Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1

2

3

4

5

6

7

8

9

10

11 (G) = 4 1 (G) = 3 (G) = 6 6 W G G C = {K 2,i i = 1, 2,...} (C[, 2]) (C[, 2]) {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G

12 u v G (G) = 2 O 1 O 2, O 3, O 4, O 5, O 6, O 7 O 8, O 9 A (G, {v}, {v}) B (G,, {v}) C (G, {v}, ) G C[, 2] B0 B4 B1, B2 B3 F 1, F 2 F 4

13

14 V V (V, E) G G V (G) E(G) V (G) E(G) {x, y} E(G) x y {x, y} G V (G) u, v {u, v} E(G) k 1 P k = ( {u 1,..., u k+1 }, { {u1, u 2 },..., {u k, u k+1 } }) u 1 u k+1 P k k 1 C k = ( {u 1,..., u k }, { {u 1, u 2 },..., {u k 1, u k }, {u k, u 1 } } k 1 K k = ( {u 1,..., u k }, { {u i, u j } 1 i < j k }) A, B k l K k,l = (A B, { {u, v} u A v B } ) S V (G) S G[S] = ( S, { {u, v} E(G) {u, v} S })

15 F E(G) F G[F ] = ( e F e, F ) G G G e E(G) G G u, v V (G) G {u, v} E(G) u G N G (u) = {e E(G) u e} e \ {u} u G G (u) = N G (u) G δ(g) = { G (u) u V (G)} G (G) = { G (u) u V (G)} d d d u, v V (G) G G u, v V 1,..., V k G[V i ] 1 i k G u, v V (G) G G G Γ G R 2 Γ G G F e F e = V (G) F G L 1 = l 1 1,..., l 1 p L 2 = l 2 1,..., l 2 q L 1 L 2 l 1 1,..., l 1 p, l 2 1,..., l 2 q L 1 L 2 n 2 n Σ Σ Σ G

16 L L w Σ w L L Σ G G Σ G L G I L L L G G I G k k G G w Σ w

17 G R 3 R 3 Γ R 3 Π = {x i 1 i k} Γ y : [0, ) Γ t(y) [0, ) i {1, 2,, k} y(t(y)) = x i (t(y)) y(t) t Γ x i (t) i k t(y) k Γ Γ G = (V, E)

18 u v p(v) v r(v) v s(u, v) {u, v} u v S e E(G) e e S S E(S, i) i S i S E(S, i)

19 E(S, 0) = i 1 E i i Q i = E(S, i 1) E i E(S, i) Q i E(G)\Q i S E(S, i) = E(G) i G i S E i i S E(S, i) Q i i i i 1 i j E(S, i) E(S, j) S G (S) G S (G) = { G (S) S G} E(G) = (G) = 0 G (T ) = 2 T e

20 G (G) T (T ) = 3 (T ) (T ) K 3,3 (K 3,3 ) = 4 (K 3,3 ) = 5 G (G) (H) = 2 (G) = 3 H G G (G) (G) (G) (G) G = (V, E) G e G {x, y} E {x, u xy } {u xy, y} u xy V (G) = (G e ) G n G e E (G) = (G n )

21 G (G) 1 (G) (G) + 1 (G) (G) (G) + 1 (G) (G) (G) + 1 k k + 1 k k + 1 (G) (G) (G) (G)

22

23 d

24 k k k G G (G) k > 1 G (G) 3 u u G (G) T (T ) = 2

25 G (G) G G (G) = (G) G (G) = 4 G (G) = 4 1 (G) = 3 (G) = 6 G n s {1,..., n 1} s (G) s n 1 (G) = (G) G 1 (G) = 3 G s (G) (G) s {1,..., n 1}

26 G (G) G G (G) = 4 G (G) k k G X V (G) v X k v X \ {v} X = {u V (H) H (u) = 6} 6 H 6 H G (G) + 1 = {k G k } H (H) = 7

27 G S i {1,..., S } G[E(S, i)] (G), (G) (G) (G), (G) (G) S G (G) = 2 (G) = 3 G

28 G (G) (G) S G = (V, E) i i i E(S, i 1) C E(S, i) = E(G) \ E(C) E(S, i) E(G) \ E(S, i) q G q q q (G) (G) G (G) = (G) C q = 0 0 (G) = (G)

29 G S G (S) = k S G (S ) k k G k (G) k {,,,,, }

30 G (A 0, Z 0 ),..., (A n, Z n ), A i E(G) Z i V (G) 0 i n A 0 = A n = E(G) A i Z i = ( e A i e) ( e E(G)\A i e) 0 i n Z i 0 i n Z i Z i 1 A i = A i 1 Z i Z i 1 A i e e E(G) \ A i 1 Z i Z i = (Z i 1 \ {u}) {v} u Z i 1 v V (G) \ Z i 1 {u, v} E(G) \ A i 1 u A i 1 A i = A i 1 {e} {u, v} v Z i = Z i 1 A i = A i 1 {e} e E(G) \ A i 1 Z i 1

31 S = (A 0, Z 0 ),..., (A n, Z n ) G G (S) = { Z i 0 i n} (G) = { G (S) S G} G X 0,..., X n E(G) X 0 = X n = E(G) X i \ X i i n X i A i G X E(G) G (X) = ( e) ( e X e E(G)\X X 0,..., X n G k G (X i ) k 0 i n G (G) k G k S = (A 0, Z 0 ),..., (A n, Z n ) G G (S) k G (A i ) Z i 0 i k G (A i ) k A 0,..., A n k G k k X = X 0,..., X n G k 0 i n ( G(X i ) + 1) 0 i n X i e)

32 X G (X i 1 X i ) G (X i ) 1 i n X = X 0, X 1,..., X i 1, X i 1 X i, X i+1,..., X n, k X, Y G (X Y ) + G (X Y G (X) + G (Y ) G (X i 1 X i ) G (X i 1 ) k X = X 0, X 1,..., X i 1, X i 1 X i, X i+1,..., X n, k X i 1 X i X i 1 X i 1 = X i X i 1 X i X i \ X i 1 = 1 X G δ(g) 2 X 0,..., X n G k X i \ X i 1 = {e i } 1 i n S A i = A i 1 {e i } 1 i n S j {1,..., n} A j = {e 1,..., e j 1 } A i = A i 1 {e i } 1 i j Z i k 0 i j G (X j 1 ) = Z j G (X j 1 ) e j X j \ X j 1 X j 1 e j G (X j 1 ) e j G (X j 1 ) k Z j+1 = Z j e j A j+1 = A j e j e j e j G (X j 1 ) v e j v v G (X j ) u e j u G (X j 1 ) \ G (X j ) u E(G)\X j Z j+1 = (Z j \{u}) {v} A j+1 = A j e j u e j v k S (X i 1 X i ) \ X i 1 1 X i+1 \ (X i 1 X i ) 1 (X i 1 X i ) \ X i 2 1 X i \ (X i 1 X i ) 1

33 G G (G ) = (G) S G G k G k G k G k (G) (G) G G S α : {1,..., S } V (G) α(i) = G (E(S, i)) α α(i) α(j) + α(i) α(j) α(i) + α(j), S i S j < i

34 (G) (G), (G), (G), (G) (G) G (G) = (G) G {,,,,, } W i K i K i K j i = j K i K j i < j (W ) = 281 (W ) = 290 W

35 T (T ) = (T ) k 4 G (G) = 4k + 1 (G) = 4k + 2 G (G) = 4 (G) = 5

36

37 G (G) (G), {,,,, } G {,,,, } α (G) = (G) (G) α (G) = 1, 5 G

38 G G G G n α (G) = ( n) T (T ) (T ) 2 (T ) 2 T α (T ) < 2

39 {α (G) G n } = 2 n

40

41 G = (V, E) u V e = {x, y} E u xy V G G \ u = (V \ {u}, {{u 1, u 2 } E u 1, u 2 u}) u G \ e = (V, E \ {e}) e G/e = (V \ {x, y} {u x,y }, {{u 1, u 2 } E u 1, u 2 {x, y}} {{u xy, v} v N G (x) N G (y) \ {x, y}}) e u xy H G H G G H G G G H G G G H G

42 ,, G G H G H G C = {K 2,i i = 1, 2,...} k 2,i K 2,j k 2,i K 2,j i j k 2,i K 2,j i, j K 2,1 K 2,2 K 2,3 C = {K 2,i i = 1, 2,...} C C {,, } H G G C H C C C G 1, G 2,... C G i, G j G i G j C C (C) G \ C (C) C T (T ) = {K 3 } {,, } P (P) = {K 5, K 3,3 } C G \ C (C) C C G \ C

43 (C) G C O (C) O G (C) C C[, k] = {G G (G) k} {,,,,,,,, } k k 1 C[, k], C[, k] C[, k] C[, k], C[, k] C[, k] k 1, (C[, 1]) ({u, v}, {{u, v}}) (C[, 2]) = {K 3, T } T (C[, k]) (C[, k]) (C[, k]) k = 1, 2 (C[, 2]) K 3 T T

44 C (C[, 1]) = {K 3, K 1,3 } C[, 1] (C[, 1]) (C[, 1]) (C[, 1]) (C[, 1]) (C[, 1]) (C[, 1]) C (C) (C) (C) (C) (C[, 2]) (C[, 2])

45 (C[, 2]) (C[, 2]) (C[, 3]) (C[, 3]) (C[, 2])

46

47 f : G N n(g) m(g) n(g) = V (G) m(g) = E(G) (G) G (G) = { G (u) u V }

48 G G G = (V, E) X 1,..., X r V i=1,...,r X i = V {x, y} E i {1,..., r} {x, y} X i 1 i j k r X i X k X j G k X 1,..., X r { X i i = 1,..., r} = k 1 (G) = k { X i i = 1,..., r} P n e 1,..., e n X i = e i i = 1,..., n (P ) = 1 C u u u X i (C) = 1 G (G) = (G) + 1 H G H G

49 G P = X 1,..., X r k P i, j, k 1 i < j < k r X i, X j, X k X i X j X k k 1 k k 1 G (G) G (G) (G) (G) + 1 G u 1 u 3 u 6 u 2 u 5 u 4 {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G (G) = (G)

50 G P = X 1,..., X r P i {1,..., r} G[X 1 X i ] G (G) k k 1 G (G) 2 (G) + 1 G P k C 2k + 1 C 2k + 3 (G) (G) + 2 G S k G S 2k + 3 G (G) (G) 2 (G) + 3 X 1,..., X r G

51 G X i X i X i, X j i j = 1 X j X i X k X i X k X j X i G G = (V, E) G X 1,..., X r V T V (T ) = {1,..., r} i=1,...,r X i = V {x, y} E i {1,..., r} {x, y} X i i, j, k {1,..., r} j T i k X i X k X j G k ( X 1,..., X r, T ) k 1 (G) = k G (G) = (G) = 2 G (G) = (G) + 1 k k

52 u 2 u3 u 4 u 8 u 9 u 10 u 1 u 5 u 6 u 7 u 11 G u 1 u 2 u 3 u 3 u 4 u 5 u 4 u 5 u 6 u 4 u 6 u 7 u 4 u 6 u 8 u 8 u 9 u 9 u 10 u 11 u 9 u 10 u 2 u 4 u 5 u 6 u 8 u 1 u 3 u 4 u 4 u 3 u 5 u 6 u u 8 9 u 6 u 7 u 9 u 11 G G = (V, E) X 1,..., X r V G i=1,...,r X i = V {x, y} E x X F (y) y X F (x) F (u) = { i {1,..., r} u X i } G k X 1,..., X r k 1 (G) = k G = (V, E) V = n L = u 1,..., u n u L L L V G u 1, u 2, u 3, u 4, u 5, u 6, u 7, u 8, u 9, u 10 G 1 (G) = (G) + 1

53 u 8 u 10 u 9 u 7 u 5 u 6 u 1 u 2 u 3 u 4 G = (V, E) V = n L = u 1,..., u n (G, L) = { i j {u i, u j } E} G k L (G, L) = k (G) = k G = (V, E) G G G E G G G G (G) = { (G ) G G} (G) = 2 G (G) (G) G (G) = (G)

54 G G = (V, E) E = m L = e 1,..., e m e i L ( ) ( ) L (e i ) = e j e j 1 j i i<j m L (L) = { L (e) e E} G (G) = {(L) L } E = 1 (G) = 0 { u 1 } { u 2, u2 } { u 3, u3 } { u 4, u3 } { u 5, u5 } { u 6, u5 } { u 7, u7 } u 8, { u7 } { u 9, u9 } { u 10, u9 } u 2 G (G) (G) G (G) = (G) (G) (G) G P = {p 1,..., p r } G ΛG = (V (G) {p 1,..., p r}, E(G) {{p 1, p 1},..., {p r, p r}} {p 1,..., p r} V (G) = Λ 1 G = (V (G) \ P, {{u 1, u 2 } E u 1, u 2 P }) G (G) = (ΛG) (G) = (Λ 1 G) G (G) (G) (G) + 1

55 (G) = (G) + 1 (G) = (G) (G) (G) + 2 (G) = (G) (G) = (G) + 1 (G) (G) (G) (G) (G) + 1

56

57 k k G = (V, E) V k V V 1, V 2 { } {x, y} E x V 1, y V 2 k k k

58 k G (G) = (G)+1 k k k k k C G C k (G) k k T n (T ) O(n) k T T T (T ) O(n n)

59 k A (G) = k {,, } (T ) T A (T ), (T ) k T G n (G) 3 O(n) k C G H G H G O(n 3 ) n = V (G) C (C) O 1,..., O (C) G G C O i G O i (C) O(n 3 ) n G C C (C) C (C) C[, k] C[, k] C[, k] C O(n 3 )

60 G (G) 2 (G) 2 (G) 3 k G = (V, E) (G) k V (G) k C C k 1 k G k 1 (G) k G = (V, E) O( V + E ) 1 k k Π L Π Σ G N Σ (I, k) L Π I Π k I

61 k G k k k G k k (G) k k G n(g) k n(g) Π A O(f(k) p(n)) f p n Π F P T A : G N H G H G (H) (G) C[, k] = {G G (G) k} k N k G k k (G) k : G N k (C[, k]) g : N N g(k) = (C[, k]) G G

62 (C[, k]) g(k) (G) k O(g(k) n 3 ) k k l G = (V, E) P l (G) k (G) k O(2 p(k) n) p n = V G O(n 2 ) l k (k) (G) O(2 p(k) n 2 ) k 2 ko(1) n G = (V, E) (G) k (G) k (G) k k

63 O = {C i, i N} G G C, C O C C C C G G C[, 2]

64 B u C v B u v C u v G (G) = 2 (G, S, S ) G S S V (G) G = (G, S, S ) G G S

65 K 2,3 K + 2,3 K 4 O 1 S S S G S S S S (G, S, S ) S = {v 1,..., v S } S = {v 1,..., v S }. (G, S, S ) G u u E = {{v 1, u },..., {v S, u }} E = {{v 1, u },..., {v S, u }}. G S, S V (G) (S 1, S 2 ) G S (G, S, S )

66 O 2 O3 O 4 O 5 O 6 O 7 O 2, O 3, O 4, O 5, O 6, O 7 E(S, i) = E i E(S, i) E = i E(S, i) = E(G) \ E i (G, S 1, S 2 ) (S 1, S 2 ) G (G, S 1, S 2 ) (G, S 1, S 2 ) (G) = (G,, ) G (G) (G) G E E E(G) G (E, E ) G E = A 1,..., A r i {1,..., r 1} E A i E(G) \ E i {1,..., r 1} A i+1 \ A i 1 A 1 = E

67 O8 O 9 O 8, O 9 A r = E(G) \ E (E, E ) G i {1,..., r} G[A i ] (E, E ) G A 1 A r (E, E ) E G i {1,..., r 1} E i G (E, i) = G (A i ) + q i q i A i 2 A i \ A i 1 A i E G (E) = { G (E, i) i {1,..., r 1}} G S, S V (G) (G, S, S ) (E, E ) (G, S, S ) (G, S, S ) (E, E ) (G, S, S ) (E, E )

68 G (G, S, S ) = (G, S, S ) G = (G, S, S ) (S 1, S 2 ) S k S i {1,..., S } E i = E(S, i) \ E(S, i 1) L i E i i {1,..., S } i S e L i e L = L 1 L S E = A 0,..., A r E(G ) A 0 = A i = A i 1 {e i } e i i L A s = E s {1,..., S } A t = E t {1,..., S } E = A s,..., A t (E, E ) G E (E) S G (E ) j {0,..., E } i j A j \ A j 1 E ij h j A hj \ A hj 1 L ij E h j,..., j G (E, h j ) l {h j + 1,..., j} G (A l ) G (A hj ) q l = 0 G (E, h j ) k G (E ) k q hj q hj = 0 G (E, h j ) = G (A hj ) S G (A hj ) i j S S k G (E, h j ) k q hj = 1 i j S p(x) s(y, x) x x G (A hj ) G (A hj ) i j G (A hj ) + 1 k G (E, h j ) k S G (A hj ) = G (A hj 1) \ {y} (h j 1) G (A hj 1) G (A hj ) k 1 G (E, h j ) k G (E, E ) E = A 1,..., A r G (E) = k E

69 E (E, E ) E = A 1,..., A r k i {1,..., r 1} V (A i ) V (A i+1 ) A i E(G ) V (A i ) (E, E ) i V (A i ) V (A i+1 ) L = e 1,..., e n E(G ) \ A i A i j i A j = A j A i+1 = A i {e 1 } A i+2 = A i {e 1, e 2 },..., A i+n = A i {e 1,..., e n } j i + n A j = A j {e 1,..., e n } j = 1,..., n G (A i+j ) = G (A i) j i + n G (A j ) G (A j) k (S, S ) G S k S S p(u ) S s(u, vi ) 2 S S S 0 E(S, 2 S ) = A 1 u V = V (G ) \ S \ {u } l u {1,..., r} u V (A lu ) L = u 1,..., u V V i j l ui l uj i {1,..., V } u i e i A lui 1 \ A lui v i e i E v i G (A lui 1) u i u i G (A lui ) E = {e 1,..., e V } A j j {1,..., r} A j 1 E < A j E i {1,..., V } S i v i G (A lui ) S i p(u i ) s(v i, u i ) S i G (A lui 1) \ G (A lui ) S = S 0 S 1 S V E A j j = 1,..., l u1 S i {1,..., V 1} A j j {l ui,..., l ui+1 1} V (A lui ) A j j {l u V,..., r} V (A lu V )

70 A j j {1,..., r} G (A j ) G S mj m j (A E ) \ (A j 1 E ) A E A j A A 1 = E A j G (A j +1) G S mj +1 A j +1 G (A j +1) G (A j ) m j +1 = m j A j +1 {e mj +1 } = (A j +1 E ) \ (A j E ) v mj +1 G (A j ) v mj +1 G (A j +1) u mj +1 G (A j +1) G (A j +1) = G (A j ) {u mj +1 } S mj +1 p(u mj +1 ) v mj +1 G (A j +1) u mj +1 G (A j +1) G (A j +1) = G (A j ) v mj +1 G (A j +1) G (A j +1) = ( G (A j ) \ {v mj +1 }) {u mj +1 } S mj +1 s(v mj +1, u mj +1 ) V S (i) i S V S = V S (1),..., V S (r) i S j V S (i) = V (A luj ) i {1,..., S } G [V S (i)] i {1,..., 2 S } i 2 S + 1,..., r G [V S (i + 1)] (i + 1) S r(u) G [V S (i+1)] = G [V S (i)] r(u) u V S (i) v u G (A luj 1) \ G (A luj ) j {1,..., V } u A luj {u, v} A luj V S (i) = V (A luj ) p(u) S {u, v} v V S (i) p(u) G [V S (i+1)]

71 s(v j, u j ) j {1,..., V } G [V S (i + 1)] G [V S (i)] u j v V S (i) i v j v j G (A luj ) s(v j, u j ) v j u V S (i) = V (A luj ) v j G (A luj ) u A luj {v j, u} A luj (i + 1) S G [V S (i + 1)] S (S 1, S 2 ) S 0 v V S u u i {1,..., V 1} E(S, S 0 S i 1 + 1) = = E(S, S 0 S i 1 + S i ) = A lui+1 1 i = V E(S, S 0 S V ) = A r S S 2 S S = G (E, 1) k j > 2 S G k (j +1) p(u i ) i {i,..., V } G (A lui 1) G (A lui 1) < k p(u i ) k G (A lui 1) = k u i G (A lui ) = G (A lui 1) {u i } G (A lui ) = k + 1 u i G (A lui ) = G (A lui 1) G (E, l ui ) = G (A lui ) + 1 = k + 1 S k (G 1, S1, S1 ) (G 2, S2, S2 ) (G 1, S1, S1 ) (G 2, S2, S2 ) (G 1, S1, S1 ) r (G 2, S2, S2 ) ϕ : V (G 2 ) V (G 1 ) v V (G 1 ) G 2 [ϕ 1 (v)] {v, u} E(G 1 ) G 2 [ϕ 1 (v) ϕ 1 (u)] ϕ(s 2 ) = S 1

72 ϕ(s 2 ) = S 1 G 1, G 2 G 1 G 2 (G 1,, ) r (G 2,, ) G G G G/e e = {x, y} u e ϕ : V (G) V (G/e) ϕ(x) = ϕ(y) = u e ϕ(u) = u u V (G) V (G/e) ϕ (G/e,, ) r (G,, ) G 1, G 2 ϕ : V (G 2 ) V (G 1 ) (G 1,, ) r (G 2,, ) G 2 G 2 G 1 σ : V (G 2) V (G 1 ) x, y V (G 2) {x, y} E(G 2) {σ(x), σ(y)} E(G 1 ) v V (G 1 ) G 2 [ϕ 1 (v)] u v σ(u v ) = v σ {x, y} E(G 1 ) G 2 [ϕ 1 (v) ϕ 1 (u)] σ (G 1, S1, S1 ) (G 2, S2, S2 ) (G 1, S1, S1 ) r (G 2, S2, S2 ) (G 1, S1, S1 )) (G 2, S2, S2 )) E = A 1,..., A r (E2, E2 ) G 2 = (G 2, S2, S2 ) k (E1, E1 ) G 1 = (G 2, S2, S2 ) k ϕ (G 1, S1, S1 ) r(g 2, S2, S2 ) ψ ϕ ψ(u 2 ) = u 1 ψ(u 2 ) = u 1 ψ (G 1, S 1 {u 1 }, S 1 {u 1 }) r (G 2, S 2 {u 2 }, S 2 {u 2 }) f = {x, y} E(G 1 ) E f E(G 2 ) ψ 1 (x) ψ 1 (y) E f e f E = {e f f E(G 1 )} E = A 1 E,..., A r E G 1 i {1,..., r 1} G 1 (E, i) G 2 (E, i)

73 v v v v v A (G, {v}, {v}) (C[, 2]) D 1 = O 1 O 12 O 1 O 2,..., O 9 O 10 O 11 O 12 O 10 : A v O 11 : B v O 12 : C v D 1 (C[, 2]) D 1 (C[, 2]) D 1 (C[, 2])

74 v v v v v v v v v v v v B (G,, {v}) v v v v v v C (G, {v}, ) G C[, 2] G G

75 B C G C[, 2] B 4 B 0 B 0 B 1 B 3 B 4 x B 2 w c 1 c 2 B2 c 3 c 4 B 3 B 4 y F 1 F2 F 4 G C[, 2] B 0 B 4 B 1, B 2 B 3 F 1, F 2 F 4

76

77

78

79

80

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x.

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x. ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Ορισός (Τυχαία Μεταβλητή). Οοάζουε τυχαία εταβλητή (τ..) κάθε απεικόιση Χ: Ω για τη οποία το σύολο { ω Ω : Χ(ω) x} έχει προσδιορίσιη πιθαότητα για κάθε x. Τούτο σηαίει ότι η ατίστροφη

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία 0 3 10 71 < < 3 1 7 ; (y k ) 0 LU n n M (2; 4; 1; 2) 2 n 2 = 2 2 n 2 n 2 = 2y 2 n n ' y = x [a; b] [a; b] x n = '(x n 1 ) (x n ) x 0 = 0 S p R 2 ; S p := fx 2 R 2 : kxk p = 1g; p = 1; 2; 1 K i

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 27/02/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/1/2015

Διαβάστε περισσότερα

Συνήθεις ιαφορικές Εξισώσεις. Πρόχειρες σηµειώσεις. Αλκης Τερσένοβ. 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2

Συνήθεις ιαφορικές Εξισώσεις. Πρόχειρες σηµειώσεις. Αλκης Τερσένοβ. 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2 Συνήθεις ιαφορικές Εξισώσεις 215 Πρόχειρες σηµειώσεις Αλκης Τερσένοβ Περιεχόµενα 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2 2. Συστήµατα ιαφορικών Εξισώσεων Πρώτης Τάξης... 22 2.1 ιαφορικές Εξισώσεις Ανώτερης

Διαβάστε περισσότερα

Συστήματα διατήρησης πίεσης

Συστήματα διατήρησης πίεσης Περιεχόμενα Συστήματα διατήρησης πίεσης Σελίδα Δοχεία διαστολής για εφαρμογές θέρμανσης, ψύξης και ηλιακά συστήματα reflex NG και N 4 reflex S 5 reflex G 6 reflex G - Εξαρτήματα για δοχεία διαστολής 7

Διαβάστε περισσότερα

Ανταλλακτικά για Laptop Lenovo

Ανταλλακτικά για Laptop Lenovo Ανταλλακτικά για Laptop Lenovo Ημερομηνία έκδοσης καταλόγου: 6/11/2011 Κωδικός Προϊόντος Είδος Ανταλλακτικού Μάρκα Μοντέλο F000000884 Inverter Lenovo 3000 C200 F000000885 Inverter Lenovo 3000 N100 (0689-

Διαβάστε περισσότερα

Положeніе чcтнhz ри1зы прес hz вlчцы нaшеz бцdы ко влахeрнэ. 2. hlas Byz. / ZR

Положeніе чcтнhz ри1зы прес hz вlчцы нaшеz бцdы ко влахeрнэ. 2. hlas Byz. / ZR 2.7. Μνήµη τής εν Βλαχέρναις Καταθέσεως τής τιµίας Εσθήτος τής Υπεραγίας Θεοτόκου. Положeніе чcтнhz ри1зы прес hz вlчцы нaшеz бцdы ко влахeрнэ. 2. hlas Byz. / ZR.. Φρένα καθαραντες καί νούν Byzantská tradícia:,

Διαβάστε περισσότερα

Παραδοχές - Φορτία. Οροφοι : 3 Υπόγεια: 0. Επικάλυψη δαπέδων= 0.80[kN/m²], Τοίχοι σε δάπεδα= 0.00[KN/m²] γg=1.35, γq=1.50. I, α=0.160g=1.

Παραδοχές - Φορτία. Οροφοι : 3 Υπόγεια: 0. Επικάλυψη δαπέδων= 0.80[kN/m²], Τοίχοι σε δάπεδα= 0.00[KN/m²] γg=1.35, γq=1.50. I, α=0.160g=1. Παράδειγμα εκτύπωσης FEDRA... Παραδοχές - Φορτία Ονομασία Εργου-Μελέτης Διεύθυνση έργου Μηχανικός Μελετητής Παράδειγμα εκτύπωσης FEDRA ΙΩΑΝΝΙΝΑ Μηχανικός Α... Γενικά Χαρακτηριστικά Κτιρίου Οροφοι Οροφοι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΦΑΡΜΟΓΗ ΑΝΕΛΑΣΤΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΣΟΜΟΙΩΜΑΤΟΣ ΒΛΑΒΗΣ ΣΤΟΙΧΕΙΩΝ ΤΟΙΧΟΠΟΙΙΑΣ ΣΕ ΥΠΟ ΚΛΙΜΑΚΑ ΚΤΙΡΙΑ ΤΟΙΧΟΠΟΙΙΑΣ ΥΠΟΒΑΛΛΟΜΕΝΑ

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. 1. Γενικά. 2. Πεδία Ορισµού

ΣΥΝΑΡΤΗΣΕΙΣ. 1. Γενικά. 2. Πεδία Ορισµού ΣΥΝΑΡΤΗΣΕΙΣ 1 Γενικά Συνάρτηση είνι µι διδικσί µε την οοί φτιάχνουµε διτετγµέν ζεύγη ριθµών της µορφής (x,y) σύµφων µε ένν συγκεκριµένο κνόν ου ονοµάζετι τύος της συνάρτησης y= f (x) Πράδειγµ: ίνετι η

Διαβάστε περισσότερα

103 Α Α Α % Α 22 22 15,777 15.53 33.5 11,839 11.67 25.9

103 Α Α Α % Α 22 22 15,777 15.53 33.5 11,839 11.67 25.9 %- & Α -Η Η Α- Ω Ο Α Ο Ω Ο Α Ο Α Ο Ο Ο Α ΧΟ Η Α Ο Η / ΧΟ Η Ο Α... Α..Α.... Ο Α... Α..Α.. 127 Α Α Α Α Α Α Α % Α 21 21 20,924 18.40 36.8 19,434 17.15 34.2 127 Α Α Α Α Α Α Α %.. α 2 2 18,978 16.57 33.0 17,638

Διαβάστε περισσότερα

ẋ = f(x) n 1 f i (i = 1, 2,..., n) x i (i = 1, 2,..., n) x(0) = x o x(t) t > 0 t < 0 x(t) x o U I xo I xo : α xo < t < β xo α xo β xo x(t) t β t α + x f(x) = 0 x x x x V 1 x x o V 1 x(t) t > 0 x o V 1

Διαβάστε περισσότερα

Α 9.543 9.720-177 -1,8% Α Α 3.327 5.644-2.317-41,1% Α 9.448 9.629-181 -1,9% Α Α 3.758 3.174 584 18,4% Page 1 of 8

Α 9.543 9.720-177 -1,8% Α Α 3.327 5.644-2.317-41,1% Α 9.448 9.629-181 -1,9% Α Α 3.758 3.174 584 18,4% Page 1 of 8 Ο Ο Α Α Α Α 817 Α % Α 10.338 10.651-313 -2,9% Α Α Α 817 Α % Α 8.708 8.136 572 7,0% Α Α Α 817 Α % Α. Α. % 8.981 8.651 330 3,8% Α Α Α 817 Α % Α. Α. % 10.078 10.430-352 -3,4% Α Α Α 817 Α % Α. Α.. 9.288 Α

Διαβάστε περισσότερα

ΠΡOΣΚΛΗΣΗ ΕΚΔHΛΩΣΗΣ ΕΝΔΙΑΦEΡΟΝΤΟΣ - ΣΥΜΒΑΣΙΟYΧΟΙ ΥΠΑΛΛΗΛΟΙ ΟΜΑΔΑ ΚΑΘΗΚΟΝΤΩΝ I - ΟΔΗΓΟΙ (ΑΝΔΡΕΣ/ΓΥΝΑΙΚΕΣ) EPSO/CAST/S/8/2014 I.

ΠΡOΣΚΛΗΣΗ ΕΚΔHΛΩΣΗΣ ΕΝΔΙΑΦEΡΟΝΤΟΣ - ΣΥΜΒΑΣΙΟYΧΟΙ ΥΠΑΛΛΗΛΟΙ ΟΜΑΔΑ ΚΑΘΗΚΟΝΤΩΝ I - ΟΔΗΓΟΙ (ΑΝΔΡΕΣ/ΓΥΝΑΙΚΕΣ) EPSO/CAST/S/8/2014 I. ΠΡOΣΚΛΗΣΗ ΕΚΔHΛΩΣΗΣ ΕΝΔΙΑΦEΡΟΝΤΟΣ - ΣΥΜΒΑΣΙΟYΧΟΙ ΥΠΑΛΛΗΛΟΙ ΟΜΑΔΑ ΚΑΘΗΚΟΝΤΩΝ I - ΟΔΗΓΟΙ (ΑΝΔΡΕΣ/ΓΥΝΑΙΚΕΣ) EPSO/CAST/S/8/2014 I. ΕΙΣΑΓΩΓΗ Κατόπιν αιτήματος των θεσμικών οργάνων της Ευρωπαϊκής Ένωσης, η Ευρωπαϊκή

Διαβάστε περισσότερα

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ] συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3. ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ Έστω Χ = (Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ. Χ την: F(x) = P(X 1 x 1,, X x ), x = (x 1,,x ) T 1. 0 F(x) 1, x.. Η F είναι μη

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. της 6ης Νοεμβρίου 2006

ΑΠΟΦΑΣΗ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. της 6ης Νοεμβρίου 2006 18.11.2006 EL Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 320/53 ΑΠΟΦΑΣΗ ΤΗΣ ΕΠΙΤΡΟΠΗΣ της 6ης Νοεμβρίου 2006 για την κατάρτιση των καταλόγων τρίτων χωρών και εδαφών από τα οποία επιτρέπονται οι εισαγωγές

Διαβάστε περισσότερα

Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr

Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr Προς: Μαθητές Α, Β & Γ Λυκείου / Κάθε ενδιαφερόμενο Αγαπητοί Φίλοι Όπως σίγουρα

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

+ 1 n 5 (η) {( 1) n + 1 m

+ 1 n 5 (η) {( 1) n + 1 m Κεφάλαιο Τοπολογία του. Στοιχεία Θεωρίας Ορισµός Αν α και ɛ > ονοµάζουµε ɛ-περιοχή του α ή περιοχή κέντρου α και ακτίνας ɛ και συµβολίζουµε N α (ɛ) το σύνολο όλων των αριθµών που έχουν απόσταση από το

Διαβάστε περισσότερα

Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα

Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα 1. Χρονική απόκριση συστημάτων αυτομάτου ελέγχου Στα περισσότερα συστήματα αυτομάτου ελέγχου χρησιμοποιείται ως ανεξάρτητη μεταβλητή ο χρόνος,

Διαβάστε περισσότερα

ο χάρτης το γράφημα Σχήμα 5.3

ο χάρτης το γράφημα Σχήμα 5.3 KΕΦΑΛΑΙΟ 5 ΓΡΑΦΗΜΑΤΑ 5.1. Ανακάλυψη Ο W. Leibniz, σε επιστολή του το 1679 προς τον C. Huygens, παρατήρησε ότι "μας χρειάζεται ένα άλλο είδος ανάλυσης, γεωμετρικής ή γραμμικής, που να ασχολείται απ' ευθείας

Διαβάστε περισσότερα

ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Α' ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) 1 ΠΙΝΑΚΕΣ- ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Α' Ομάδας i) 3x7 ii) π.χ. το στοιχείο α 12 μας πληροφορεί ότι η ομάδα «ΝΙΚΗ» έχει 6 νίκες. x = -7, y = 8, ω = 8..i) x

Διαβάστε περισσότερα

Οδηγός προϊόντων 2012 Edition GR

Οδηγός προϊόντων 2012 Edition GR Οδηγός προϊόντων 2012 Edition GR Reflex Βασιστείτε σε μας! Το όνομα Reflex είναι πασίγνωστο στην Ευρώπη και σε ολόκληρο τον κόσμο ως κορυφαία επιλογή για συστήματα ελέγχου πίεσης σε εφαρμογές θέρμανσης,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 0 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΞΕΤΑΣΕΩΝ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία µμου δεν στοχεύει απλά στο κυνήγι

Διαβάστε περισσότερα

Κεφάλαιο 6 ιανυσµατικοί χώροι...1

Κεφάλαιο 6 ιανυσµατικοί χώροι...1 6. ιανυσµατικοί χώροι Σελίδα από 5 Κεφάλαιο 6 ιανυσµατικοί χώροι ιανυσµατικοί χώροι... 6. ιανυσµατικοί χώροι... 6. Υποχώροι...7 6. Γραµµικοί συνδυασµοί... 6. Γραµµική ανεξαρτησία...9 6.5 Άθροισµα και ευθύ

Διαβάστε περισσότερα

Plantronics Explorer 10. Εγχειρίδιο χρήσης

Plantronics Explorer 10. Εγχειρίδιο χρήσης Plantronics Explorer 10 Εγχειρίδιο χρήσης Περιεχόμενα Λίγα λόγια για τον αγοραστή 3 Περιεχόμενα συσκευασίας 4 Επισκόπηση ακουστικού 5 Η ασφάλεια προέχει 5 Σύζευξη και φόρτιση 6 Σύζευξη 6 Ενεργοποίηση της

Διαβάστε περισσότερα

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m.

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m. Σηµειώσεις Συναρτησιακής Ανάλυσης Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Περιεχόµενα 1. Το ϑεώρηµα κατηγορίας του Baire 4 2. Χώροι Banach 5 3. Φραγµένοι γραµµικοί τελεστές 8 4. Χώροι πεπερασµένης

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ Παράδοση 7 ΕΠΙΛΟΓΗ ΣΕ ΣΥΝΘΗΚΕΣ ΚΙΝΔΥΝΟΥ Συνεπής επιλογή σε συνθήκες βεβαιότητας Αν οι προτιμήσεις ικανοποιούν Πληρότητα Αντανακλαστικότητα (Aυτοπάθεια) Μεταβατικότητα Συνέχεια

Διαβάστε περισσότερα

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική 1 Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική Οµοιοπολικοί δεσµοί στο πυρίτιο Κρυσταλλική δοµή Πυριτίου ιάσταση κύβου για το Si: 0.543 nm Εισαγωγή στη Μικροηλεκτρονική

Διαβάστε περισσότερα

Συνολική Ζήτηση, Δημοσιονομική Πολιτική και Εξωτερικός Τομέας

Συνολική Ζήτηση, Δημοσιονομική Πολιτική και Εξωτερικός Τομέας Συνολική Ζήτηση, Δημοσιονομική Πολιτική και Εξωτερικός Τομέας - Βασικά Ζητήματα Δημοσιονομικής Πολιτικής (1) Σταθεροποιητική Πολιτική (2) Σημασία Δημοσιονομικού Ελλείμματος (3) Επιπτώσεις Δημόσιου Χρέους

Διαβάστε περισσότερα

n+1 v2 2 1 + x 3 1 + x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) =

n+1 v2 2 1 + x 3 1 + x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) = Κεφάλαιο 2 Λείες πολλαπλότητες Σύνοψη Παρουσιάζουμε τον ορισμό μιας λείας (διαφορικής) πολλαπλότητας και αναλύουμε δύο βασικά παραδείγματα, τη μοναδιαία σφαίρα και τον προβολικό χώρο. Στη συνέχεια, μελετάμε

Διαβάστε περισσότερα

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.

Διαβάστε περισσότερα

T3F;F;EH5B3G";:>"65G"BEG;B683B:G"=3>"7:""9V6QH:M"

T3F;F;EH5B3G;:>65GBEG;B683B:G=3>7:9V6QH:M Φωτογραφικό και λοιπό ρεπορτάζ από τη συνεστίαση της 9/10/2014 µε οµιλητάς τους πρεσβευτάς και τους επικεφαλής της διπλωµατικής αποστολής 4 χωρών της ευρ.εν. ητοί της Σλοβακίας-Ουγγαρίας-Πολωνίας και Τσεχίας

Διαβάστε περισσότερα

Ελαχιστοποίηση της Δαπάνης

Ελαχιστοποίηση της Δαπάνης Ελαχιστοποίηση της Δαπάνης - Στο πρωτογενές πρόβλημα μεγιστοποίησης της χρησιμότητας (UMP) υπό τον εισοδηματικό περιορισμό αντιστοιχεί το δυαδικό πρόβλημα ελαχιστοποίησης της δαπάνης (EMP) υπό τον περιορισμό

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΟ 9/2015. Της από 18-4-2015 Συνεδρίασης της Οικονοµικής Επιτροπής του ήµου Παρανεστίου.

ΠΡΑΚΤΙΚΟ 9/2015. Της από 18-4-2015 Συνεδρίασης της Οικονοµικής Επιτροπής του ήµου Παρανεστίου. ΠΡΑΚΤΙΚΟ 9/2015 Της από 18-4-2015 Συνεδρίασης της Οικονοµικής Επιτροπής του ήµου Παρανεστίου. Στο Παρανέστι και στο ηµοτικό Κατάστηµα σήµερα την 18 η Απριλίου 2015, ηµέρα Σάββατο και ώρα 17:30 π.µ., έχει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ

ΚΕΦΑΛΑΙΟ 3: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ : Η ΕΝΝΟΙΑ ΤΗΣ ΠΡΑΞΗΣ Μια συνάρτηση f : A B C αντιστοιχίζει σε κάθε ζεύγος (a,b) (με Γράφουμε τότε a A και b B ) ένα στοιχείο c C f(a,b)c Η συνάρτηση αυτή μπορεί να χαρακτηριστεί και

Διαβάστε περισσότερα

74,6 100 59,4 EΕ 25 = 63,1 % (2004) 10,5 EΕ-25 = 9,2 % (2004) 2,9 17,5 % (1999/2000) 0,13 SI) = 0,18 5 (2003) 82,0 EΕ- 25 = 100

74,6 100 59,4 EΕ 25 = 63,1 % (2004) 10,5 EΕ-25 = 9,2 % (2004) 2,9 17,5 % (1999/2000) 0,13 SI) = 0,18 5 (2003) 82,0 EΕ- 25 = 100 Παράρτηµα 1. Κατάλογος κοινών δεικτών βάσης, εκροών, αποτελεσµάτων και επιπτώσεων I. Κοινοί δείκτες βάσης 1. είκτες βάσης σε σχέση µε τους στόχους / Όχι *1 Οικονοµική ανάπτυξη Κατά κεφαλήν ΑΕΠ σε µονάδες

Διαβάστε περισσότερα

ΤΡΑΤΑΛΟΣ Α.Ε ΤΙΜΟΚΑΤΑΛΟΓΟΣ ΧΟΝ ΡΙΚΗΣ ACE 2014 ΠΕΡΙΓΡΑΦΗ ΧΟΝ ΡΙΚΗ ΛΙΑΝΙΚΗ

ΤΡΑΤΑΛΟΣ Α.Ε ΤΙΜΟΚΑΤΑΛΟΓΟΣ ΧΟΝ ΡΙΚΗΣ ACE 2014 ΠΕΡΙΓΡΑΦΗ ΧΟΝ ΡΙΚΗ ΛΙΑΝΙΚΗ 626 ZZ HIGH QUALITY ΡΟΥΛΕΜΑΝ 1,5 3 70x48x35 (4.055) ΡΟΥΛΕΜΑΝ 120 204 88,4x30x26 (4.058) ΡΟΥΛΕΜΑΝ 200 340 ACE 104948/10 JLM ΡΟΥΛΕΜΑΝ 12 20,4 ACE 108 (8X22X7) ΡΟΥΛΕΜΑΝ 4 6,8 ACE 11749/10 ΡΟΥΛΕΜΑΝ 2,7 4,59

Διαβάστε περισσότερα

ΤΙΜΟΚΑΤΑΛΟΓΟΣ. ΤΙΜΗ ΡΟΛΟΥ /m2 LZ ΔΙΑΣΤΑΣΕΙΣ ΡΟΛΟΥ. PG 10 SE 5 ΠΛΑΤΟΣ : 1,22 m. ΜΗΚΟΣ : 50m PX 6 TX 1

ΤΙΜΟΚΑΤΑΛΟΓΟΣ. ΤΙΜΗ ΡΟΛΟΥ /m2 LZ ΔΙΑΣΤΑΣΕΙΣ ΡΟΛΟΥ. PG 10 SE 5 ΠΛΑΤΟΣ : 1,22 m. ΜΗΚΟΣ : 50m PX 6 TX 1 ΣΕΙΡΑ ΚΩΔΙΚΟΣ ΔΙΑΣΤΑΣΕΙΣ ΡΟΛΟΥ ΠΟΙΚΙΛΙΑ ΧΡΩΜΑΤΩΝ ΤΙΜΗ ΡΟΛΟΥ /m2 LZ 5 Abstract Hard Abstract Soft RT 2 PG 10 SE 5 FA PT ΠΛΑΤΟΣ : 1,22 m ΜΗΚΟΣ : 50m 20 6 PX 6 TX 1 2.684 44 2.684 44 Chic PA 21 3.020 50 CA

Διαβάστε περισσότερα

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000 Ζήτηµα 1ο Θέµατα Άλγεβρας Γεικής Παιδείας Β Λυκείου 000 Α.1. Να γράψετε το τύο ου δίει το ιοστό όρο α µιας αριθµητικής ροόδου (α ) ου έχει ρώτο όρο α 1 και διαφορά ω. (Μοάδες 3) Α.. Να γράψετε τη σχέση

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ Τµήµατα ΧΗΜΕΙΑ 1. Φυτικής Παραγωγής 2. Επιστ. & Τεχνολ. Τροφίµων Τετάρτη 9.30-10.15 Παρασκευή 11.30 13.15 ΕΡΓΑΣΤΗΡΙΟ Φυτική Παραγωγή Πέµπτη 8.30-12.30 Επιστ. & Τεχνολ. Τροφίµων Τετάρτη

Διαβάστε περισσότερα

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Κεφ. I Εισαγωγή.. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Η ανάγκη µαθηµατικής περιγραφής και µοντελοποίησης συστηµάτων τα οποία εξελίσσονται χρονικά κατά τρόπο που περιέχει, σε µικρό ή µεγάλο βαθµό, τυχαιότητα,

Διαβάστε περισσότερα

Γραφική με Υπολογιστή Computer Graphics

Γραφική με Υπολογιστή Computer Graphics Γραφική με Υπολογιστή Computer Graphics 1. Βασικοίγραφικοίαλγόριθμοι 2. Αρχέςγραφικώνπλεγματικώνοθονώνraster 3. Μετασχηματισμοί2 και3 διαστάσεωνκαι συστήματασυντεταγμένων 4. Προβολέςκαιμετασχηματισμοίπαρατήρησης

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

ΠΓΡΖΓΡΑΦΕ ΓΡΓΟΤ ΤΚΣΕΡΕΕ ΓΠΖΗΓΤΕ ΗΘΖΒΑΚΩΚ-ΠΘΤΚΣΕΡΖΩΚ KAI ΘΓΡΙΟΤΓΗΟΘΕΣΕ ΑΣΙΟΤ GETINGE

ΠΓΡΖΓΡΑΦΕ ΓΡΓΟΤ ΤΚΣΕΡΕΕ ΓΠΖΗΓΤΕ ΗΘΖΒΑΚΩΚ-ΠΘΤΚΣΕΡΖΩΚ KAI ΘΓΡΙΟΤΓΗΟΘΕΣΕ ΑΣΙΟΤ GETINGE ΓΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΤΠΟΤΡΓΓΙΟ ΤΓΓΙΑ & ΚΟΙΝΩΝΙΚΗ ΑΛΛΗΛΓΓΓΤΗ ΑΘΗΝΑ 10 6 2010 1 η ΤΓΓΙΟΝΟΜΙΚΗ.ΠΓΡΙΦΓΡΓΙΑ ΑΣΣΙΚΗ Γ.Ν. ΑΘΗΝΩΝ Ο ΓΤΑΓΓΓΛΙΜΟ Ν.Π.Δ.Δ. ΓΣΟ ΙΔΡΤΗ 1884 -------- ΔΙΓΤΘΤΝΗ ΣΓΥΝΙΚΩΝ ΤΠΗΡΓΙΩΝ ΣΜΗΜΑ ΒΙΟΪΑΣΡΙΚΗ

Διαβάστε περισσότερα

Υλικά Εσωτερικών Εγκαταστάσεων

Υλικά Εσωτερικών Εγκαταστάσεων Υλικά Εσωτερικών Εγκαταστάσεων Περιεχόμενα Κεφαλαίου.2 Αυτόματες Ασφάλειες Red Line - 3k, Καμπύλης C.3 Αυτόματες Ασφάλειες Red Line - 6k, Καμπύλης C.4 Αυτόματες Ασφάλειες Red Line - 6k, 80-125, Καμπύλης

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΣΤΗΝ ΕΦΑΡΜΟΓΗ ΕΛΑΣΤΙΚΩΝ ΣΦΡΑΓΙΣΤΙΚΩΝ ΜΕΣΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΣΤΗΝ ΕΦΑΡΜΟΓΗ ΕΛΑΣΤΙΚΩΝ ΣΦΡΑΓΙΣΤΙΚΩΝ ΜΕΣΩΝ ΠΡΟΒΛΗΜΑΤΑ ΣΤΗΝ ΕΦΑΡΜΟΓΗ ΕΛΑΣΤΙΚΩΝ ΣΦΡΑΓΙΣΤΙΚΩΝ ΜΕΣΩΝ Γενικές απαιτήσεις χρήσης : στεγανοί αρμοί, ελαστικοί αρμοί, στεγανές κολλήσεις, ελαστικές κολλήσεις και όλοι οι ανωτέρω συνδυασμοί με τις διαβαθμίσεις

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Άλγεβρα Β Λυκείου Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. y y 4 y

Διαβάστε περισσότερα

( ) 1995.» 3 ( ). 10 ( ). 1975 1980 ( ) 1986, ( ) (1) 3,, ( ),,,,».,,,

( ) 1995.» 3 ( ). 10 ( ). 1975 1980 ( ) 1986, ( ) (1) 3,, ( ),,,,».,,, 1983 1995 23/83 51/83 39/84 79/86 94/86 135/88 51/89 138/91 67( ) / 92 100( ) / 92 2( ) / 93 70(1)/99 109(1)/99 119(1)/99 16(1)/01 20(1)/01 150(1)/02 102 ( ) /95 33/64 35/75 72/77 59/81.. 79/86... 2/86

Διαβάστε περισσότερα

Το θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού για συναρτήσεις μιας ή περισσοτέρων μεταβλητών στο πλαίσιο της γεωμετρικής εποπτείας

Το θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού για συναρτήσεις μιας ή περισσοτέρων μεταβλητών στο πλαίσιο της γεωμετρικής εποπτείας Το θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού για συναρτήσεις μιας ή περισσοτέρων μεταβλητών στο πλαίσιο της γεωμετρικής εποπτείας Δημήτρης Ντρίζος Σχολικός Σύμβουλος Μαθηματικών Τρικάλων και Καρδίτσας

Διαβάστε περισσότερα

B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20

Διαβάστε περισσότερα

ΣΕΙΡΑ 600 ΣΕΙΡΑ 700 ΣΕΙΡΑ 700S ΣΕΙΡΑ 900

ΣΕΙΡΑ 600 ΣΕΙΡΑ 700 ΣΕΙΡΑ 700S ΣΕΙΡΑ 900 ΣΕΙΡΑ 600 ΣΕΙΡΑ 700 ΣΕΙΡΑ 700S ΣΕΙΡΑ 900 ΣΕΙΡΑ 600 GC604 ΔΙΑΣΤΑΣΕΙΣ: 400x600x265 mm MIKTO ΒΑΡΟΣ: 15 Kg ΙΣΧΥΣ: 2X3600 W 462 GC606 ΔΙΑΣΤΑΣΕΙΣ: 600x600x265 mm MIKTO ΒΑΡΟΣ: 23 Kg ΙΣΧΥΣ: 4X3600 W 729 GS604

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ήπιες Μορφές Ενέργειας Ενότητα 3: Αιολικό Δυναμικό Καββαδίας Κ.Α. Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES Sixth Term Examiatio Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES Pure Mathematics Mesuratio Surface area of sphere = 4πr Area of curved surface of coe = πr slat height Trigoometry a = b

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

Αέρια υψηλής Καθαρότητας 2000. Ο συνεργάτης σας για Αέρια, Εξοπλισµό και Υπηρεσίες

Αέρια υψηλής Καθαρότητας 2000. Ο συνεργάτης σας για Αέρια, Εξοπλισµό και Υπηρεσίες Αέρια υψηλής Καθαρότητας 2000 Ο συνεργάτης σας για Αέρια, Εξοπλισµό και Υπηρεσίες Αέρια Υψηλής Καθαρότητας από την MESSER Αέρια Υψηλής Καθαρότητας Το παρόν κεφάλαιο δείνει ένα πανόραµα των αερίων υψηλής

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 8η Δια λεξη

Θεωρι α Γραφημα των 8η Δια λεξη Θεωρι α Γραφημα των 8η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 8η Δια λεξη Φεβρουα ριος 2015 168 / 182 Χρωματισμοι Γραφημα των Χρωματισμο ς Κορυφω

Διαβάστε περισσότερα

Η Υποθεση του Riemann

Η Υποθεση του Riemann Η Υποθεση του Riemann Πτυχιακη Εργασια Νικολεντζος Πολυχρονης Α.Μ.: 311/2003066 Εισηγητης : Κοντογεωργης Αριστειδης Τµηµα Μαθηµατικων Πανεπιστηµιο Αιγαιου Καρλοβασι, 2008 Εξεταστικη Επιτροπη: Ανούσης

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΚΑΤΑΝΑΛΩΤΗ ΕΛΤΙΟ ΤΥΠΟΥ. Ηµεροµηνία: Τρίτη, 28 εκεµβρίου 2010

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΚΑΤΑΝΑΛΩΤΗ ΕΛΤΙΟ ΤΥΠΟΥ. Ηµεροµηνία: Τρίτη, 28 εκεµβρίου 2010 ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΚΑΤΑΝΑΛΩΤΗ ΕΛΤΙΟ ΤΥΠΟΥ Ηµεροµηνία: Τρίτη, 28 εκεµβρίου 2010 Θέµα: ηµοσίευση εβδοµαδιαίων κοινοποιήσεων της Ε.Ε. για µη ασφαλή προϊόντα του

Διαβάστε περισσότερα

Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ. 2.1 Σηµειακή Εκτίµηση. = E(ˆθ) και διασπορά σ 2ˆθ = Var(ˆθ).

Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ. 2.1 Σηµειακή Εκτίµηση. = E(ˆθ) και διασπορά σ 2ˆθ = Var(ˆθ). Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ Οι στατιστικές δείγµατος που υπολογίζονται από τα δεδοµένα που έχουν συλλεχθεί, όπως η δειγµατική µέση τιµή x και η δειγµατική διασπορά s 2, χρησιµοποιούνται για την εκτίµηση

Διαβάστε περισσότερα

ΣΥΜΒΑΣΗ ΠΑΡΑΧΩΡΗΣΗΣ ΤΜΗΜΑ I: ΑΝΑΘΕΤΟΥΣΑ ΑΡΧΗ

ΣΥΜΒΑΣΗ ΠΑΡΑΧΩΡΗΣΗΣ ΤΜΗΜΑ I: ΑΝΑΘΕΤΟΥΣΑ ΑΡΧΗ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ηµοσίευση στο Συµπλήρωµα της Επίσηµης Εφηµερίδας των Ευρωπαϊκών Κοινοτήτων 2, rue Mercier, L-2985 Luxembourg Φαξ (+352) 29 29 44 619, (+352) 29 29 44 623, (+352) 29 29 42 670 E-mail: mp-ojs@opoce.cec.eu.int

Διαβάστε περισσότερα

2.1 Τρέχοντα Κύµατα. Οµάδα.

2.1 Τρέχοντα Κύµατα. Οµάδα. 2.1 Τρέχοντα Κύµατα. Οµάδα. 2.1.41. Κάποια ερωτήµατα πάνω σε µια κυµατοµορφή. Ένα εγκάρσιο αρµονικό κύµα, πλάτους 0,2m, διαδίδεται κατά µήκος ενός ελαστικού γραµµικού µέσου, από αριστερά προς τα δεξιά

Διαβάστε περισσότερα

1.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ

1.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ . ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ Έστω ότι με Κ συμβολίζουμε ένα οποιοδήποτε σώμα, όταν με την έννοια «σώμα» αναφερόμαστε σε ένα σύνολο, όπως για παράδειγμα το των πραγματικών αριθμών, το των μιγαδικών αριθμών, το

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ I ΠΕΡΙΛΗΨΗ ΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΤΟΥ ΠΡΟΪΟΝΤΟΣ

ΠΑΡΑΡΤΗΜΑ I ΠΕΡΙΛΗΨΗ ΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΤΟΥ ΠΡΟΪΟΝΤΟΣ ΠΑΡΑΡΤΗΜΑ I ΠΕΡΙΛΗΨΗ ΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΤΟΥ ΠΡΟΪΟΝΤΟΣ 1 1. ΟΝΟΜΑΣΙΑ ΤΟΥ ΦΑΡΜΑΚΕΥΤΙΚΟΥ ΠΡΟΪΟΝΤΟΣ Thalidomide Celgene 50 mg σκληρά καψάκια 2. ΠΟΙΟΤΙΚΗ ΚΑΙ ΠΟΣΟΤΙΚΗ ΣΥΝΘΕΣΗ Κάθε καψάκιο περιέχει 50 mg θαλιδομίδης.

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΙΙ ΔΗΜΟΣ ΑΛΕΞΑΝΔΡΟΥΠΟΛΗΣ. Πόλη: ΑΛΕΞΑΝΔΡΟΥΠΟΛΗ Ταχ. κώδικας: Χώρα: Ελλάδα 681 00 ΕΛΛΑΔΑ-GR Σημείο(-α) επαφής: Τεχνική Υπηρεσία

ΠΑΡΑΡΤΗΜΑ ΙΙ ΔΗΜΟΣ ΑΛΕΞΑΝΔΡΟΥΠΟΛΗΣ. Πόλη: ΑΛΕΞΑΝΔΡΟΥΠΟΛΗ Ταχ. κώδικας: Χώρα: Ελλάδα 681 00 ΕΛΛΑΔΑ-GR Σημείο(-α) επαφής: Τεχνική Υπηρεσία ΠΑΡΑΡΤΗΜΑ ΙΙ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ Δημοσίευση στο συμπλήρωμα της Επίσημης Εφημερίδας της Ευρωπαϊκής Ένωσης 2, rue Mercier, L-2985 Luxembourg Φαξ: (352) 29 29 42 670 Ηλεκτρονικό ταχυδρομείο: mp-ojs@opoce.cec.eu.int

Διαβάστε περισσότερα

MOTORCAR INSURANCE I

MOTORCAR INSURANCE I MOTORCAR INSURANCE I I Acc. II Acc. III Acc. Sex Year Month Day 19970602 0 0 M 1966 4 11 19820101 19840801 0 M 1926 3 25 19820801 19840712 0 F 1952 2 19 19781222 19810507 0 M 1952 3 23 19821110 19870614

Διαβάστε περισσότερα

ΦΑΚΕΛΟΣ ΠΙΣΤΟΠΟΙΗΣΗΣ ΠΙΝΑΚΑ ΑΝΕΛΚΥΣΤΗΡΑ ISL_V4

ΦΑΚΕΛΟΣ ΠΙΣΤΟΠΟΙΗΣΗΣ ΠΙΝΑΚΑ ΑΝΕΛΚΥΣΤΗΡΑ ISL_V4 ΦΑΚΕΛΟΣ ΠΙΣΤΟΠΟΙΗΣΗΣ ΠΙΝΑΚΑ ΑΝΕΛΚΥΣΤΗΡΑ ISL_V VERSION V (REV.8) ΕΡΓΟΣΤΑΣΙΟ: ΠΕΡΡΑΙΒΟΥ, ΘΕΣΣΑΛΟΝΙΚΗ, ΕΛΛΑΔΑ Τηλ. 0 99 email: info@istechnology.gr FAX. 0 99 URL: www.istechnology.gr Copyright IS technology

Διαβάστε περισσότερα

ΕΜΒΟΛΟΦΟΡΟΙ-ΚΟΧΛΙΟΦΟΡΟΙ BIOMHXANIKOI ΑΕΡΟΣΥΜΠΙΕΣΤΕΣ PARISE 8 13 BAR

ΕΜΒΟΛΟΦΟΡΟΙ-ΚΟΧΛΙΟΦΟΡΟΙ BIOMHXANIKOI ΑΕΡΟΣΥΜΠΙΕΣΤΕΣ PARISE 8 13 BAR ΕΜΒΟΛΟΦΟΡΟΙ-ΚΟΧΛΙΟΦΟΡΟΙ BIOMHXANIKOI ΑΕΡΟΣΥΜΠΙΕΣΤΕΣ PARISE 8 13 BAR Mod. P100 CmX Mod. P200 CmH Στροφές/min 1240 Αεροσυμπιεστής 100L βαρέως τύπου,12 BAR, με μαντεμένια αργόστροφη V κεφαλή P60/2, 2HP. Βάρος

Διαβάστε περισσότερα

H Ισοδυναμία των Διαστημάτων του R με αφορμή ένα Πρόβλημα του «φ»

H Ισοδυναμία των Διαστημάτων του R με αφορμή ένα Πρόβλημα του «φ» H Ισοδυναμία των Διαστημάτων του R με αφορμή ένα Πρόβλημα του «φ» Δημ. Ι. Μπουνάκης Σχ. Σύμβουλος Μαθηματικών (Δημοσιεύτηκε στο τεύχος 6, 2009, του περιοδικού «φ») Στο τελευταίο τεύχος (5 ο, 2008) του

Διαβάστε περισσότερα

JFI LF!JII C8 ;!GBOC8J!AI G!9B.A8 :JI Fhcgwe ij_e > ajkmty j_p byharhyp HJ WI@. Cgeg RjaY byharhyp bya mridyjy byharhyp HJ WI@. MRidY ij_e byharhy : g hvcgp joe hgio abye bya

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι

Διαβάστε περισσότερα

Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z)

Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z) 1 ιανυσματικοί χώροι Άσκηση 1.1 Στο σύνολο R 3 όλων των διατεταγμένων τριάδων διατηρούμε την πρόσθεση, που ορίσαμε στο αντίστοιχο παράδειγμα, και ορίζουμε εξωτερικό πολλαπλασιασμό με τη σχέση λ(a 1,a 2,a

Διαβάστε περισσότερα

Υπολογισµός ιδιοτήτων ροής ιδιοτήτων µεταφοράς µε µεθόδους Μοριακής υναµικής

Υπολογισµός ιδιοτήτων ροής ιδιοτήτων µεταφοράς µε µεθόδους Μοριακής υναµικής Υπολογισµός ιδιοτήτων ροής ιδιοτήτων µεταφοράς µε µεθόδους Μοριακής υναµικής Η έρευνα χρηµατοδοτείται από τη ΓΓΕΤ, στο πλαίσιο του προγράµµατος ΠΕΝΕ 03Ε 588. Φίλιππος Σοφός Υποψήφιος διδάκτωρ Επιβλέποντες:

Διαβάστε περισσότερα

Βάσεις εμβόλων. Εμπρόσθιες αρθρώσεις εμβόλων FO. Unitair ΕΠΕ Σπ. Πάτση 20, Βοτανικός, 10447, Αθήνα. Βάσεις εμβόλων

Βάσεις εμβόλων. Εμπρόσθιες αρθρώσεις εμβόλων FO. Unitair ΕΠΕ Σπ. Πάτση 20, Βοτανικός, 10447, Αθήνα. Βάσεις εμβόλων Βάσεις εμβόλων Εμπρόσθιες αρθρώσεις εμβόλων FO Εμπρόσθιες αρθρώσεις εμβόλων UJ Εμπρόσθιες αρθρώσεις εμβόλων FJ Οπίσθιες βάσεις εμβόλων CB Οπίσθιες βάσεις εμβόλων CA Οπίσθιες βάσεις εμβόλων GL Οπίσθιες

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ Παράδοση 4 Ολιγοπωλιακός ανταγωνισμός Εισαγωγή: η αποτελεσματικότητα των τέλεια ανταγωνιστικών αγορών Σημαντική υπόθεση πίσω από την αποτελεσματικότητα των αγορών: Τέλειος ανταγωνισμός

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2 + βχ + γ

Η συνάρτηση y = αχ 2 + βχ + γ Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική

Διαβάστε περισσότερα

Γιωργος Λαλας Α.Μ: 331/2004026. Το Θεωρηµα Dvoretzky. Πτυχιακη Εργασια. AΠανεπιστήµιο Αιγαίου, Τµήµα Στατιστικής

Γιωργος Λαλας Α.Μ: 331/2004026. Το Θεωρηµα Dvoretzky. Πτυχιακη Εργασια. AΠανεπιστήµιο Αιγαίου, Τµήµα Στατιστικής Γιωργος Λαλας Α.Μ: 331/2004026 Το Θεωρηµα Dvoretzky Πτυχιακη Εργασια AΠανεπιστήµιο Αιγαίου, Τµήµα Στατιστικής και Αναλογιστικών - Χρηµατοοικονοµικών Μαθηµατικών Σάµος Ιουνιος 2011 Εισηγητής: Ταχτσής Ελευθέριος

Διαβάστε περισσότερα

page 1 Φωτογραφία Κωδικός Περιγραφή Τιμή

page 1 Φωτογραφία Κωδικός Περιγραφή Τιμή page 1 Φωτογραφία Κωδικός Περιγραφή Τιμή Στάντ προβολής με ένα γυάλινο ράφι L=1200mm W=400mm H=1635mm S030V Βαμμένο S030X Ανοξείδωτο Στάντ προβολής με δύο γυάλινα ράφια L=1200mm W=400mm H=1955mm S030VD

Διαβάστε περισσότερα

È http://en.wikipedia.org/wiki/icosidodecahedron

È http://en.wikipedia.org/wiki/icosidodecahedron À Ô ÐÓ ÖÓÒØ ØÓÙÔ Ö ÕÓÑ ÒÓÙ Ò Ø Ô ØÓÙ Ô Ñ Ð Ø ØÓÙhttp://www.mathematica.grº Å Ø ØÖÓÔ LATEX ÛØ Ò Ã Ð Ò Ø ÃÓØÖôÒ Ä ÙØ Ö ÈÖÛØÓÔ Ô Õ ÐÐ ËÙÒ ÔÓÙÓ ËÕ Ñ Ø Å Õ Ð Æ ÒÒÓ ÉÖ ØÓÌ Ë Ð ¹ ÅÔÓÖ Ò Ò Ô Ö Õ Ò Ò Ñ Ð Ö º ÌÓß

Διαβάστε περισσότερα

Τίτλος Υποέργου: Εφαρµογές Τεχνητής Νοηµοσύνης στην Τεχνολογία Λογισµικού και στην Ιατρική

Τίτλος Υποέργου: Εφαρµογές Τεχνητής Νοηµοσύνης στην Τεχνολογία Λογισµικού και στην Ιατρική Αρχιµήδης ΙΙ Ενίσχυση Ερευνητικών Οµάδων του ΤΕΙ Κρήτης Τίτλος Υποέργου: Εφαρµογές Τεχνητής Νοηµοσύνης στην Τεχνολογία Λογισµικού και στην Ιατρική Επιστηµονικός Υπεύθυνος: ρ Εµµανουήλ Μαρακάκης ραστηριότητα

Διαβάστε περισσότερα

Ελάχιστα Γεννητορικά ένδρα

Ελάχιστα Γεννητορικά ένδρα λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

Συναρτήσεις (functions) Δομή προγράμματος & Εμβέλεια μεταβλητών

Συναρτήσεις (functions) Δομή προγράμματος & Εμβέλεια μεταβλητών Συναρτήσεις (functions) Δομή προγράμματος & Εμβέλεια μεταβλητών Συναρτήσεις και δομή προγράμματος Οι συναρτήσεις αποτελούν μικρά τμήματα ενός εκτεταμένου προγράμματος στη C. Σε άλλες γλώσσες ονομάζονται

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Στροφορµή στην Κβαντική Μηχανική 1.1.1 Τροχιακή Στροφορµή Η Τροχιακή Στροφορµή στην Κβαντική

Διαβάστε περισσότερα

Διασείπιζη Σηεπεών Αποβλήηων ζηην Πεπιθέπεια ηηρ Αναηολικήρ Μακεδονίαρ και Θπάκηρ

Διασείπιζη Σηεπεών Αποβλήηων ζηην Πεπιθέπεια ηηρ Αναηολικήρ Μακεδονίαρ και Θπάκηρ ΔΙ.Α.Α.ΜΑ.Θ. Α.Α.Ε. Αναπηςξιακή Ανώνςμη Εηαιπεία Αν. Μακεδονίαρ - Θπάκηρ Διασείπιζη Σηεπεών Αποβλήηων ζηην Πεπιθέπεια ηηρ Αναηολικήρ Μακεδονίαρ και Θπάκηρ Αιεμαλδξνύπνιε Πέκπηε, 05 Δεθεκβξίνπ 2013 Πεξίγξακκα

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,

Διαβάστε περισσότερα

14100310 βάση επίπεδη ταράτσα B45 240GS (x3) 342 14111310 ή βάση κεραμοσκεπή BRF-2 240GS 248 14110211 και μία BRF-1 240GS

14100310 βάση επίπεδη ταράτσα B45 240GS (x3) 342 14111310 ή βάση κεραμοσκεπή BRF-2 240GS 248 14110211 και μία BRF-1 240GS ΜΕ ΕΠΙΠΕΔΟΥΣ ΕΠΙΛΕΚΤΙΚΟΥΣ ΣΥΛΛΕΚΤΕΣ CALPAK GA 500 LT ισχύει από: 1/11/2009 EP CL2-500 / 3*240GS κωδικό : 10394711 Μπόιλερ CL2-500 (500 λίτρων με δύο θερμικού εναλλάκτε ) 3 συλλέκτε 240GS (3*2,51m2 επιλεκτικοί)

Διαβάστε περισσότερα