων 4η Διάλεξη
Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη
1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x
M p f(p, q) = (p + q) O(1)
l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM
())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*
! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
u(x, y) =f(x, y) Ω=(0, 1) (0, 1)
u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =g(x, y) Γ=δΩ ={0, 1} {0, 1} Ω Ω Ω h Ω h h ˆ Ω ˆ u v = fv Ω u = f in Ω v V H 1 (Ω) V V h V h ψ 1,ψ 2,...,ψ N, ˆ ˆ u v = Ω Ω fv v V ˆ ˆ u v = Ω ˆ ˆ u ψ i = Ω Ω Ω
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667
!"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
... )*RM G ^ S NA 08MG =.1 )*RM G ^ S NA.
35... 3 2 * $#% 0 ) *+, -./ 0 $#% &"#!" (203).2 3 4../ ) ; < / "= > 8.:& / 8/ / 8.89 E " 392 # 382 8. C :& / 238 @*=A 8"* 0? 3 9= N=MO*. 8"H=& IJ$ E. + KH= L*=M 4>G F +"* 9% S. @$ ",R 8 IJ$ 3./ P=Q ) +
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJ"AL hp_a*a
n n 1/2 n (n 1) 0/1 l 2 E x X X x X E x X g(x) := 1 g(x). X f : X C L p f p := (E x X f(x) p ) 1/p f,g := E x X f(x)g(x) x X X X X := {f : X [0, ) : f 1 =1}. X µ A A X x X µ A (x) :=α 1 1 A (x) 1 A A α
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x.
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Ορισός (Τυχαία Μεταβλητή). Οοάζουε τυχαία εταβλητή (τ..) κάθε απεικόιση Χ: Ω για τη οποία το σύολο { ω Ω : Χ(ω) x} έχει προσδιορίσιη πιθαότητα για κάθε x. Τούτο σηαίει ότι η ατίστροφη
Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.
Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί
ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών
Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Είδη τυχαίων διανυσµάτων 1. ιακριτού τύπου X = (X 1, X 2,...,X k ) ονοµάζεται διακριτό τυχαίο διάνυσµα αν το πεδίο τιµών του είναι της µορφής, S = {x 1 x 2 n,,...,x,...}.
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
1529 Ν. 29(ΙΙ)/95. E.E. Παρ. 1(H) Αρ. 2990,
E.E. Παρ. 1(H) Αρ. 2990, 21.7.95 1529 Ν. 29(ΙΙ)/95 περί Συμπληρωματικύ Πρϋπλγισμύ Νόμς (Αρ. 4) τυ 1995 εκδίδεται με δημσίευση στην Επίσημη Εφημερίδα της Κυπριακής Δημκρατίας σύμφωνα με τ Άρθρ 52 τυ Συντάγματς.
(2), ,. 1).
178/1 L I ( ) ( ) 2019/1111 25 2019,, ( ), 81 3,,, ( 1 ), ( 2 ),, : (1) 15 2014 ( ). 2201/2003. ( 3 ) ( ). 2201/2003,..,,. (2),..,,, 25 1980, («1980»),.,,. ( 1 ) 18 2018 ( C 458 19.12.2018,. 499) 14 2019
DOCUMENTS DE TRAVAIL / WORKING PAPERS
DOCUMENTS DE TRAVAIL / WORKING PAPERS 2017-66 How shifting investment towards low-carbon sectors impacts employment: three determinants under scrutiny Quentin Perrier 1, *, Philippe Quirion 1,2 September
ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ
ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ Ακρότατα Δρ. Ιωάννης Ε. Λιβιέρης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. TEI Δυτικής Ελλάδας 2 Ακρότατα συνάρτησης Έστω συνάρτηση f A R 2 R και ένα σημείο P(x, y ) A. Η τιμή f(x, y )
Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α I E Π Α Λ
Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 1 3 Μ Α Θ Η Μ Α Τ Ι Κ Α I E Π Α Λ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς 1o ΘΕΜΑ 1 A1. Εστω συνεχης συναρτηση f : [α, ] με παραγουσα συναρτηση F. Τι ονομαζεται ορισμενο
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
f H f H ψ n( x) α = 0.01 n( x) α = 1 n( x) α = 3 n( x) α = 10 n( x) α = 30 ū i ( x) α = 1 ū i ( x) α = 3 ū i ( x) α = 10 ū i ( x) α = 30 δū ij ( x) α = 1 δū ij ( x) α = 3 δū ij ( x) α = 10 δū ij ( x)
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *&
! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *& '*$$%!#*#&-!5!&,-/+#$!&- &"/ "$,&/#!6$7,&78 "$% &$&'#-/+#!5*% 3 +!$ 9 &$*,2"%& #$- 3 '*$%#
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων
سال چهارم آموزش متوسطه رشته ی ریاضی و فیزیک
سال چهارم آموزش متوسطه رشته ی ریاضی و فیزیک آموزش جامع و کامل مباحث به همراه تمرین های آموزشی و جواب فصل اول :... فصل دوم :... فصل سوم :... فصل چهارم :... 8 www.g-l.ir : www.thtower.org 8 www.g-l.ir ge
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Ενδεικτικές Λύσεις Ασκήσεων. Κεφάλαιο 1. Κοκολάκης Γεώργιος
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ενδεικτικές Λύσεις Ασκήσεων Κεφάλαιο Κοκολάκης Γεώργιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
". / / / !/!// /!!"/ /! / 1 "&
! "#$ # % &! " '! ( $# ( )* +# ),,- ". / / /!"!0"!/!// /!!"/ /! / 1 "& 023!4 /"&/! 52! 4!4"444 4 "& (( 52! "444444!&/ /! 4. (( 52 " "&"& 4/444!/ 66 "4 / # 52 "&"& 444 "&/ 04 &. # 52! / 7/8 /4 # 52! "9/
X vu = Γ 1 21X u + Γ 2 21X v + fn. X vv = Γ 1 22X u + Γ 2 22X v + gn, (7.2) X u = (cos u cos v, cos u sin v, sin u)
Κεφάλαιο 7 Οι εξισώσεις Codazzi και Gauss Σύνοψη Στο κεφάλαιο αυτό θα ασχοληθούμε με μια βαθύτερη κατανόηση της καμπυλότητας Gauss. Θα ορίσουμε τα σύμβολα του Christoffel, τα οποία είναι πραγματικές συναρτήσεις
Εφαρμογές του μεταθετικού Θεωρήματος Gelfand-Naimark σε μη μεταθετικές C* άλγεβρες
Εφαρμογές του μεταθετικού Θεωρήματος Gelfand-Naimark σε μη μεταθετικές C* άλγεβρες 1 Εξάρτηση του φάσματος από την άλγεβρα Έστω A άλγεβρα Banach με μονάδα 1 και B Ď A κλειστή υπάλγεβρα που περιέχει την
Αυτοματοποιημένη χαρτογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 3: Ψηφιακός χάρτης διαχείριση - 1 ο μέρος Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
! " # $ % # "& #! $! !! % " # '! $ % !! # #!!! ) " ***
! " # $ % # # $ # # "& # $! $! #!! % " # '! $ % "!! $ "!!! # ( #!!! ) #! " *** # .....5.......9..........9.....4.3....... 9.4. -...3.......36....36......4.3....45.3......46.3......5.3.3....59.3.4.......65
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι
E.E. Παρ. Ill (I) 701 &.Δ.Π. 237/92 Αρ. 2740, Αριθμός 237 Ο ΠΕΡΙ ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΧΩΡΟΤΑΞΙΑΣ ΝΟΜΟΣ (ΝΟΜΟΙ 90 ΤΟΥ 1972 ΚΑΙ 56 ΤΟΥ 1982)
E.E. Παρ. Ill (I) 71 &.Δ.Π. 7/9 Αρ. 74, 5.9.9 Αριθμός 7 ΠΕΡΙ ΠΛΕΔΙΑΣ ΑΙ ΧΩΡΤΑΞΙΑΣ ΝΣ (ΝΙ 9 ΤΥ 197 ΑΙ 5 ΤΥ 19) Διάταγμα Διατήρησης σύμφνα μ τ άρθρ (1) Ασκώντας τις ξσίς π χρηγύνται σ' ατόν από τ άφι (Ι)
Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N
I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i
Αλγεβρικές Δομές Ι. 1 Ομάδα I
Αλγεβρικές Δομές Ι 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω G μια προσθετική ομάδα S ένα μη κενό σύνολο και M(S G το σύνολο όλων των συναρτήσεων f : S G. Δείξτε ότι το σύνολο M(S G είναι ομάδα με πράξη την πρόσθεση
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k =
ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2016 Χρήστος Α. Αθανασιάδης Συμβολίζουμε με Z m το δακτύλιο των ακεραίων modulo m, με ā Z m την κλάση (mod m) του a Z και με M n (R) το δακτύλιο
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός.
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ, ΙΩΑΝΝΗΣ ΚΟΝΤΟΓΙΑΝΝΗΣ, ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ, ΙΟΥΝΙΟΣ 207 ΟΝΟΜΑ ΦΟΙΤΗΤΗ:.............................. Οδηγίες. Συμπληρώστε το όνομά
959 Ν. 108/87. E.E., Παρ. I, Αρ. 2235,
E.E., Παρ. I, Αρ. 5, 1.6.87 959 Ν. 108/87 πρί Ειδικύσς Σμπληρματικής Πιστώσς (Ταμίν Αναπτύξς) Νόμς (Αρ. 9) τ 1987 κδίδται μ δημσίση στην πίσημη φημρίδα της Κπριακής Δημκρατίας σύμφνα μ τ Άρθρ 5 τ Σντάγματς.
(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n
Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,
ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 15ης ΙΟΥΛΙΟΥ 2002 ΝΟΜΟΘΕΣΙΑ ΜΕΡΟΣ II
Ν. 41(ΙΙ)/22 ΠΑΡΑΡΤΗΜΑ ΠΡΩΤ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ Αρ. 622 της 1ης ΙΥΛΙΥ 22 ΝΜΘΕΣΙΑ ΜΕΡΣ II περί Συμπληρωμτικύ Πρϋπλγισμύ Νόμς (Αρ. 7) τυ 22, εκδίδετι με δημσίευση στην Επίσημη Εφημερίδ
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες
Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες Εσωτερικά και Εξωτερικά ευθέα Γινόμενα Α 1. Έστω η κυκλική ομάδα
ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2
ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του
Λύσεις Σειράς Ασκήσεων 3
Λύσεις Σειράς Ασκήσεων 3 Άσκηση 1 Να εφαρμόσετε τη διαδικασία της επίλυσης στα πιο κάτω προτασιακά σύνολα. (α) { P(a,f(f(x))) }, { P(y,z), P(y, f(f(z))) }, {P(x,b), Q(x)}, {P(x,b),Q(x)} Η Μέθοδος της Επίλυσης
Εισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ - ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ
Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία
0 3 10 71 < < 3 1 7 ; (y k ) 0 LU n n M (2; 4; 1; 2) 2 n 2 = 2 2 n 2 n 2 = 2y 2 n n ' y = x [a; b] [a; b] x n = '(x n 1 ) (x n ) x 0 = 0 S p R 2 ; S p := fx 2 R 2 : kxk p = 1g; p = 1; 2; 1 K i
2. Μια παραγωγίσιμη συνάρτηση f(x, y, z) έχει f(x 0, y 0, z 0 ) (0, 0, 0) και μηδενικό στιγμιαίο
1. Έστω E το εφαπτόμενο επίπεδο στο γράφημα της f(x, y) = x 2 + 3xy στο σημείο (1, 1, 4). Σε ποιά σημεία της η επιφάνεια με καρτεσιανή εξίσωση 5x 2 + 3y 2 + z 2 = 9 έχει μοναδιαίο κάθετο διάνυσμα το οποίο
1 \ TK 1 TK #$Y 9 : J - A % 9 : & ] 9 : ' 1. T & ] X 9 :. J _ L ^ 6 T & ] C ( ' 9 ), D ^ 9 : G. T & ] 1 6 * Z X + 9 : & ]., & - 9 : '?. K ' 9 : ' / *
1\TK1TK #$Y 9 : J - A % 9 : & ] 9 : ' 1. T & ] X 9 :. J _ L ^ 6 T & ] C ( ' 9 ), D ^ 9 : G. T & ] 1 6 * Z X + 9 : & ]., & - 9 : '?. K ' 9 : ' / * J 9 : 0 K 9 : 6 9 : $, V 1 O ^ ' V C 9 : & ] C 6 9 : &
Ανταλλακτικά για Laptop Lenovo
Ανταλλακτικά για Laptop Lenovo Ημερομηνία έκδοσης καταλόγου: 6/11/2011 Κωδικός Προϊόντος Είδος Ανταλλακτικού Μάρκα Μοντέλο F000000884 Inverter Lenovo 3000 C200 F000000885 Inverter Lenovo 3000 N100 (0689-
ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ
ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ 4.. Εισαγωγή Στην προσομοίωση σε πολλές περιπτώσεις είναι απαραίτητη η δημιουργία δειγμάτων τυχαίων μεταβλητών που ακολουθούν κάποια καθορισμένη
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης ιαχείριση Συναλλαγών II Tree Protocols Τζικούλης Βασίλειος redits:γιάννης Μακρυδάκης 1 ιαχείριση Συναλλαγών Συναλλαγή = Αδιάσπαστη Λογική Οµάδα Ενεργειών
ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΑΛΟΓΗΡΑΤΟΥ Ζ. - ΜΟΝΟΒΑΣΙΛΗΣ Θ. ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ Μεγιστοποίηση εμβαδού με τον περιορισμό της περιμέτρου
Συστήματα διατήρησης πίεσης
Περιεχόμενα Συστήματα διατήρησης πίεσης Σελίδα Δοχεία διαστολής για εφαρμογές θέρμανσης, ψύξης και ηλιακά συστήματα reflex NG και N 4 reflex S 5 reflex G 6 reflex G - Εξαρτήματα για δοχεία διαστολής 7
Μιχάλης Παπαδημητράκης. Μερικές Διαφορικές Εξισώσεις
Μιχάλης Παπαδημητράκης Μερικές Διαφορικές Εξισώσεις Περιεχόμενα 1 Γενικά. 1 1.1 Μερικές διαφορικές εξισώσεις............................ 1 1.2 Διαφορικοί τελεστές................................. 2 1.3
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards
A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards Table of Contents Introduction (Arabic)... 1 Introduction (English)...396 Part One: Texts of the Constitutions
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
Θεωρία Γραφημάτων 1η Διάλεξη
Θεωρία Γραφημάτων η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 207 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
REFLECTIONLESS POTENTIALS AND STOCHASTIC ANALYSIS. Setsuo TANIGUCHI. Faculty of Mathematics, Kyushu Univ.
REFLECTIONLESS POTENTIALS AND STOCHASTIC ANALYSIS Setsuo TANIGUCHI Faculty of Mathematics, Kyushu Univ. http://www.math.kyushu-u.ac.jp/~taniguch/ 0 PDE and Stochastic Analysis 194 K.Itô; stoch. integral,
.1. 8,5. µ, (=,, ) . Ρ( )... Ρ( ).
ΡΧΗ 1Η Ε ε Γ Α Ο ΗΡ Ε Ε Ε Ε Η Ε Ο Ε Ο Ε Η 14 Ο Ο 2001 Ε Ε Ο Ε Ο Η Ε Η εε : Η Ο ΧΕ Η Ο Ο Ε εά : Ε (6) Ε Α 1ο Α.1. π µ µ ά : Ρ ( ) = Ρ ( ) Ρ ( ). 8,5 Α.2. µ π µπ µ π µ µ, (=,, ) : Ρ ( )... 1 Ρ( ) 2 Ρ( )...
"Εγκρισις πληρωμής έκ τοο λογαριασμού. Ταμείου ποσού 9,944 διά τήν χρήσιν του έτους τοο λήγοντος τήν 31 ην Δεκεμβρίου
619 Ό περί Συμπληρμτικύ Πρϋπλγισμύ Νόμς ('Αρ. 11) τυ 1967, εκδίδετι δι δημσιεύσες είς την έπίσημν εφημερίδ της Κυπρικής Δημκρτίς συμφώνς τ "Αρθρ 52 τΰ* Συντάγμητς. 'Αριθμός 45 τυ 1967 ΝΜΣ ΠΝΩΝ ΠΕΙ ΣΥΜΠΛΩΜΑΤΙΚΥ
ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΝΟΛΑ. 1. Να εκφράσετε ως πράξεις μεταξύ των Α και Β, τα σύνολα που αντιστοιχούν στα χρωματισμένα μέρη των παρακάτω διαγραμμάτων Venn.
ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΝΟΛΑ 1 Να εκφράσετε ως πράξεις μεταξύ των Α και Β, τα σύνολα που αντιστοιχούν στα χρωματισμένα μέρη των παρακάτω διαγραμμάτων Venn 2 Δίνεται το παρακάτω διάγραμμα Venn Να παραστήσετε με
9.BbF`2iBbB2`mM; A,.Bz2`2Mx2Mp2`7?`2M 7Ƀ` T `ib2hh2.bz2`2mib H;H2B+?mM;2M 8.BbF`2iBbB2`mM; AA, 6BMBi2 1H2K2Mi2 o2`7?`2m
R R R K h ( ) L 2 (Ω) H k (Ω) H0 k (Ω) R u h R 2 Φ i Φ i L 2 A : R n R n n N + x x Ax x x 2 A x 2 x 3 x 3 a a n A := a n a nn A x = ( 2 5 9 A = )( x ( ) 2 5 9 x 2 ) ( ) 2x +5x = 2. x +9x 2 Ax = b 2x +5x
Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης Δ. Δημογιαννόπουλος,
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 27/02/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/1/2015
Παραδοχές - Φορτία. Οροφοι : 3 Υπόγεια: 0. Επικάλυψη δαπέδων= 0.80[kN/m²], Τοίχοι σε δάπεδα= 0.00[KN/m²] γg=1.35, γq=1.50. I, α=0.160g=1.
Παράδειγμα εκτύπωσης FEDRA... Παραδοχές - Φορτία Ονομασία Εργου-Μελέτης Διεύθυνση έργου Μηχανικός Μελετητής Παράδειγμα εκτύπωσης FEDRA ΙΩΑΝΝΙΝΑ Μηχανικός Α... Γενικά Χαρακτηριστικά Κτιρίου Οροφοι Οροφοι
! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $
[ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::
ΚΕΦΑΛΑΙΟ 5 Το Πρόβλημα της Συνάντησης Πολλών Πρακτόρων
k 2 n k n k n n k n k k S S k 2 n O(n) O(k n) O(kn) O( n) ) O(k n) O(n) O( n) O(n) O( k) O(n k) O( k) O( n n n k n k > 2 Ω( n + k) k n n k k n n n/2 S = d 1,..., d k m > 1 j 1 m, j k k S S O(k n) k n k
ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ
Τµ. Επιστήµης των Υλικών Συνάρτηση Κατανοµής Ορισµός F(x) = P(X x) = f(t) x t x f(t)dt, X διακριτή τ.µ., X συνεχής τ.µ. Ιδιότητες 0 F(x). 2 F είναι αύξουσα συνάρτηση. 3 F είναι συνεχής εκ δεξιών. 4 lim
Ατομικό βάρος Άλλα αμέταλλα Be Βηρύλλιο Αλκαλικές γαίες
Χημικά στοιχεία και ισότοπα διαθέσιμα στο Minecraft: Education Edition Σύμβολο στοιχείου Στοιχείο Ομάδα Πρωτόνια Ηλεκτρόνια Νετρόνια H Υδρογόνο He Ήλιο Ευγενή αέρια Li Λίθιο Αλκάλια Ατομικό βάρος 1 1 0
Approximation de haute précision des problèmes de diffraction.
Approximation de haute précision des problèmes de diffraction. Sophie Laurens To cite this version: Sophie Laurens. Approximation de haute précision des problèmes de diffraction.. Mathématiques [math].
Προαπαιτούµενη γνώση. Οµοµορφισµοί οµάδων, σχέση ισοδυναµίας και µετα- ϑέσεις. Το Θεώρηµα Lagrange, καθώς και το 1ο Θεώρηµα ισοµορφισµών.
Κεφάλαιο 5 ράση οµάδων Σύνοψη. Μελετάται η (αριστερή) δράση οµάδας σε σύνολο. Εισάγεται η έννοια µετάθεση-αναπαράσταση µιας οµάδας. Αποδεικνύεται το Λήµµα τροχιάςσταθεροποιητή και το Λήµµα Burnside. Επίσης,
Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ
Κλίση συνάρτησης f Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ Αν σε κάθε σημείο Px, y,z ενός τμήματος Δ του χώρου μία τιμή, ορίζεται μια συνάρτηση. f x, y,z : Δ, Δ αντιστοιχίσουμε την οποία ονομάζουμε σημειακή
Συνήθεις ιαφορικές Εξισώσεις. Πρόχειρες σηµειώσεις. Αλκης Τερσένοβ. 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2
Συνήθεις ιαφορικές Εξισώσεις 215 Πρόχειρες σηµειώσεις Αλκης Τερσένοβ Περιεχόµενα 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2 2. Συστήµατα ιαφορικών Εξισώσεων Πρώτης Τάξης... 22 2.1 ιαφορικές Εξισώσεις Ανώτερης
Θεωρία Γραφημάτων 1η Διάλεξη
Θεωρία Γραφημάτων η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 206 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη
Διαφορικές εξισώσεις 302.
Διαφορικές εξισώσεις 32. Μαθηματικό Αθήνας Συλλογή ασκήσεων 1 Λύτες: Βουλγαρίδου Εύα Ορμάνογλου Στράβων Παπαμικρούλη Ελένη Παπανίκου Μυρτώ Καθηγητές: Αθανασιάδου - Μπαρμπάτης Επιμέλεια L A TEX: Βώβος Μάριος
f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange
Μέγιστα και ελάχιστα 39 f f B f f yx y x xy Οι ιδιοτιμές του πίνακα Β είναι λ =-, λ =- και οι δυο αρνητικές, άρα το κρίσιμο σημείο (,) είναι σημείο τοπικού μεγίστου. Εφαρμογή 6: Στο παράδειγμα 3 ο αντίστοιχος
ẋ = f(x) n 1 f i (i = 1, 2,..., n) x i (i = 1, 2,..., n) x(0) = x o x(t) t > 0 t < 0 x(t) x o U I xo I xo : α xo < t < β xo α xo β xo x(t) t β t α + x f(x) = 0 x x x x V 1 x x o V 1 x(t) t > 0 x o V 1
ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ
ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Παππάς Χρήστος - Επίκουρος Καθηγητής Κβαντισμένα μεγέθη Ένα μέγεθος λέγεται κβαντισμένο όταν παίρνει ορισμένες μόνο διακριτές τιμές, δηλαδή το σύνολο των τιμών του δεν
Chapter 2. Stress, Principal Stresses, Strain Energy
Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΑΣ ΣΧΕΔΙΑΣΗ ΚΩΔΙΚΟΠΟΙΗΤΗ-ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗ REED SOLOMON
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΥΛΙΚΟΥ-ΛΟΓΙΣΜΙΚΟΥ ΕΡΓΑΣΤΗΡΙΟ ΘΕΩΡΗΤΙΚΗΣ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ Β' ΟΜΑΔΑ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΕΝΣΩΜΑΤΩΜΕΝΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΟΔΩΡΟΣ ΡΟΥΔΑΣ