Ασκήσεις Αριθµητικής Ανάλυσης και Στοιχεία Θεωρίας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ασκήσεις Αριθµητικής Ανάλυσης και Στοιχεία Θεωρίας"

Transcript

1 Ασκήσεις Αριθµητικής Ανάλυσης και Στοιχεία Θεωρίας Τµήµα Μηχ. Η/Υ και Πληροφορικής Πανε ιστήµιο Πατρών Χρήστος Α. Αλεξό ουλος Πάτρα Ιούνιος 7 Πανεπιστήμιο Πατρών -- 6//9

2 Το παρόν φυλλάδιο περιλαµβάνει λυµένες ασκήσεις και µερικά επιλεγµένα στοιχεία θεωρίας που αφορούν στην ύλη των κεφαλαίων Ι, ΙΙ, ΙΙΙ και VI του διδακτικού βιβλίου «Εισαγωγή στις Αριθµητική Ανάλυση και Περιβάλλοντα Υλοποίησης» του Χ. Αλεξόπουλου (διδάσκοντος), το οποίο διανέµεται στους Β ετείς φοιτητές του Τµήµατος Μηχ. Η/Υ και Πληροφορικής. Σκοπός του είναι να δώσει ένα συµπληρωµατικό εφόδιο και εργαλείο στους φοιτητές για την κατανόηση βασικών στοιχείων και εννοιών της Αριθµητικής Ανάλυσης,, να τους φέρει πιο κοντά σε πεδία εφαρµογών και να βοηθήσει στην εµβάθυνση στη σχετική ύλης. Με αυτή την έννοια µπορεί να θεωρηθεί ως συµπληρωµατικό βοήθηµα σε σχέση µε το εν λόγω διδακτικό βιβλίο. Οι περισσότερες ασκήσεις έχουν τεθεί σε διάφορες γραπτές εξετάσεις (εξεταστικών περίοδων ή πρόοδων) του µαθήµατος «Αριθµητική Ανάλυση και Περιβάλλοντα Υλοποίησης». Για καλύτερη εµπέδωση της ύλης,, οι ασκήσεις περιλαµβάνουν σε ορισµένα σηµεία πρόσθετες ερωτήσεις και εναλλακτικούς τρόπους απαντήσεων, στο πνεύµα πάντα των παραδόσεων και του διδακτικού βιβλίου, στο οποίο γίνονται κατ ευθείαν αναφορές, όπου αυτό κρίνεται αναγκαίο. Η συνδροµή της γλώσσας Mtlb (και του περιβάλλοντός της) κρίνεται χρήσιµη έως και αναγκαία σε πολλές περιπτώσεις, όπως άλλωστε απαιτεί και το µάθηµα. Συχνά, στα πλαίσια των υπολογισµών που περιλαµβάνονται στις απαντήσεις των ασκήσεων, ο αναγνώστης, ενθαρύνεται ή και παρακινείται να ανατρέξει για επαλήθευση και για περισσότερες ιδέες σε ενδογενή χαρακτηριστικά και εντολές που υλοποιούν στοιχειώδεις µαθηµατικούς υπολογισµούς της Γραµµικής Άλγεβρας και της Αριθµητικής Ανάλυσης ή ακόµα και σε πηγαίο κώδικα που περιλαµβάνεται στα αντίστοιχα κεφάλαια ή στο παράρτηµα Β (Εισαγωγή στο Mtlb) του βιβλίου. Τέλος, θα πρέπει να τονιστεί ότι, για την κατανόηση της µεθοδολογίας, προαπαιτείται ένα ικανό γνωστικό υπόβαθρο από την Γραµµική Άλγεβρα (πράξεις και ιδιότητες πινάκων, απαλοιφή Guss, διάσπαση LU, ιδιοτιµές και ιδιοδιανύσµατα κλπ.), όπως και από την Κλασσική Μαθηµατική Ανάλυση. Πανεπιστήμιο Πατρών -- 6//9

3 Περιεχόµενα Σελ. Ε αναλη τικές τεχνικές ε ίλυσης µη γραµµικών εξισώσεων Άσκηση.. Άσκηση.. Άσκηση 3.. Άσκηση 4.. Άσκηση 5.. Άσκηση 6.. Γραµµικά Συστήµατα- ιασ άσεις-ανάλυση Σφάλµατος-Νόρµες Άσκηση 7.. Άσκηση 8.. Άσκηση 9.. Άσκηση. Άσκηση. Άσκηση. Άσκηση 3. Άσκηση 4. Άσκηση 5. Άσκηση 6. Ε αναλη τικές Μέθοδοι για γραµµικά συστήµατα Άσκηση 7. Άσκηση 8. Άσκηση 9. Άσκηση. Άσκηση. Άσκηση. Άσκηση 3. Στοιχεία Θεωρίας Παρα οµ ές. Θετικά Ορισµένα Μητρώα.. Συµπληρωµατικά στοιχεία για τις επαναληπτικές µεθόδους Guss-Seidel και Jobi. 3. Νόρµες Μητρώων.. Ευρετήριο. Βιβλιογραφία-Αναφορές Πανεπιστήμιο Πατρών -3-6//9

4 Επαναληπτικές τεχνικές επίλυσης µη γραµµικών εξισώσεων Άσκηση Σε ποιο διάστημα βρίσκονται οι αριθμοί που προσεγγίζουν τον αριθμό 6 με ακρίβεια 5 σημαντικών ψηφίων; Απ: Από τον ορισµό της ακρίβειας λαµβάνουµε την ανισότητα: - 3 5* * < Άσκηση Έστω ότι για την εύρεση του (7) /3 χρησιμοποιούμε τη μέθοδο της διχοτόμησης. (Υπόδειξη: το όποια δεδομένα απαιτεί η μέθοδος επιλέγονται από εσάς) α) Βρείτε την 3η προσέγγιση (επανάληψη). β) Δώστε φράγμα για το απόλυτο σφάλμα μετά την ή επανάληψη. Απαντήσεις: α) Ο αριθµός 7 /3 είναι ρίζα της συνάρτησης f() 3-7 η οποία είναι συνεχής σε όλο το R. Επιλέγουµε τώρα ένα διάστηµα (,b) της ρίζας ξ τέτοιο ώστε να ισχύει f()f(b)<. Ας θεωρήσουµε το (.5, ), µε f(.5)f()-3.65<. Λαµβάνουµε τις διαδοχικές προσεγγίσεις:.5, b b: (.5)/.75 και f( )*f(b ) <, άρα ξ (, b )., b b : (.75)/.875 και f( )*f(b ) -.48<, άρα ξ (, b )., b b : 3 (.875)/.9375 β) Αν e είναι το σφάλµα στην προσέγγιση, γνωρίζουµε ότι ισχύει η ανισότητα e (b - )/ Για λαµβάνουµε: e.5*.384e-7 (µε α.κ.υ. 5 σ.ψ.) Άσκηση 3 Δίνεται η εξίσωση: - 3 3* - 5*. Στα παρακάτω ερωτήματα θεωρούμε ότι ισχύει α.κ.υ. 4 σ.ψ. Πανεπιστήμιο Πατρών -4-6//9

5 α) Με τη μέθοδο του «εγκλεισμού» των ριζών βρείτε ένα διάστημα [,b], αρκούντως μικρό, στο οποίο να ανήκει μια πραγματική ρίζα της. β) Στη συνέχεια, με εφαρμογή 4 βημάτων της μεθόδου της διχοτόμησης, βρείτε μια προσέγγιση * της παραπάνω ρίζας. γ) Πόσες επαναλήψεις θα χρειαστούν το πολύ για να βρεθεί μια προσέγγιση της ρίζας με απόλυτο σφάλμα e< -4? Δικαιολογείστε την απάντησή σας. δ) Ποιό συγκεκριμένο κριτήριο τερματισμού του αλγορίθμου θα προτείνατε στην περίπτωση σύγκλισης? Απαντήσεις Πανεπιστήμιο Πατρών -5-6//9

6 Άσκηση 4 α. Ποια είναι η ακολουθία Newto-Rphso για την προσέγγιση της τετραγωνικής ρίζας ε- νός θετικού αριθμού ; β. Βρείτε με την παραπάνω μέθοδο μια προσέγγιση της 7 με ακρίβεια 5 σημ. ψηφίων. Να γραφούν όλες οι ενδιάμεσες προσεγγίσεις και να δικαιολογηθεί το αποτέλεσμα. γ. Ποια είναι η τάξη σύγκλισης της παραπάνω μεθόδου; Και ποια η μαθηματική της σημασία στην περίπτωση αυτή; Απαντήσεις α) Βλ. παράδειγµα βιβλίου. β) Είναι 7, συνεπώς αναζητούµε µια από τις δύο λύσεις της f() -7 (έστω τη θετική) που είναι συνεχώς παραγωγίσιµος σε όλο το R. H ακολουθία N-R είναι: 7,,, Επιλέγουµε o (η αρχική προσέγγιση είναι ακριβής σε ένα σ.ψ.) Εφαρµόζοντας τώρα έλεγχο στο απόλυτο και στο σχετικό σφάλµα αντίστοιχα (βλ. κριτήρια σελίδας I-5 διδακτικού βιβλίου), λαµβάνουµε διαδοχικά: -( -7)/(* ).75 µε e και ( - )/ 3.75e- -( -7)/(* ).6477 µε -.3.3e- και ( - )/ 3.7e- 3 -( -7)/(* ).6458 µε e-3 και ( 3 - )/ 7.76e ( 3-7)/(* 3 ).6458 µε 4-3 και ( 4-3 )/ Συνεπώς η ζητούµενη προσέγγιση είναι η 3. Χρειάστηκαν συνολικά 5 για την επίτευξη της ζητούµενης ακρίβειας. log 3 επαναλήψεις Γράφημα : Γράφημα της f() -7 στο διάστημα [,3] και επαναλήψεις της μεθόδου Ν-R Πανεπιστήμιο Πατρών -6-6//9

7 γ) Η τάξη σύγκλισης είναι τετραγωνική, εφ όσον η ρίζα της f() -7 είναι απλή: f (r)r. Τετραγωνική σύγκλιση σηµαίνει ότι, αν e -r είναι το απόλυτο σφάλµα, τότε η ακολουθία e / e συγκλίνει σε ένα θετικό αριθµό. Τότε θα ισχύει και η πρσεγγιστική σχέση: e g () ( h) e όπου g η συνάρτηση επανάληψης (σταθερού σηµείου) στην περίπτωση της Ν-R, g()f()/f () και h ικανοποιητικά κοντά στη ρίζα r. Άσκηση 5 (α) Να υπολογισθεί η μικρότερη πραγματική λύση της εξίσωσης f()3 -e με εφαρμογή του αλγορίθμου Newto-Rphso και με ακρίβεια 4 σ.ψ. Να καθορισθεί αρχικά διάστημα της λύσης με τη βοήθεια γραφικής παράστασης. Για την αρχική προσέγγιση να εφαρμοσθεί η μέθοδος διχοτόμησης ( επαναλήψεις). Να γραφούν τέλος, τα ενδιάμεσα βήματα και να δικαιολογηθεί η τελική προσέγγιση. (β) Ποια είναι η τάξη σύγκλισης της µεθόδου Newto-Rphso, όπως εφαρµόστηκε στο ερώτηµα (α) και τι σηµαίνει αυτό για το σφάλµα; Απάντηση (α) H f είναι προφανώς συνεχής σε ολόκληρο το R. ίνουµε το γράφηµά της f στο διάστηµα [-4, 4], στο οποίο εµφαίνεται ότι υπάρχουν 3 ρίζες. Για τον εντοπισµό τους αναζητούµε τις ρίζες εντός του [,4] µε βήµα (προφανώς είναι f()f(4)<). Λαµβάνουµε διαδοχικά: f(-4)*f(-3).93e3> f(-3)*f(-) > f(-)*f(-) 3.9> f(-)*f() -.63< f()*f() -.87< f()*f().99> f()*f(3) 3.88> f(3)*f(4) < Εποµένως οι ρίζες ανήκουν στα διαστήµατα (-,), (,) και (3,4) (το παραπάνω συµπέρασµα µπορεί να εξαχθεί και κατόπιν µελέτης της f ως προς τη µονοτονία και τοπικά ακρότατα). Θεωρούµε τώρα το διάστηµα (-,) της µικρότερης λύσης. Εφαρµόζοντας τη µέθοδο της διχοτόµισης για τον καθορισµό µιας αρχικής προσέγγισης, έχουµε: (-)/ και f(-/)f() και εποµένως η ρίζα ανήκει στο (-/,). (-/)/-/4-.5 Πανεπιστήμιο Πατρών -7-6//9

8 Γράφημα. Γράφημα της 3 -e για τον εντοπισμό της μικρότερης ρίζας. Λαµβάνουµε τώρα σαν αρχική προσέγγιση u της µεθόδου Ν-R την, οπότε ο επαναληπτικός τύπος δίνεται: δηλαδή: f ( u ) u u,,,... µε u f '( u ) e u u,,,... µε u e 3 Λαµβάνουµε διαδοχικά τις επαναλήψεις: u -.595, µε u - u.595 u -.468, µε u - u.487 u , µε u 3 - u.8.8*e-4<.5 e-4 και αποµένως απαιτήθηκαν µόνον 3 επαναλήψεις για να επιτευχθεί η ζητούµενη ακρίβεια. (β) Η ρίζα που βρέθηκε είναι απλή. Εποµένως η τάξη σύγκλισης είναι τετραγωνική και η ακολουθία e / e συγκλίνει: e e g (h) /, όπου g()-f()/f () ή: e * f (ξ) f (ξ) e * 6 - e ξ 6ξ - e ξ e (ξ είναι η ρίζα) Αυτό σηµαίνει ότι το απόλυτο σφάλµα στο βήµα είναι ανάλογο του τετραγώνου του σφάλµατος στο βήµα -. Πανεπιστήμιο Πατρών -8-6//9

9 Άσκηση 6 (α) Να δοθεί η ακολουθία Newto-Rphso για την προσέγγιση της ρίζας 7 /3. (β) Βρείτε με την παραπάνω μέθοδο μια προσέγγιση της 7 /3 με ακρίβεια 4 σημ. ψηφίων. Για την αρχική προσέγγιση να χρησιμοποιηθεί η μέθοδος διχοτόμησης. Να γραφούν όλες οι ενδιάμεσες προσεγγίσεις και να δικαιολογηθεί το αποτέλεσμα. (γ) Ποια είναι η τάξη σύγκλισης της μεθόδου Newto-Rphso, όπως εφαρμόστηκε στο ερώτημα (α) και τι σημαίνει αυτό για το σφάλμα; Απαντήσεις: (α) Είναι f() 3-7 και f ()3. Προφανώς η f είναι συνεχώς παραγωγήσιµη µέχρι ης τάξης σε ολόκληρο το R. Η ακολουθία Ν-R είναι: - -f( - )/f ( - ),, από όπου: - - ( - 3-7)/3 -, Σαν αρχική προσέγγιση λαµβάνουµε µια τιµή στην «περιοχή της ρίζας», π.χ..6. (β) Επιλέγουµε το αρχικό «επαρκώς κοντά» στη ρίζα µε τη µεθοδο διχοτόµισης: Είναι f(.5) και f(.6).576 µε f(.5)*f(.6)<, οπότε η ρίζα ανήκει στο (.5,.6). ιχοτοµούµε: (.5.6)/.55 µε f(.55) Το νέο διαστηµα της ρίζας είναι το (.55,.6). Με νέα διχοτόµηση έχουµε (.55.6).58. Ακριβώς αυτή θα ληφθεί ως αρχική προσέγγιση για τη µέθοδο Newto-Rphso στη συνέχεια. Λόγω συνέχειας των παραγώγων µέχρι δευτέρας τάξης, αναµένουµε σύγκλιση αν ξεκινήσουµε στην περιοχή της ρίζας. Εφαρµόζοντας τώρα την επανανάληψη Newto-Rphso µε.58, λαµβάνουµε διαδοχικά: ο - ( 3-7)/3 fl(.573) ( 3-7)/3 fl(.573) 4.57 (!) δηλαδή η απαιτούµενη ακρίβεια επιτυγχάνεται µε µια µόνον επανάληψη και η ζητούµενη προσέγγιση είναι.57. Παρατήρηση : Το γεγονός ότι χρειάστηκε µόνον µια επανάληψη οφείλεται ακριβώς στο ότι λάβαµε την αρχική προσέγγιση πολύ κοντά στη ρίζα. (γ) Προφανώς η ρίζα ξ της f() 3-7 είναι απλή (τυπική δικαιολόγηση: είναι f ()3 για ). Συνεπώς η τάξη σύγκλισης είναι τετραγωνική, δηλ. ο λόγος e / e συγκλίνει και θα ισχύει: e e g (h) /. Αυτό σηµαiνει ότι το απόλυτο σφάλµα στο βήµα είναι ανάλογο του τετραγώνου του απολύτου σφάλµατος στο βήµα -. Συνεπώς αν µια προσέγγιση είναι ακριβής σε ένα σ.ψ. σε κάποιο βήµα της επανάληψης, µετά από βήµατα θα είναι ακριβής σε σ.ψ. Παρατήρηση : Με άλλα λόγια, στην περίπτωση της τετραγωνικής σύγκλισης, αν η αρχική προσέγγιση είναι ακριβής σε σηµαντικό ψηφίο, τότε για να επιτευχθεί ακρίβεια σε m σηµαντικά ψηφία, απαιτούνται το πολύ log m επαναλήψεις. Πανεπιστήμιο Πατρών -9-6//9

10 Γραµµικά Συστήµατα- ιασπάσεις-ανάλυση Σφάλµατος- Νόρµες Άσκηση 7 Δίνεται το μητρώο Α [ ; ; 3]. Για όλα τα ερωτήματα υποθέτουμε ότι οι πράξεις γίνονται με α.κ.υ. 4 σ.ψ. και ότι μας απασχολούν μόνον σφάλματα στρογγύλευσης. α. Βρείτε το δείκτη κατάστασης του Α με χρήση των φυσικών νορμών, και «άπειρο». β. Βρείτε με τη μέθοδο Guss μια λύση για το σύστημα Α(,-5,) Τ, δουλεύοντας με α.κ.υ. 4 σημαντικών ψηφίων και στρογγύλευση. γ. Θεωρώντας μόνον σφάλματα στρογγύλευσης κατά τους υπολογισμούς, βρείτε φράγματα για το σχετικό σφάλμα της λύσης του παραπάνω συστήματος. δ. Εξετάστε αν ο πίνακας Α είναι θετικά ορισμένος, χωρίς να γίνει χρήση του χαρακτηριστικού πολυωνύμου. Στη συνέχεια επαληθεύστε, υπολογίζοντας τις ιδιοτιμές. ε. Θεωρούμε συστήματα της μορφής Ab, όπου Α[ 6 ; 3 - ; ; 7 ] και b τυχαίο διάνυσμα. Να διατυπωθεί τυπικά και να υπολογισθεί η πλέον αποδοτική διάσπαση για το μητρώο Α. Απαντήσεις α) Υπολογίζουµε τώρα τον Α - µε τη µέθοδο Guss-Jord: [Α Ι] [Ι Α - ]. Λόγω της ειδικής µορφής του Α, παρατηρούµε ότι τα µηδενικά στοιχεία των στηλών και 3 παραµένουν και στον α- ντίστροφο! (απλή εφαρµογή Γραµµικής Άλγεβρας). Λαµβάνουµε τελικά: A ουλεύοντας τώρα µε κάθε νόρµα ξεχωριστά έχουµε: Νόρµα : Α 4, Α -.667, (Α) Α Α - 4* Νόρµα «άπειρο»: Α 4, Α -.5, (A)6 Νόρµα : Α ρ ( A). Εδώ θα πρέπει να υπολογίσουµε τις ιδιοτιµές του Α Τ Α. Ο Α A Τ δεν είναι συµµετρικός, οπότε θα είχαµε Α ρ ( A) ρ ( A ) Πανεπιστήμιο Πατρών -- 6//9 A Τ ( ρ ( A)) ρ(α). Οδηγούµαστε λοιπόν υποχρεωτικά στην εύρεση των ριζών του χαρακτηριστικού πολυωνύµου φ(λ)det(α Τ Α-λI) που είναι ένα πλήρες πολυώνυµο τρίτου βαθµού, όχι εύκολα παραγοντοποιήσιµο. Θα υπολογίσουµε τις ιδιοτιµές µε τη βοήθεια του Mtlb (επαληθεύστε τα αποτελέσµατα!): eig(a'*a) [.759, ,.884] Τ Biv(Α); eig(b'*b) [.99,.94,.376] Τ

11 απ όπου: Α και Α και εποµένως: (A) Α Α Επιβεβαιώνουµε: od(a,) Παρατηρούµε ότι ο δείκτης κατάστασης είναι µικρός, οπότε µπορούµε να δεχθούµε το σχετικό υπόλοιπο ως ενδεικτικό για την τάξη µεγέθους του σχετικού σφάλµατος. [ ιαβάστε εδώ την παραποµπή 3] β) Εφαρµόζουµε απαλοιφή στον επαυξηµένο [Α b], µε b(,-5,) Τ, κάνοντας τις πράξεις σε α.κ.υ. 4 σ.ψ. Λαµβάνουµε: [ A b] / Εφαρµόζοντας απαλοιφή και πίσω αντικατάσταση, υπολογίζουµε τελικά µια προσεγγιστική λύση *: *[3.5, -.5,.67] Τ Παρατηρούµε ότι µε α.κ.υ. 4.σ.ψ. υπάρχει κατ αρχήν απώλεια σ.ψ. στη διαίρεση 3/ , οπότε η τρίτη συνιστώσα δεν είναι ακριβής! γ) Εφαρµογόζουµε τη διπλή ανισότητα για τον δείκτη κατάστασης. r σ / (A) ε σ r σ * (A) () Υπολογίζουµε τις εµπλεκόµενες ποσότητες, ενδεικτικά µε τη νόρµα «άπειρο»: r r σ b b A b * (σχετικό υπόλοιπο-residul) Είναι * b A [,, -.] ] Τ (αυτό το περιµέναµε!), b 5, b A., οπότε: * r σ.e-4 Η () γράφεται: e-5 ε σ..e-3 Πανεπιστήμιο Πατρών -- 6//9

12 Πανεπιστήμιο Πατρών -- 6//9 δ) Από το θεώρηµα των κύκλων Gerhgori προκύπτει λ- λ, λ- λ (βρέθηκε η µια ιδιοτιµή) λ-3 λ 4, που συναληθεύουν στο [, 4]. Εξ άλλου o A είναι προφανώς αντιστρέψιµος και εποµένως το δεν είναι ιδιοτιµή. Εποµένως λ (,4] και άρα ο Α είναι θετικά ορισµένος. Οι ιδιοτιµές του Α υπολογίζονται άµεσα από την det(a-λι): 3) )( )( ( 3 ) ( λ - 3 λ - λ - ) det( λ λ λ λ λ λ A και συνεπώς λ, λ, λ 3 3, όλες θετικές και ρ(α)3. ε) O Α είναι ταινιακός. Μπορούµε να διαπιστώσουµε ότι είναι και αντιστρέψιµος (det(a)48 ), αν και αυτό µπορεί να ελεγχθεί κατά την εφαρµογή του αλγορίθµου διάσπασης! Εποµένως µπορεί να παραγοντοποιηθεί. Υποθέτοντας ότι δεν υπάρχουν εναλλαγές γραµµών (PI), επιχειρούµε λοιπόν τη διάσπαση. Αν δεν ισχύει η υπόθεση, θα προκύψει µη επιτρεπτή πράξη, διαίρεση δια, ή υπόριζα ποσότητα αρνητική: u l u l u l u l u l l u u u l l l LU A από όπου παίρνουµε το σύστηµα: l 3 6l u u -6 l 3 u 9 l 3 9/(-6) l 3 u 3 3 u 3 3* (-.565).875 l 43 u 3 7 l 43 7/ l 43 u 4 u 4-4* Εποµένως ο Α είναι άµεσα διασπάσιµος. Σηµείωση: Επιβεβαιώνουµε στο Mtlb: >> L*U s

13 Παρατήρηση: Το Mtlb στη διάσπαση LU εφαρµόζει µερική οδήγηση (και στους ταινιακούς πίνακες). Συνεπώς, όταν P I (εναλλαγή οδηγών), στην έξοδο οι L και U δεν έχoυν την παραπάνω µορφή. Αντ αυτού θα ισχύει PALU. οκιµάζουµε: >> [L, U, P]lu(A) L U P Εύκολα επαληθεύουµε ότι PΑLU. Άσκηση 8 Στα παρακάτω ερωτήματα υποθέτουμε ότι δουλεύουμε με α.κ.υ. 5 σημαντικών ψηφίων. Δίνεται ο πίνακας : 4 A 5 3 α) Με βάση ιδιότητες του Α (βρείτε τις και αιτιολογείστε τις), υπολογίστε μια γρήγορη διάσπαση LU του Α, χωρίς να εφαρμοσθεί η κλασσική απαλοιφή (Guss). β) Είναι όλες οι ιδιοτιμές του Α πραγματικές και γιατί; γ) Εξετάστε αν ο Α είναι θετικά ορισμένος χωρίς να υπολογίσετε τις ιδιοτιμές του. Βρείτε διαστήματα στα οποία ανήκουν οι ιδιοτιμές Πανεπιστήμιο Πατρών -3-6//9

14 δ) Εξετάστε τώρα αν υπάρχει απλούστερη διάσπαση για τον Α. Εάν υπάρχει, δώστε την, υ- πολογίζοντας τον ή τους απαιτούμενους πίνακες. Απαντήσεις: α) Ο Α προφανώς έχει αυστηρή διαγώνια κυριαρχία και εποµένως είναι αντιστρέψιµος και άµεσα διασπάσιµος: ΑLU. Επειδή είναι και είναι τρισδιαγώνιος, οι τριγωνικοί πίνακες L και U έχουν τις γνωστές ειδικές µορφές: Ο L περιέχει στην η διαγώνιο, τα στοιχεία l i,i (i,,3) (κάτω διαγώνιος του L) στην κάτω διαγώνιο και στα υπόλοιπα στοιχεία. Ο U περιέχει τα u ii (i,,3) στη η διαγώνιο και τα i,i (i,,3) της πάνω διαγωνίου του Α στην πάνω διαγώνιό του: l A LU l 3 l 43 u l u l u l 3 u u u * 3 l 3 3 u 33 l 43 u 33 3 u u l u 44 Από την ταυτότητα ALU καταλήγουµε συστηµατικά στις παρακάτω εξισώσεις ως προς l ij και u ii. 4L () U () u 4 L () U () l u l.5 5L () U l u u L (3) U () l 3 u l L (3) U (3) l 3 3 u 33 u L 3 U 3 l 43 u 33 l L 4 U 4 l u 44 u και εποµένως οι L και U έχουν καθοριστεί πλήρως. β) Παρατηρούµε ότι ο Α είναι συµµετρικός και συνεπώς έχει πραγµατικές ιδιοτιµές, σύµφωνα µε γνωστή πρόταση της Γραµµικής Άλγεβρας. γ) Βρήκαµε ότι οι ιδιοτιµές του Α είναι πραγµατικές. Εφαρµόζουµε τώρα το Θεώρηµα των κύκλων του Gershgori και λαµβάνουµε ότι οι ιδιοτιµές λ ανήκουν στην εξής ένωση κύκλων: Ε(Α) C[(4,), ] C[(5,), ] C[(3,), ] C[(,), ] ή ισοδύναµα κάθε ιδιοτιµή λ πληροί µια από τις ανισότητες: λ-4, λ-5, λ-3, λ- από όπου προκύπτουν οι ανισότητες - λ-4, - λ-5, - λ-3, - λ- Πανεπιστήμιο Πατρών -4-6//9

15 Πανεπιστήμιο Πατρών -5-6//9 ή: 3 λ 5, 3 λ 7, λ 5, λ 3 Παρατηρούµε ότι όλες οι ιδιοτιµές οριοθετούνται σε θετικά διαστήµατα, εποµένως είναι θετικές. Πιο συγκεκριµένα, οι παραπάνω ανισότητες συναληθεύουν στο διάστηµα Ε(Α)[3,7], άρα θα είναι λ 3>. Αφού ο πίνακας Α είναι συµµετρικός και έχει θετικές ιδιοτιµές, από σχετικό θεώρηµα (βλ. παραποµπή ) είναι θετικά ορισµένος. Παρατήρηση: Το ότι ο Α είναι θ.ο., µπορεί να εξαχθεί άµεσα: είναι συµµετρικός, παρουσιάζει α.δ.κ. και έχει θετικά διαγώνια στοιχεία (βλ. παραποµπή ). δ) Η απλούστερη διάσπαση είναι η διάσπαση Cholesi, η οποία ισχύει στην περίπτωσή µας, αφού ο Α είναι συµµετρικός και θ.ο.: Α L L T όπου L κάτω τριγωνικός πίνακας. Επειδή ο Α είναι τρισδιαγώνιος, ο L θα έχει διδιαγώνια µορφή: α β α β α β α L Η Α L L T τώρα γράφεται: * T LL A β β β β β β β β β β β β β β β Οι άγνωστοι α i και β j υπολογίζονται από το σύστηµα ij L (i) (L T ) (j) L (i) L (j) T, i,j,..,4, το οποίο προφανώς ανάγεται (λόγω συµµετρίας) σε σύστηµα 7 διαφορετικών εξισώσεων µε 7 αγνώστους, το οποίο αναµένουµε φυσικά να έχει πραγµατικές λύσεις: α 4 α α β β.5 β α 5 α 5 (.5) 4.75 α.794 α β - β -/ β α 3 3 α 3 3 (-.4588).7895 α 3.67 α 3 β 3 β 3 / β 3 α 4 α 4 (.5987).646 α 4.8

16 Συνεπώς:. L , µε ΑLL T.8 Άσκηση 9 Δίνεται ο πίνακας A[ ; 8 5 ; 5 8 ; ]. Υποθέτουμε ότι δουλεύουμε σε α.κ.υ. 4 σημ. ψηφίων με εφαρμογή στρογγύλευσης και ότι μας απασχολούν μόνον σφάλματα οφειλόμενα σε απώλεια ακρίβειας κατά τους υπολογισμούς. α) Αφού εξετάσετε διεξοδικά και αναφέρετε όλες τις ιδιότητες του Α, να δικαιολογήσετε και να δώσετε την απλούστερη δυνατή (από πλευράς μνήμης-ταχύτητας) διάσπαση του Α, υπολογίζοντας τους εμπλεκόμενους πίνακες. β) Πόσο «καλός» υπολογιστικά είναι ο Α για την επίλυση ενός συστήματος Ab (b R 4 ) και γιατί; Παίζει ρόλο το b; γ) Για ποια πραγματικά συγκλίνει η επαναληπτική μέθοδος A- ( R 4, δοθέν) για κάθε αρχικό ; Απαντήσεις α) Ο Α είναι συµµετρικός τρισδιαγώνιος, έχει α.δ.κ. και θετικά διαγώνια στοιχεία. Οι δύο τελευταιες ιδιοότητες εξασφαλίζουν το ότι είναι θ.ο. Εποµένως ο Α επιδέχεται την απλούστερη και πλέον αποδοτική σε µνήµη και ταχύτητα διάσπαση, τη διάσπαση Cholesi: ALL T. O L θα είναι της µορφής: α L α β α3 α 4 Από την ταυτότητα: A L T L β β β 3 4 Λαµβάνουµε 5 εξισώσεις µε 5 αγνώστους. Βρίσκουµε τελικά: Πανεπιστήμιο Πατρών -6-6//9

17 .44 L ) Υπολογίζουµε το δείκτη κατάστασης: Α 3.5 A Α -.5 Άρα (A)6.5. Λόγω της µικρής τιµής του (A), o Α είναι υπολογιστικά καλός ανεξαρτήτως της τιµής του σταθερού διανύσµατος b. Μπορούµε λοιπόν να εµπιστευθούµε το σχετικό υπόλοιπο έναντι του σχετικού σφάλµατος. 3) Η επαναληπτική µέθοδος συγκλίνει εάν και µόνον εάν ρ(a)<, δηλαδή θα πρέπει ρ(α)< ή </ρ(α). Βρίσκουµε λοιπόν τις ιδιοτιµές του Α: λ λ 8 λ det(λι-α) ( )( ) ( 8) 5 ( )( )( 3)( 3) 5 5 λ 8 λ Συνεπώς ρ(α)3 και η ζητούµενη συνθήκη είναι: </3. λ λ λ λ λ λ Άσκηση Δίνεται ο πίνακας (μητρώο) A και το διάνυσμα b: A[ ; 8 4 ; 4 8 ; ], b[ -] Τ Έστω επίσης ότι ισχύει α.κ.υ. 4 σ.ψ. Με εφαρμογή της μεθόδου Guss-Jord (ή στο Mtlb ) βρίσκουμε τον Α - : Α - [. ; ; ;.5] α) Κάνοντας τους κατάλληλους υπολογισμούς, πόσο «καλός» περιμένετε να είναι ο Α για την υπολογιστική επίλυση ενός συστήματος A και γιατί; Παίζει ρόλο σ αυτό και η τιμή του σταθερού διανύσματος ή όχι; Πανεπιστήμιο Πατρών -7-6//9

18 β) Θεωρούμε τώρα το συγκεκριμένο σύστημα Αb. Να δώσετε με συστηματικό τρόπο και με πλήρη δικαιολόγηση φράγματα για το σχετικό σφάλμα ε σ της λύσης. α) Χωρίς καν να υπολογίσετε τις ιδιοτιμές βρείτε διαστήματα στα οποία αυτές βρίσκονται. Υπάρχει κάποιο συμπέρασμα? β) Ποιες είναι τώρα οι ιδιοτιμές του Α και ποια η φασματική ακτίνα ρ(α); [Υπόδειξη:όλες οι ιδιοτιμές είναι ακέραιοι] γ) (α) Με βάση και τα παραπάνω, δώστε τώρα όλες τις μέχρι τώρα εμφανείς ιδιότητες του Α:,, κλπ. (β) Χωρίς να εφαρμοσθεί οποιοδήποτε σύνθετος υπολογισμός στον Α, πως μπορούμε να αποφανθούμε ότι ο Α μπορεί να παραγοντοποιηθεί χωρίς να απαιτούνται εναλλαγές γραμμών? δ) Ο αλγόριθμος του Grout, υπολογίζει συστηματικά και άμεσα τον L και U, από την απαίτηση ALU, χωρίς να εφαρμόζει τυπικά τη γνωστή μέθοδο LU. Εφαρμόστε τoν συστηματικά, για τον υπολογισμό των L και U, αφού λάβετε υπ όψη και άλλη ιδιότητα του Α (από το ερώτημα (γ)) για την εύρεση των τελικών μορφών των L και U. ε) Λαμβάνοντας τώρα υπ όψιν όλες τις ιδιότητες του Α, υπάρχει απλούστερη ακόμα παραγοντοποίηση για τον Α και ποια είναι αυτή; Προσαρμόστε τον αλγόριθμο Grout στην περίπτωση αυτή, υπολογίζοντας τον, ή τους, εμπλεκόμενους πίνακες. Απαντήσεις: α) Αρκεί να βρούµε το δείκτη κατάστασης (A) του Α. Με χρήση της νόρµας «άπειρο» βρίσκου- µε: Α, Α - και άρα (A) Α Α -. Παρατηρούµε ότι ο (A) είναι σχετικά µικρός και εποµένως ο Α θα είναι υπολογιστικά καλός (συµφωνία σφάλµατος και υπολοίπου). Το σταθερό διάνυσµα δεν παίζει ρόλο. β) Αν ε σ το σχετικό σφάλµα, ως γνωστόν ισχύει η ανισότητα r σ / (A) ε σ r σ * (A) όπου r σ b-a * / b το σχετικό υπόλοιπο. Λύνοντας το Αb µε Guss και ακρίβεια 4 σ.ψ., υπολογίζουµε την προσεγγιστική λύση * : * (.,.667, -.833, -.5) Τ Βρίσκουµε τώρα: rb-a *.e-5 *(,.,., -.) Τ b r σ r / b.4e-6 και τελικά:.854e-7 ε σ.6645e-5 Πανεπιστήμιο Πατρών -8-6//9

19 α) Σύµφωνα µε το Θ. των κύκλων του Gershgori οι ιδιοτιµές βρίσκονται στην ένωση κύκλων: C[(,), ] C[(8,), 4] C[(,),], δηλ. ικανοποιούν τις ανισότητες -λ, 8-λ 4, -λ, που συναληθεύουν στην λ. Συνεπώς λ> και άρα ο Α είναι θετικά ορισµένος. Σηµείωση: Το ότι ο πίνακας Α είναι συµµετρικός και θ.ο. συνάγεται άµεσα από το γεγονός ότι έχει α.δ.κ. και θετικά τα διαγώνια στοιχεία (βλ. Παραποµπή ). Εποµένως θα είναι και λ>. β) Οι ιδιοτιµές είναι ρίζες του χαρακτηριστικού πολυωνύµου φ(λ)det(a-λι). Αναπτύσσοντας την ορίζουσα προκύπτει αµέσως: λ Det 8λ 4 4 8λ λ (-λ)(-λ)[(8-λ) -4 ] (-λ)(-λ)[(8-λ-4)(8-λ4) (-λ)(-λ)(4-λ)(-λ) Συνεπώς οι ιδιοτιµές είναι οι,,4 και. Η φασµατική ακτίνα είναι ρ(α). γ) (α) Ο Α είναι συµµετρικός, τρισδιαγώνιος και θετικά ορισµένος. Επιπλέον έχει α.δ.κ. και ως εκ τούτου αντιστρέψιµος. (β) Επειδή ο Α είναι α.δ.κ. (ή επειδή ο Α είναι θ.ο.), σύµφωνα µε σχετικό θεώρηµα, ισχύει η άµεση διάσπαση ΑLU (δεν υπάρχουν εναλλαγές γραµµών, ή PI). δ) Επειδή ο Α είναι τρισδιαγώνιος θα ισχύει η διάσπαση (οι L και U θα έχουν απαραίτητα διδιαγώνια µορφή): ΑLU l 3 u u u u44 όπου οι προσδιοριστέοι άγνωστοι είναι µόνον 5: οι l 3 και u ii, i,,4. Εξισώνοντας συστηµατικά κατά στήλες, λαµβάνουµε τελικά (εδώ παραλείπονται οι ενδιάµεσες εξισώσεις):. L..5., U ε) Επειδή ο Α είναι συµµετρικός και θ.ο. ισχύει η διάσπαση Cholesi ALL T, όπου L κάτω τριγωνικός. Αφού ο Α είναι και τρισδιαγώνιος, το ίδιο θα είναι και ο L, δηλαδή θα ισχύει: L(3,)L(4,)L(4,). Επιπλέον, παρατηρούµε αµέσως ότι θα είναι και L(,)L(4,3). Επο- µένως οι προσδιοριστέοι άγνωστοι είναι µόνον 4. Θέτουµε: Πανεπιστήμιο Πατρών -9-6//9

20 l L l l 3 l 33 και l44 l Α l l 3 l 33 l 44 l l l l 3 33 l44 Εξισώνοντας συστηµατικά κατά στήλες, λαµβάνουµε τελικά (εδώ παραλείπονται οι ενδιάµεσες εξισώσεις):. L Άσκηση Δίνεται ο πίνακας A και το διάνυσμα b: A[ ; 8 5 ; 5 8 ; ], b[ -] Τ Υποθέτουμε ότι δουλεύουμε σε α.κ.υ. 4 σημ. ψηφίων με εφαρμογή στρογγύλευσης και ότι μας απασχολούν μόνον σφάλματα οφειλόμενα σε απώλεια ακρίβειας κατά τους υπολογισμούς. Υπόδειξη: O Α - υπολογίζεται εύκολα. Έχει την ίδια μορφή με τον Α με Α - (,)/α, Α - (4,4)/α44 και με κεντρικό μπλόκ ίσο με το αντίστροφο του αντίστοιχου μπλοκ του Α: Α - (:3, :3) [A(:3, :3)] - ) Εξετάζοντας προσεκτικά και διεξοδικά τις ιδιότητες του Α, δώστε και δικαιολογείστε την απλούστερη δυνατή παραγοντοποίηση LU του Α, υπολογίζοντας τους απαραίτητους πίνακες. ) Πόσο «καλός» υπολογιστικά είναι ο Α για την επίλυση ενός συστήματος A ( R 4 ) και γιατί; 3) Δώστε με συστηματικό τρόπο και με πλήρη δικαιολόγηση αριθμητικά φράγματα για το σχετικό σφάλμα ε σ της λύσης του συστήματος Αb. Να γίνει χρήση της νόρμας «άπειρο». Απαντήσεις ) ιαπιστώνουµε άµεσα ότι ο Α είναι τρισδιαγώνιος, συµµετρικός, µε αυστηρή διαγώνια κυριαρχία και µε θετικά διαγώνια στοιχεία. Εποµένως σύµφωνα µε το κριτήριο (iv) της της παραπο- µπής, είναι θετικά ορισµένος και συνεπώς επιδέχεται διάσπαση Cholesi ΑL T L όπου L κάτω Πανεπιστήμιο Πατρών -- 6//9

21 Πανεπιστήμιο Πατρών -- 6//9 τριγωνικός (εναλλακτικά µπορούµε να φθάσουµε στο ίδιο συµπέρασµα εφαρµόζοντας το Θεώρη- µα των κύκλων Gershgori). Όπως και στην άσκηση, συµπεραίνουµε ότι ο L θα έχει τη διδιαγώνια µορφή: 4 3 α α β α α L και συνεπώς θα είναι: 4 3 * 4 3 T LL A β β 4 3 β β β Έχουµε 5 εξισώσεις µε 5 αγνώστους. Επιλύοντας συστηµατικά τις προκύπτουσες εξισώσεις µε α.κ.υ. 4 σ.ψ., λαµβάνουµε τελικά: L ) Θα υπολογίσουµε το δείκτη κατάστασης (A) µε χρήση της νόρµας. Ο Α - θα είναι παρο- µοίως τρισδιαγώνιος και συµµετρικός και υπολογίζεται εύκολα: Α A Α - (A)*33 O δείκτης κατάστασης είναι της τάξης του και συνεπώς το µητρώο Α αναµένεται να έχει καλή υπολογιστική συµπεριφορά για την επίλυση ενός συστήµατος Α: δηλ. µπορούµε να εµπιστευτούµε το σχετικό υπόλοιπο για την τάξη µεγέθους του σχετικού σφάλµατος. 3) Το σχετικό σφάλµα ε σ ως γνωστόν φράσσεται: r σ / (A) ε σ r σ * (A)

22 όπου r σ b-a * / b το σχετικό υπόλοιπο. Λύνοντας το Αb µε Guss και ακρίβεια 4 σ.ψ., υπολογίζουµε την προσεγγιστική λύση * : * (.,.5, -.8, -.5) Τ Εξ άλλου είναι (οι υπολογισµοί πάντα µε α.κ.υ. 4 σ.ψ.!): rb-a *.e-5 *(,., -., -.) Τ b 3 r σ r / b fl(.854e-6) 4.85e-6 και τελικά:.43e-7 ε σ.45e-5 Άσκηση Δίνεται ο πίνακας Α 4 Υποθέτουμε ότι δουλεύουμε με αριθμητική κινητής υποδιαστολής 3 σημαντικών ψηφίων. () Εξηγείστε, κάνοντας τους απαραίτητους υπολογισμούς, πως μπορεί να διαπιστωθεί ότι ο Α είναι μη ιδιάζων (αντιστρέψιμος). (α) Πoια ιδιότητα θα πρέπει να είχε ο Α, για να μπορούσε να διαπιστωθεί με το ελάχιστο υπολογιστικό κόστος (χωρίς να γίνει απαλοιφή) ότι είναι αντιστρέψιμος; (β) Πoια ιδιότητα θα πρέπει να είχε ο Α, για να μπορούσε να διαπιστωθεί με το ελάχιστο υπολογιστικό κόστος ότι είναι άμεσα παραγοντοποιήσιμος (δηλ. ALU); (3) Υποθέτουμε ότι εφαρμόζουμε εις το εξής απαλοιφή με μερική οδήγηση για την παραγοντοποίηση LU του Α. Τότε, παρατηρώντας προσεκτικά τη μορφή του Α και χωρίς καμία α- πολύτως αριθμητική πράξη, δώστε σε ένα βήμα μια οικονομική μορφή παραγοντοποίησης του Α, υποδεικνύοντας τους αγνώστους που πρέπει να υπολογισθούν. Δικαιολογείστε. (4) Υπολογίστε συστηματικά τους αγνώστους, όπως προκύπτουν από την μορφή παραγοντοποίησης της (.3), εφαρμόζοντας α.κ.υ. 3 σημαντικών ψηφίων. (5) Τι περιμένετε να σας επιστρέψει η κλήση [L, U, P]lu(Α) της συνάρτησης lu στη γλώσσα MATLAB; (6) Φράξτε τις ιδιοτιμές του Α σε διαστήματα, χωρίς να τις υπολογίσετε. (7α) Καλώντας τη συνάρτηση eig(b) της MATLAB για τον υπολογισμό των ιδιοτιμών του πίνακα Β[e ; e ; e3 ; e4]a, λαμβάνουμε: Πανεπιστήμιο Πατρών -- 6//9

23 s Είναι ο Β είναι θετικά ορισμένος και γιατί; (7β) Τι μπορείτε τότε να συμπεράνετε για την επιτυχία της διάσπασης Cholesi για τον πίνακα Β; Απαντήσεις () Εφαρµόζουµε απαλοιφή Guss (µε ή χωρίς οδήγηση). Καταλήγουµε τελικά στον αναγµένο κλιµακωτό πίνακα RΙ R 44, άρα ο Α είναι µη ιδιάζων (αντιστρέψιµος). (α) Αν είχε α.δ.κ., οπότε, όπως γνωρίζουµε, θα ήταν αντιστρέψιµος. (β) Αν και πάλι είχε α.δ.κ., οπότε, όπως γνωρίζουµε, θα ήταν ΑLU µε PI. (3) Εναλλάσσοντας τις γραµµές και (4>) έχουµε 4 Β PA, µε P[e ; e ; e 3 ; e 4 ] Παρατηρούµε όµως ότι ο Β είναι τρισδιαγώνιος. Tότε γνωρίζουµε ότι o Β παραγοντοποιείται ως εξής: Β LU l l 3 l 43 u * u u 33 u 44 (δεύτερη διαγώνιος του U δεύτερη διαγ. του B) και άρα µια οικονοµική µορφή διάσπασης είναι B PΑ LU l l 3 l 43 u * u u 33 u 44 Σηµ. Παρατηρούµε ότι η περαιτέρω απαλοιφή δεν εναλλάσσει γραµµές. Πανεπιστήμιο Πατρών -3-6//9

24 (4) Σύµφωνα µε τα παραπάνω, ξεκινάµε από την ανάπτυξη της ταυτότητας BPΑLU και υπολογίζουµε συστηµατικά τους αγνώστους l i,i- και u ii από τις εξισώσεις που προκύπτουν. Αναπτύσσοντας τις χρήσιµες εξισώσεις κατά στήλες του Α λαµβάνουµε: b 4 L U u b L U l u, άρα l.5 b - L U (l,,, ) (, u,, ) Τ l u, άρα u -.5 b 3 L 3 U (, l 3,, ) (, u,, ) Τ l 3 u, και άρα l 3 fl( ) (α.κ.υ. 3 σ.ψ.).5 και παροµοίως: u (α.κ.υ. 3 σ.ψ.), l και u (5) Ακριβώς τα αποτελέσµατα που πήραµε παραπάνω, µαζί µε τον πίνακα µετάθεσης: [L, U, P]lu(Α) L , U P (6) Από το Θ. των κύκλων του Gershgori έχουµε ότι οι ιδιοτιµές βρίσκονται στην ένωση των κύκλων C(( ii, ), R i ) του µιγαδικού επιπέδου µε R i Σ ij, i j. Για την περίπτωση του Α έχουµε: R, R 4, R 3, R 4 και εποµένως για τις ιδιοτιµές λ ικανοποιούνται οι σχέσεις: λ- <, λ- <4, λ- <, λ- < δηλαδή οι λ βρίσκονται στην ένωση των κύκλων: C((, ), ) C((, ), 4)[, 6]. (7α) H τρίτη ιδιοτιµή είναι αρνητική. Συνεπώς ο Α δεν είναι θ.ο. αφού δεν ισχύει η ικανή και α- ναγκαία συνθήκη λ>. (7β) Αφού ο Β δεν είναι θ.ο., η διάσπαση δεν είναι εφικτή. Σηµείωση: Πράγµατι στο Μtlb θα είχαµε: R hol(a) %hol: προκαθορισµένη συνάρτηση του συστήµατος που υλοποιεί την µέθοδο Cholesi Πανεπιστήμιο Πατρών -4-6//9

25 ??? Error usig > hol Mtri must be positive defiite. Άσκηση 3 Δίνεται το σύστημα Ab με A[3 -; --; -3] και b[ ] Με εφαρμογή της μεθόδου Guss-Jord (ή στο Mtlb ) βρίσκουμε τον Α - : Α - [ ; ; ] α) Χωρίς καν να υπολογίσετε τις ιδιοτιμές βρείτε διαστήματα στα οποία αυτές βρίσκονται. β) Να δοθούν τώρα οι νόρμες, και «άπειρο» του Α. Ποιες είναι οι ιδιοτιμές του Α και ποια η φασματική ακτίνα ρ(α); [Υπόδειξη: τουλάχιστον μια ιδιοτιμή που θα βρείτε είναι ακέραιος αριθμός] γ) Με βάση και τα παραπάνω, δώστε τώρα όλες τις μέχρι τώρα εμφανείς ιδιότητες του Α: αντιστρέψιμος,,, κλπ. δ) Ενδιαφερόμαστε για την παραγοντοποίηση LU του Α. Χωρίς να εφαρμοσθεί οποιοδήποτε σύνθετος υπολογισμός, πως μπορούμε να αποφανθούμε ότι ο Α μπορεί να παραγοντοποιηθεί χωρίς να απαιτούνται εναλλαγές γραμμών? ε) Ο αλγόριθμος του Grout που διδάχτηκε στο μάθημα, υπολογίζει συστηματικά τον L και U, από την απαίτηση ALU, χωρίς να εφαρμόζει τυπικά τη γνωστή μας από την Γραμμική Άλγεβρα μέθοδο LU. Λαμβάνοντας τώρα υπ όψιν και άλλη τυχόν ιδιότητα του Α (από το ερώτημα (γ)). εφαρμόστε τoν συστηματικά, δίνοντας τελικά τα L και U. ζ) Λαμβάνοντας τώρα υπ όψιν όλες τις ιδιότητες του Α, υπάρχει απλούστερη παραγοντοποίηση για τον Α? Προσαρμόστε τον αλγόριθμο Grout στην περίπτωση αυτή, υπολογίζοντας τον, ή τους, εμπλεκόμενους πίνακες. Απαντήσεις α) Οι ιδιοτιµές φράσσονται σε διαστήµατα που υπαγορεύονται από το Θ. κύκλων Guersgori. Εποµένως έχουµε ότι οι ιδιοτιµές ανήκουν στην εξής ένωση κύκλων κέντρων ( ii, ) και ακτίνων R i Σ ij, j,, µε j i: λ C[(3,), )] C[(,), )] C[(3,), )] δηλ. τελικά λ [, 4]. Επιπλέον, επειδή det(a-*i)det(a), το δεν είναι ιδιοτιµή (δηλ. ο Α είναι αντιστρέψιµος) και συνεπώς λ (, 4], δηλαδή όλες οι ιδιοτιµές είναι θετικές και άρα ο Α είναι θετικά ορισµένος (από σχ. θεώρηµα). β) Υπολογίζουµε έυκολα: Πανεπιστήμιο Πατρών -5-6//9

26 A 4, και A 4 Αφού ο Α είναι συµµετρικός, αναµένουµε πραγµατικές ιδιοτιµές. Έχουµε: 3λ φ(λ)det(a-λι) λ 3λ φ(λ)(3-λ)[(-λ)(3-λ)-][-(3-λ)](3-λ)(λ -5λ5-)(3-λ)(λ -5λ4) απ όπου λ 3 και 5 ± 56 5± 3 λ,3, δηλαδή: λ και λ 4 4 Εποµένως η φασµατική ακτίνα ρ(α)4. Προφανώς ο Α είναι συµµετρικός. Η νόρµα για συµµετρικούς πίνακες προκύπτει άµεσα, συγκεκριµένα είναι ίση µε τη φασµατική ακτίνα (βλ. και παραποµπή 3): A Τ ρ(α Α) ρ(αα) ρ(α ) ( ρ(α) ) ρ(α) δηλαδή A 4 στην περίπτωσή µας. Σηµείωση: Εναλλακτικός υπολογισµός της ορίζουσας µε χρήση γραµµικότητας (δεν προτιµάται εδώ, αλλά καλόν είναι να εφαρµόζεται για legth(a)>3): 3λ 3λ λ λ 3λ (3λ) ( 3λ) λ 3λ 3λ ( 3λ) λ (-)(3-λ) [-(-λ)(3-λ)] (λ-3)[-λ 5λ-4] 3λ 3λ γ) Οι άµεσα ορατές ιδιότητες είναι: συµµετρικός και τρισδιαγώνιος (ταινιακός). Επίσης είναι θετικά ορισµένος, αφού όλες οι ιδιοτιµές είναι θετικές όπως βρέθηκε, και άρα αντιστρέψιµος (από σχετικό θεώρηµα). δ) Ο Α είναι θετικά ορισµένος και άρα από σχετικό θεώρηµα είναι ΑLU (δεν απαιτούνται εναλλαγές γραµµών, δηλ. PI) ε) Αφού ο Α είναι και τρισδιαγώνιος, το ίδιο θα ισχύει και για τους U και L. Άρα στην ταυτότητα Α( ij ) LU, θα είναι: L(l ij ) κάτω τριγωνικός µε L(i,i) και L(3,3) Πανεπιστήμιο Πατρών -6-6//9

27 U(u ij ) άνω τριγωνικός µε στοιχεία της ης διαγωνίου u(,)(,)- και u(,3) (,3)- και u((,3). Συνεπώς υπάρχουν συνολικά 35 άγνωστοι. Εξισώνοντας συστηµατικά λαµβάνουµε τελικά: L και.6 U (παραλείπονται εδώ οι ενδιάµεσες εξισώσεις, ο αναγνώστης µπορεί να επαληθεύσει). ζ) Ναι. Αφού ο Α είναι θετικά ορισµένος (ιδιοτιµές θετικές) και συµµετρικός, επιδέχεται διάσπαση Cholesi: Α LL T ή ΑU T U () Αφού Α τρισδιαγώνιος, το ίδιο θα είναι και ο U. Συνεπώς, για την προσαρµογή του αλγορίθµου Grout, απαιτούµε να ισχύει η (), όπου U (u ij )άνω τριγωνικός και u(,3). Άρα υπάρχουν συνολικά 5 άγνωστα u ij. Εξισώνοντας συστηµατικά και µε ανάλογο τρόπο όπως πιο πάνω βρίσκουµε τελικά:.73 U L T Άσκηση 4 Δίνεται το σύστημα Ab με A[3 - ; - - ; - 3] και b[ ] Τ α) Πόσο «καλός» περιµένετε να είναι ο Α για την υπολογιστική επίλυση ενός συστήµατος A και γιατί; Παίζει ρόλο σ αυτό και η τιµή του σταθερού διανύσµατος ή όχι; β) Θεωρούµε τώρα το συγκεκριµένο σύστηµα Αb. Να δώσετε µε συστηµατικό τρόπο και µε πλήρη δικαιολόγηση φράγµατα για το σχετικό σφάλµα ε σ της λύσης. Απαντήσεις: α) Βρίσκουµε πρώτα τον αντίστροφο του Α µε εφαρµογή της µεθόδου Guss-Jord: [A I] [I A - ] Εύκολα βρίσκουµε: A 4 και A -.5 Πανεπιστήμιο Πατρών -7-6//9

28 Κριτήριο για την υπολογιστική συµπεριφορά του Α είναι ο δείκτης κατάστασης (Α). Eίναι (A) A Α - 4 *.5 5 που βρίσκεται πολύ κοντά στο, δηλ. ο Α έχει καλή κατάσταση: το σχετικό σφάλµα συµβαδίζει µε το σχετικό υπόλοιπο, το οποίο είναι «αξιόπιστο» ως προς την ακρίβεια της υπολογιστικής επίλυσης του συστήµατος A ανεξάρτητα της τιµής του. β) Για το σχετικό σφάλµα ε σ ισχύει η ανισότητα: r σ / (A) < ε σ < r σ * (A) () Το σχετικό υπόλοιπο ορίζεται: r σ r / b b-a * / b Επιλύουµε πρώτα το Ab µε τη µέθοδο Guss βρίσκοντας µια προσέγγιση * του : * [ ] Όσον αφορά τα υπόλοιπα µεγέθη, είναι: rb-a * [-4.44e e-6] r 8.88e-6 b 7., και άρα r σ.34e-6 Αντικαθιστώντας στην () βρίσκουµε τα συγκεκριµένα φράγµατα:.467e-7 < ε σ < 6.68Ε-6 Σηµ. Το πόσο καλός είναι ο Α ((A)5) επαληθεύεται ακριβώς από τη «στενότητα» του παραπάνω διαστήµατος. Άσκηση 5 Δίνεται ο πίνακας A και το διάνυσμα b: A[. -. ; -. ;. ], b[ ] T Υποθέτουμε ότι εργαζόμαστε με αριθμητική κ. υ. 4 σ.ψ. α) Μπορεί να διασπασθεί ο Α στη μορφή ΑPLU με PI και γιατί; (εξηγείστε χωρίς να εφαρμόσετε μέθοδο Guss) β) Να βρεθούν οι L και U και P (με ή χωρίς οδήγηση) της διάσπασης LU, χωρίς να εφαρμοσθεί απαλοιφή Guss. Τι παρατηρείτε αν εφαρμόζατε μερική οδήγηση; γ) Να βρεθεί ο δείκτης κατάστασης του Α. (νόρμα ). δ) Να βρεθούν φράγματα για το σχετικό σφάλμα ε σ του συστήματος Ab. Διατυπώστε και εξηγείτε με σαφήνεια τα απαιτούμενα βήματα Πανεπιστήμιο Πατρών -8-6//9

29 Απαντήσεις: α) O A έχει προφανώς α.δ.κ. και ως εκ τούτου (όπως γνωρίζουµε από σχετικό θεωρητικό αποτέλεσµα), διασπάται άµεσα : ΑLU (δεν υπάρχουν ανταλλαγές γραµµών ή ισοδύναµα PI) β) Γράφουµε την ταυτότητα ALU απαιτώντας l(i,i), Lκάτω τριγ. και Uάνω τριγ. Α l * l3 l3 u u u u u u που δίνει ένα γραµµικό σύστηµα µε 9 αγνώστους (l ij και u ij ). Εξισώνοντας συστηµατικά τα Α(i,j) µε τα στοιχεία του Α κατά στήλες, λαµβάνουµε: Στοιχεία ης στήλης: A(,) L U u(,) A(,) L U l(,) u(,) l(,) A(3,). L 3 U l(3,) u(,) l(3,). Στοιχεία ης στήλης: A(,). L U u(,) A(,)-3 L U l(,) u(,)u(,) u(,) -3 *. -3. A(3,) L 3 U l(3,) u(,)l(3,)u(,) l(3,) -.*./(-3.) fl(.65) 4.63 Στοιχεία 3 ης στήλης: A(,3)-. L U 3 u(,3) A(,3). L U 3 l(,) u(,3)u(,3) u(,3). *(-.).3 A(3,3) L 3 U 3 l(3,) u(,3)l(3,)u(,3)u(3,3) u(3,3) (.)*(-.)-.65*(.3) fl(.85) 4.8 Εποµένως οι L και U έχουν καθορισθεί πλήρως. γ) Είναι A.3 Υπολογίζουµε τώρα τον Α µε τη µέθοδο Guss-Jord. Τελικά λαµβάνουµε κάνοντας πράξεις σε α.κ.υ. 4 σ.ψ.:.958 A οπότε: A - fl(.3995) 4.4 Τελικά έχουµε (A) A A - 3. r δ) Αν e r το σχετικό σφάλµα και r r το σχετικό υπόλοιπο, τότε ισχύει η ανισότητα: b Πανεπιστήμιο Πατρών -9-6//9

30 r r /(A) e r r r * (A) () Υπολογίζουµε τώρα το r rel : r r r b b A b * όπου * είναι η υπολογιζόµενη λύση του Α * b. Λύνουµε τώρα το Α * b εφαρµόζοντας απαλοιφή Guss και µε α.κ.υ. 4 σ.ψ. Τελικά λαµβάνουµε: * [.884,.33,.958 ] τ Στη συνέχεια βρίσκουµε τις απαιτούµενες υπόλοιπες ποσότητες: b 4, και: b-a * [, -.333, -.444] τ b-a * 7.77e-6 οπότε τελικά λαµβάνουµε: r rel 7.77e-6/4.943e-6 Άρα η () γίνεται:.943e-6/3. e r 3.*.943e e-7 e r 6.56e-6 Το σχετικό σφάλµα εποµένως φράσσεται (όπως αναµενόταν) σε πολύ στενό διάστηµα. Ερώτηση: σε πόσα τουλάχιστον σ.ψ. θα είναι ακριβής η προσεγγιστική λύση? (βλ. Κεφ. Ι, ο- ρισµός ακρίβειας) Άσκηση 6 Δίνεται ο πίνακας A[-3 ; 3 ; 6] και θεωρούμε τον ΒΑ Τ Α. Υποθέτουμε επίσης ότι δουλεύουμε με αριθμητική κινητής υποδιαστολής 5 σ.ψ. και ότι ισχύουν μόνον σφάλματα οφειλόμενα σε στρογγύλευση κατά τους υπολογισμούς. α) Χωρίς σύνθετους υπολογισμούς, να ελέγξετε αν ο Β είναι θετικά ορισμένος. Δικαιολογείστε πλήρως την απάντησή σας. β) Βρείτε τη νόρμα του Β ( B ). γ) Υπολογίστε το δείκτη κατάστασης του Β (με χρήση της νόρμας ). Σχολιάστε σχετικά. δ) Να υπολογισθούν επακριβώς όλες οι ιδιοτιμές του Β. Ποιο το συμπέρασμά σας? Πανεπιστήμιο Πατρών -3-6//9

31 ε) Αναφέρατε ποιές μορφές διάσπασης επιδέχεται ο Β και γιατί. Στη συνέχεια δικαιολογείστε και υπολογίστε επακριβώς την απλούστερη δυνατή μορφή διάσπασής του. ζ) Δίνεται τώρα το διάνυσμα b[ 3] T. Πως μπορεί να λυθεί κατόπιν της (ε), το σύστημα Bb? Βρείτε τις λύσεις του. Απαντήσεις: Πανεπιστήμιο Πατρών -3-6//9

32 Επαναληπτικές Μέθοδοι για γραµµικά συστήµατα Άσκηση 7 Δίνεται ο πίνακας A[ ; 8 5 ; 5 8 ; ]. Υποθέτουμε ότι δουλεύουμε σε α.κ.υ. 4 σημ. ψηφίων με εφαρμογή στρογγύλευσης και ότι μας απασχολούν μόνον σφάλματα οφειλόμενα σε απώλεια ακρίβειας κατά τους υπολογισμούς Θεωρούμε την επαναληπτική μέθοδο Gus-Seidel για την υπολογιστική επίλυση του Ab με b[ ] Τ. (α) Για τα δεδομένα που δίνονται, δώστε τον επαναληπτικό τύπο της υπό τη μορφή πινάκων. Πως υπολογίζεται στην πράξη η προσέγγιση στο βήμα ; (β) Συγκλίνει ο αλγόριθμος αυτός για κάθε αρχικό διάνυσμα και γιατί; (γ) Να υπολογίσετε αριθμητικό φράγμα για το απόλυτο σφάλμα στη η επανάληψη. Να τεθεί αρχικά (.5,,,.5) T και να γίνει χρήση της νόρμας «άπειρο». Να δοθούν όλα τα απαιτούμενα βήματα. (δ) Ποιές συγκεκριμένες εντολές θα δίνατε στο Mtlb για να υπολογίσετε το αποτέλεσμα που βρήκατε στο ερώτημα (γ)? Απαντήσεις: α) Είναι B - µε BQ - (Q-A) και Q - b, όπου Q 8 5 8, P Q-A 5 Ο αντίστροφος του διδιαγώνιου Q υπολογίζεται εύκολα: έχει ακριβώς την ίδια µορφή µε τον Q, µε αντίστροφα διαγώνια στοιχεία (γνωστή ιδιότητα στη γραµµική άλγεβρα, που αποδεικνύεται µε πράξεις υποµητρώων σε µορφή µπλόκ): / Q, / Q - ( ( : 3, : 3) ) 8 όπου Q(:3,:3) είναι το κεντρικό µπλοκ του Q 5 και τελικά: ( Q( : 3, : 3) ) 8 5 * 8*8-8 T 8. Υπολογίζουµε εύκολα: Πανεπιστήμιο Πατρών -3-6//9

33 .5 Q Εποµένως: B Q - P.65,.396 και Q - b (.5,.5, -.78,.5) Τ [ ιαβάστε εδώ την παραποµπή ] β) Ο Α έχει προφανώς αδκ και εποµένως, από σχετικό θεώρηµα, η ακουλουθία Gus-Seidel συγκλίνει. γ) Για (.5,,,.5) T υπολογίζουµε: B* (.5,.5, -.78,.5) Τ B Αν e - είναι το απόλυτο σφάλµα στην η επανάληψη, τότε ως γνωστόν (σελ. ΙV5-5, τύπος (ΙV..9)) ισχύει η ανισότητα: e B B Αντικαθιστώντας βρίσκουµε: e.3 Σχόλιο : Μπορούµε να επαληθεύσουµε στο Mtlb µε την εντολή: frgmorm(-, if)*orm(b, if)^ / (-orm(b, if)) δ) Οι στοιχειώδεις υπολογισµοί του ερωτήµατος (γ) υλοποιούνται από τις παρακάτω εντολές της Mtlb: A[ ; 8 5 ; 5 8 ; ] b[ ] QA /*υπολογισµός Q*/ Q(,3) PQ-A Biv(Q)*P /*πίνακας επανάληψης*/ Πανεπιστήμιο Πατρών -33-6//9

34 iv(q)*b [.5.5] /*αρχική προσέγγιση*/ B* frgmorm(-, if)*orm(b, if)^ / (-orm(b, if)) /*υπολογισµός άνω φράγµατος*/ Σχόλιο : Ένας κώδικας Mtlb για την Guss-Seidel δίνεται στην ΙV.3. Άσκηση 8 Δίνεται ο πίνακας (μητρώο) A και το διάνυσμα b: A[ ; 8 4 ; 4 8 ; ], b[ -] Τ Υποθέτουμε ότι όλες οι πράξεις γίνονται με α.κ.υ. 4 σ.ψ. α) Θεωρούμε την επαναληπτική μέθοδο Guss-Seidel για την υπολογιστική επίλυση του Ab. (α) Δώστε τον επαναληπτικό τύπο της, υπό τη μορφή πινάκων και τον πίνακα επανάληψης B. (α) Συγκλίνει ο αλγόριθμος αυτός για κάθε αρχικό διάνυσμα ή όχι και γιατί; β) Δώστε τώρα μια αριθμητική εκτίμηση του απολύτου σφάλματος στη η επανάληψη, αφού θέσετε αρχικά [,,, ]. γ) Ποια βήματα θα ακολουθούσατε (αναφέρατε συγκεκριμένα) για να επαληθεύσετε στη Mtlb τα αποτελέσματα των (3α) και (3β)? δ) Αναφέρατε πως θα μπορούσατε να υπολογίσετε (χωρίς εφαρμογή μαθηματικής μεθόδου) την φασματική ακτίνα του Α. Απαντήσεις: α) Ο επαναληπτικός τύπος θα είναι B -,,,, όπου: Β Q - P, Q - b µε Q PQ-A και Ο Q είναι κάτω τριγωνικός οπότε εύκολα προκύπτει (π.χ. απλή εφαρµογή µεθ. Guss-Jord). Q Πανεπιστήμιο Πατρών -34-6//9

35 Υπολογίζουµε τέλος το γινόµενο: Β Q - P.5.5 α) Ο Α έχει α.δ.κ., οπότε από σχετικό θεώρηµα ο παραπάνω αλγόριθµος συγκλίνει για κάθε αρχικό διάνυσµα. Άλλη δικαιολόγηση: προφανώς είναι Β.75 < και από σχετικό θεώρηµα ο αλγόριθµος συγκλίνει. β) Υπολογίζουµε πρώτα την πρώτη προσέγγιση B. Είναι: Q - b (.,.5, -.65, -.5) T B (, -.5,.5, ) T (.,.5, -.65, -.5) T (., -.375,.875, -.5) T Παρατήρηση: Εναλλακτικά (βλ. και παραποµπή ) υπολογίζουµε µε εµπρός αντικατάσταση τη λύση του κάτω τριγωνικού συστήµατος Q P b. Βρίσκουµε το ίδιο αποτέλεσµα. Για τις επαν. µεθόδους ισχύει ως γνωστόν η παρακάτω εκτίµηση σφάλµατος: ε - - B /(- B ) Εδώ είναι και Β οπότε: *(.75) /.5 ε Παρατήρηση: Ασφαλώς και δεν περιµέναµε καλύτερο φράγµα, αφού αφ ενός περιοριστήκαµε στο σφάλµα στη δεύτερη επανάληψη, και αφ ετέρου, το δεν επιλέχτηκε επαρκώς κοντά στη λύση ( * (.,.667, -.833, -.5) T ). Αν συµβολίσουµε ε -, τότε: Για την η επανάληψη, παίρνουµε: ε.468. Αν επιλέξουµε «καλύτερο», π.χ. (.,,, -.5) T, (µε τις δύο συνιστώσες απολύτως ακριβείς), βρίσκουµε: ε.49 και ε.4, που αποτελούν σαφώς καλύτερες εκτιµήσεις. γ) ίνουµε κατά σειρά τις εντολές: A[ ; 8 4 ; 4 8 ; ]; b[ -]; QA; /*καθορισµός του Q*/ Q(,3); PQ-A; Πανεπιστήμιο Πατρών -35-6//9

36 Biv(Q)*P /υπολογισµός του Β*/ iv(q)*b; [ ] ; /*αρχική προσέγγιση*/ B* ; /*πρώτη προσέγγιση*/ frgmorm(-, )*orm(b, )^/(-orm(b, )) /*υπολογισµός άνω φράγµατος*/ Εναλλακτικά: ίνουµε: A[ ; 8 4 ; 4 8 ; ] b[ -]; QA /*καθορισµός του Q*/ Q(,3) PQ-A iv(q)*b [ ] /*αρχική προσέγγιση*/ Q\(P*b) /*υπολογισµός πρώτης προσέγγισης από το σύστηµα τριγωνικό Q P */ frgmorm(-, )*orm(b, )^/(-orm(b, )) /*υπολογισµός άνω φράγµατος*/ δ) Όπως είδαµε πιο πάνω, ο Α έχει διακεκριµένες πραγµατικές ιδιοτιµές (άρα έχει 4 γ.α. ιδιοδιανύσµατα). Συνεπώς, για τον υπολογισµό της φασµατικής ακτίνας ρ(α)m( λ i ), πληρούνται οι προϋποθέσεις εφαρµογής της µεθόδου των δυνάµεων: A -, αυθαίρετο. Για αποφυγή ενδεχοµένου διαίρεσης µε και σφαλµάτων στρογγύλευσης, εφαρµόζουµε κανονικοποίηση (νόρ- µα ), οπότε προκύπτει η επανάληψη: (,,,) Τ u A, u / u,,,, () Για την ακολουθία αυτή θα ισχύει lim v ρ(a) ιδιοδιοδιάνυσµα για την ρ(a), µε v ρ(a) και ρ(a) lim u. Τώρα εφαρµόζοντας την (), λαµβάνουµε: A* (,,, ) Τ *(.833,.,.,.667) Τ A*(.833,.,.,.667) Τ (.833,.,.,.3333) T * (.69,.,.,.78) Τ A*(.69,.,.,.78) Τ (.69,.,.,.556) * (.6,.,.,.46) Τ 3 3 Είναι φανερό πως η ακολουθία { } συγκλίνει στη φασµατική ακτίνα ρ(α), ενώ η { } στο αντίστοιχο ιδιοδιάνυσµα v ρ(a) (,.,., ) Τ. Β τρόπος: Εναλλακτικά θα µπορούσαµε να θεωρήσουµε την επανάληψη µε κανονικοποίηση µε τη νόρµα : (,,,) Τ u A -, u / u,,, Πανεπιστήμιο Πατρών -36-6//9

37 για την οποία ισχύει lim v ρ(a) ιδιοδιοδιάνυσµα για την ρ(a), µε v ρ(a), και ρ(a) lim u. Οι υπολογισµοί είναι ανάλογοι µε πριν, αν θεωρήσουµε ότι δουλεύουµε σε υπολογιστικό περιβάλλον το οποίο υποστηρίζει την νόρµα [π.χ. Mtlb, Βλ. παράρτηµα Β διδακτικού βιβλίου] Σηµείωση: το ερώτηµα δεν απαιτούσε τους συγκεκριµένους υπολογισµούς, παρά µόνον την υ- πόδειξη της µεθοδολογίας. Άσκηση 9 Δίνεται το σύστημα Ab με A[3 - ;- -; -3] και b[ ] α) Αποδείξτε ότι, αν Β < για κάποια φυσική νόρμα (Β είναι ο πίνακας επανάληψης), τότε μια εκτίμηση για το απόλυτο σφάλμα μιας επαναληπτικής μεθόδου δίνεται από τη σχέση: - < B (- B ) - -. β) Θεωρούμε τώρα μια επαναληπτική μέθοδο Guss-Seidel σαν μοντέλο υπολογιστικής επίλυσης του Ab. Δώστε τον επαναληπτικό τύπο της, υπό τη μορφή πινάκων. Ποιος ο πίνακας επανάληψης B; γ) Συγκλίνει ο αλγόριθμος αυτός για κάθε αρχικό διάνυσμα ή όχι και γιατί; δ) Δώστε τώρα μια εκτίμηση του απολύτου σφάλματος στη η επανάληψη Απαντήσεις: α) Η απόδειξη βρίσκεται στο βιβλίο (κεφ. ΙV, Ανάλυση σφάµατος Επαναληπτικών Μεθόδων). β) Η µέθοδος G-S δίνεται από την επανάληψη: B -,,,. δοθέν (καλόν είναι να επιλεγεί «κοντά» στη ρίζα από πλευράς νόρµας!) µε ΒQ - P και Q - P, όπου 3 Q 3 και PQ-A Για τον υπολογισµό του BQ - P αντιστρέφουµε τον άνω τριγωνικό Q: (διαγώνια στοιχεία /ii, και υπολογίζουµε τα υπόλοιπα 3):.333 Q και τελικά Πανεπιστήμιο Πατρών -37-6//9

38 B Q - P γ) Ο Α δεν έχει αδκ. Ικανή και αναγκαία συνθήκη για να συγκλίνει είναι η ρ(β)<, ενώ µια ικανή είναι η Β <. Εξετάζουµε τη δεύτερη προκειµένου για τη νόρµα. Είναι: Β < και εποµένως η επαναληπτική ακολουθία K B -,,, συγκλίνει για κάθε. δ) Για την εκτίµηση του απολύτου σφάλµατος e, φυσικά θα κάνουµε χρήση της ανισότητας e - B (- B ) - - () για. Αρχικά βρίσκουµε τις επαναλήψεις,. Θέτουµε αρχικά, αυθαίρετα µεν, αλλά «κοντά» στη λύση: [, ] Ο υπολογισµός κάθε νέας επανάληψης Q - P - Q - b, µπορεί βέβαια να υπολογισθεί βάσει των αποτελεσµάτων της (β) (υπολογισµός Q - και γινοµένων, όπως έχει απαντηθεί και σε άλλες ασκήσεις). Υπάρχει όµως προσφορότερος και πιο άµεσος τρόπος που δεν υπολογίζει αντίστροφο!. (βλ. Παραποµπή ). Απλά η εύρεση της επανάληψης (-προσέγγισης) ισοδυναµεί µε την επίλυση του κάτω τριγωνικού συστήµατος: Q P - b ως προς τον άγνωστο, το οποίο λύνεται µε εµπρός αντικατάσταση Με άλλα λόγια η Guss-Seidel για τον υπολογισµό µιας προσέγγισης χρησιµοποιεί προηγουµένως υπολογισθείσες συνιστώσες του διανύσµατος. Ο τύπος (IV.3.) της παραγράφου IV.3 του διδακτικού βιβλίου περιγράφει ακριβώς αυτό το γεγονός, χωρίς να χρειάζεται να αποµνηµονευθεί (απλά πρέπει να τον κατανοήσετε!). Έτσι, για να υπολογίζουµε το από την Β b, λύνουµε ισοδύναµα το σύστηµα Q P b και εδώ το: Q [ ] Τ που γράφεται και: 3 * Με εµπρός αντ/ση παίρνουµε:./ (3.6 )/( )/ (-3.4 )/3( )/3-.4 δηλαδή: [ ] Τ [Επαλήθευση στο mtlb: Q\(P*b)] Τ Πανεπιστήμιο Πατρών -38-6//9

39 Υπολογίζουµε τώρα την νόρµα του Β: B Q - P.6667 Οπότε αντικαθιστώντας στην (), λαµβάνουµε τελικά: -.88 Σχόλιο: Το φράγµα είναι προφανώς «κακό». Αυτό είναι απόλυτα εξηγήσιµο, αφού για τέτοιο πίνακα δεν µπορούµε φυσικά να περιµένουµε καλύτερο φράγµα και µάλιστα στη η επανάληψη! ος τρόπος: Για τον υπολογισµό του φράγµατος θα µπορούσαµε εναλλακτικά να κάνουµε χρήση της δεύτερης γνωστής ανισότητας - B (- B ) η οποία εµπλέκει τις δύο τελευταίες επαναλήψεις (εδώ τις και ). Ο σχετικός υπολογισµός είναι φυσικά πιο χρονοβόρος, αφού απαιτεί και τον υπολογισµό του από την Β b, ή ισοδύνα- µα από το κάτω τριγωνικό σύστηµα Q P b [ ] Τ Η λύση του παραπάνω µε εµπρός αντ/ση είναι: [ ] Τ [Επαλήθευση στη mtlb: Q\(P*b)] Τώρα, για τον υπολογισµό του φράγµατος, προχωράµε όπως πιο πάνω. Άσκηση Δίνεται ο πίνακας A και το διάνυσμα b: A[ ; 8 5 ; 5 8 ; ], b[ -] Τ Υποθέτουμε ότι (α) δουλεύουμε σε α.κ.υ. 4 σημ. ψηφίων με εφαρμογή στρογγύλευσης και ότι (β) μας απασχολούν μόνον σφάλματα οφειλόμενα σε απώλεια ακρίβειας κατά τους υπολογισμούς. Θεωρούμε την επαναληπτική μέθοδο Jobi για την υπολογιστική επίλυση του Ab. (α) Δώστε τον επαναληπτικό τύπο της, υπό τη μορφή πινάκων. (β) Συγκλίνει ο αλγόριθμος αυτός για κάθε αρχικό διάνυσμα και γιατί; (γ) Δώστε αριθμητικό φράγμα για το απόλυτο σφάλμα στη η επανάληψη, αφού δοθούν όλα τα απαραίτητα ενδιάμεσα βήματα. Να τεθεί αρχικά (,,, -.5) T και να γίνει χρήση της νόρμας «άπειρο». (δ) Ποιές εντολές του Mtlb θα δίνατε κατά σειρά (αναφέρατε συγκεκριμένα) για να επαληθεύσετε το αποτέλεσμα που πήρατε στο ερ. (γ)? Πανεπιστήμιο Πατρών -39-6//9

40 Απαντήσεις: α) Είναι ()B(-) µε B Q - (Q-A) Q - b (.,.5,, -.5) Αναλυτικά: Q PQ-A 4 4 β) Ο Α έχει αδκ, άρα, σύµφωνα µε γνωστή πρόταση, συγκλίνει. γ) Είναι: B* (.,.5,, -.5) Τ B Για το απόλυτο σφάλµα e στην επανάληψη ισχύει e < - *( B ) /(- B ), και µετά από αντικατάσταση: e <.7573e-5 δ) ίνουµε κατά σειρά τις εντολές: A[ ; 8 5 ; 5 8 ; ] b[ - -.5] QA Πανεπιστήμιο Πατρών -4-6//9

41 Q(,3) PQ-A Biv(Q)*P iv(q)*b [ ] B* frgmorm(-, if)*orm(b, if)^ / (-orm(b, if)) Άσκηση Δίνεται ο πίνακας A και το διάνυσμα b: A[. -. ; -. ;. ], b[ ] T Θεωρούμε τον σύστημα Αb και υποθέτουμε ότι εργαζόμαστε με αριθμητική κ. υ. 4 σ.ψ. α) Συγκλίνει η επαναληπτική μέθοδος Jobi για οποιοδήποτε αρχικό διάνυσμα και γιατί; β) Διατυπώστε με σαφήνεια την επαναληπτική αυτή μέθοδο υπό τη μορφή πινάκων. γ) Βρείτε την πρώτη επανάληψη της μεθόδου για το παραπάνω σύστημα d) Έστω ότι επιθυμούμε να κάνουμε μια εκτίμηση του απολύτου σφάλματος στην πρώτη επανάληψη. Χρησιμοποιώντας κατάλληλη ανισότητα, βρείτε φράγμα για το απόλυτο σφάλμα με χρήση της νόρμας «άπειρον». Απαντήσεις: α) O A έχει προφανώς α.δ.κ. Εποµένως, όπως γνωρίζουµε από σχετικό θεωρητικό αποτέλεσµα, η µέθοδος Jobi συγκλίνει για κάθε αρχικό διάνυσµα. β) Για το δοθέν Ab, η µέθοδος Jobi περιγράφεται ως εξής: Q - P - Q - b, () αρχικό διάνυσµα όπου Q τριγωνικός µε και Q PQ-A Πανεπιστήμιο Πατρών -4-6//9

42 H (), µετά τις πράξεις, γράφεται τελικά: / B Q - P / 3 / 33 3 / / / 33 / 3 33 / / Αντικαθιστώντας παίρνουµε: Β Το υπολογίζεται εξ ίσου εύκολα: Q - b [b /, b /, b 3 / 33 ] T [,, ] T γ) Μπορούµε να επιλέξουµε το αρχικό διάνυσµα να βρίσκεται «κοντά» (από πλευράς νόρµας) στην προσεγγιστική λύση του Ab, έτσι όπως αυτή υπολογίσθηκε στο ερ. (δ) της Άσκησης. Έστω λοιπόν [,,], οπότε λαµβάνουµε Β και µετά από πράξεις: [.9..9] T δ) Από τη θεωρία γνωρίζουµε ότι, αν είναι γνωστές οι δύο τελευταίες επαναλήψεις, µια εκτίµηση του απολύτου σφάλµατος στις επαναληπτικές µεθόδους δίνεται από την ανισότητα: Β (- B ) - - () Στην περίπτωσή µας έχουµε και Β όπως υπολογίστηκε στο ερώτηµα (β). Με χρήση της νόρ- µας «άπειρο» υπολογίζουµε επίσης: Β.6 και:.. Εποµένως η () γίνεται:.5 Ασφαλώς δεν περιµέναµε καλύτερο σφάλµα στην πρώτη κιόλας επανάληψη! Άσκηση Για τα τριγωνικά μητρώα Β, με Β(i,i)/(i), i, (και τα υπόλοιπα στοιχεία τυχαία), εξετάστε αν η επαναληπτική μέθοδος Β-, ( R, δοθέν) συγκλίνει ή όχι. Πανεπιστήμιο Πατρών -4-6//9

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

4.2 Μέθοδος Απαλοιφής του Gauss

4.2 Μέθοδος Απαλοιφής του Gauss 4.2 Μέθοδος Απαλοιφής του Gauss Θεωρούµε το γραµµικό σύστηµα α 11χ 1 + α 12χ 2 +... + α 1νχ ν = β 1 α 21χ 1 + α 22χ2 +... + α 2νχ ν = β 2... α ν1χ 1 + α ν2χ 2 +... + α ννχ ν = β ν Το οποίο µπορεί να γραφεί

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD ΚΕΦΑΛΑΙΟ ΙΙΙ ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD Εισαγωγή To παρόν κεφάλαιο χωρίζεται σε μέρη. Στο (Α), μεταξύ άλλων, εξηγούμε γιατί μας ενδιαφέρει η λεγόμενη ανάλυση σε παράγοντες ειδικούς πίνακες (decompositio)

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0 Σελίδα από 53 Κεφάλαιο 3 Πίνακες Περιεχόµενα 3 Ορισµοί Επεξεργασµένα Παραδείγµατα Ασκήσεις 3 3 Πράξεις µε Πίνακες Πρόσθεση Πινάκων Πολλαπλασιασµός Πίνακα µε Αριθµό Πολλαπλασιασµός Πινάκων ιωνυµικό Ανάπτυγµα

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

= (1, 0,1, 0) είναι γραµµικά ανεξάρτητα

= (1, 0,1, 0) είναι γραµµικά ανεξάρτητα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θέµα α) (µ) Θεωρούµε ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουλίου 3 (διάρκεια: 3 ώρες

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Όταν το χ τότε το. στο,µπορούµε να θεωρήσουµε ότι το

ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Όταν το χ τότε το. στο,µπορούµε να θεωρήσουµε ότι το ΕΝΝΟΙΑ ΤΟΥ ΟΡΙΟΥ Όταν στα µαθηµατικά λέµε ότι το τείνει στο και συµβολίζεται, εννοούµε ότι οι τιµές προσεγγίζουν την τιµή, είτε µε από τιµές µικρότερες του δηλ από αριστερά του, είτε από τιµές µεγαλύτερες

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ)

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) 0. Εισαγωγή Τα αποτελέσµατα πεπερασµένης ακρίβειας οφείλονται στα λάθη που προέρχονται από την παράσταση των αριθµών µε µια πεπερασµένη ακρίβεια. Τα αποτελέσµατα

Διαβάστε περισσότερα

Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης

Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.) και Ενδιάμεσων Τιμών (Θ.Ε.Τ.) Τάξη : Γ Λυκείου Θετικής και Τεχνολογικής

Διαβάστε περισσότερα

Σηµειώσεις Γραµµικής Άλγεβρας

Σηµειώσεις Γραµµικής Άλγεβρας Σηµειώσεις Γραµµικής Άλγεβρας Κεφάλαιο Συστήµατα Γραµµικών Εξισώσεων και Πίνακες Εισαγωγή στα Συστήµατα Γραµµικών Εξισώσεων Η µελέτη των συστηµάτων γραµµικών εξισώσεων και των λύσεών τους είναι ένα από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Θέματα Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Β. Είναι Σωστή ή Λάθος καθεμιά από τις παρακάτω προτάσεις ; Θέμα α. Αν x

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ

ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ 9 40 4 ΒΑΣΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ 4 4 ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ. Να βρείτε την αριθµητική τιµή των παραστάσεων. i) α -α 6α, ii) 4α, για α iii) αβ α β (αβ),

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ Έστω fµια συνάρτηση µε πεδίο ορισµού το Α. Το σύνολο των τιµών της είναι f( A) { R = υπάρχει (τουλάχιστον) ένα A : f () = }. Ο προσδιορισµός του συνόλου τιµών f( A) της

Διαβάστε περισσότερα

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Το φάσµα ενός χρονικά εξαρτώµενου σήµατος µας πληροφορεί πόσο σήµα έχουµε σε µία δεδοµένη συχνότητα. Έστω µία συνάρτηση µίας µεταβλητής, τότε από το θεώρηµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: . Σχολικό βιβλίο σελ.9. Σχολικό βιβλίο σελ.88 3. Σχολικό βιβλίο σελ.5. α) Λ Β. β) Σ γ) Λ δ) Σ ε) Σ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5/5/5 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: Έστω z=+yi. Κάνοντας πράξεις στη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (Θεώρ Frmat) σχολικό βιβλίο σελ 6-6 Α Θεωρία (Ορισµός) σχολικό βιβλίο σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών»)

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών») Πρώτοι αριθµοί: Τι µας λέει στο βιβλίο (σελ.25-26): 1. Μου αρέσουν οι πρώτοι αριθµοί, γι αυτό αρίθµησα µε πρώτους τα κεφάλαια. Οι πρώτοι αριθµοί είναι αυτό που αποµένει όταν αφαιρέσεις όλα τα στερεότυπα

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012 Μαθηματικά Γ Λυκείου Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων 5/5/ Έκδοση Α Θετική και Τεχνολογική Κατεύθυνση ( mac964@gmail.com) Αθήνα (λίγο πριν τις εκλογές) Επαναληπτικές ασκήσεις που φιλοδοξούν

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Εξισώσεις 2 ου βαθμού

Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Η εξίσωση της μορφής αχ 2 + βχ + γ = 0, α 0 λύνεται σύμφωνα με τον παρακάτω πίνακα. Δ = β 2 4αγ Η εξίσωση αχ 2 + βχ + γ = 0, α 0 αν Δ>0 αν Δ=0 αν Δ

Διαβάστε περισσότερα

1ο. Η αριθµητική του υπολογιστή

1ο. Η αριθµητική του υπολογιστή 1ο. Η αριθµητική του υπολογιστή 1.1 Τί είναι Αριθµητική Ανάλυση Υπάρχουν πολλά προβλήµατα στη µαθηµατική επιστήµη για τα οποία δεν υπάρχουν αναλυτικές εκφράσεις λύσεων. Στις περιπτώσεις αυτές έχουν αναπτυχθεί

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεμάτων

Διαβάστε περισσότερα

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος 1. Πως ορίζεται και τι σημαίνει ο όρος flop στους επιστημονικούς υπολογισμούς. Απάντηση: Ο όρος flop σημαίνει floating point operation

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 Λύσεις των θεμάτων Έκδοση η

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

Αθ.Κεχαγιας. Σηµειωσεις Αναλυτικης Γεωµετριας. Θ. Κεχαγιας. Σεπτεµβρης 2009, υ.0.95

Αθ.Κεχαγιας. Σηµειωσεις Αναλυτικης Γεωµετριας. Θ. Κεχαγιας. Σεπτεµβρης 2009, υ.0.95 Σηµειωσεις Αναλυτικης Γεωµετριας Θ. Κεχαγιας Σεπτεµβρης 2009, υ.0.95 Περιεχόµενα Εισαγωγη 1 Επιπεδα στον Τρισδιαστατο Χωρο 1 1.1 Θεωρια.................................... 1 1.2 Λυµενες Ασκησεις..............................

Διαβάστε περισσότερα

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2010 2011.

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2010 2011. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ /ΥΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί µέχρι... Βαθµός Ασφαλείας...

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα

Aλγεβρα A λυκείου B Τομος

Aλγεβρα A λυκείου B Τομος Aλγ ε β ρ α A υ κ ε ί ο υ B Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ειρά: Γενικό ύκειο, Θετικές Επιστήμες Άλγεβρα Α υκείου, Β Τόμος Παναγιώτης Γριμανέλλης Εξώφυλλο: Γεωργία αμπροπούλου

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton. ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΑΚΑΔ. ΕΤΟΣ - Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 9 Ιανουαρίου ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Ομάδα Α ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΜΑ ον (+ μονάδες) Δίνεται ο πρόβολος, με μήκος = m, με κατανεμημένο φορτίο που

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

για τις οποίες ισχύει ( )

για τις οποίες ισχύει ( ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΜΗΤΑΛΑΣ ΓΙΑΝΝΗΣ, ΔΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ ΕΠΙΜΕΛΕΙΑ . Έστω οι συναρτήσεις f, g: για κάθε. α) Να αποδείξετε ότι η g είναι -. β) Να αποδείξετε ότι

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ÑÏÕËÁ ÌÁÊÑÇ. Εποµένως η συνάρτηση είναι γνησίως αύξουσα και άρα δεν έχει ακρότατα. δ. Με x 1 είναι

ÑÏÕËÁ ÌÁÊÑÇ. Εποµένως η συνάρτηση είναι γνησίως αύξουσα και άρα δεν έχει ακρότατα. δ. Με x 1 είναι ΘΕΜΑ ο Α.. Βλέπε σχολικό βιβλίο σελίδα 9.. Βλέπε σχολικό βιβλίο σελίδα 87. Β. Βλέπε σχολικό βιβλίο σελίδα 0. Γ. Σ, Σ, Σ, 4 Σ, Λ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο α. Πρέπει x > 0,

Διαβάστε περισσότερα