(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n"

Transcript

1

2

3 Z 6 D 3

4

5 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0

6 Z N = {a n }, n = 1, 2... N N Z N = {1, ω, ω 2,... ω N 1 } ω N = 1 ω = e 2πi/N a k a l = ω k ω l = ω k+l ω m k + l = m < N ω m Z N k + l = m > N m = nn + m m < N ω m = ω nn+m = ω m Z N e = ω N = 1 ω k ω N k = ω k a a 1 = a 1 a = e a k a l = a k+l ω N = 1 Z N a k a l = a l a k Q N = {1, 2, 3,..., N 1} (N) m, n (m + n)/n (N) v mn = m n = (m + n)( N) = m + n λn λ 0 < v mn < N (m n) p = (m+n λn) p = ((m+n λn)+p) µn = m+n+p νn (m (n p) = m (n+p κn) = ((m+n κn +p) ξn = m+n+p ρn N ν = ρ m G 0 < m < N N m G m + (N m) = 0 m, (N m) e = 0

7 (e, a) a 2 = e a 1 = a Z 2 (e, a 1, a 2 ) a 1 a 1 = e a 1 a 1 = a 2 a 1 a 1 = e (e, a 1 ) Z 2 a 1 a 1 = a 2 a 1 = a a 2 = a 1.a 1 = a 2 Z 3 e a 1 a 2 e e a 1 a 2 a a 1 a 2 e a 2 a 2 e a 1 Z 3 e a a 2 e e a a 2 a a a 2 e a 2 a 2 e a Z 3 (e, a 1, a 2, a 3 ) a 1 a 1 a 1 = a 2 a 1 a 1 = e a 1 a 1 = a 3 a 2 a 3 a 1 a 1 = a 2 Z 4 a 1 = a Z 4 a k = a k, k = 1, 2, 3 a 4 = e Z 4 e a 1 a 2 a 3 e e a 1 a 2 a 3 a 1 a 1 a 2 a 3 e a 2 a 2 a 3 e a 1 a 3 a 3 e a 1 a 2 Z 4 e a 1 a 2 a 3 e e a a 2 a 3 a a a 2 a 3 e a 2 a 2 a 3 e a a 3 a 3 e a a 2 Z 4 Z 2 (e, a 2 = a 2 ) ea 2 = a 2, a 2 a 2 = e Z 2 {e, a 2 = a 2 } Z 2 Z 4 a 1 a 1 = e (i)a 2 a 3 = e (ii)a 2 a 3 = a 1 (i) a 1 a 1 = e, a 2 a 3 = a 1

8 D 2 e a 1 a 2 a 3 e e a 1 a 2 a 3 a 1 a 1 e a 3 a 2 a 2 a 2 a 3 e a 1 a 3 a 3 a 2 a 1 e D 2 C ±π a i a j = a j a i D 2 Z 2 (e, a 1 ), (e, a 2 ), (e, a 3 ) a 1 a 2 = a 2 a 1 = a 3 D 2 Z 2 Quaternions D 2 = Z 2 Z 2 Laplace Hamilton quaternions i, j, k 1 quaternion q = a + b i + c j + d k 1 i 2 = j 2 = k 2 = i j k = 1 i j k = 1 i i (i j k) = i ( 1) i 2 j k = i j k = i i j k = 1 k (i j k) k = ( 1) k i j k 2 = k i j = k

9 i(i j) = i k i k = j j k = i j 2 k = j i j i = k (j i) i = k i k i = j i j = j i, j k = k j, i k = k i q 1 + q 2 = q 2 + q 1 q 1 + (q 2 + q 3 ) = (q 1 + q 2 ) + q 3 q 1 (q 2 q 3 ) = (q 1 q 2 )q 3 q 1 (q 2 + q 3 ) = q 1 q 2 + q 1 q 3 q + 0 = 0 1 q = q 1 = q quaternions q 1 q q q 1 q = qq 1 = 1 q = a b i c j d k q q = a 2 + b 2 + c 2 + d 2 q 1 = a b i c j d k a2 + b 2 + c 2 + d 2

10 {1, 1, i, i, j, j, k, k} {q 1, q 2, q 3, q 4, q 5, q 6, q 7 } e q 1 q 2 q 3 q 4 q 5 q 6 q 7 e e q 1 q 2 q 3 q 4 q 5 q 6 q 7 q 1 q 1 e q 3 q 2 q 5 q 4 q 7 q 6 q 2 q 2 q 3 q 1 e q 6 q 7 q 5 q 4 q 3 q 3 q 2 e q 1 q 7 q 6 q 4 q 5 q 4 q 4 q 5 q 7 q 6 q 1 e q 2 q 3 q 5 q 5 q 4 q 6 q 7 e q 1 q 3 q 2 q 6 q 6 q 7 q 4 q 5 q 3 q 2 q 1 e q 7 q 7 q 6 q 5 q 4 q 2 q 3 e q 1 G a G b a i b i : a i a j b i b j D 2 e, q1 e q 2, q 3 a 1 q 4, q 5 a 2 q 6, q 7 a 3 (G a ) = (e, q 1 )

11 H = {h i } G = {a j } G H a 1 i h j a i = h k H a i G Z 4 Z 2 (e, a 1 ) Z 4 N/n a 1, a 2 G a 2 a 1 a 1 1 a 2 a 1 a G a k a k = a 1 a k a a m = a k a l a m = a ka l = (a 1 a k a)(a 1 a l a) = a 1 (a k a l )a = a 1 a m a a G G a 1 Ga = G G H G a G ah = {ah 1, ah 2,..., ah n } S a = {a i }, S b = {b j } a i b j H G a G H G H G/H N/n h n h H

12 n h a i h m, a j h n (a i h m )(a j h n ) = a i (a j a 1 j h m )(a j h n ) = a i a j h mh n = a k h p a i H a j H = a k H H G/H H = (e, q 1 ) q 2 H, q 4 H, q 6 H a k C k C k : a k = a 1 i a k a i, a i G C k G C k a l C l a n a n = e a (a 1 k aa k) n = (a 1 aa k)(a 1 aa k)... (a 1 aa k)) = a 1 an a k = a 1 ea k = e k k k k k C k n k N/n k

13 (x 1, x 2, x 3 ) a 0 : (x 1, x 2, x 3 ) (x 1, x 2, x 3 ) a 1 : (x 1, x 2, x 3 ) (x 2, x 1, x 3 ) a 2 : (x 1, x 2, x 3 ) (x 3, x 2, x 1 ) a 3 : (x 1, x 2, x 3 ) (x 1, x 3, x 2 ) a 4 : (x 1, x 2, x 3 ) (x 3, x 1, x 2 ) a 5 : (x 1, x 2, x 3 ) (x 2, x 3, x 1 ) e ( ) , a1 ( ) , a2 ( ) a 3 ( ) , a4 ( ) , a5 ( ) ea i = a i, a 1 a 2 = a 5, a 2 a 1 = a 4, a 4 a 2 = a 3 a 4, a 5 a 1, a 2 a 3 a 3 = a 4 a 2 = a 2 a 1 a 2 S 3 e, a = a 1, b = a 2 S 3 = {e, a, b, bab, ba, ab} S 3 3! = 6 H = {e, ba, ab} H G (ba) 1 = ab C 1 = {e} a 1 i ea i = e a i S 3 a e 1 ae = a b 1 ab = bab (ab) 1 a(ab) = bab (ba) 1 a(ba) = b (bab) 1 a(bab) = b

14 (a, b, bab) a : (1, 2, 3) = (2, 1, 3) a 2 = e b : (1, 2, 3) = (3, 2, 1) b 2 = e (bab) 2 = (bab)(bab) = baeab = baab = beb = b 2 = e C 3 = {a, b, bab} (ba) 3 = (ab) 3 = e S 3 C S 3 : 1 : {e} 1 C 2 : {ab, ba} 3 C 3 : {a, b, bab} 2 S 3 H 1 : {e} H 2 : {e, bab}, {e, a}, {e, b} H 3 : {e, ba, ab} H 3 g G g 1 H 3 g = H 3 H 3 H 2 S n n S n ( ) n (p 1 p 2... p n ) p 1 p 2 p 3... p n

15 n n 1 n 3 n(n 1)(n 2) 2 1 = n! S n ( )( ) ( ) n p1 p 2 p 3... p n n = p 1 p 2 p 3... p n q 1 q 2 q 3... q n q 1 q 2 q 3... q n m < n n m S 4 ( ) = (12)(34) S 3, S 4 G a n, n = 1, 2,..., N H H G h i, i = 1, 2,... n < N a 1 a 1 G a 1 / H n a 1 h i a 1 h i / H a 1 h i = h j a 1 = h j h 1 i h j h 1 i H a 1 H {h i } {a 1 h i } a 2 = a 1 a 2 G a 2 / H {a 1 h i } {a 2 h i } H {a 1 h i } h k, h l a 1 h k = a 2 h l a 2 = a 1 h k h 1 l a 1 h m a 2 {a 1 h i } a, a,... a 1, a 2

16 {h i } {a 1 h i } {a 2 h i },... {a p 1 h i } G = H + a 1 H + a 2 H + + a p 1 H G N H n N G n N = pn p N Z 4 e, a, a 2, a 3 a 4 = e e, a 2 Z 2 = {e, a 2 } a Z 2 = {a, a 3 } Z 4 = Z 2 + a Z 2 = 4, n = 2 N/n = 2 a a, a 2,..., a k,... m a m = a m a a G e, a, a 2,..., a n 1 n a n N G N = 5 a 5 = e N = 7, 11 Z 6 D 3 Z 6 a 6 = e 1, a, a 2, a 3 a 4, a 5 Z 3 = (1, a 2 = a 2, a 4 = a 4 ), Z 2 = (1, a 3 = a 3 ) Z 6 a 2 a 3 = a 5 Z 6 Z 6 = Z 3 Z 2

17 A, B, C O OA, OB, OC 1, ω, ω 2 ω 3 = 1 π 3, 2 π 3 R 1, R 2, R 3 OA, OB, OC a, b a 3 = b 2 = e, bab 1 = a 1 n D n a n = b 2 = e, bab 1 = a 1 D 3

18 2 2 I = ( ) , A1 = ( ) , A2 = ( ) i 0 0 i, A3 = ( i 0 0 i A 4 = ( ) , A5 = ( ) , A6 = ( ) 0 i i 0, A7 = ( 0 i i 0 n GL(n, C) n g G g G = {g 1, g 2,... g N } g 1 1,... g N N g i ), ). g i : g j g k, g i g j = g k k = Γ(g i ) j Γ(g i ) Γ(g i ) jk = { 1 αν gi g j = g k 0 αλλιωσ

19 Z 3 e, ω, ω 2 ω 3 = ω ω : e ω ω : ω ω 2 ω : ω 2 ω 3 = 1 ω ω 2 N V i, j i = δ ij G N G D(g N N R g G g i i(g) = D ij (g) j D(g 1 ) = D(g) 1 ( ) D D(g) = (a) (g) 0 K(g) D (b) (g) D(g) = ( D (1) (g) 0 0 D ( ) (g) ) = D (1) D ( )

20 D(g) = D (1) D (2) D (k) V = V 1 V 2 V k V 1 a, b,... a, b = 1,..., d 1 < N a a(g) = D (1) ab b V 1 S d 1 N a = S ai i a 1 a 2... a d1 = S 11 (g)... S 1N S d S d1 M a i 1 i 2... i N a a(g) = D (1) (g) ab b b = S bi i a(g) = D (1) (g) ab S bj j a(g) = S ai i S ai i(g) = S ai D ij (g) j S ai D ij (g) = D (1) (g) ab S bj D(g) S a i D(g) D (1) (g)

21 a N N D(g) S 1 o S = 0 d 1 = N S N N a, i S D (1) (g)s = SD(g) D (1) (g) = SD(g)S 1 S = 0 S 0 R D(g) D(g)S = SD(g) g G S S = I S S i = s i i SD(g) i = D(g)S i S i(g) = s i D(g) i s i D(g) i = s i i(g) S i(g) = s i i(g) i(g) S S 2 o g G D(g)S = SD(g) S S = I

22 G N D a (g), D b (g) d a, d b D a (g) ik D b (g 1 ) jl = N δ ab δ ij δ kl d a g G U(g) U a (g) ik Ub (g) jl = N δ ab δ ij δ kl d a g G χ Da = D a (g) χ Da (g) χ Db (g) = Nδ ab g G χ Da (C i ) χ Da (C j ) = N δ Ci C n j i g G C i, C j n i C i N = n a=1 d 2 a d a

23 S 3 D(g) = 1, g G χ 1 (g) = 1 n C 1 = {e} n n C 1 n χ Da (C 1 ) = n m n n C i = C j = C 1 m n n 2 = m m m 3 + = N = 6 n 1 n N = 6 S 3 n 1 = 1 C 1 m n = 3 n m 1 + 4m 2 = 6, m 1 + m 2 = 3 m 1 = 2, m 2 = 1 1, 1 χ 1 (C i ), χ 1 (C i ), χ 2 (C i ) χ 1 (C i ) = 1 C 1 n n n χ 1 (C 1 ) = 1 χ 2 (C 1 ) = 2

24 a h i = 1 h i h 1 = 1, h 2 = 3, h 3 = 2 χ 1 (C 2 ) 3 = 1 χ 1 (C 2 ) = 1, ω, ω 2 χ 1 (C 3 ) 2 = 1 χ 1 (C 3 ) = 1, 1 D a = 1, D b = 1 g i χ 1 (g i )χ 1 (g i ) = χ 1 (C 2 ) + 3χ 1 (C 3 ) = 0 χ 1 (C 2 ) = 1, χ 1 (C 3 ) = 1 1, χ 2 (C 2 ) + 3χ 2 (C 3 ) = χ 2 (C 2 ) 3χ 2 (C 3 ) = 0 χ 2 (C 2 ) = 1, χ 2 (C 3 ) = 0 S 3 h χ 1 χ 1 χ 2 C C C S 3

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΚΑΤΑΛΟΓΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΕΣΤ ΙΚΑΝΟΤΗΤΩΝ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΩΡΟΜΙΣΘΙΟΥ ΠΡΟΣΩΠΙΚΟΥ ΒΟΗΘΟΙ ΤΗΛΕΞΥΠΗΡΕΤΗΣΗΣ (ΑΡ. ΠΡΟΚΗΡΥΞΗΣ: 2/2017) (ΛΕΥΚΩΣΙΑ

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

/&25*+* 24.&6,2(2**02)' 24

/&25*+* 24.&6,2(2**02)' 24 !! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια - Συνέχεια ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια - Συνέχεια ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια Συνέχεια ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ mail: info@iliaskosgr wwwiliaskosgr f] g,! R f] g,, f] g

Διαβάστε περισσότερα

&,'-- #-" > #'$,"/'3&)##3!0'0#!0#/# 0'0';&'"$8 ''#"&$'!&0-##-""#;-# B

&,'-- #- > #'$,/'3&)##3!0'0#!0#/# 0'0';&'$8 ''#&$'!&0-##-#;-# B !"#"# $%"&$' ('#')#''$# * +,-""&$'.-,-"#!&"!##/'#')#''$# ** '$#/0'!0#'&!0"#"/#0"## * 1--'/''00#&'232232223#24 *5 ##-'"-&1-$6'#76#!$#0"$8&9-1$" * '$#&$'!&&1:"-#;6"/'-#

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

SIEMENS Squirrel Cage Induction Standard Three-phase Motors - SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque

Διαβάστε περισσότερα

Αναπαραστάσεις οµάδων και Αλγεβρες Τελεστών

Αναπαραστάσεις οµάδων και Αλγεβρες Τελεστών 6 Ιουλίου 2015 1 Οµάδες 2 3 οµάδες Οµάδες Παραδείγµατα (Z, +) (Z n, +) (R, +), (R, ), (R +, ) (T, ), T = {z C : z = 1} S n = {φ : N n N n, 1 1 και επί}, όπου N n = {1, 2,..., n}, µε πράξη την σύνθεση.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Σάββατο, 15 Μαρτίου 2014 Διάρκεια : 9.30 11.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3/ΣΕΜΦΕ/ y x= ( ) ( ) .( ) , τότε

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3/ΣΕΜΦΕ/ y x= ( ) ( ) .( ) , τότε ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3/ΣΕΜΦΕ/008-09.(i) S =, : 0 =, :, με + 0 {( ) } {( ) ( )( ) } {(, ):, με 0, 0 } {(, ):, με 0, 0} = + + = 0 + = 0 = (ii). 3 {( ) ( )} ( ) ( ) {(, ):, με 0 ή. } { = } S=, :, με = + =, :,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

Χαρακτηριστική Εξίσωση Πίνακα

Χαρακτηριστική Εξίσωση Πίνακα Έστω ο n nτετραγωνικός πίνακας A της μορφής a L a M O M an L a όπου aij, i n, j n πραγματικές σταθερές Ονομάζουμε χαρακτηριστική εξίσωση του πίνακα A την εξίσωση A λi, όπου I ο n n μοναδιαίος πίνακας και

Διαβάστε περισσότερα

Erkki Mäkinen ja Timo Poranen Algoritmit

Erkki Mäkinen ja Timo Poranen Algoritmit rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα: «Βασικές Αρχές Θεωρίας Συστημάτων» (Μέρος Α )

Σημειώσεις για το μάθημα: «Βασικές Αρχές Θεωρίας Συστημάτων» (Μέρος Α ) Χρήστος Ι Σχοινάς Αν Καθηγητής ΔΠΘ Σημειώσεις για το μάθημα «Βασικές Αρχές Θεωρίας Συστημάτων» (Μέρος Α ) ΞΑΝΘΗ, 008 - - - - ΚΕΦΑΛΑΙΟ ΔΙΑΝΥΣΜATA Ορισμοί και ιδιότητες Συχνά, σε διάφορα προβλήματα στα Μαθηματικά,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1ο ΔΙΑΝΥΣΜΑΤΑ ΚΕΦΛΙΟ ο ΙΝΥΣΜΤ Η ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ Ορισμός του ιανύσματος Πότε ένα μέγεθος καλείται βαθμωτό ή μονόμετρο και πότε διανυσματικό ; Τα μεγέθη ( όπως πχ η μάζα, ο όγκος, η πυκνότητα, η θερμοκρασία κτλ) τα

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

! " #$ (!$ )* ' & )* # & # & ' +, #

!  #$ (!$ )* ' & )* # & # & ' +, # ! " #$ %%%$&$' %$($% (!$ )* ' & )* # & # & ' +, # $ $!,$$ ' " (!!-!.$-/001 # #2 )!$!$34!$ )$5%$)3' ) 3/001 6$ 3&$ '(5.07808.98: 23*+$3;'$3;',;.8/ *' * $

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ), Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου

Διαβάστε περισσότερα

!"#$%#&'(#)*+,$-.#/ 0%%&%#)*2!1/&%3) 0&/(*+"45 64.%*)52(/7

!#$%#&'(#)*+,$-.#/ 0%%&%#)*2!1/&%3) 0&/(*+45 64.%*)52(/7 !"#$%#&'(#)*+,$-.#/ 0%%&%#)*2!1/&%3) 0&/(*+"45 64.%*)52(/7 2010 2012 !"#$%!&'()$!!"#$% &!#'()* +(, $-(./!'$% $+0 '$ 1!")& '(, 2,3!4#*'& '&5 67µ3(, 0'$# (%!)%/µ(" '&5 $+849!:5 ()(-)&4:;(.# -$% & +4

Διαβάστε περισσότερα

#&' ()* #+#, 2 )' #$+34 4 )!' 35+,6 5! *,#+#26 37)*! #2#+#42 %8')* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :&' 2#3+23- ##) :* 232+464 #-) ''7 465+436

#&' ()* #+#, 2 )' #$+34 4 )!' 35+,6 5! *,#+#26 37)*! #2#+#42 %8')* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :&' 2#3+23- ##) :* 232+464 #-) ''7 465+436 ! "#$$% #& ()* #+#, -./0*1 2 ) #$+34 4 )! 35+,6 5! *,#+#26 37)*! #2#+#42 %8)* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :& 2#3+23- ##) :* 232+464 #-) 7 465+436 .* &0* 0!*07 ;< =! ))* *0*>!! #6&? @ 8 (? +

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S. Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. Proof. ( ) Since α is 1-1, β : S S such that β α = id S. Since β α = id S is onto,

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Πίνακες ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 12 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας και της άλγεβρας των πινάκων. Το ϕυλλάδιο

Διαβάστε περισσότερα

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω

Διαβάστε περισσότερα

! " #$% & '()()*+.,/0.

!  #$% & '()()*+.,/0. ! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5

Διαβάστε περισσότερα

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/52779

Διαβάστε περισσότερα

( ) = ( ) Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ. Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες

( ) = ( ) Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ. Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες Ανάλυση Πινάκων και Εφαρμογές Σελίδα 1 από 6 Μάθημα 2 ο ΒΑΘΜΟΣ ΠΙΝΑΚΑ Θεωρία : Γραμμική Άλγεβρα : εδάφιο 4, σελ. 63, Πρόταση 4.9, σελ. 90. Βασικές ιδιότητες Έστω A είναι μ ν πίνακας. Τότε 1. ranka= ranka

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες

Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες Εσωτερικά και Εξωτερικά ευθέα Γινόμενα Α 1. Έστω η κυκλική ομάδα

Διαβάστε περισσότερα

{ } { / αρτιος 10} ΣΥΝΟΛΑ. N, σύνολο των φυσικών αριθμών, { 1, 2, 3, }

{ } { / αρτιος 10} ΣΥΝΟΛΑ. N, σύνολο των φυσικών αριθμών, { 1, 2, 3, } ΣΥΝΟΛΑ Ένα σύνολο είναι µία συλλογή διακεκριµένων αντικειµένων, τα δε αντικείµενά του οµάζονται στοιχεία του συνόλου. Γράφουµε S { a, b, } =, όταν θέλουμε να δηλώσουµε ότι το σύνολο που ονοµάζεται είναι

Διαβάστε περισσότερα

ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές

ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές κ.λ.π. ΔΙΑΝΥΣΜΑΤΑ Παράσταση διανύσματος ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΕΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt206/nt206.html Πέµπτη 6 Νεµβρίου 206 Ασκηση. Να δειχθεί ότι

Διαβάστε περισσότερα

! " # " $ #% $ "! #&'() '" ( * / ) ",. #

!  #  $ #% $ ! #&'() ' ( * / ) ,. # Ψ ƒ! " # " $ #% $ "! #&'() '" ( * +",-.'!( / ) ",. # 0# $"!"#$%# Ψ 12/345 6),78 94. ƒ 9)")1$/):0;3;::9 >'= ( ? 9 @ '&( % A! &*?9 '( B+)C*%++ &*%++C 0 4 3'+C( D'+C(%E $B B - " % B

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A ΚEΦΑΛΑΙΟ Πίνακες Εστω και είναι το σώµα των πραγµατικών και των µιγαδικών αριθµών αντιστοίχως Στο εξής όταν γράφουµε F θα εννοούµε είτε το είτε το Ορισµός Eστω F = ή και m, Κάθε ορθογώνια διάταξη m A F

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Τεχνολογικής Κατεύθυνσης Προγραμματισμός Γ Λυκείου Μέρος 2 ο ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Τεχνολογικής Κατεύθυνσης Προγραμματισμός Γ Λυκείου Μέρος 2 ο ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Τεχνολογικής Κατεύθυνσης Προγραμματισμός Γ Λυκείου Μέρος 2 ο ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr 4 - - 75 - true true - false

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2010-2011 ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΙΝΑΚΑΣ Ένας πίνακας Α με στοιχεία από το σύνολο F (συνήθως θεωρούμε τα σύνολα

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου ο Θέμα Εκφωνήσεις - Λύσεις των θεμάτων Έκδοση 1 η (14/11/014) Θέματα ης Ομάδας GI_V_GEO 18975 Δίνεται τρίγωνο ABΓμε AB=9, AΓ=15. Από το βαρύκεντρο φέρνουμε

Διαβάστε περισσότερα

!"#$%&' ()*%!&"' «$+,-./0µ12 3410567/8+9 5+9 :1/.;./:69 <.5-8+9: $=5-.>057=9/7/=9» !"#$%&$'( trafficking %)*+!,,-.$. /0"1%µ$)$ 2"(%3$)*4 5"67+$4

!#$%&' ()*%!&' «$+,-./0µ12 3410567/8+9 5+9 :1/.;./:69 <.5-8+9: $=5-.>057=9/7/=9» !#$%&$'( trafficking %)*+!,,-.$. /01%µ$)$ 2(%3$)*4 567+$4 1!"#$%&' ()*%!&"' «$+,-./0µ12 3410567/8+9 5+9 :1/.;./:69 057=9/7/=9»!"#$%$&"'$ «NOVOTEL» ()*. +,-. 4-6, /01#/ 14 & 15 /23)4567 2011!"#$%&$'( trafficking %)*+!,,-.$. /0"1%µ$)$ 2"(%3$)*4 5"67+$4

Διαβάστε περισσότερα

! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *&

! # $%%&$$'($)*#'*#&+$ $&#! #, &,$-.$! $-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *& ! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *& '*$$%!#*#&-!5!&,-/+#$!&- &"/ "$,&/#!6$7,&78 "$% &$&'#-/+#!5*% 3 +!$ 9 &$*,2"%& #$- 3 '*$%#

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς

Διαβάστε περισσότερα

!"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%' " (&! #!$"/001

!#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%'  (&! #!$/001 !"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. ') '#*#(& )!#)! ##%' " (&! #!$"/001 ')!' &'# 2' '#)!( 3(&/004&' 5#(& /006 # '#)! 7!+8 8 8 #'%# ( #'## +,-'!$%(' & ('##$%('9&#' & ('##$%('9')

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

'!!$%+(!$,-%+./!'#' 0$1! 2$,13

'!!$%+(!$,-%+./!'#' 0$1! 2$,13 !"#$% & '#$!!(!)* '!!$%+(!$,-%+./!'#' 0$1! 2$,13 % 5*! "#$%&%'(')&%&*++)&,&,&**) $ # 6 7!!"# $%& $ '()$ )$ *+$, -.#/01023101!!3141413.. % 5 6 ## -7 72$ 3!"48-%!8049"0:"3: ;#????????? -. /0-0!

Διαβάστε περισσότερα

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων 11 1 i) ii) 1 1 1 0 1 1 0 0 0 x = 0 x +x 4 +x 5 = x = 1 Λύνοντας ως προς x και στη συνέχεια ως προς x 4, ϐρίσκουµε ότι η γενική λύση του συστήµατος είναι η 5άδα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 7 Πινακες και Γραµµικες Απεικονισεις Στα προηγούµενα

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mil: info@iliskos.gr www.iliskos.gr Fl] = f]! D G] = F]

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 17 Ιανουαρίου 2015 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 17 Ιανουαρίου 2015 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 6405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες.

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες. ΘΕΜΑ 1[1] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 1 ( ιδάσκων: ΑΦ Τερζής ιάρκεια εξέτασης 3 ώρες Ηλεκτρόνιο βρίσκεται σε δυναµικό απειρόβαθου πηαδιού και περιράφεται από την 1 πx πx κυµατοσυνάρτηση

Διαβάστε περισσότερα

Αναπαραστάσεις και χαρακτήρες πεπερασµένων οµάδων

Αναπαραστάσεις και χαρακτήρες πεπερασµένων οµάδων Αναπαραστάσεις και πεπερασµένων οµάδων Αθήνα, Φεβρουάριος-Μάρτιος 2016 Αναπαραστάσεις και πεπερασµένων οµάδων 1 Αναπαραστάσεις 2 3 4 Αναπαραστάσεις και πεπερασµένων οµάδων Ορισµός H χώρος Hilbert πεπερασµένης

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

(m, n) = 1 τότε Aut(H K) = Aut(H) Aut(K). Z(GL(2, R)), Z(SL(2, R)), Z(GL(n, R)), Z(SL(n, R)). } a b 0 c {( ) 1 b A = 0 1 {( ) a 0 D = 0 c T = } : b R

(m, n) = 1 τότε Aut(H K) = Aut(H) Aut(K). Z(GL(2, R)), Z(SL(2, R)), Z(GL(n, R)), Z(SL(n, R)). } a b 0 c {( ) 1 b A = 0 1 {( ) a 0 D = 0 c T = } : b R Ασκήσεις στην Θεωρία Ομάδων 2 Μαίου 2014 Άσκηση 1 Δίνεται μια ομάδα G τάξης n και a 1, a 2,..., a n G. Δείξτε ότι υπάρχουν k, m N τέτοια ώστε 1 k m n και a k a 2...a m = 1. Άσκηση 2 Δίνεται μια ομάδα G

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=142&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 2014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr.

http://www.mathematica.gr/forum/viewtopic.php?f=142&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 2014 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr. http://www.mathematica.gr/forum/viewtopic.php?f=14&t=44444 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 14 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 4 ο ΘΕΜΑ Επιμέλεια : xr.tsif Σελίδα 1 http://www.mathematica.gr/forum/viewtopic.php?f=14&t=44444 Έλυσαν

Διαβάστε περισσότερα

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1] 1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter

Διαβάστε περισσότερα

14PROC

14PROC Digitally signed by INFORMATICS INFORMATICS DEVELOPMEN DEVELOPMENT AGENCY Date 2014.10.20 112000 T AGENCY EEST Reason Location Athens ΑΔΑ ΩΦΥΖ1-4ΡΖ., 17/10/2014. 21//6330/1138!"#$ %& '( )**)++*,-.)**)+/)

Διαβάστε περισσότερα

!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-

!#$ %&'$!&!(!)%*+, -$!!.!$(-#$&%- !"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές

Ηλεκτρονικοί Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Αριθμητικές Πράξεις και Κανόνες στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Δομή Διάλεξης Τετραγωνικό Πηγάδι Δυναμικού: Δέσμιες καταστάσεις - ιδιοτιμές Οριακές Περιπτώσεις: δ δυναμικό, άπειρο βάθος Σκέδαση σε μια διάσταση: Σκαλοπάτι

Διαβάστε περισσότερα

Κεφάλαιο 6 ιανυσµατικοί χώροι...1

Κεφάλαιο 6 ιανυσµατικοί χώροι...1 6. ιανυσµατικοί χώροι Σελίδα από 5 Κεφάλαιο 6 ιανυσµατικοί χώροι ιανυσµατικοί χώροι... 6. ιανυσµατικοί χώροι... 6. Υποχώροι...7 6. Γραµµικοί συνδυασµοί... 6. Γραµµική ανεξαρτησία...9 6.5 Άθροισµα και ευθύ

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

ΣΥΝΔΙΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΣΥΝΔΙΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΣΥΝΔΙΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ Οι έξοδοί τους είναι συναρτήσεις αποκλειστικά των εισόδων τους Χαρακτηρίζονται από μία καθυστέρηση στη διάδοση του σήματος της τάξης των ns Συνδιαστικά Κυκλώματα O ΣΥΓΚΡΙΤΗΣ Συγκρίνει

Διαβάστε περισσότερα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα Συστήματα με Ν βαθμούς ελευθερίας ΦΥΣ 211 - Διαλ.25 1 Ø Συστήµατα µε Ν βαθµούς ελευθερίας που βρίσκονται κοντά σε µια θέση ισσορροπίας τους συµπεριφέρονται σαν Ν ανεξάρτητοι αρµονικοί ταλαντωτές Γιατί

Διαβάστε περισσότερα

ακτύλιοι και Υποδακτύλιοι

ακτύλιοι και Υποδακτύλιοι Κεφάλαιο 6 ακτύλιοι και Υποδακτύλιοι 6.1 Συνοπτική Θεωρία Στην παρούσα ενότητα υπενθυµίζουµε εν συντοµία την έννοια του δακτυλίου και υποδακτυλίου, και επικεντρωνόµαστε στις ϐασικές ιδιότητες και κατασκευές

Διαβάστε περισσότερα

GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c

GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c GENIKA MAJHMATIKA ΓΙΩΡΓΙΟΣ ΚΑΡΑΒΑΣΙΛΗΣ TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c 26 Μαΐου 2011 Συνάρτηση f ονομάζεται κάθε σχέση από ένα σύνολο A (πεδίο ορισμού) σε σύνολο B με την οποία

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οι Οµάδες τάξης pq, p, q: πρώτοι αριθµοί Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 246 6. Οι Οµάδες τάξης

Διαβάστε περισσότερα

Opel Corsa Τιμοκατάλογος MY14.5 26 Μαΐου, 2014

Opel Corsa Τιμοκατάλογος MY14.5 26 Μαΐου, 2014 Opel Corsa Τιμοκατάλογος MY14.5 26 Μαΐου, 2014 Οι τιμές που αναφέρονται στον παρόντα τιμοκατάλογο αποτελούν συνιστώμενες λιανικές τιμές. Εναπόκειται στην απόλυτη διακριτική ευχέρεια του κάθε Διανομέα να

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική περίοδος 0- - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 8-0-0 Διάρκεια: ώρες Ύλη: Ταλαντώσεις Καθηγητής: ΑΤΡΕΙΔΗΣ ΓΙΩΡΓΟΣ Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ. Χεμερινό εξάμηνο ΗΜΕΡΟΛΟΓΙΟ

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ. Χεμερινό εξάμηνο ΗΜΕΡΟΛΟΓΙΟ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Χεμερινό εξάμηνο 2006-07 ΗΜΕΡΟΛΟΓΙΟ 1 ΔΕΥΤΕΡΑ, 9-10-06, 11-13. ΓΩΝΙΕΣ ΚΑΙ ΚΥΚΛΟΙ. Θεώρημα 1. Το άθροισμα των γωνιών τριγώνου είναι ίσο με 180 o. Θεώρημα 2. Κάθε εξωτερική γωνία τριγώνου

Διαβάστε περισσότερα

Τµήµα Πληροφορικής και Τηλεπικοινωνιών

Τµήµα Πληροφορικής και Τηλεπικοινωνιών Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Νικόλαος Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών 2 Σεπτεµβρίου 2015 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 1 / 35 Περιεχόµενα

Διαβάστε περισσότερα

Διαταραχές Τροχιάς (2)

Διαταραχές Τροχιάς (2) Διαταραχές Τροχιάς (2) Μάθημα 6 ο Βαρυτικές διαταραχές δυναμικό πεπλατυσμένου σώματος Επίδραση τρίτου σώματος (α) γραμμική αέναη κίνηση (β) κίνηση σε συντονισμό Μη βαρυτικές διαταραχές Μεταβολές του μεγάλου

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K =

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K = Α Δ Ι Α - Φ 5 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 29 Νοεμβρίου 2013 Ασκηση

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός ΙΙ

Επιστηµονικός Υπολογισµός ΙΙ Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 27/3/13 Μέθοδος ελαχίστου υπολοίπου (Minimum residual) Θέµα:

Διαβάστε περισσότερα

K r i t i k i P u b l i s h i n g - d r a f t

K r i t i k i P u b l i s h i n g - d r a f t n n T ime(n) = Θ(n 2 ) T ime(n) = Θ(2n) n i=1 i = Θ(n2 ) T (n) = 2T ( n 2 ) + n = Θ(n log n) i i i i i i i & i i + L(1..n) i L(i) n n L n i j : L[i] L[1..j]. (j n) j = j + 1 L[i] < L[j] i = j i

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΧΩΡΙΚΑ ΠΛΑΙΣΙΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση

Διαβάστε περισσότερα

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Α Δ Ι Ε Υ Μ Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 28 Ι 2014 Το παρόν κείμενο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

1.2 ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a

1.2 ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a . ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a a ΑΘΡΟΙΣΜΑ ΔΙΑΔΟΧΙΚΩΝ ΔΙΑΝΥΣΜΑΤΩΝ:, ( ) 3 4 3 4 a a a a a 3 aaa3a4 a 3 a 4,,,,...,,,.,. .,,,, : () a ( ) () ( ) ( ) ( ) (3) 0 (4) (

Διαβάστε περισσότερα

Ενότητα: Ο κόσμος αύριο: προβλέψεις και υγειακό τοπίο

Ενότητα: Ο κόσμος αύριο: προβλέψεις και υγειακό τοπίο Τίτλος Μαθήματος: Πολιτικές Υγείας Ενότητα: Ο κόσμος αύριο: προβλέψεις και υγειακό τοπίο Διδάσκοντες: Αν. Καθηγητής Γιάνης Δημολιάτης (υπεύθυνος), Επίκ. Καθ. Ευαγγελία Ντζάνη, Κωνσταντίνος Τσιλίδης Τμήμα:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

SAW FILTER - RF RF SAW FILTER

SAW FILTER - RF RF SAW FILTER FEATURES - Frequencies from 0MHz to 700MHz - Custom specifications available - Industry standard package configurations - Low-loss saw component - Low amplitude ripple - RoHS compliance - Electrostatic

Διαβάστε περισσότερα

l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R

Διαβάστε περισσότερα

8. Ανάλυση Διασποράς ως προς. δύο παράγοντες

8. Ανάλυση Διασποράς ως προς. δύο παράγοντες 8. Ανάλυση Διασποράς ως προς δύο παράγοντες Ανάλυση Διασποράς ως προς δύο παράγοντες Παραγοντική Ανάλυση διασποράς-factorial Analsis of Variance Α, Β δύο παράγοντες κ: στάθμες (επίπεδα) του παράγοντα Α

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 212-213 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει

Διαβάστε περισσότερα