ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού"

Transcript

1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1

2 Μεταξύ δύο περιορισμών, ο ένας πρέπει να ισχύει Έστω ότι για την κατασκευή ενός προϊόντος υπάρχουν δύο εναλλακτικά εργοστάσια κατασκευής με αντίστοιχους περιορισμούς δυναμικότητας. Ανάλογα με το ποιο από τα δύο εργοστάσια θα επιλεγεί τελικά, θέλουμε ο αντίστοιχος περιορισμός δυναμικότητας να ισχύει, ενώ είμαστε αδιάφοροι για τον άλλο. Ας υποθέσουμε ότι ο περιορισμός για το πρώτο εργοστάσιο είναι 4x 1 + x 2 < 12 και για το δεύτερο x 1 + 3x 2 < 14 Τότε, οι δύο περιορισμοί γράφονται ως εξής: 4x 1 + x 2 < 12 + Μy 1 x 1 + 3x 2 < 14 + Μ(1-y 1 ) 2

3 Μεταξύ N περιορισμών, οι K πρέπει να ισχύουν Έστω ότι υπάρχουν N περιορισμοί μεταξύ των οποίων πρέπει να ισχύουν οι K. Έστω ότι οι περιορισμοί αυτοί είναι οι εξής: f 1 (x 1,...,x m ) < b 1... f N (x 1,...,x m ) < b N Στην περίπτωση αυτή, εισάγουμε μία δυαδική μεταβλητή y i για κάθε περιορισμό (i = 1,...,N) 3

4 Μεταξύ N περιορισμών, οι K πρέπει να ισχύουν Γράφουμε τους περιορισμούς ως εξής: f 1 (x 1,...,x m ) < b 1 + My 1... f N (x 1,...,x m ) < b N + My N Sum(i)yi = N - K Ο τελευταίος περιορισμός εξασφαλίζει ότι K από τις μεταβλητές αυτές θα είναι 0, οπότε οι αντίστοιχοι περιορισμοί θα ισχύουν. Η προηγούμενη περίπτωση είναι ειδική περίπτωση αυτής με K = 1 και N = 2. 4

5 Συναρτήσεις με N δυνατές τιμές Έστω μια συνάρτηση f(x 1,...,x m ), η οποία πρέπει να πάρει μία από N τιμές, b 1 ή b 2 ή... ή b N. Εισάγουμε N δυαδικές μεταβλητές y 1,...,y N και χρησιμοποιούμε την παρακάτω μορφοποίηση: Ο τελευταίος περιορισμός εξασφαλίζει ότι ακριβώς μία από τις N δυαδικές μεταβλητές θα είναι 1 και όλες οι άλλες 0, οπότε η συνάρτηση θα πάρει την αντίστοιχη τιμή. 5

6 Το πρόβλημα του σταθερού κόστους (fixed charge problem) Πολλές φορές, για την παραγωγή ενός προϊόντος υπάρχει ένα σταθερό κόστος k j (κόστος προετοιμασίας) και ένα μεταβλητό κόστος, ανάλογο του ύψους παραγωγής. Σε αυτή την περίπτωση, το συνολικό κόστος f j (x j ) είναι ίσο με k j + c j x j εάν παραχθεί το προϊόν (x j > 0) και 0 αν όχι (x j = 0), όπου x j είναι το ύψος της παραγωγής και c j το μοναδιαίο κόστος παραγωγής. Για να αποφύγουμε την εισαγωγή μη γραμμικών περιορισμών στη μορφοποίηση του προβλήματος, ορίζουμε μία δυαδική μεταβλητή y j που παίρνει την τιμή 1 αν παραχθεί το προϊόν (x j > 0) και 0 αν όχι (x j = 0). Τότε, το αντίστοιχο κόστος μορφοποιείται ως εξής: f j (x j ) = k j y j + c j x j x j My j Ο τελευταίος περιορισμός είναι αναγκαίος για να εξασφαλιστεί ότι αν y j = 0 τότε και x j = 0 και αντίθετα, αν x j > 0 τότε και y j = 1. Φυσικά, αν x j > 0 τότε ο περιορισμός αυτός ισχύει πάντοτε, αφού ο αριθμός M είναι ένας πολύ μεγάλος πραγματικός αριθμός. 6

7 Δυαδική απεικόνιση γενικών ακέραιων αριθμών Oι αλγόριθμοι επίλυσης προβλημάτων με δυαδικές μεταβλητές είναι πολύ πιο αποτελεσματικοί από αυτούς που προορίζονται για προβλήματα ακέραιου προγραμματισμού και γι' αυτό οι πρώτοι θα πρέπει να προτιμώνται, όπου αυτό είναι εφικτό. Μία έξυπνη τεχνική που μπορούμε να χρησιμοποιήσουμε στη συγκεκριμένη περίπτωση είναι να αντικαταστήσουμε τις ακέραιες μεταβλητές με δυαδικές, χρησιμοποιώντας κατάλληλο μετασχηματισμό. Για τον μετασχηματισμό αυτό, απαραίτητη προϋπόθεση είναι να υπάρχει ένα άνω όριο, u, στην τιμή που μπορεί να πάρει η κάθε ακέραια μεταβλητή x. 7

8 Δυαδική απεικόνιση γενικών ακέραιων αριθμών Έστω λοιπόν ότι κάθε ακέραια μεταβλητή x έχει όρια ως εξής: 0 x u και έστω N ακέραιος τέτοιος ώστε 2 N u < 2 N+1. Τότε, η δυαδική απεικόνιση της μεταβλητής x είναι x = i 2 i y i, όπου οι μεταβλητές y i είναι βοηθητικές δυαδικές μεταβλητές. Αντικαθιστώντας κάθε ακέραια μεταβλητή με την δυαδική της απεικόνιση, μπορούμε να μετασχηματίσουμε το αρχικό πρόβλημα σε ένα ισοδύναμο πρόβλημα που έχει αποκλειστικά δυαδικές μεταβλητές. Η τελική τιμή που θα πάρει η μεταβλητή x καθορίζεται από τις τιμές που θα πάρουν οι δυαδικές μεταβλητές y i και την παραπάνω σχέση. 8

9 Παράδειγμα 2.1 Δίνεται το ακόλουθο πρόβλημα μη γραμμικού προγραμματισμού: Max 2x 1 x x 2-3x 2 2 x 1 + x 2 < 3/4 κάθε μεταβλητή μπορεί να πάρει μόνο τις τιμές 1/2, 1/3, 1/4, 1/5. Να μορφοποιηθεί το πρόβλημα αυτό σαν ένα πρόβλημα αμιγώς δυαδικού (ακέραιου) προγραμματισμού. Στη μορφοποίηση που θα αναπτύξετε θα πρέπει να υπάρχουν μόνο δυαδικές 0-1 μεταβλητές. 9

10 Λύση Παράδειγμα 2.1 Για i = 1,2, ορίζουμε δυαδικές μεταβλητές y i1, y i2, y i3, y i4, όπου: y i1 = 1 αν x i = 1/2 και 0 αλλιώς y i2 = 1 αν x i = 1/3 και 0 αλλιώς y i3 = 1 αν x i = 1/4 και 0 αλλιώς y i4 = 1 αν x i = 1/5 και 0 αλλιώς. Στη συνέχεια, το πρόβλημα μορφοποιείται ως εξής: Max 2(1/2 y /3 y /4 y /5 y 14 ) (1/4 y /9 y /16 y /25 y 14 ) + 3(1/2 y /3 y /4 y /5 y 24 ) -3(1/4 y /9 y /16 y /25 y 24 ) s.t. (1/2 y /3 y /4 y /5 y 14 ) + (1/2 y /3 y /4 y /5 y 24 ) < 3/4 y 11 + y 12 + y 13 + y 14 = 1 y 21 + y 22 + y 23 + y 24 = 1 όλες οι μεταβλητές 0 ή 1. 10

11 Παράδειγμα 2.2 Δίνεται το παρακάτω προγραμματισμού: πρόβλημα ακέραιου Max Z = x 1 + 5x 2 s.t. x x 2 < 20 x 1 < 2 x 1, x 2 ακέραιοι > 0 α) Μετασχηματίστε το πρόβλημα σε ένα πρόβλημα αμιγώς δυαδικού προγραμματισμού. β) Λύστε το δυαδικό πρόβλημα χρησιμοποιώντας το LINGO και μετά αναγνωρίστε τη βέλτιστη λύση του αρχικού ακέραιου προβλήματος. 11

12 Λύση Παράδειγμα 2.2 Από την προσεκτική ανάλυση των περιορισμών του προβλήματος προκύπτουν τα εξής άνω όρια στις μεταβλητές απόφασης: x 1 < 2 (από περιορισμό 2) x 2 < 2 (από περιορισμό 1) Επομένως, x 1 = y 1 + 2y 2 και x 2 = y 3 + 2y 4, όπου y 1, y 2, y 3 και y 4 δυαδικές μεταβλητές. Στη συνέχεια, παίρνουμε το ακόλουθο δυαδικό πρόβλημα: Max Z = y 1 + 2y 2 + 5y y 4 s.t. y 1 + 2y y y 4 < 20 y 1 + 2y 2 < 2 y 1, y 2, y 3 και y 4 δυαδικές μεταβλητές 12

13 Λύση Παράδειγμα 2.2 Ο κώδικάς στο LINGO είναι ο εξής: MAX = Y1 + 2*Y2 + 5*Y3 + 10*Y4; Y1 + 2*Y2 + 10*Y3 + 20*Y4 <= 20; Y1 + 2*Y2 13

14 Λύση Παράδειγμα 2.2 Η λύση που παίρνουμε από το LINGO είναι η εξής: Global optimal solution found at iteration: 0 Objective value: Variable Value Reduced Cost Y Y Y Y Row Slack or Surplus Dual Price Επομένως, η βέλτιστη λύση του αρχικού προβλήματος είναι x 1 = 0 + 2(0) = 0 και x 2 = 0 + 2(1) = 2 και Ζ = 0 + 2(0) + 5(0) + 10(1) =

15 Λογισμικό βελτιστοποίησης LINGO To LINGO είναι ένα λογισμικό βελτιστοποίησης με φιλικό γραφικό περιβάλλον επικοινωνίας. Επιλύει προβλήματα γραμμικού, ακέραιου και μη γραμμικού προγραμματισμού. Μπορείτε να κατεβάσετε και να εγκαταστήσετε τη δοκιμαστική έκδοση του λογισμικού στον υπολογιστή σας, από την ιστοσελίδα της εταιρείας που το διακινεί: Η συγκεκριμένη έκδοση έχει περιορισμό στο μέγιστο αριθμό συνεχών μεταβλητών (300), στο μέγιστο αριθμό περιορισμών (150), και στο μέγιστο αριθμό ακέραιων μεταβλητών (30). Γι αυτό, αν θέλετε να λύσετε κάποιο πρόβλημα θα πρέπει η μορφοποίηση που θα αναπτύξετε να μην παραβιάζει τα όρια αυτά. 15

16 Λογισμικό βελτιστοποίησης LINGO Για την εισαγωγή και επίλυση ενός προβλήματος θα πρέπει να ακολουθηθούν οι ακόλουθες οδηγίες: - Η αντικειμενική συνάρτηση πρέπει να ακολουθεί το ΜΑΧ = (ή ΜΙΝ =, ανάλογα, π.χ. ΜΑΧ = Χ1 + Χ2;). - Κάθε περιορισμός αλλά και η αντικειμενική συνάρτηση πρέπει να τελειώνουν με το ; - Οι περιορισμοί θα πρέπει να εισαχθούν αμέσως κάτω από την αντικειμενική συνάρτηση (ένας σε κάθε γραμμή). 16

17 Λογισμικό βελτιστοποίησης LINGO - Το γινόμενο ενός συντελεστή με μια μεταβλητή θα πρέπει να υποδηλωθεί με το * (π.χ. 2*Χ1 <= 3;) - Mία μεταβλητή Χ θα πρέπει να οριστεί ως ακέραια με την και ως δυαδική με την - Θα πρέπει να χρησιμοποιηθεί το <= για να δηλωθεί το < και το >= για να δηλωθεί το >. - Η μη αρνητικότητα των μεταβλητών δεν είναι ανάγκη να δηλωθεί καθώς εννοείται. - Η επίλυση του προβλήματος γίνεται με την επιλογή της εντολής LINGO->Solve. 17

18 Παράδειγμα 2.3 Μία εταιρεία εξετάζει την εισαγωγή στην αγορά τριών νέων προϊόντων, 1, 2 και 3. Η διοίκηση έχει αποφασίσει ότι το πολύ δύο από τα τρία προϊόντα είναι σκόπιμο να εισαχθούν. Η εταιρεία διαθέτει δύο εργοστάσια αλλά λόγω περιορισμών μόνο ένα από τα δύο μπορεί να χρησιμοποιηθεί για την παραγωγή των νέων προϊόντων. Το κόστος αν αποφασιστεί η παραγωγή των προϊόντων 1, 2 ή 3 είναι 30000, και 80000, αντίστοιχα, ανεξαρτήτως του ύψους παραγωγής. Ο παρακάτω πίνακας δίνει το χρόνο που χρειάζεται για την παραγωγή μιας μονάδας για κάθε ένα από τα τρία προϊόντα σε κάθε ένα από τα δύο εργοστάσια. Τα εργοστάσια 1 και 2 μπορούν να δουλέψουν το πολύ μέχρι 30 και 40 ώρες την εβδομάδα, αντίστοιχα. Τα εβδομαδιαία έσοδα από την πώληση των προϊόντων 1, 2 και 3 θα είναι 10000, και ανά τεμάχιο αντίστοιχα, ενώ έχει υπολογιστεί ότι το μέγιστο εβδομαδιαίο ύψος της ζήτησης είναι 7, 5 και 9 αντίστοιχα. 18

19 Παράδειγμα 2.3 α) Μορφοποιήστε ένα πρόβλημα ακέραιου προγραμματισμού για αυτό το πρόβλημα. Σαν αντικειμενική συνάρτηση θεωρήστε το συνολικό κέρδος για μία εβδομάδα. β) Λύστε το πρόβλημα αυτό χρησιμοποιώντας το LINGO. 19

20 Λύση Παράδειγμα 2.3 Ορίζουμε ακέραιες μεταβλητές απόφασης X i (i = 1,2,3), όπου X i = αριθμός προϊόντων i που θα παραχθούν. Επίσης, ορίζουμε δυαδικές μεταβλητές απόφασης Υ i (i = 1,2,3), όπου Υ i = 1 αν το προϊόν i θα παραχθεί και 0 αλλιώς. Τέλος, ορίζουμε δυαδική μεταβλητή απόφασης Ζ, όπου Ζ = 1 αν χρησιμοποιηθεί το εργοστάσιο 1 για την παραγωγή των προϊόντων και 0 αν χρησιμοποιηθεί το εργοστάσιο 2. 20

21 Λύση Παράδειγμα 2.3 Με αυτά τα δεδομένα, η μορφοποίηση του προβλήματος στο LINGO είναι η εξής: MAX = 10000*X *X *X *Y *Y *Y3; Y1 + Y2 + Y3 <= 2; 3*X1 + 4*X2 + 2*X3 <= 30 + M*(1-Z); 4*X1 + 6*X2 + 2*X3 <= 40 + M*Z; X1 <= 7*Y1; X2 <= 5*Y2; X3 @GIN(X1); M = 100; 21

22 Λύση Παράδειγμα 2.3 Global optimal solution found at iteration: 21 Objective value: Variable Value X X X Y Y Y M Z Επομένως, η βέλτιστη λύση είναι να παραχθούν πέντε τεμάχια από το προϊόν 1 και εννιά τεμάχια από το προϊόν 3, χρησιμοποιώντας το εργοστάσιο 2. Το συνολικό κέρδος που προκύπτει είναι

23 Παράδειγμα 2.4 Μία τουρίστρια πρόκειται να πάει ένα ταξίδι και θέλει να διαλέξει τα ρούχα που θα πάρει μαζί της. Λόγω περιορισμών της αεροπορικής εταιρείας, το μέγιστο βάρος και ο μέγιστος όγκος των ρούχων που θα πάρει μαζί της δε μπορούν να υπερβαίνουν τα 4000 γραμμάρια και τα κυβικά εκατοστά, αντίστοιχα. Στο ταξίδι της επιστροφής, οι περιορισμοί είναι πιο χαλαροί. Η τουρίστρια διαθέτει συνολικά τρεις φούστες, τρία παντελόνια, τέσσερις μπλούζες και δύο φορέματα, ενώ όταν φτάσει στον προορισμό της, σκοπεύει να αγοράσει ένα πουλόβερ. Η τουρίστρια θέλει να μεγιστοποιήσει τον αριθμό των «συνόλων» που θα πάρει μαζί της (μαζί με αυτό που θα φορέσει στο ταξίδι). Ένα πουλόβερ ή μια μπλούζα πρέπει να συνδυαστεί με ένα παντελόνι ή μια φούστα για να θεωρηθεί σύνολο, ενώ ένα φόρεμα θεωρείται από μόνο του ως σύνολο. Οι συνδυασμοί ρούχων που φαίνονται με ένα x στον παρακάτω πίνακα δεν ταιριάζουν μεταξύ τους, λόγω των χρωματισμών των ρούχων. Tέλος ο δεύτερος πίνακας δείχνει το βάρος και τον όγκο κάθε ρούχου. Μορφοποιήστε ένα πρόβλημα ακέραιου προγραμματισμού για αυτό το πρόβλημα. 23

24 Παράδειγμα 2.4 Μπλούζα 1 Μπλούζα 2 Μπλούζα 3 Μπλούζα 4 Πουλόβερ Φούστα x x 3 Φούστα 2 4 x x 5 x Φούστα 3 x Παντελόνι 1 10 x 11 x x Παντελόνι x Παντελόνι 3 x x Βάρος (gr) Όγκος (cm 3 ) Φούστα Φούστα Φούστα Παντελόνι Παντελόνι Παντελόνι Μπλούζα Μπλούζα Μπλούζα Μπλούζα Φόρεμα Φόρεμα

25 Λύση Παράδειγμα 2.4 Ορίζουμε τις εξής μεταβλητές απόφασης: Mi = 1 αν η τουρίστρια πάρει τη μπλούζα i, (i = 1,2,3,4) και 0 αλλιώς Fi = 1 αν η τουρίστρια πάρει τη φούστα i, (i = 1,2,3) και 0 αλλιώς Pi = 1 αν η τουρίστρια πάρει το παντελόνι i, (i = 1,2,3) και 0 αλλιώς Di = 1 αν η τουρίστρια πάρει το φόρεμα i, (i = 1,2) και 0 αλλιώς Si = 1 αν πάρει το σύνολο i, (i = 1,,18, όπως φαίνονται στον πρώτο πίνακα) και 0 αλλιώς. Το ακέραιο πρόβλημα μορφοποιείται στο LINGO ως εξής: 25

26 Λύση Παράδειγμα 2.4 MAX = S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9 + S10 + S11 + S12 + S13 + S14 + S15 + S16 + S17 + S18 + D1 + D2; S1 <= 0.5*(F1+M1); S2 <= 0.5*(F1+M2); S3 <= F1; S4 <= 0.5*(F2+M1); S5 <= 0.5*(F2+M4); S6 <= 0.5*(F3+M2); S7 <= 0.5*(F3+M3); S8 <= 0.5*(F3+M4); S9 <= F3; 26

27 Λύση Παράδειγμα 2.4 S10 <= 0.5*(P1+M1); S11 <= 0.5*(P1+M3); S12 <= 0.5*(P2+M1); S13 <= 0.5*(P2+M2); S14 <= 0.5*(P2+M4); S15 <= P2; S16 <= 0.5*(P3+M3); S17 <= 0.5*(P3+M4); S18 <= P3; 27

28 Λύση Παράδειγμα *F *F *F *P *P *P *M *M *M *M *D *D2 <= 4000; 5000*F *F *F *P *P *P *M *M *M *M *D *D

29 Λύση Παράδειγμα 2.4 Η λύση που παίρνουμε από το LINGO είναι η εξής: Global optimal solution found at iteration: 353 Objective value: Variable Value S S S S S S S S S S S S S S S

30 Λύση Παράδειγμα 2.4 S S S D D F M M F M F M P P P Επομένως, η βέλτιστη λύση για την τουρίστρια είναι να πάρει μαζί της την 1η και την 3η φούστα, την 1η, τη 2η και την 3η μπλούζα και τα 3 παντελόνια, με συνολικό βάρος 3900 γραμμάρια και συνολικό όγκο κυβικά εκατοστά. Χρησιμοποιώντας και το πουλόβερ που πρόκειται να αγοράσει, θα διαθέτει συνολικά 13 σύνολα. 30

31 Παράδειγμα 2.5 Μία εταιρεία παράγει 3 προϊόντα σε 3 εργοστάσια και τα διαθέτει σε 3 αγορές. Για k = 1,2,3, i = 1,2,3 και j = 1,2,3 δίνονται τα εξής δεδομένα: Μοναδιαίο κόστος παραγωγής του προϊόντος k στο εργοστάσιο I k = 1 k = 2 k = 3 i = i = i = Κόστος μεταφοράς ενός προϊόντος k από το εργοστάσιο i στην αγορά j (j=1) k = 1 k = 2 k = 3 i = i = i = Κόστος μεταφοράς ενός προϊόντος k από το εργοστάσιο i στην αγορά j (j=2) k = 1 k = 2 k = 3 i = i = i =

32 Παράδειγμα 2.5 Κόστος μεταφοράς ενός προϊόντος k από το εργοστάσιο i στην αγορά j (j=3) k = 1 k = 2 k = 3 i = i = i = Σταθερό κόστος παραγωγής του προϊόντος k στο εργοστάσιο I k = 1 k = 2 k = 3 i = i = i = Μέγιστο ύψος παραγωγής του προϊόντος k στο εργοστάσιο i k = 1 k = 2 k = 3 i = i = i =

33 Λύση Παράδειγμα 2.5 Ελάχιστο ύψος παραγωγής του προϊόντος k στο εργοστάσιο i (σε περίπτωση θετικής παραγωγής) k = 1 k = 2 k = 3 i = i = i = Δυναμικότητα (σε εργατοώρες) του εργοστασίου i που απαιτείται για την παραγωγή ενός προϊόντος k k = 1 k = 2 k = 3 i = i = i = Συνολική δυναμικότητα (σε εργατοώρες) του εργοστασίου I i = 1 i = 2 i = Ζήτηση του προϊόντος k στην αγορά j k = 1 k = 2 k = 3 j = j = j =

34 Λύση Παράδειγμα 2.5 Μορφοποιήστε ένα πρόβλημα ακέραιου προγραμματισμού που να ελαχιστοποιεί το συνολικό κόστος παραγωγής και μεταφοράς των προϊόντων, ώστε να καλυφθεί η ζήτηση. Βρείτε τη βέλτιστη λύση χρησιμοποιώντας το LINGO. Οι επιπλέον περιορισμοί που θα πρέπει να ικανοποιούνται είναι οι εξής: α) Κανένα εργοστάσιο δεν μπορεί να παράξει περισσότερα από 2 προϊόντα β) Κάθε προϊόν μπορεί να παραχθεί το πολύ σε 2 εργοστάσια. 34

35 Λύση Παράδειγμα 2.5 Ορίζουμε τις εξής μεταβλητές απόφασης: xijk = αριθμός προϊόντων τύπου k που παράγονται στο εργοστάσιο i και διατίθενται στην αγορά j yik = δυαδική μεταβλητή που παίρνει την τιμή 1 αν το προϊόν k παράγεται στο εργοστάσιο i και 0 αν όχι. Στη συνέχεια, το πρόβλημα μορφοποιείται ως εξής: MIN = 5*X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *Y *Y *Y *Y *Y *Y *Y *Y *Y33; 35

36 Λύση Παράδειγμα 2.5 MIN = 5*X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *X *Y *Y *Y *Y *Y *Y *Y *Y *Y33; X111 + X121 + X131 <= 500*Y11; (μέγιστο ύψος παραγωγής) X112 + X122 + X132 <= 950*Y12; X113 + X123 + X133 <= 900*Y13; X211 + X221 + X231 <= 400*Y21; X212 + X222 + X232 <= 900*Y22; X213 + X223 + X233 <= 850*Y23; X311 + X321 + X331 <= 900*Y31; X312 + X322 + X332 <= 850*Y32; X313 + X323 + X333 <= 950*Y33; 36

37 Λύση Παράδειγμα 2.5 X111 + X121 + X131 >= 10*Y11; (ελάχιστο ύψος παραγωγής) X112 + X122 + X132 >= 5*Y12; X113 + X123 + X133 >= 8*Y13; X211 + X221 + X231 >= 5*Y21; X212 + X222 + X232 >= 10*Y22; X213 + X223 + X233 >= 5*Y23; X311 + X321 + X331 >= 4*Y31; X312 + X322 + X332 >= 5*Y32; X313 + X323 + X333 >= 4*Y33; 2*(X111 + X121 + X131) + 2*(X112 + X122 + X132) + 3*(X113 + X123 + X133) <= 2000; 3*(X211 + X221 + X231) + 1*(X212 + X222 + X232) + 2*(X213 + X223 + X233) <= 3500; 4*(X311 + X321 + X331) + 2*(X312 + X322 + X332) + 3*(X313 + X323 + X333) <= 5000; (δυναμικότητα) 37

38 Λύση Παράδειγμα 2.5 X111 + X211 + X311 >= 200; (ικανοποίηση ζήτησης) X112 + X212 + X312 >= 350; X113 + X213 + X313 >= 500; X121 + X221 + X321 >= 300; X122 + X222 + X322 >= 400; X123 + X223 + X323 >= 250; X131 + X231 + X331 >= 400; X132 + X232 + X332 >= 450; X133 + X233 + X333 >= 350; Y11 + Y12 + Y13 <= 2; Y21 + Y22 + Y23 <= 2; Y31 + Y32 + Y33 <= 2; Y11 + Y21 + Y31 <= 2; Y12 + Y22 + Y32 <= 2; Y13 + Y23 + Y33 <= 2; (το πολύ 2 προϊόντα σε κάθε εργοστάσιο) (το πολύ 2 εργοστάσια για κάθε προϊόν) 38

39 Λύση

40 Λύση Παράδειγμα 2.5 Η λύση που παίρνουμε από το LINGO φαίνεται παρακάτω: Optimal solution found at step: 65 Objective value: Branch count: 5 40

41 Λύση Παράδειγμα 2.5 Variable Value Reduced Cost X X X X X X X X X X X X X X X X X X X X X X X X X X X Y Y Y Y Y Y Y Y Y

42 Παράδειγμα 2.6 Η κυβέρνηση εξετάζει την εγκατάσταση πυροσβεστικών σταθμών σε 5 πόλεις. Το κόστος εγκατάστασης των σταθμών σε κάθε πόλη καθώς και ο χρόνος που χρειάζεται για την κάλυψη της απόστασης μεταξύ των πόλεων αυτών δίνονται στον παρακάτω πίνακα: Πόλη 1 Πόλη 2 Πόλη 3 Πόλη 4 Πόλη 5 Πόλη Πόλη Πόλη Πόλη Πόλη Κόστος εγκατάστασ ης Σε κάθε πόλη μπορεί να εγκατασταθεί το πολύ 1 σταθμός. Ο στόχος είναι να εγκατασταθεί ο ελάχιστος αριθμός πυροσβεστικών σταθμών έτσι ώστε για κάθε πόλη να υπάρχει κάποιος σταθμός που μπορεί να ανταποκριθεί σε περίπτωση φωτιάς σε χρόνο που δεν υπερβαίνει τα 20 λεπτά. Επειδή έχει ήδη συγκεντρωθεί το ποσό των 400 χιλιάδων ευρώ, αυτό πρέπει να είναι και το ελάχιστο ποσό που θα πρέπει να δαπανηθεί για το συγκεκριμένο σκοπό. Να βρεθεί η βέλτιστη χωροθέτηση των πυροσβεστικών σταθμών. 42

43 Λύση Παράδειγμα 2.6 Ορίζουμε τις εξής μεταβλητές: Xi = 1 αν εγκατασταθεί σταθμός στην πόλη i και 0 αλλιώς, i = 1, 2,,5 Τότε, το πρόβλημα μορφοποιείται στο LINGO ως εξής: MIN = X1 + X2 + X3 + X4 + X5; X1 + X2 + X3 > 1;! (πόλη 1); X1 + X2 + X5 > 1;! (πόλη 2); X1 + X3 + X4 > 1;! (πόλη 3); X3 + X4 + X5 > 1;! (πόλη 4); X2 + X4 + X5 > 1;! (πόλη 5); 200*X *X *X *X *X5 > @BIN(X5); 43

44 Λύση Παράδειγμα 2.6 και η λύση που παίρνουμε είναι η εξής: Global optimal solution found. Objective value: Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X X X X X

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (3 ο Φυλλάδιο)

ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (3 ο Φυλλάδιο) ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (3 ο Φυλλάδιο) ΙΩΑΝΝΗΣ ΝΤΖΟΥΦΡΑΣ (C) 2002 ΧΙΟΣ Παράδειγμα 8: Πρόβλημα ελαχίστης Διαδρομής (Shortest path problem)... 4 LINDO: Integer Linear

Διαβάστε περισσότερα

Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex ) 1

Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex )  1 Αλγεβρική Μέθοδος Επίλυσης Γραμμικών Μοντέλων Η μέθοδος SIMPLEX (Both Simple and Complex ) http://users.uom.gr/~acg 1 Η μέθοδος SIMPLEX Χρησιμοποιείται ο λεγόμενος πίνακας simplex (simplex table, simplex

Διαβάστε περισσότερα

maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες)

maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες) Ένας κοσμηματοπώλης, κατασκευάζει μπρασελέ και κολιέ αναμειγνύοντας ασήμι με κάποιο άλλο μέταλλο. Το μοντέλο π.γ.π. που ανέπτυξε για την εύρεση της εβδομαδιαίας παραγωγής (x 1 μπρασελέ και x 2 κολιέ) η

Διαβάστε περισσότερα

Ενδιαφερόμαστε να μεγιστοποιήσουμε το συνολικό κέρδος της εταιρείας που ανέρχεται σε: z = 3x 1 + 5x 2 (εκατοντάδες χιλιάδες χ.μ.)

Ενδιαφερόμαστε να μεγιστοποιήσουμε το συνολικό κέρδος της εταιρείας που ανέρχεται σε: z = 3x 1 + 5x 2 (εκατοντάδες χιλιάδες χ.μ.) Μια εταιρεία χημικών προϊόντων παρασκευάζει μεταξύ των άλλων και δύο διαλύματα, ΔΛ, ΔΛ2. Η γραμμή παραγωγής διαχωρίζεται χοντρικά σε δύο στάδια, αυτό της μίξης κι εκείνο του καθαρισμού. Μια σχετική μελέτη

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού Κεφάλαιο 6 Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού 1 Γραφική επίλυση Η γραφική μέθοδος επίλυσης μπορεί να χρησιμοποιηθεί μόνο για πολύ μικρά προβλήματα με δύο ή το πολύ τρεις μεταβλητές απόφασης.

Διαβάστε περισσότερα

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10 2. Βασικές Έννοιες Γραμμικού Προγραμματισμού 89 ΠΑΡΑΔΕΙΓΜΑ 2.10 Η TRACPRO, γνωστή αυτοκινητοβιομηχανία, προσπαθεί να εντοπίσει το εβδομαδιαίο σχέδιο παραγωγής τρακτέρ και γερανών με τα μεγαλύτερα κέρδη:

Διαβάστε περισσότερα

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Η «OutBoard Motors Co» παράγει τέσσερα διαφορετικά είδη εξωλέμβιων (προϊόντα 1 4) Ο γενικός διευθυντής κ. Σχοινάς, ενδιαφέρεται

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Νοέμβριος 006 Αθήνα Κεφάλαιο ο Ακέραιος και μικτός προγραμματισμός. Εισαγωγή Μια από τις

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (ασκήσεις)

Επιχειρησιακή έρευνα (ασκήσεις) Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 3)

Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 3) Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 3) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2015 Δρ. Δημήτρης Βαρσάμης Γραμμικός Προγραμματισμός (E 3) Μάρτιος

Διαβάστε περισσότερα

Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Ο ΗΓΙΕΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ LINDO ΚΑΙ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Το LINDO (Linear Interactive and Discrete Optimizer) είναι ένα πολύ γνωστό λογισµικό για την επίλυση προβληµάτων γραµµικού,

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 2012 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ ΠΡΩΤΟ: Θεωρήστε το π.γ.π.: maximize z(θ) = (10 4θ)x 1 +

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 2 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize z = x

Διαβάστε περισσότερα

Ένα πρόβλημα κατάρτισης προγράμματος εργασίας.

Ένα πρόβλημα κατάρτισης προγράμματος εργασίας. Ένα πρόβλημα κατάρτισης προγράμματος εργασίας. Έστω ένα πλήθος πληρωμάτων I, σε καθένα από τα οποία ανατίθεται καθημερινά κάποιο καθήκον (εργασία, βάρδια), από ένα συνολικό πλήθος Κ εργασιών. Ο στόχος

Διαβάστε περισσότερα

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 10 Εισαγωγή στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 29 Φεβρουαρίου 2016 Προβλήματα

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος Οργάνωση και Διοίκηση Εργοστασίων Σαχαρίδης Γιώργος Πρόβλημα 1 Μία εταιρεία έχει μία παραγγελία για την παραγωγή κάποιου προϊόντος. Με τις 2 υπάρχουσες βάρδιες (40 ώρες την εβδομάδα η καθεμία) μπορούν

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 013 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ 1 ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

ιαµόρφωση Προβλήµατος

ιαµόρφωση Προβλήµατος Γραµµικός Προγραµµατισµός ιαµόρφωση Προβλήµατος Η παρουσίαση προετοιµάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόµενα Παρουσίασης 1. Γενικά Στοιχεία Γραµµικού

Διαβάστε περισσότερα

Ακέραιος Γραµµικός Προγραµµατισµός

Ακέραιος Γραµµικός Προγραµµατισµός Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή. 1.1 Επιχειρησιακή Ερευνα

Κεφάλαιο 1. Εισαγωγή. 1.1 Επιχειρησιακή Ερευνα Κεφάλαιο 1 Εισαγωγή 1.1 Επιχειρησιακή Ερευνα Η Βελτιστοποίηση είναι η διαδικασία απόκτησης του ϐέλτιστου αποτελέσματος κάτω από δεδομένες καταστάσεις. Στο σχεδιασμό, στην εφαρμογή και στη συντήρηση οποιουδήποτε

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΠΡΟΒΛΗΜΑΤΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΠΡΟΒΛΗΜΑΤΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl ΠΡΟΒΛΗΜΑ 1 Μία επιχείρηση κατασκευάζει τρία προϊόντα, έστω α, β και γ, τα οποία πουλάει

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ www.dap-papei.gr ΠΑΡΑΔΕΙΓΜΑ 1 ΑΣΚΗΣΗ 1 Η FASHION Α.Ε είναι μια από

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 2: Τεχνικές Μοντελοποίησης, Εφαρμογές Μοντελοποίησης Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΠΡΩΤΟ ΣΕΤ ΑΣΚΗΣΕΩΝ-ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΠΡΩΤΟ ΣΕΤ ΑΣΚΗΣΕΩΝ-ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΠΡΩΤΟ ΣΕΤ ΑΣΚΗΣΕΩΝ-ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΣΚΗΣΗ 1 Ένας κτηµατίας πρέπει να καθορίσει πόσα στρέµµατα καλαµποκιού και σιταριού να φυτέψει αυτή τη χρονιά. Ένα στρέµµα σιταριού

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL

ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL ΠΩΣ ΝΑ ΟΡΙΣΕΤΕ ΚΑΙ ΝΑ ΕΠΙΛΥΣΕΤΕ ΕΝΑ ΠΡΟΓΡΑΜΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΤΟΝ SOLVER ΤΟΥ EXCEL 1. Στο Tools menu, click Solver. 2. Εάν η επιλογή Solver δεν είναι διαθέσιµη στο Tools menu, πρέπει να το

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (2 ο Φυλλάδιο)

ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (2 ο Φυλλάδιο) ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (2 ο Φυλλάδιο) ΙΩΑΝΝΗΣ ΝΤΖΟΥΦΡΑΣ Παραδείγματα 3 5 : Προβλήματα μεταφοράς (transportation problems)... 3 Παράδειγματα 3-5: Linear Programming

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΝΘΡΩΠΙΝΩΝ. (Human Resources Scheduling Human Resources Programming)

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΝΘΡΩΠΙΝΩΝ. (Human Resources Scheduling Human Resources Programming) ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ (Human Resources Scheduling Human Resources Programming) Management Ανθρώπινων Πόρων Κεφάλαιο 1 Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη του κεφαλαίου

Διαβάστε περισσότερα

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 3

Asset & Liability Management Διάλεξη 3 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη 3 Cash-flow matching Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

ISBN:

ISBN: Ακριβείς και ευρετικοί αλγόριθμοι μεικτού ακέραιου διεπίπεδου προγραμματισμού για βέλτιστη υποβολή προσφορών σε αγορές ημερήσιου προγραμματισμού ηλεκτρικής ενέργειας Ευτυχία Κωσταρέλου Τμήμα Μηχανολόγων

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες ΠΡΟΒΛΗΜΑ 1 Η ετήσια ζήτηση ενός σημαντικού εξαρτήματος που χρησιμοποιείται στη μνήμη υπολογιστών desktops εκτιμήθηκε σε 10.000 τεμάχια. Η αξία κάθε μονάδας είναι 8, το κόστος παραγγελίας κάθε παρτίδας

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ:

Διαβάστε περισσότερα

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV)

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV) 5. ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ (Decision Analysis) Επιχειρήσεις, Οργανισμοί αλλά και μεμονωμένα άτομα αντιμετωπίζουν σχεδόν καθημερινά το δύσκολο πρόβλημα της λήψης αποφάσεων. Τα προβλήματα αυτά έχουν σαν αντικειμενικό

Διαβάστε περισσότερα

ΑΛΟΥΜΙΝΙΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ

ΑΛΟΥΜΙΝΙΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ ΑΛΟΥΜΙΝΙΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ Μια εταιρεία αλουμινίου έχει αποθέματα βωξίτη στην περιοχή G, στην S και στην A. Επίσης, υπάρχουν εργοστάσια μετάλλου, όπου ο βωξίτης

Διαβάστε περισσότερα

Σκοπός κεφαλαίου. Παρουσίαση της µεθόδου SOLVER και αναλυτική περιγραφή της µεθοδολογίας.

Σκοπός κεφαλαίου. Παρουσίαση της µεθόδου SOLVER και αναλυτική περιγραφή της µεθοδολογίας. Το πρόγραµµα λογιστικών φύλλων (spreadsheet) Microsoft Excel ενσωµατώνει ρουτίνα επίλυσης προτύπων γραµµικού προγραµµατισµού. Η ρουτίνα ονοµάζεται Solver και χρησιµοποιεί το λογιστικό φύλλο του Microsoft

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις

Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 7.1.2 Παράδειγμα προβλήματος χρονικού προγραμματισμού

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ

ΜΑΘΗΜΑ 3 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ 3 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Προβλήµατα Ακέραιου Προγραµµατισµού Ι Τα προβλήµατα Ακέραιου Προγραµµατισµού, ανήκουν γενικά σε 3

Διαβάστε περισσότερα

Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1)

Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1) Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1) Η βιομηχανική επιχείρηση «ΑΤΛΑΣ Α.Ε.» δραστηριοποιείται στο χώρο του φυσικού αερίου και ειδικότερα στις συσκευές οικιακής χρήσης. Πρόκειται να εισάγει

Διαβάστε περισσότερα

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ακαδημαϊκό Έτος: 2013-2014 (Χειμερινό Εξάμηνο) Μάθημα: Σχεδιασμός Αλγορίθμων και Επιχειρησιακή Έρευνα Καθηγητής: Νίκος Τσότσολας Εργασία

Διαβάστε περισσότερα

Βασικές έννοιες κι ερµηνεία του Γραµµικού Προγραµµατισµού. Γραφική επίλυση προβληµάτων Γραµµικού Προγραµµατισµού. Παραδείγµατα.

Βασικές έννοιες κι ερµηνεία του Γραµµικού Προγραµµατισµού. Γραφική επίλυση προβληµάτων Γραµµικού Προγραµµατισµού. Παραδείγµατα. Στο κεφάλαιο αυτό επιχειρούµε µια πρώτη προσέγγιση στην µελέτη και διερεύνηση προβληµάτων του Γραµµικού Προγραµµατισµού (Γ.Π., Linear Programming, L.P) και τις µεταβολές τους. Ταυτόχρονα, παρουσιάζουµε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Παραγωγή: είναι η διαδικασία με την οποία οι διάφοροι παραγωγικοί συντελεστές

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΟΡΙΑΚΟΥ ΣΗΜΕΙΟΥ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΑΝΑΛΥΣΗ ΟΡΙΑΚΟΥ ΣΗΜΕΙΟΥ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΑΝΑΛΥΣΗ ΟΡΙΑΚΟΥ ΣΗΜΕΙΟΥ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Συναρτήσεις παραγωγής Το κόστος παραγωγής διακρίνεται σε : Σταθερό ή έμμεσο κόστος (fixed or indirect cost) C F : Το κόστος αυτό είναι περίπου σταθερό ανεξάρτητα

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Ειδικά Μοντέλα Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Μοντέλο μη αυτόματου εφοδιασμού (Economic Lot size) Αλγόριθμος Wagner-Whitin

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Linear Programming)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Linear Programming) κεφάλαιο ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Linear Programming). Εισαγωγή Ορισμός.. Γραμμικός προγραμματισμός (linear programming) είναι το όνομα της μεθοδολογίας που χρησιμοποιείται για τη λύση προβλημάτων που

Διαβάστε περισσότερα

Διδάσκων: Νίκος Λαγαρός

Διδάσκων: Νίκος Λαγαρός ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ 4 η Σειρά Ασκήσεων του Μαθήματος «ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ» Διδάσκων: Νίκος Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Επιστήμη Ι. Παραγωγή και κόστος. Αρ. Διάλεξης: 8

Εισαγωγή στην Οικονομική Επιστήμη Ι. Παραγωγή και κόστος. Αρ. Διάλεξης: 8 Εισαγωγή στην Οικονομική Επιστήμη Ι Παραγωγή και κόστος Αρ. Διάλεξης: 8 Κόστος Παραγωγής Οι αγοραίες δυνάμεις της προσφοράς και ζήτησης Προσφορά και ζήτηση Χρησιμοποιούνται συχνά από τους οικονομολόγους

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Λήψη αποφάσεων υπό αβεβαιότητα

Λήψη αποφάσεων υπό αβεβαιότητα Διαχείριση Αβεβαιότητας Λήψη αποφάσεων υπό αβεβαιότητα Όταν έχω να αντιμετωπίσω ένα πρόβλημα λήψης αποφάσεων υπό αβεβαιότητα, μπορώ να ακολουθήσω τις ακόλουθες στρατηγικές: 1. Η λάθος προσέγγιση: «Βελτιστοποίηση

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0

max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0 Μαθηματικές Μέθοδοι Βελτιστοποίησης - Εστιάζουμε στο ακόλουθο πρόβλημα μεγιστοποίησης μιας αντικειμενικής συνάρτησης f υπό ένα σύνολο ανισοτικών περιορισμών: max f( x,..., x ) { x,..., x } st. : g ( x,...,

Διαβάστε περισσότερα

Βασικές έννοιες και ορισµοί. Ευθεία

Βασικές έννοιες και ορισµοί. Ευθεία Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

PANEPISTHMIO AIGAIOU GRAMMIKOS PROGRAMMATISMOS

PANEPISTHMIO AIGAIOU GRAMMIKOS PROGRAMMATISMOS PANEPISTHMIO AIGAIOU SQOLH JETIKWN EPISTHMWN TMHMA MAJHMATIKWN Shmei seic gia to mˆjhma GRAMMIKOS PROGRAMMATISMOS Jeodìshc Dhmhtrˆkoc E-mail: dimitheo@aegean.gr DhmiourgÐa kai epimèleia tou hlektronikoô

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Η εταιρεία Ζ εξετάζει την πιθανότητα κατασκευής ενός νέου, πρόσθετου εργοστασίου για την παραγωγή ενός νέου προϊόντος. Έτσι έχει δυο επιλογές: Η πρώτη αφορά στην κατασκευή

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ

Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ Προγραµµατισµός τεσσάρων διαφορετικών προϊόντων Σιτάρι, σόγια, βρώµη καικαλαµπόκι Μέγιστη συνολική έκταση 1.500 στρέµµατα Ακριβώς 100 στρέµµατα

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Τμήμα Διοίκησης Τεχνολογίας. Εξάμηνο Β' Φύλλο Ασκήσεων 2 ΔΟΜΕΣ ΕΠΙΛΟΓΗΣ Διδάσκοντες: Στέλιος Ξυνόγαλος, Θεόδωρος Κασκάλης

Τμήμα Διοίκησης Τεχνολογίας. Εξάμηνο Β' Φύλλο Ασκήσεων 2 ΔΟΜΕΣ ΕΠΙΛΟΓΗΣ Διδάσκοντες: Στέλιος Ξυνόγαλος, Θεόδωρος Κασκάλης Τμήμα Διοίκησης Τεχνολογίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ Εξάμηνο Β' Φύλλο Ασκήσεων 2 ΔΟΜΕΣ ΕΠΙΛΟΓΗΣ Διδάσκοντες: Στέλιος Ξυνόγαλος, Θεόδωρος Κασκάλης Παρατηρήσεις: 1. Τα δεδομένα εισόδου διαβάζονται με

Διαβάστε περισσότερα

Γενικές εξετάσεις 2014 Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον Τεχνολογική Κατεύθυνση

Γενικές εξετάσεις 2014 Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον Τεχνολογική Κατεύθυνση Φροντιστήρια δυαδικό 1 ΦΡΟΝΤΙΣΤΗΡΙΑ δυαδικό Γενικές εξετάσεις 2014 Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον Τεχνολογική Κατεύθυνση Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων «δυαδικό»

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΕΒ ΟΜΟ ΘΕΩΡΙΑ ΠΡΟΣΦΟΡΑΣ-ΕΝΝΟΙΑ ΚΟΣΤΟΥΣ

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΕΒ ΟΜΟ ΘΕΩΡΙΑ ΠΡΟΣΦΟΡΑΣ-ΕΝΝΟΙΑ ΚΟΣΤΟΥΣ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΕΒ ΟΜΟ ΘΕΩΡΙΑ ΠΡΟΣΦΟΡΑΣ-ΕΝΝΟΙΑ ΚΟΣΤΟΥΣ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 28-29 ΕΠΙΧ Μικροοικονοµική ιαφάνεια 1 ΝΟΜΟΣ ΠΡΟΣΦΟΡΑΣ Σύµφωνα

Διαβάστε περισσότερα

ΑΝΑΜΟΡΦΩΣΗ ΠΠΣ ΣΥΝΟΠΤΙΚΗ ΕΚΘΕΣΗ

ΑΝΑΜΟΡΦΩΣΗ ΠΠΣ ΣΥΝΟΠΤΙΚΗ ΕΚΘΕΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ ΠΠΣ ΣΥΝΟΠΤΙΚΗ ΕΚΘΕΣΗ ΠΕ 5 ΕΙΣΑΓΩΓΗ /ΑΝΑΠΤΥΞΗ ΚΑΙ ΧΡΗΣΗ ΝΕΩΝ ΤΡΟΠΩΝ ΠΑΡΟΧΗΣ ΔΙΔΑΣΚΑΛΙΑΣ Δ.5.1 Πιλοτική Εφαρμογή

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Συνολικά Έσοδα Συνολικά Έσοδα αποκαλούμε τη συνολική πρόσοδο (Total Revenue) που αποκομίζει μια επιχείρηση από την πώληση των προϊόντων της. TR = P * όπου Ρ είναι η συνάρτηση

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού Ο αλγόριθµος είναι αλγεβρική διαδικασία η οποία χρησιµοποιείται για την επίλυση προβληµάτων (προτύπων) Γραµµικού Προγραµµατισµού (ΠΓΠ). Ο αλγόριθµος έχει διάφορες παραλλαγές όπως η πινακοποιηµένη µορφή.

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Παραδείγματα προβλημάτων γραμμικού προγραμματισμού Τα προβλήματα γραμμικού προγραμματισμού ασχολούνται με καταστάσεις όπου ένας αριθμός πλουτοπαραγωγικών πηγών, όπως άνθρωποι,

Διαβάστε περισσότερα

Φ. Δογάνης I. Bafumba Χ. Σαρίμβεης. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Χημικών Μηχανικών Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής

Φ. Δογάνης I. Bafumba Χ. Σαρίμβεης. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Χημικών Μηχανικών Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής Αριστοποίηση παραγωγής ηλεκτρικής ενέργειας από συντονισμένη αξιοποίηση υδροηλεκτρικών και συμβατικών μονάδων ηλεκτροπαραγωγής με χρήση μικτού ακέραιου τετραγωνικού προγραμματισμού. Φ. Δογάνης I. Bafumba

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας

Διαχείριση Εφοδιαστικής Αλυσίδας Διαχείριση Εφοδιαστικής Αλυσίδας 1 η Διάλεξη: Βασικές Έννοιες στην Εφοδιαστική Αλυσίδα - Εξυπηρέτηση Πελατών 2015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στη Διοίκηση

Διαβάστε περισσότερα

Case 11: Πρόγραμμα Παρακίνησης Πωλητών ΣΕΝΑΡΙΟ

Case 11: Πρόγραμμα Παρακίνησης Πωλητών ΣΕΝΑΡΙΟ Case 11: Πρόγραμμα Παρακίνησης Πωλητών ΣΕΝΑΡΙΟ Η κ. Δημητρίου είναι γενική διευθύντρια σε μία επιχείρηση με κύρια δραστηριότητα την παραγωγή μαγνητικών μέσων και αναλώσιμων ειδών περιφερειακών συσκευών

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Στο παρακάτω δικτυωτό να βρεθεί η διαδρομή ελαχίστου κόστους από τον κόμβο Α έως την ευθεία Β. Οι τιμές στους τελικούς κόμβους δηλώνουν κέρδος ενώ σε όλους τους υπόλοιπους

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΓΠ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΗ Το πρόγραμμα LINDO O Solver (Επίλυση) του Excel ΕΦΑΡΜΟΓΕΣ ΓΠ ΣΕ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΡΟΒΛΗΜΑΤΑ Το Πρόβλημα Μίξης Παραγωγής

ΕΠΙΛΥΣΗ ΓΠ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΗ Το πρόγραμμα LINDO O Solver (Επίλυση) του Excel ΕΦΑΡΜΟΓΕΣ ΓΠ ΣΕ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΡΟΒΛΗΜΑΤΑ Το Πρόβλημα Μίξης Παραγωγής Εφαρμογές ΓΠ - Επίλυση με Χρήση Υπολογιστή ΕΠΙΛΥΣΗ ΓΠ ΜΕ ΧΡΗΣΗ ΥΠΟΛΟΓΙΣΤΗ Το πρόγραμμα LINDO O Solver (Επίλυση) του Excel ΕΦΑΡΜΟΓΕΣ ΓΠ ΣΕ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΡΟΒΛΗΜΑΤΑ Το Πρόβλημα Μίξης Παραγωγής (Product mix)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-7 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Άσκηση 1. Λύση

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Άσκηση 1. Λύση ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Άσκηση 1 Η εταιρεία Ζ εξετάζει την πιθανότητα κατασκευής ενός νέου, πρόσθετου εργοστασίου για την παραγωγή ενός νέου προϊόντος. Έτσι έχει δυο επιλογές: Η πρώτη αφορά στην

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Εξετάσεις Προσομοίωσης 18/01/2015 Θέμα Α Α1. Δίνεται ο παρακάτω αλγόριθμος. Αλγόριθμος Α1 Αθρ 0 μ 1 Όσο μ

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΟΦΙΑ ΠΑΝΑΓΙΩΤΙΔΟΥ ΣΕΠΤΕΜΒΡΙΟΣ 05 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ.... Στοχαστικές

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo)

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo) ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επίλυση προβλημάτων γραμμικού προγραμματισμού με χρήση κατάλληλου λογισμικού (Excel, Lindo) Μπουντούρης Ηρακλήs Επιβλέπουσα

Διαβάστε περισσότερα