Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία
|
|
- Ἀριστοτέλης Αναστασιάδης
- 10 χρόνια πριν
- Προβολές:
Transcript
1
2
3 < < ; (y k )
4
5
6 0
7
8
9
10
11
12 LU n n
13
14
15 M (2; 4; 1; 2) 2 n 2 = 2 2 n 2 n 2 = 2y 2 n n ' y = x [a; b] [a; b] x n = '(x n 1 ) (x n ) x 0 = 0 S p R 2 ; S p := fx 2 R 2 : kxk p = 1g; p = 1; 2; 1 K i a ii r i ; n = 4 f n ; f n (x) := 1 nx; x 2 [0; 1/n]; f n (x) := 0; x 2 (1/n; 1] p n ; n = 20; f (x) := (1 + 25x 2 ) 1 :
16 T n ; n = 0; : : : ; 6 p n ; n = 20; f (x) := (1 + 25x 2 ) 1 ; x y s(x); n = 20 f (x) := (1 + 25x 2 ) 1 [x j 2 ; x j +2 ]: H) y y H) U; U = I 2uu T ; x x i x n = 2 3 i x i
17 x 0 = 3 x 0 = 2 x 0 = 0
18
19 LU LU
20
21 0; 1; 2; 3; : : : ; 9: 3: N ; N 1 ; : : : ; 0; 1 ; 2 ; : : : 0 9 N N 1 : : : 0: 1 2 : : : ( N N 1 : : : 0: 1 2 : : : ) 10 N 10 N + N 1 10 N : N N 1 : : : 0 p; p(x) = N x N + N 1 x N ;
22 x = 10; : 1 2 : : : P 1 k=1 kx k ; x = 1/10 4:130 4:12 9 = 4:12999 : : : : 9 P 1 i=1 10 i = 1: k 0 k k 0 k 9; k 9; ( N N 1 : : : 0: 1 2 : : : ) 10 N 0 x x ˇ 2 ˇ = 2 ˇ = 8 ˇ = 16 ˇ 0; 1; : : : ; ˇ 1 ˇ > 10; 10; : : : ; ˇ 1 k ˇ; ( N : : : 0: 1 2 : : : )ˇ Pk=N kˇk: 1 (100110:11) = (38:75) 10 : ˇ ˇ; i ˇ ˇ; (53473) 8 = = (22331) 10 : (7 + 8
23 (4 + 8 ( ))); x p; p(x) = N x N + N 1 x N ; i; 0 i N; p(x) p(x) = 0 + x( 1 + x( x( N 1 + x N )) ) y N i = N 1; : : : ; 0: y i + x y; y p(x): y i + x y; i; x y; y; x p N N x (0 < x < 1); ˇ; (:11) 2 = = = (:75) 10: ii ˇ: (369) 10 0; 1; 2; : : : (369) 10 = ( : : : 2 1 0) 8 = ( 1 + 8( 2 + ) ): : 8; 0 = 1: (46) 10 ; 1 + 8( 2 + ): 1 46 : 8; 1 = 6:
24 2 + 8( 3 + ): 2 = = 0 (369) 10 = (561) 8 : x ˇ x = (: 1 2 : : : )ˇ = 1ˇ 1 + 2ˇ 2 + : ˇ ˇx = ( 1 : 2 : : : )ˇ: 1 ˇx (: 2 : : : )ˇ (: 2 : : : )ˇ ˇ; 2 x = (:372) 10 1 ; 2 ; : : : (:372) 10 = (: 1 2 : : : ) 2 : 2x = 0:744 1 = 0; 1 := 0: = 1:488 2 = 1; 2 := 0: = 0:976 3 = 0; 3 := 0: = 1:952 4 = 1; 4 := 0: = 1:904 5 = 1; 5 := 0:904 : (:372) 10 = (:01011 : : : ) 2 : x x i i i +j j 1; i+j = i : i + 1 x j; (i+1) ; (i+2) ; : : : ; (i+j ) `; (i++`j ) = (i+) ; = 1; 2; : : : ; j: i = 0; x j = 0 j > i: x ˇ1 ˇ2: x (0 < x < 1)
25 x x = X = n 2 4n+1 n=1 (:1) 10 = (: : : : ) 2 : x; ˇ; x = (:d 1 d 2 : : : )ˇe; d 1 0; d i ˇ e ( :d 1 d 2 : : : ); ˇ: e: (:00598) 10 = : ; (111:001) 2 = : e ˇ: ˇ; t;
26 L U e ˇ L; U L U x 0 x = :d 1 d 2 : : : d t ˇe; :d 1 d 2 : : : d t t ˇ d 1 0 e L e U: M = M (ˇ; t; L; U ) ˇ = 2; t = 4; L = 1 U = 2: M = M (2; 4; 1; 2) : = 1/4 : = 3:75: [ 1 ; 1 ]; [ 1 ; 1] [1; 2] M: [ 1 ; 1 ] 4 2 : ; : ; : ; : : : ; : ; : ; 1 + i ; i = 0; 1; : : : ; 8; [ 1 ; 1] : ; : ; : ; : : : ; : ; : ; 1 + i ; i = 0; 1; : : : ; 8; 2 16 [1; 2] : ; : ; : ; : : : ; : ; : ; 1 + i ; i = 0; 1; : : : ; 8: [2; 3:75] 8 M; : ; : ; : ; : : : ; : ; 2 + i ; i = 0; 1; : : : ; 7: M M (2; 4; 1; 2): ˇ; t; L; U; M d i = ˇ 1; 1 i t; e = U :10 : : : 0ˇL M e: M :1 ˇL M:
27 ˇ = 10; t = 5; 1 (= :110 1 ) 10 5 (= :110 4 ) M; = 1:00001 ˇ; t; L; U M; M t [L; U ]: M M x 0 < jxj < :1 ˇL: x x :1 ˇL :d 1 d 2 : : : d t ˇU ; d i = ˇ 1; i = 1; : : : ; t; (x): (x) x M jx (x)j jx yj y 2 M: x 0 x = 0; (x) = x
28 ˇ t L U ˇ1 t : : : : : ˇ ˇ (x) x ˇ 1 ˇ1 t : x 2 (x) = x; x x 0 ; x 00 x 0 < x < x 00 : j (x) xj 1 2 jx0 x 00 j j (x) xj jxj jx0 x 00 j 2jxj : x x = qˇk; q = :d 1 d 2 : : : d t d t+1 : : : x; x 0 = :d 1 d 2 : : : d t ˇk x 00 = (:d 1 d 2 : : : d t + ˇ t )ˇk; jx 0 x 00 j = ˇk t : 1ˇ :d 1 q < 1; jxj = qˇk ˇk 1 : j (x) xj jxj jx0 x 00 j 2jxj 1 2 ˇ1 t :
29 (x) x t x ˇ = 10; t = 5; x = (: 1 : : : 5 6 : : : ) 10 k : 6 5; 5 (x) = x 00 := (: 1 2 : : : ) 10 k : 6 < 5; (x) = x 0 := (: 1 2 : : : 5)10 k : 6 = 5 i = 0; i 7; x 00 x 0 : x (x) x = (:d 1 d 2 : : : d t d t+1 : : : )ˇk; (x) = (:d 1 d 2 : : : d t )ˇk; d t : 1 2 x 0 :1 ˇL ˇU (x) j (x) xj jxj u; u; 1 ˇ1 t ; u = 2 ˇ1 t : u 1:
30 ? +; ; ; : x; y M; x? y z := (x)? (y) : x; y (x); (y); (x)? (y) 2t (x)? (y) M (): ˇ = 10; t = 5; U = L = 10; () x = 5891:26 y = : z (x) = : ; (y) = : ; (y) +4; (x) + (y) = : : z = (x) + (y) = : : z; x + y x + y (= 5891: ); (x + y) (= : ) (x) + (y) R: M = 1; ˇ = ; = : ( + ˇ) + 1; + (ˇ + ) 1:0001: 1 + x = 1 x = 0: x = (x 2 M ); 1 + x (1 + x) =
31 (1:00004) = 1: x 2 R 0 < x < x 0 < x < ˇ1 t /2 1 + x = 1 x : 1 ˇ1 t /2; 1: ˇ; t " " > 1: " "/2; "? : x; y; x? y (x)? (y) x? y x? y (x) = x(1 + ") " = "(x); j"j u:
32 " = (x) x x " i ; 1 i m; j" i j u < 1; "; j"j u; my (1 + " i ) = (1 + ") m : i=1 := Q m i=1 (1 + " i); (1 u) m (1+u) m : (1 + x) m [ u; u]; " 2 [ u; u] = (1 + ") m ; x y (x) = x(1+" 1 ) (y) = y(1+" 2 ); j" i j u: z := (x) (y) = xy(1 + " 1 )(1 + " 2 )(1 + " 3 ) = xy(1 + ") 3 j"j u; ˇ ˇz xy ˇ = ˇˇ(1 + ") 3 1ˇˇ = ˇˇ3" + 3" 2 + " 3ˇˇ 3u + 4u 2 : xy u 1; u 2 u: u; (x) x(1 + "1 ) z := = = x (y) y(1 + " 2 ) y 1 + " " 2 (1 + " 3 )
33 j" i j u: 1/(1 + " 2 ) = 1 + ı ı = " 2 /(1 + " 2 ); jıj u/(1 u): j"j u ˇ ˇz x/y ˇ = ˇˇ(1 + ") 2 (1 + ı) 1ˇˇ = ˇˇ2" + ı + " 2 + 2"ı + ı" 2ˇˇ 3u + ; x/y u 2 ; z := (x) + (y) = x(1 + " 1 ) + y(1 + " 2 ) = x(1 + " 1 )(1 + " 3 ) + y(1 + " 2 )(1 + " 3 ) = x(1 + ") 2 + y(1 + ı) 2 ; j"j; jıj u: z = (x + y) + 2("x + ıy) + " 2 x + ı 2 y u 2 ; z (x + y) + 2("x + ıy): ˇ ˇz (x + y) x + y ˇ + ıy ˇ 2ˇ"x ˇ 2u jxj + jyj : x + y jx + yj x; y jxj + jyj = jx + yj 2u: x; y x y " u; ı u; 2uˇˇ(x y)/(x + y)ˇˇ; 2u x y: x = : y = : ; x + y = : : ˇ = 10; t = 5; U = L = 10; z := (x) + (y) = (:45143 :45116) = :00027 = : :
34 ˇ (x + y) ˇz ˇ ; x + y 88 2u = 10 4 z = : ; 4 5 :451 x; y; (x); (y) (x) + (y) z: x = ; y = x+y = 1000 z = (x)+ (y) = 0 t = 10 x y z x y z = (x + y) = (x + y)(1 + "); ˇ ˇz (x + y) x + y ˇ = j"j u: ˇ = 10; t = 5; x = :12346; y = :12345: z = (x) + (y) = (x + y) = x + y = 10 5
35 ˇ = 10; t = 10 p 7892 p 7891 : p p 7892 = : ; p 7891 = : : : ; p x p y = x y p x + p y ; p 7892 p 7891 = 1 p p 7891 = : f (x) = x x jxj x!0 ( x)/x = 1; x = x (x 3 /6) + "(x); j"(x)j jxj 5 /120; f (x) x 3 /6 jxj 5 /120: x 3 /6
36 S n = 1 + nx k=1 1 k 2 + k : 1 k 2 + k = 1 k 1 k + 1 ; S n = n 1 = 2 1 n + 1 n + 1 : S 9 = 1:9 S 99 = 1:99 S 999 = 1:999 S 9999 = 1:9999: S n S 0 = 1; S k = S k 1 + S 1 1 ; k = 1; : : : ; n; k(k + 1) k = 1; 2; : : : ; n: 1 S S + k(k + 1) :
37 n zs n 9 1: : : : ˇ = 10; t = 10 zs n S n = T n T 0 = 1 n(n + 1) ; T k = T k 1 + T n = T n 1 + 1; 1 ; k = 1; : : : ; n 1; (n k)(n k + 1) zt n n zt n 9 1: : : : n N i; 1 i N; i
38 s N = P N i=1 i; s 1 = 1; s k = s k 1 + k; k = 2; 3; : : : ; N; s k ; k = 1; 2; : : : ; N: i s k s 1 = 1; s k = ( s k 1 + k); k = 2; 3; : : : ; N: " i ; j" i j u; s 1 = 1 s 2 = ( s 1 + 2) = ( s 1 + 2)(1 + " 1 ) = 1(1 + " 1 ) + 2(1 + " 1 ) s 3 = ( s 2 + 3) = ( s 2 + 3)(1 + " 2 ) = 1(1 + " 1 )(1 + " 2 ) + 2(1 + " 1 )(1 + " 2 ) + 3(1 + " 2 ) s 4 = ( s 3 + 4) = ( s 3 + 4)(1 + " 3 ) = 1(1 + " 1 )(1 + " 2 )(1 + " 3 ) + 2(1 + " 1 )(1 + " 2 )(1 + " 3 ) : + 3(1 + " 2 )(1 + " 3 ) + 4(1 + " 3 ) s 4 ; jı i j u s 4 = 1(1 + ı 1 ) 3 + 2(1 + ı 1 ) 3 + 3(1 + ı 2 ) 2 + 4(1 + ı 3 ): j"j u (1+") k = 1+k"+ O(k 2 u 2 ); k = 2; 3: u 1 s 4 1(1 + 3ı 1 ) + 2(1 + 3ı 1 ) + 3(1 + 2ı 2 ) + 4(1 + ı 3 ) = s 4 + (3ı 1 ) 1 + (3ı 1 ) 2 + (2ı 2 ) 3 + ı 3 4; i 1 > 2 > 3 > ;
39 1 < 2 < 3 < ; ı i : s N ; [ u; u] ; " 1 ; " 2 2 [ u; u]; " 3 2 [ u; u] " 1 + " 2 = jj + jj " 3 : x = " 1 + " 2 ; jxj jj + jj u: " 3 := x/ jj + jj ; j" 3 j u: s 1 = 1: jıj; j" 2 j u; s 2 = ( s 1 + 2)(1 + ı) = ( 1 + 2)(1 + ı) = s 2 + s 2 ı = s 2 + js 2 j" 2 : jı 0 j u; s 3 = ( s 2 + 3)(1 + ı 0 ) = s 2 + js 2 j" (1 + ı 0 ) = s 3 + js 2 j" 2 (1 + ı 0 ) s 3 + js 2 j" 2 + s 3 ı 0 ; js 2 j " 2 ı 0 = O(u 2 ): " 3 2 [ u; u] s 3 s 3 + js 2 j + js 3 j " 3 O(u 2 ): s N s N + js 2 j + + js N j " N j" N j u; O(u 2 ): N = js 2 j + js 3 j + + js N j;
40 ˇ ˇ s N s N N ˇˇˇ / s N js N j u =: N u; s N u N = N /js N j; k N = (N 1) 1 + (N 1) 2 + (N 2) N s N i zs n zt n N = n + 1; 1 = 1; k = s N = S n = 2 1/(n + 1); N = 2n n: Η προεπισκόπηση των επόμενων σελίδων δεν είναι διαθέσιμη m = 1 ; k = 2; : : : ; N; k(k 1) n + 1 Z m 1 2n n 1 dx m > 0; x m 2; m < m < m 1 ;
B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20
J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
2. Επίλυση μη Γραμμικών Εξισώσεων
2. Επίλυση μη Γραμμικών Εξισώσεων Ασκήσεις 2.4 Έστω (x n ) n2n η ακολουθία των προσεγγίσεων, την οποία δίνει η μέθοδος της διχοτόμησης για την εξίσωση f (x) = 0 με f : [ 1; p 2]! R; f (x) := x 3 3 2 x2
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x 2 + 1 = 0 N = {1, 2, 3....}, Z Q a, b a, b N c, d c, d N a + b = c, a b = d. a a N 1 a = a 1 = a. < > P n P (n) P (1) n = 1 P (n) P (n + 1) n n + 1 P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + 1)
2x 1 + x 2 x 3 + x 4 = 1. 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4
Παράδειγμα 2x 1 +2x 2 +0x 3 +6x 4 = 8 2x 1 + x 2 x 3 + x 4 = 1 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4 Επαυξημένος πίνακας: 2 2 0 6 8 2 1 1 1 1 Ã = 3 1 1 2 3 1 2 6 1 4 Γενικό σύστημα a 11 x 1 +a
3. Γραμμικά Συστήματα
3. Γραμμικά Συστήματα Ασκήσεις 3. Αποδείξτε ότι το γινόμενο δύο άνω τριγωνικών πινάκων είναι άνω τριγωνικός πίνακας. Επίσης, στην περίπτωση που ένας άνω τριγωνικός πίνακας U 2 R n;n είναι αντιστρέψιμος,
K K 1 2 1 K M N M(2 N 1) K K K K K f f(x 1, x 2,..., x K ) = K f xk (x k ), x 1, x 2,..., x K K K K f Yk (y k x 1, x 2,..., x k ) k=1 M i, i = 1, 2 Xi n n Yi n Xn 1 Xn 2 ˆM i P (n) e = {( ˆM 1, ˆM2 )
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r
r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st
Λύσεις ασκήσεων 6. Οι συντελεστές του αναπτύγματος υπολογίζονται ως εξής: = y( ( 1) = 2 L. L n. = 0 Αναζητούμε αρμονική λύση για y(x) λόγω ΣΣ
Λύσεις ασκήσεων 6. y + y, y() y( ) Αναζητούμε αρμονική λύση για y(x) λόγω ΣΣ λ k > y(x) As(kx) + Bsi(kx) y() A y() Bsi(k) B k,,,.. y (x) Bsi ( x ),,,.. ιδιοσυναρτήσεις Αν λ τετριμένη λύση. Οι ιδιοσυναρτήσεις
Διανύσµατα στο επίπεδο
Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή
Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη)
Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 009 (μπορεί να περιέχουν λάθη) (L) Θέμα 1 α) i Ένα σύνολο A X λέγεται γραμμικά ανεξάρτητο αν κάθε πεπερασμένο υποσύνολό του είναι γραμμικά ανεξάρτητο.
Λύσεις Σειράς Ασκήσεων 3Β
ΕΠΛ 412 Λογική στην Πληροφορική Χειμερινό Εξάμηνο 2012 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 3Β i. Ανά πάσα στιγμή ο εκτυπωτής χρησιμοποιείται από το πολύ ένα χρήστη. G ( Αλίκη.χρήση Βαγγέλης.χρήση) ii. iii.
ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ
ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ A u B Μέτρο Διεύθυνση Κατεύθυνση (φορά) Σημείο Εφαρμογής Διανυσματικά Μεγέθη : μετάθεση, ταχύτητα, επιτάχυνση, δύναμη Μονόμετρα Μεγέθη : χρόνος, μάζα, όγκος, θερμοκρασία,
Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28
Αριθµητική Ανάλυση Κεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 Αριθµητική ΑνάλυσηΚεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 1 / 28 Τα πολυώνυµα Chebyshev Αν η f (n+1) (x) είναι συνεχής, τότε υπάρχει ένας αριθµός
http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584
Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς
ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ
ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ Ακρότατα Δρ. Ιωάννης Ε. Λιβιέρης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. TEI Δυτικής Ελλάδας 2 Ακρότατα συνάρτησης Έστω συνάρτηση f A R 2 R και ένα σημείο P(x, y ) A. Η τιμή f(x, y )
MÉTHODES ET EXERCICES
J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z
Τυπολογίο Μαθηµατικών Μεθόδων Φυσικής ΙΙ
. Μέθοδος Frobenius Τυπολογίο Μαθηµατικών Μεθόδων Φυσικής ΙΙ d w Γενική µορφή της γραµµικής.ε. ης τάξης: dz + P (z)dw + Q(z)w = dz Μορφή της.ε. όταν το σηµείο z = z είναι κανονικό ανώµαλο σηµείο d w dz
max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0
Μαθηματικές Μέθοδοι Βελτιστοποίησης - Εστιάζουμε στο ακόλουθο πρόβλημα μεγιστοποίησης μιας αντικειμενικής συνάρτησης f υπό ένα σύνολο ανισοτικών περιορισμών: max f( x,..., x ) { x,..., x } st. : g ( x,...,
9.BbF`2iBbB2`mM; A,.Bz2`2Mx2Mp2`7?`2M 7Ƀ` T `ib2hh2.bz2`2mib H;H2B+?mM;2M 8.BbF`2iBbB2`mM; AA, 6BMBi2 1H2K2Mi2 o2`7?`2m
R R R K h ( ) L 2 (Ω) H k (Ω) H0 k (Ω) R u h R 2 Φ i Φ i L 2 A : R n R n n N + x x Ax x x 2 A x 2 x 3 x 3 a a n A := a n a nn A x = ( 2 5 9 A = )( x ( ) 2 5 9 x 2 ) ( ) 2x +5x = 2. x +9x 2 Ax = b 2x +5x
ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ. Καηηγορημαηικός Λογιζμός
ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ Καηηγορημαηικός Λογιζμός Μοπθέρ Θεωπημάηων Υπάξρεη έλα αληηθείκελν ώζηε λα ηζρύεη θάηη. Υπαξμηαθόο πνζνδείθηεο Γηα θάζε αληηθείκελν ηζρύεη όηη θάηη. Καζνιηθόο πνζνδείθηεο 2 Καηηγοπήμαηα
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
Τίτλος Μαθήματος: Ειδικές Συναρτήσεις
Τίτλος Μαθήματος: Ειδικές Συναρτήσεις Ενότητα: Επίλυση διαφορικών εξισώσεων με τη βοήθεια των συναρτήσεων Bessel Όνομα Καθηγήτριας: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
P m (x)p n (x)dx = 2 2n + 1 δn m. P 1 (x) = x. P 2 (x) = 1 2 (3x2 1) P 3 (x) = 1 2 (5x3 3x) P 4 (x) = 1 8 (35x4 30x 2 + 3)
ΠΟΛΥΩΝΥΜΑ LEGENDRE Τα πολυώνυμα Legendre P n (x είναι ορθογώνια πολυώνυμα στο διάστημα [ 1, +1], με συνάρτηση βάρους την w(x = 1, άρα ισχύει: +1 1 P m (xp n (xdx = 2 2n + 1 δn m Τα επτά πρώτα πολυώνυμα
Διαφορικής Γεωμετρίας Καμπυλών και επιφανειών
Ν. Καδιανάκη Αν. Καθηγητή Ε.Μ.Π. Σημειώσεις Διαφορικής Γεωμετρίας Καμπυλών και επιφανειών ΑΘΗΝΑ Απαγορεύεται η ανατύπωση, αναδημοσίευση, αντιγραφή όλου ή μέρους του παρόντος βιβλίου, η αποθήκευση σε ηλεκτρονικά
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής
a (x)y a (x)y a (x)y' a (x)y 0
Γραμμικές Διαφορικές εξισώσεις Ανώτερης Τάξης Έστω ότι έχουμε μια γραμμική διαφορική εξίσωση τάξης n a (x) a (x) a (x)' a (x) f (x) () (n) (n) n n 0 όπου a i(x),i 0,...,n και f(x) είναι συνεχείς συναρτήσεις
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x
(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x
ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ημερομηνία: Σάββατο 4 Μαΐου 09 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α Α. β Α. γ Α3. γ Α4. γ ΑΠΑΝΤΗΣΕΙΣ Α5. α. Σωστό β. Λάθος γ. Λάθος δ. Λάθος ε. Λάθος ΘΕΜΑ Β Β. β. Άπο τη
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
u(x, y) =f(x, y) Ω=(0, 1) (0, 1)
u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =g(x, y) Γ=δΩ ={0, 1} {0, 1} Ω Ω Ω h Ω h h ˆ Ω ˆ u v = fv Ω u = f in Ω v V H 1 (Ω) V V h V h ψ 1,ψ 2,...,ψ N, ˆ ˆ u v = Ω Ω fv v V ˆ ˆ u v = Ω ˆ ˆ u ψ i = Ω Ω Ω
Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles
Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles Alexandre Birolleau To cite this version: Alexandre Birolleau. Résolution de problème inverse
2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008
2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Πρώτοι αριθµοί και τα Βασικά Θεωρήµατά τους Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 1 Πρωτοι αριθµοι και τα Βασικα Θεωρηµατα τους Στη µνήµη
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι
!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667
!"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000
X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 )
Εστω X : Ω R d τυχαίο διάνυσμα με ΠΟΛΥΔΙΑΣΤΑΤΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ X Εχουμε δει ότι η γνώση της κατανομής καθεμιάς από τις X, X,, X d δεν αρκεί για να προσδιορίσουμε την κατανομή του X, αφού δεν περιέχει
Mesh Parameterization: Theory and Practice
Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is
f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t)
Κεφάλαιο 7 Ακολουθίες και σειρές συναρτήσεων 7.1 Ακολουθίες συναρτήσεων: κατά σημείο σύγκλιση Ορισμός 7.1.1. Εστω X σύνολο, (Y, ρ) μετρικός χώρος και f n, f : X Y (n = 1, 2,...). Λέμε ότι η ακολουθία συναρτήσεων
ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ
ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Ακρότατα συναρτήσεων δύο μεταβλητών Συνάρτηση παραγωγής Ελαστικότητα Μακροοικονομικό μοντέλο Μεγιστοποίηση κερδών ακρότατα Για να βρούμε τα ακρότατα μίας συνάρτησης
2 (3x2 1) 5x 1 ) 5x 3 4x 3 )= 1 2 (5x3 3x) 7x 1 2 (5x3 3x) 3 ) + 48x ) 16x 3 )= 1 8 (63x5 70x 3 +15x)
1 Prìblhma 4 Η αναδρομική σχέση γράφεται στη μορφή Για n =1 P n+1 = 1 n +1 [2n +1)xP n np n 1 ] P 2 = 1 2 3xP 1 P )= 1 2 3x2 1) Για n =2 P 3 = 1 3 5xP 2 2P 1 )= 1 3 = 1 2 5x3x2 3 5x 1 ) 2 3x2 1) 2x 5x
7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
Galerkin ( ) ( ) συνοριακές συνθήκες L * u ku p x u dx ( ) Για κάθε αποδεκτή συνάρτηση L L L
Galrkn ( ) Ε Αu ku= p x u ( 0) = 0 συνοριακές συνθήκες u ( L) = q L ( S ) Για κάθε αποδεκτή συνάρτηση u * ( x ) 0 L ( ΕΑ + ( )) u ( 0) = 0 u ( L) = ql * u ku p x u dx ( W ) Για κάθε αποδεκτή συνάρτηση
... )*RM G ^ S NA 08MG =.1 )*RM G ^ S NA.
35... 3 2 * $#% 0 ) *+, -./ 0 $#% &"#!" (203).2 3 4../ ) ; < / "= > 8.:& / 8/ / 8.89 E " 392 # 382 8. C :& / 238 @*=A 8"* 0? 3 9= N=MO*. 8"H=& IJ$ E. + KH= L*=M 4>G F +"* 9% S. @$ ",R 8 IJ$ 3./ P=Q ) +
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι
Ανταλλακτικά για Laptop Lenovo
Ανταλλακτικά για Laptop Lenovo Ημερομηνία έκδοσης καταλόγου: 6/11/2011 Κωδικός Προϊόντος Είδος Ανταλλακτικού Μάρκα Μοντέλο F000000884 Inverter Lenovo 3000 C200 F000000885 Inverter Lenovo 3000 N100 (0689-
gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl
1 ( - ) ( ) : 5 ( CH 3 COOH ).1 0 /1M NaOH35ml CH COOH 3 = /3 gr mol 211/05 mg 3 /5mgr 210 /1gr 3 /5gr ppm.2 mg mlit mg lit g lit µg lit.3 1mol (58 /8 NaCl ) 0 /11F 14 /9ml NaCl.4 14 /9 96 0 /0149 0 /096
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh
Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ginnhc K. Sarant pouloc jnik Mets bio Poluteqne o Sqol farmosmłnwn Majhmatik n & Fusik n pisthm n TomŁac Majhmatik n 22 Febrouar ou 28 Perieqìmena Συμβολισμός
7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)
77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα
Αναλυτική Φωτογραμμετρία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 3: Μαθηματικό υπόβαθρο Αναλυτικής Φωτογραμμετρίας Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων
ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της f στο Δ, να αποδείξετε ότι:
ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΟΝΟΜΑ ΤΜΗΜΑ Διαγώνισμα Προσομοίωσης Μαθηματικών Προσανατολισμού 11/5/19 Γ Λυκείου ΕΚΠΑΙΔΕΥΤΗΡΙΟ ΔΙΑΡΚΕΙΑ ΘΕΜΑ Α Α1. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι
ΑΝΤΩΝΙΟΥ Ν. ΑΝΔΡΙΩΤΗ ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ (Β
ΑΝΤΩΝΙΟΥ Ν. ΑΝΔΡΙΩΤΗ ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ (Β έκδοση) Κεφάλαιο Πρώτο Αντωνίου Ν. Ανδριώτη, Υπολογιστική Φυσική (Β έκδοση) 3 ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ Βασικές πράξεις της αριθμητικής ανάλυσης Θα ξεκινήσουμε τα μαθήματα
HMY 799 1: Αναγνώριση. συστημάτων. Διαλέξεις 6 7. Συνάφεια (συνέχεια) Μη παραμετρική αναγνώριση γραμμικών
HMY 799 1: Αναγνώριση Συστημάτων Διαλέξεις 6 7 Συνάφεια (συνέχεια Συστήματα πολλαπλών εισόδων Μη παραμετρική αναγνώριση γραμμικών συστημάτων Εκτίμηση άσματος Ισχύος Περιοδόγραμμα, Bartlett/Welch, Παραμετρική
x(n) h(n) = h(n) x(n)
ΣΥΝΕΛΙΞΗ Ορισμός: H συνέλιξη δύο σημάτων x(n) και h(n) είναι ένα τρίτο σήμα y(n) που ορίζεται ως yn ( ) = x(n) h(n) = x(k)h( n k) k= M yn ( ) = x(n) h(n) = lim x(k)h(n k) M (M+ ) k= M Tο κάθε δείγμα του
ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)
(Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 εκεµβρίου 29 5.1. Στο τυχαίο πείραµα της ϱίψης δύο διακεκριµένων κύβων έστω X η ένδειξη του πρώτου κύβου και Y η µεγαλύτερη από τις δύο ενδείξεις. Να προσδιορισθούν
V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,
Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα
Δπηθακπύιηα Οινθιεξώκαηα Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Επηθακπύιηα Οινθιεξώκαηα θαη εθαξκνγέο. Επηθακπύιην Οινθιήξωκα. Έζηω όηη ε βαζκωηή ζπλάξηεζε f(x,y,z) είλαη νξηζκέλε πάλω ζε κία
Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν.
Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι
Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Ενότητα: Σ.Δ.Ε. 1 ης τάξης ανώτερου βαθμού, ορθογώνιες τροχιές Όνομα Καθηγητή: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μιχάλης Παπαδημητράκης. Μερικές Διαφορικές Εξισώσεις
Μιχάλης Παπαδημητράκης Μερικές Διαφορικές Εξισώσεις Περιεχόμενα 1 Γενικά. 1 1.1 Μερικές διαφορικές εξισώσεις............................ 1 1.2 Διαφορικοί τελεστές................................. 2 1.3
Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Ακολουθίες και Σειρές Συναρτήσεων ρ. Κωνσταντίνος Κυρίτσης Εκπαιδευτικός Οργανισµός ΒΙΤΑΛΗ Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 10 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2017
ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2017 2 η Σειρά Ασκήσεων Λύσεις Άσκηση 2.1 [1 μονάδα] Έστω F(x,y) = «Το αυτοκίνητο x έχει μέγιστη ταχύτητα μεγαλύτερη από αυτή του αυτοκινήτου y», με Π.Ο. των x,y
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά
Κεφάλαιο 6. Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό και Πεδίο Συντηρητικών Δυνάμεων}
Κεφάλαιο 6 ΕΡΓΟ ΚΑΙ ΕΝΕΡΓΕΙΑ Εννοια του Εργου { Εργο και Κινητική Ενέργεια, Εργο Μεταβλητής Δύναμης, Ισχύς} Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 4η Σειρά Ασκήσεων
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - 4η Σειρά Ασκήσεων Ασκηση.. Χρησιµοποιούµε το κριτήριο ολοκλήρωσης : dx x( x +
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2018/lai2018html Παρασκευή 12 Οκτωβρίου
Px α x α x... α x α. Ο αριθμός κ λέγεται βαθμός
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΑΛΓΕΒΡΑ ΘΕΜΑ Α Α1. Να δείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Px με το x ρ είναι ίσο με την τιμή του πολυωνύμου για
ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A
ΚEΦΑΛΑΙΟ Πίνακες Εστω και είναι το σώµα των πραγµατικών και των µιγαδικών αριθµών αντιστοίχως Στο εξής όταν γράφουµε F θα εννοούµε είτε το είτε το Ορισµός Eστω F = ή και m, Κάθε ορθογώνια διάταξη m A F
σ (t) = (sin t + t cos t) 2 + (cos t t sin t) = t )) 5 = log 1 + r (t) = 2 + e 2t + e 2t = e t + e t
ΛΥΣΕΙΣ. Οι ακήεις από το βιβλίο των Mrsden - Tromb.. 3.)e) Είναι t) sin t + t os t, os t t sin t, 3) οπότε t) sin t + t os t) + os t t sin t) + 3 t + 4 και το μήκος είναι ίο με t t) dt t + 4 dt t + 4 +
(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)
1 ΑΝΑΛΥΣΗ ΙΙ Μερική Παράγωγος Μερικές Παράγωγοι Ορισμός 1: a) Εστω f(x y) : U R R μία συνάρτηση δύο μεταβλητών και (a b) ένα σημείο του U. Θεωρούμε ότι μεταβάλλεται μόνο το x ένω το y παραμένει σταθερό
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 09, 9 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Επαναληπτικές μέθοδοι 2. Θεωρία γενικών επαναληπτικών μεθόδων 3. Σύγκλιση
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii09/laii09.html Παρασκευή 0 Μαίου
Μαθηματική Ανάλυση ΙI
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 5: Αλυσιδωτή παραγώγιση, διαφορίσιμες συναρτήσεις, διαφορικό Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii08/laii08.html Παρασκευή 4 Μαίου
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι
A = B = Ψ(1) = Ψ(0) = γ) Αφαιρώντας τη δεύτερη σχέση από την πρώτη έχουμε
1 Prìblhma 2 και α Εχουμε ότι a 11 =1 a 21 = a 12 = 1 a 22 = b 11 = b 21 = b 12 = b 22 =1 A = B = ( 1 1 ( και επομένως det A =detb =, οπότε οι συνθήκες είναι αμιγείς. β Εχουμε ότι ( ( 1 2 1 A =, B = 1
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ
Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.
ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ
ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ Να γίνει στατική επίλυση τoυ χωρικού πλαισίου από οπλισμένο σκυρόδεμα κατηγορίας C/, κάτοψη του οποίου φαίνεται στο σχήμα (α). Δίνονται: φορτίο επικάλυψης πλάκας gεπικ. KN/, κινητό
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΕΜΒΟΛΗ
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΕΜΒΟΛΗ Επιμέλεια: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ Άσκηση Η σχέση ανάµεσα στην τάση και στην θερµοκρασία ενός θερµοστοιχείου πλατίνας µε 0% ρόδιο δίνεται από τον
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS Γραμμικές μη ομογενείς διαφορικές εξισώσεις δευτέρας τάξης λέγονται οι εξισώσεις τύπου y + p(x)y + g(x)y = f(x) (1.1) Οταν f(x) = 0 η εξίσωση y + p(x)y +
ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών
Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας
Ειδικά Θέματα Οικονομετρίας-Παλινδρόμηση (μέρος Α )
Ειδικά Θέματα Οικονομετρίας-Παλινδρόμηση (μέρος Α ) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Ειδικά Θέματα Οικονομετρίας(ΕΘΟΟ 331) Περιγραφή 1 Εισαγωγή