AINE ÕPPE- JA KASVATUSEESMÄRGID ÜLDPÄDEVUSED

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "AINE ÕPPE- JA KASVATUSEESMÄRGID ÜLDPÄDEVUSED"

Transcript

1 Matemaatika Gümnaasium klass Kursusi: 14 (lisaks kordamine) Tunde kursuses: 35 Rakendumine: 1. september 2016 Koostamise alus: Gümnaasiumi riiklik õppekava, lisa 3; Koeru Keskkooli õppekava AINE ÕPPE- JA KASVATUSEESMÄRGID ÜLDPÄDEVUSED Matemaatika õppimise kaudu arenevad matemaatikapädevuse kõrval kõik ülejäänud üldpädevused. Kultuuri- ja väärtuspädevus. Õpilasi suunatakse tunnetama loogiliste mõttekäikude elegantsi ning õpitavate geomeetriliste kujundite ilu ja seost arhitektuuri ning loodusega. Matemaatika õppimine eeldab järjepidevust, selle kaudu arenevad isiksuse omadustest eelkõige püsivus, sihikindlus ja täpsus. Kasvatatakse sallivalt suhtuma erinevate matemaatiliste võimetega õpilastesse. Sotsiaalne ja kodanikupädevus. Matemaatikas arendatakse suutlikkust väljendada oma mõtet selgelt, lühidalt ja täpselt. Eelkõige toimub see hüpoteese ja teoreeme sõnastades ning ülesande lahendust vormistades. Tekstülesannete lahendamise kaudu areneb oskus teksti mõista: eristada olulist ebaolulisest ja otsida välja etteantud suuruse leidmiseks vajalikku infot. Matemaatika oluline roll on kujundada valmisolek erinevatel viisidel (tekst, graafik, tabel, diagramm, valem) esitatud info mõistmiseks, seostamiseks ja edastamiseks. Arendatakse suutlikkust formaliseerida tavakeeles esitatud infot ning vastupidi: esitada matemaatiliste sümbolite ja valemite sisu tavakeeles. Enesemääratluspädevus. Matemaatikat õppides on tähtsal kohal õpilaste iseseisev töö. Iseseisva ülesannete lahendamise kaudu võimaldatakse õpilasel hinnata ja arendada oma matemaatilisi võimeid. Õpipädevus. Matemaatikat õppides on väga oluline tunnetada materjali sügavuti ning saada kõigest aru. Probleemülesandeid lahendades arendatakse analüüsimise, ratsionaalsete võtete otsingu ja tulemuste kriitilise hindamise oskust. Väga oluline on üldistamise ja analoogia kasutamise oskus: oskus kanda õpitud teadmisi üle sobivatesse kontekstidesse. Õpilases kujundatakse arusaam, et keerukaid ülesandeid on võimalik lahendada üksnes tema enda iseseisva mõtlemise teel. Suhtluspädevus. Matemaatikas arendatakse suutlikkust väljendada oma mõtet selgelt, lühidalt ja täpselt. Õpilane õpib oma mõtteid esitama ja põhjendama. Matemaatika-, loodusteaduste ja tehnoloogiaalane pädevus. Suutlikkus kasutada matemaatikale omast keelt, sümboleid, meetodeid koolis ja igapäevaelus; suutlikkus kirjeldada ümbritsevat maailma

2 loodusteaduslike mudelite ja mõõtmisvahendite abil ning teha tõenduspõhiseid otsuseid; mõista loodusteaduste ja tehnoloogia olulisust ja piiranguid; kasutada uusi tehnoloogiaid eesmärgipäraselt. Ettevõtlikkuspädevus. Selle pädevuse arendamine on matemaatikas kesksel kohal. Uute matemaatiliste teadmisteni jõutakse sageli vaadeldavate objektide omaduste analüüsimise kaudu: uuritakse objektide ühiseid omadusi, mille alusel sõnastatakse hüpotees ning otsitakse ideid hüpoteesi kehtivuse põhjendamiseks. Sellise tegevuse käigus arenevad oskus näha ja sõnastada probleeme, genereerida ideid ning kontrollida nende headust. Ettevõtlikkuspädevust arendatakse mitmete eluliste andmetega ülesannete lahendamise kaudu. Digipädevus. Matemaatikat õppides arendada suutlikkust kasutada uuenevat digitehnoloogiat õppimisel. Arendada oskust kasutada probleemilahenduseks sobivaid digivahendeid ja võtteid. Kokkuvõtlikult: Oluline oskus on keskenduda õppeülesannete täitmisele ning oskus suunamise abil kasutada eakohaseid õpivõtteid (sealhulgas paaris- ja rühmatöövõtteid). Arendatakse edasi iseseisva töö oskusi, sealhulgas õpilase tööle õppekirjandusega (juhitud lugemine, töölehe täitmine, küsimustele vastuse otsimine või mõni muu), Võimalik on arendada õpilaste loogilist mõtlemist ja selget väljendusoskust nii sõnas kui kirjas Suulise väljendusoskuse kujundamine. Õpilaste loova mõtlemise arendamiseks on soovitav neid suunata ülesande erinevate lahenduskäikude leidmisele. Klassis saame oma õpilasi õpetada kaaslast kuulama ja abistama, tema erisusi arvestama. Vastuse hindamise oskus (vajalik oskus igas eluvaldkonnas). Oskab oma tegevust kavandada ja hinnata ning tulemuse saavutamiseks vajalikke tegevusi valida ja rakendada, oma eksimusi näha ja tunnistada ning oma tegevust korrigeerida Esinemis- ja kuulamisoskust. Arvuti kasutusoskus. Vastutustundlike ja iseseisvate õpilaste kujunemine. LÄBIVAD TEEMAD Läbiv teema Teabekeskkond : õpilast juhitakse arendama kriitilise teabeanalüüsi oskusi (meedia manipulatsioonid, nt riigieksamite statistika meedias jms). Läbiv teema Tehnoloogia ja innovatsioon : õpilast suunatakse kasutama info- ja kommunikatsiooonitehnoloogiat (IKT) informatsiooni kogumisel ja töötlemisel.

3 Läbiv teema Kultuuriline identiteet : kirjeldada ühiskonnas toimuvaid protsesse ühenduses mitmekultuurilisuse teemaga (eri rahvused, erinevad usundid, erinev sotsiaalne positsioon ühiskonnas jt). Läbiva teema Kodanikualgatus ja ettevõtlikkus : matemaatika ning teisi õppeaineid ja igapäevaelu integreerivate ühistegevuste kaudu (uurimistööd, rühmatööd, projektid jt). IKT: 1) info otsimine; 2) andmetöötlus; 3) tõenäosusteooria küsimuste selgitamine erinevate programmide abil. LÕIMING Loodusainetega Arvu 10 astmed ja arvu standardkuju kasutatakse keemias ja füüsikas. Tekstülesanded füüsikast ja loodusteadustest. Tekstülesannetes pöörata tähelepanu, et päikesekiire langemisnurka käsitletakse füüsikas ja ülejäänud loodusteadustes erinevalt. Geograafias mõeldakse selle all maapinna ja päikesekiire vahelist nurka, füüsikas aga viimase täiendusnurka. Käsitleda kraadi, minutit, sekundit. Vektori ühtlustatud käsitlemine füüsikas ja matemaatikas. Trigonomeetrilised funktsioonid ja vahelduvvool; tuletise tähendus hetkiiruse näitel. Eksponentfunktsioon ja looduses toimuvad orgaanilised protsessid. Matemaatikaõpetus lõimitakse teiste ainevaldkondade õpetusega kaht põhilist teed pidi. Ühelt poolt kujuneb õpilastel teistes ainevaldkondades rakendatavate matemaatiliste meetodite kasutamise kaudu arusaamine matemaatikast kui oma universaalse keele ja meetoditega teisi ainevaldkondi toetavast ning lõimivast baasteadusest. Teiselt poolt annab teistest ainevaldkondadest ja reaalsusest tulenevate ülesannete kasutamine matemaatikakursuses õpilastele ettekujutuse matemaatika rakendusvõimalustest ning tihedast seotusest õpilasi ümbritseva maailmaga. Peale selle on ainete lõimimise võimsad vahendid kollegiaalses koostöös teiste ainete õpetajatega tehtavad õpilaste ühisprojektid, uurimistööd, õppekäigud ja muu ühistegevus. Kõige tihedamat koostööd saab matemaatikaõpetaja teha loodusvaldkonna ainete õpetajatega. Matemaatika pakub lõimingut ka võõrkeelte ainevaldkonnaga. Matemaatikas kasutatakse rohkesti võõrkeelseid termineid, mille algkeelne tähendus tuleb õpilastele teadvustada. Lõimingut võõrkeeltega tugevdab õpilaste juhatamine erinevaid võõrkeelseid teatme-allikaid kasutama. Eriline koht on internetil oma võimalustega. Suure osa matemaatikateadmistest peaks õpilane saama õpetuses uurimuslikku õpet kasutades. Sel viisil lõimitakse matemaatika õppimise meetod teistes loodusainetes kasutatava meetodiga. Loodusõpetus märkab looduses tasandilisi ja ruumikujundeid; järjestab, rühmitab ja klassifitseerib neid teatavate tunnuste järgi. Moodustab etteantud tunnuste abil hulki, leiab nende hulkade ühisosa.

4 Oskab kasutada plaanil ja kaardil olevat mõõtkava. Arvu 10 astmed ja arvu standardkuju kasutatakse keemias ja füüsikas. Tekstülesanded füüsikast ja loodusteadustest. Tekstülesannetes pöörata tähelepanu, et päikesekiire langemisnurka käsitletakse füüsikas ja ülejäänud loodusteadustes erinevalt. Geograafias mõeldakse selle all maapinna ja päikesekiire vahelist nurka, füüsikas aga viimase täiendusnurka. Käsitleda kraadi, minutit, sekundit. Vektori ühtlustatud käsitlemine füüsikas ja matemaatikas. Trigonomeetrilised funktsioonid ja vahelduvvool; tuletise tähendus hetkiiruse näitel. Eksponentfunktsioon ja looduses toimuvad orgaanilised protsessid. Eesti keel- arendatakse õpilase oskust matemaatilisi termineid õigesti kasutada; leiab ette antud tekstist tuttavaid matemaatilisi termineid ning kasutab neid iseseisvalt lausete moodustamisel; loetust arusaamine jne. Kehalise kasvatusega kasutab mõisteid: kiirus, kiirendus, aeg, tee pikkus, pikem, lühem, aeglasemkiirem jt ning teeb jõukohaseid arvutusi. Inimeseõpetusega kasutab arvnäitajaid pikkuse, kaalu, kehatemperatuuri jms väljendamisel. Tehnoloogiaõpetusega õpilane kasutab otstarbekalt lihtsamaid mõõtevahendeid, valmistab lihtsamaid tasandilisi ja ruumilisi mudeleid (geomeetrilised kujundid, liimib kokku ruumikujundeid). Kasutab IKT vahendeid õpetaja juhendamisel. TEEMAD I. Avaldised ja arvuhulgad Naturaalarvude hulk N, täisarvude hulk Z, ratsionaalarvude hulk Q, irratsionaalarvude hulk I ja reaalarvude hulk R, nende omadused. Reaalarvude piirkonnad arvteljel. Arvu absoluutväärtus. Arvusüsteemid (kahendsüsteemi näitel). Ratsionaal- ja irratsionaalavaldised. Arvu n-es juur. Astme mõiste üldistamine: täisarvulise ja ratsionaalarvulise astendajaga aste. Tehted astmete ja juurtega. 1) selgitab naturaalarvude hulga N, täisarvude hulga Z, ratsionaalarvude hulga Q, irratsionaalarvude hulga I ja reaalarvude hulga R omadusi; 2) defineerib arvu absoluutväärtuse; 3) märgib arvteljel reaalarvude piirkondi; 4) teisendab naturaalarve kahendsüsteemi; 5) esitab arvu juure ratsionaalarvulise astendajaga astmena ja vastupidi; 6) sooritab tehteid astmete ning võrdsete juurijatega juurtega; 7) teisendab lihtsamaid ratsionaal- ja irratsionaalavaldisi; 8) lahendab rakendussisuga ülesandeid (sh protsentülesanded).

5 II. Võrrandid ja võrrandisüsteemid Võrdus, võrrand, samasus. Võrrandite samaväärsus, samaväärsusteisendused. Lineaar-, ruut-, murd- ja juurvõrrandid ning nendeks taanduvad võrrandid. Üht absoluutväärtust sisaldav 1) selgitab võrduse, samasuse ja võrrandi, võrrandi lahendi, võrrandi- ja võrratusesüsteemi lahendi ning lahendihulga mõistet; 2) selgitab võrrandite ning nende süsteemide lahendamisel rakendatavaid samasusteisendusi; 3) lahendab ühe tundmatuga lineaar-, ruut-, murd- ja lihtsamaid juurvõrrandeid ning nendeks taanduvaid võrrandeid; võrrand. 4) lahendab lihtsamaid üht absoluutväärtust sisaldavaid Võrrandisüsteemid, kus vähemalt üks võrranditest on lineaarvõrrand. Kahe- ja kolmerealine determinant. võrrandeid; 5) lahendab võrrandisüsteeme; 6) lahendab tekstülesandeid võrrandite (võrrandisüsteemide) abil; 7) kasutab arvutialgebra programmi determinante arvutades ning võrrandeid ja võrrandisüsteeme lahendades. Tekstülesanded. III. Võrratused. Trigonomeetria I Võrratuse mõiste ja omadused. 1) selgitab võrratuse omadusi ning võrratuse ja võrratusesüsteemi Lineaarvõrratused. lahendihulga mõistet; Ruutvõrratused. 2) selgitab võrratuste ning nende süsteemide lahendamisel Intervallmeetod. rakendatavaid samasusteisendusi; Lihtsamad murdvõrratused. 3) lahendab lineaar-, ruut- ja murdvõrratusi ning lihtsamaid Võrratusesüsteemid. võrratusesüsteeme; Teravnurga siinus, koosinus 4) kasutab arvutit, lahendades võrratusi ja võrratusesüsteeme; ja tangens. Täiendusnurga 5) leiab taskuarvutil teravnurga trigonomeetriliste funktsioonide trigonomeetrilised väärtused ning nende väärtuste järgi nurga suuruse; funktsioonid. 6) lahendab täisnurkse kolmnurga; Trigonomeetrilised 7) kasutab täiendusnurga trigonomeetrilisi funktsioone;

6 põhiseosed täisnurkses kolmnurgas. 8) kasutab lihtsustamisülesannetes trigonomeetria põhiseoseid. IV. Trigonomeetria II Nurga mõiste üldistamine. Nurga kraadi- ja radiaanmõõt. Mis tahes nurga trigonomeetrilised funktsioonid. Nurkade 0 o, 30 o, 45º, 60 o, 90 o, 180 o, 270 o, 360 o siinuse, koosinuse ja tangensi täpsed väärtused. Seosed ühe ja sama nurga trigonomeetriliste funktsioonide vahel. Taandamisvalemid. Negatiivse ja täispöördest suurema nurga trigonomeetrilised funktsioonid. Kahe nurga summa ja vahe trigonomeetrilised funktsioonid. Kahekordse nurga 1) teisendab kraadimõõdu radiaanmõõduks ja vastupidi; 2) arvutab ringjoone kaare kui ringjoone osa pikkuse ning ringi sektori kui ringi osa pindala; 3) defineerib mis tahes nurga siinuse, koosinuse ja tangensi; tuletab siinuse, koosinuse ja tangensi vahelisi seoseid; 4) tuletab ja teab teatud nurkade siinuse, koosinuse ja tangensi täpseid väärtusi; rakendab taandamisvalemeid, negatiivse ja täispöördest suurema nurga valemeid; 5) leiab taskuarvutil trigonomeetriliste funktsioonide väärtused ning nende väärtuste järgi nurga suuruse; 6) teab kahe nurga summa ja vahe valemeid; tuletab ning teab kahekordse nurga siinuse, koosinuse ja tangensi valemeid; 7) teisendab lihtsamaid trigonomeetrilisi avaldisi; 8) tõestab siinus- ja koosinusteoreemi; 9) lahendab kolmnurga ning arvutab kolmnurga pindala; 10) rakendab trigonomeetriat, lahendades erinevate eluvaldkondade ülesandeid.

7 trigonomeetrilised funktsioonid. Trigonomeetrilised avaldised. Ringjoone kaare pikkus, ringi sektori pindala. Kolmnurga pindala valemid. Siinus- ja koosinusteoreem. Kolmnurga lahendamine Rakendusülesanded. V. Vektor tasandil. Joone võrrand Kahe punkti vaheline kaugus. Vektori mõiste ja tähistamine. 1) selgitab mõisteid vektor, ühik-, null- ja vastandvektor, vektori Nullvektor, ühikvektor, koordinaadid, kahe vektori vaheline nurk; vastandvektor, seotud vektor, 2) liidab, lahutab ja korrutab vektoreid arvuga nii geomeetriliselt vabavektor. Vektorite kui ka koordinaatkujul; võrdsus. Vektori 3) arvutab kahe vektori skalaarkorrutise ning rakendab vektoreid koordinaadid. Vektori pikkus. füüsikalise sisuga ülesannetes; Vektorite liitmine ja 4) kasutab vektorite ristseisu ja kollineaarsuse tunnuseid; lahutamine. Vektori 5) lahendab kolmnurka vektorite abil; korrutamine arvuga. 6) leiab lõigu keskpunkti koordinaadid; Lõigu keskpunkti 7) tuletab ja koostab sirge võrrandi (kui sirge on määratud punkti koordinaadid. Kahe vektori ja sihivektoriga, punkti ja tõusuga, tõusu ja algordinaadiga, kahe vaheline nurk. Vektorite punktiga ning teisendab selle üldvõrrandiks; määrab kahe sirge kollineaarsus. Kahe vektori vastastikuse asendi tasandil, lõikuvate sirgete korral leiab sirgete skalaarkorrutis, selle lõikepunkti ja nurga sirgete vahel; rakendusi, vektorite ristseis. 8) koostab hüperbooli, parabooli ja ringjoone võrrandi; joonestab Kolmnurkade lahendamine ainekavas esitatud jooni nende võrrandite järgi; leiab kahe joone vektorite abil. lõikepunktid.

8 Sirge võrrand. Sirge üldvõrrand. Kahe sirge vastastikused asendid tasandil. Nurk kahe sirge vahel. Ringjoone võrrand. 2 Parabool y = ax + bx+ c ja hüperbool. Joone võrrandi mõiste. Kahe joone lõikepunkt. a y = x VI. Tõenäosusteooria ja matemaatiline statistika Permutatsioonid, kombinatsioonid ja variatsioonid. Sündmus. Sündmuste liigid. Klassikaline tõenäosus. Suhteline sagedus, statistiline tõenäosus. Geomeetriline tõenäosus. Sündmuste liigid: sõltuvad ja sõltumatud, välistavad ja mittevälistavad. Tõenäosuste liitmine ja korrutamine. Bernoulli valem. Diskreetne ja pidev juhuslik suurus, binoomjaotus, 1) eristab juhuslikku, kindlat ja võimatut sündmust ning selgitab sündmuse tõenäosuse mõistet, liike ja omadusi; 2) selgitab permutatsioonide, kombinatsioonide ja variatsioonide tähendust ning leiab nende arvu; 3) selgitab sõltuvate ja sõltumatute sündmuste korrutise ning välistavate ja mittevälistavate sündmuste summa tähendust; 4) arvutab erinevate, ka reaalse eluga seotud sündmuste tõenäosusi; 5) selgitab juhusliku suuruse jaotuse olemust ning juhusliku suuruse arvkarakteristikute (keskväärtus, mood, mediaan, standardhälve) tähendust, kirjeldab binoom- ja normaaljaotust; kasutab Bernoulli valemit tõenäosust arvutades; 6) selgitab valimi ja üldkogumi mõistet, andmete süstematiseerimise ja statistilise otsustuse usaldatavuse tähendust; 7) arvutab juhusliku suuruse jaotuse arvkarakteristikuid ning teeb

9 jaotuspolügoon ning arvkarakteristikud (keskväärtus, mood, mediaan, dispersioon, standardhälve). Rakendusülesanded. Üldkogum ja valim. Andmete kogumine ja süstematiseerimine. Statistilise andmestiku analüüsimine ühe tunnuse järgi. Korrelatsiooniväli. Lineaarne korrelatsioonikordaja. Normaaljaotus (näidete varal). Statistilise otsustuse usaldatavus keskväärtuse usaldusvahemiku näitel. Andmetöötluse projekt, mis realiseeritakse arvutiga (soovitatavalt koostöös mõne teise õppeainega). nende alusel järeldusi jaotuse või uuritava probleemi kohta; 8) leiab valimi järgi üldkogumi keskmise usalduspiirkonna; 9) kogub andmestiku ja analüüsib seda arvutil statistiliste vahenditega. VII. Funktsioonid. Arvjadad Funktsioonid y = ax+ b, 2 y = ax + bx+ c, (kordavalt). Funktsiooni mõiste ja üldtähis. Funktsiooni esitusviisid. Funktsiooni määramis- ja muutumispiirkond. Paaris- ja paaritu funktsioon. a y = x 1) selgitab funktsiooni mõistet ja üldtähist ning funktsiooni uurimisega seonduvaid mõisteid; 2) kirjeldab graafiliselt esitatud funktsiooni omadusi; skitseerib graafikuid ning joonestab neid arvutiprogrammidega; 3) selgitab pöördfunktsiooni mõistet, leiab lihtsama funktsiooni pöördfunktsiooni ning skitseerib või joonestab vastavad graafikud; 4) esitab liitfunktsiooni lihtsamate funktsioonide kaudu;

10 Funktsiooni nullkohad, positiivsus- ja negatiivsuspiirkond. Funktsiooni kasvamine ja kahanemine. Funktsiooni ekstreemum. Astmefunktsioon. 2 Funktsioonide y = x, y= x 3 y= x 1, y= x, y= x, y= 3 x, y = x -2, y = x graafikud ja omadused. Liitfunktsioon. Pöördfunktsioon. Funktsioonide y = f(x), y = f(x) + a, y = f(x + a), y = f(ax), y = af(x) graafikud arvutil. Arvjada mõiste, jada üldliige, jadade liigid. Aritmeetiline jada, selle omadused. Aritmeetilise jada üldliikme valem ning esimese n liikme summa valem. Geomeetriline jada, selle omadused. Geomeetrilise jada üldliikme valem ning esimese n liikme summa valem. Arvjada piirväärtus. Piirväärtuse arvutamine. Hääbuv geomeetriline jada, selle summa. Arv e piirväärtusena. Ringjoone pikkus ja ringi pindala piirväärtusena, arv π. 5) leiab valemiga esitatud funktsiooni määramispiirkonna, nullkohad, positiivsus- ja negatiivsuspiirkonna algebraliselt; kontrollib, kas funktsioon on paaris või paaritu; 6) uurib arvutiga ning kirjeldab funktsiooni y= f (x) graafiku seost funktsioonide y = f(x) + a, y = f(x + a), y = f(ax), y = af(x) graafikutega; 7) selgitab arvjada, aritmeetilise ja geomeetrilise jada ning hääbuva geomeetrilise jada mõistet; 8) tuletab aritmeetilise ja geomeetrilise jada esimese n liikme summa ja hääbuva geomeetrilise jada summa valemid ning rakendab neid ning aritmeetilise ja geomeetrilise jada üldliikme valemeid ülesandeid lahendades; 9) selgitab jada piirväärtuse olemust ning arvutab piirväärtuse; teab arvude π ja e tähendust; 10) lahendab elulisi ülesandeid aritmeetilise, geomeetrilise ning hääbuva geomeetrilise jada põhjal.

11 Rakendusülesanded. VIII. Funktsioonid II

12 Liitprotsendiline kasvamine ja kahanemine. Eksponentfunktsioon, selle graafik ja omadused. Arvu logaritm. Korrutise, jagatise ja astme logaritm. Logaritmimine ja potentseerimine. Üleminek logaritmi ühelt aluselt teisele. Logaritmfunktsioon, selle graafik ja omadused. Eksponent- ja logaritmvõrrand, nende lahendamine. Rakendusülesandeid eksponent- ja logaritmvõrrandite kohta. Eksponent- ja logaritmvõrratus. 1) selgitab liitprotsendilise kasvamise ja kahanemise olemust; 2) lahendab liitprotsendilise kasvamise ja kahanemise ülesandeid; 3) kirjeldab eksponentfunktsiooni, sh funktsiooni x y= e omadusi; 4) selgitab arvu logaritmi mõistet ja selle omadusi; logaritmib ning potentseerib lihtsamaid avaldisi; 5) kirjeldab logaritmfunktsiooni ja selle omadusi; 6) joonestab eksponent- ja logaritmfunktsiooni graafikuid ning loeb graafikult funktsioonide omadusi; 7) lahendab lihtsamaid eksponent- ja logaritmvõrrandeid ning võrratusi; 8) kasutab eksponent- ja logaritmfunktsioone reaalse elu nähtusi modelleerides ning uurides IX. Funktsiooni piirväärtus ja tuletis

13 Funktsiooni perioodilisus. Siinus-, koosinus- ja tangensfunktsiooni graafik ning omadused. Mõisted arcsinm, arccosm, arctanm. Lihtsamad trigonomeetrilised võrrandid. Funktsiooni piirväärtus ja pidevus. Argumendi muut ja funktsiooni muut. Hetkkiirus. Funktsiooni graafiku puutuja tõus. Funktsiooni tuletise mõiste. Funktsiooni tuletise geomeetriline tähendus. Funktsioonide summa ja vahe tuletis. Kahe funktsiooni korrutise tuletis. Astmefunktsiooni tuletis. Kahe funktsiooni jagatise tuletis. Liitfunktsiooni tuletis. Funktsiooni teine tuletis. Trigonomeetriliste funktsioonide tuletised. Eksponent- ja logaritmfunktsiooni tuletis. Tuletiste tabel. 1) selgitab funktsiooni perioodilisuse mõistet ning siinus-, koosinus- ja tangensfunktsiooni mõistet; 2) joonestab siinus-, koosinus- ja tangensfunktsiooni graafikuid ning loeb graafikult funktsioonide omadusi; 3) leiab lihtsamate trigonomeetriliste võrrandite üldlahendid ja erilahendid etteantud piirkonnas, lahendab lihtsamaid trigonomeetrilisi võrratusi; 4) selgitab funktsiooni piirväärtuse ja tuletise mõistet ning tuletise füüsikalist ja geomeetrilist tähendust; 5) tuletab funktsioonide summa, vahe, korrutise ja jagatise tuletise leidmise eeskirjad ning rakendab neid; 6) leiab funktsiooni esimese ja teise tuletise. X. Tuletise rakendused

14 Puutuja tõus. Joone puutuja võrrand. Funktsiooni kasvamis- ja kahanemisvahemik; funktsiooni ekstreemum; ekstreemumi olemasolu tarvilik ja piisav tingimus. Funktsiooni suurim ja vähim väärtus lõigul. Funktsiooni graafiku kumerus- ja nõgususvahemik, käänupunkt. Funktsiooni uurimine tuletise abil. Funktsiooni graafiku skitseerimine funktsiooni omaduste põhjal. Funktsiooni tuletise kasutamise rakendusülesandeid. Ekstreemumülesanded. 1) koostab funktsiooni graafiku puutuja võrrandi; 2) selgitab funktsiooni kasvamise ja kahanemise seost funktsiooni tuletise märgiga, funktsiooni ekstreemumi mõistet ning ekstreemumi leidmise eeskirja; 3) leiab funktsiooni kasvamis- ja kahanemisvahemikud, ekstreemumid; funktsiooni graafiku kumerus- ja nõgususvahemikud ning käänupunkti; 4) uurib funktsiooni täielikult ja skitseerib funktsiooni omaduste põhjal graafiku; 5) leiab funktsiooni suurima ja vähima väärtuse etteantud lõigul; 6) lahendab rakenduslikke ekstreemumülesandeid (sh majandussisuga). XI. Integraal. Planimeetria kordamine

15 Algfunktsiooni ja määramata integraali mõiste. Integraali omadused. Muutuja vahetus integreerimisel. Kõvertrapets, selle pindala piirväärtusena. Määratud integraal, Newtoni- Leibnizi valem. Integraali kasutamine tasandilise kujundi pindala, hulktahuka pöördkeha ruumala ning töö arvutamisel. Kolmnurk, selle sise- ja välisnurk, kolmnurga sisenurga poolitaja, selle omadus. Kolmnurga sise- ja ümberringjoon. Kolmnurga mediaan, mediaanide omadus. Kolmnurga kesklõik, selle omadus. Meetrilised seosed täisnurkses kolmnurgas. Hulknurk, selle liigid. Kumera hulknurga sisenurkade summa. Hulknurkade sarnasus. Sarnaste hulknurkade ümbermõõtude suhe ja pindalade suhe. Hulknurga sise- ja ümberringjoon. Rööpkülik, selle eriliigid ja omadused. Trapets, selle liigid. Trapetsi kesklõik, selle omadused. Kesknurk ja piirdenurk. Thalese teoreem. Ringjoone lõikaja ning 1) selgitab algfunktsiooni mõistet ning leiab lihtsamate funktsioonide määramata integraale põhiintegraalide tabeli, integraali omaduste ja muutuja vahetuse (argumendiks on lineaarfunktsioon) järgi; 2) selgitab kõvertrapetsi mõistet ning rakendab Newtoni-Leibnizi valemit määratud integraali leides; 3) arvutab määratud integraali abil kõvertrapetsi pindala, mitmest osast koosneva pinnatüki ja kahe kõveraga piiratud pinnatüki pindala ning lihtsama pöördkeha ruumala; 4) selgitab geomeetriliste kujundite ja nende elementide omadusi, kujutab vastavaid kujundeid joonisel; uurib arvutiga geomeetriliste kujundite omadusi ning kujutab vastavaid kujundeid joonisel; 5) selgitab kolmnurkade kongruentsuse ja sarnasuse tunnuseid, sarnaste hulknurkade omadusi ning kujundite ümbermõõdu ja ruumala arvutamist; 6) lahendab planimeetria arvutusülesandeid ja lihtsamaid tõestusülesandeid; 7) kasutab geomeetrilisi kujundeid kui mudeleid ümbritseva ruumi objektide uurimisel.

16 puutuja. Kõõl- ja puutujahulknurk. Kolmnurga pindala. Rakenduslikud geomeetriaülesanded. XII. Geomeetria I (analüütiline käsitlus) Stereomeetria asendilaused: nurk kahe sirge, sirge ja 1) kirjeldab punkti koordinaate ruumis; tasandi ning kahe tasandi 2) selgitab ruumivektori mõistet, lineaartehteid vektoritega, vahel, sirgete ja tasandite vektorite kollineaarsuse ja komplanaarsuse tunnuseid ning ristseis ning paralleelsus, vektorite skalaarkorrutist; kolme ristsirge teoreem, 3) tuletab sirge ja tasandi võrrandid ning kirjeldab sirge ja tasandi hulknurga projektsiooni vastastikuseid asendeid; pindala. 4) arvutab kahe punkti vahelise kauguse, vektori pikkuse ja kahe Ristkoordinaadid ruumis. vektori vahelise nurga; Punkti koordinaadid ruumis, 5) koostab sirge ja tasandi võrrandeid; punkti kohavektor. Vektori 6) määrab võrranditega antud kahe sirge, sirge ja tasandi, kahe koordinaadid ruumis, vektori tasandi vastastikuse asendi ning arvutab nurga nende vahel; pikkus. Lineaartehted 7) kasutab vektoreid geomeetrilise ja füüsikalise sisuga ülesandeid vektoritega. Vektorite lahendades. kollineaarsus ja komplanaarsus, vektori avaldamine kolme mis tahes mittekomplanaarse vektori kaudu. Kahe vektori skalaarkorrutis. Kahe vektori vaheline nurk. Sirge võrrandid ruumis, tasandi võrrand. Võrranditega antud sirgete ja tasandite

17 vastastikuse asendi uurimine, sirge ja tasandi lõikepunkt, võrranditega antud sirgete vahelise nurga leidmine. Rakendusülesanded. XIII. Geomeetria II (sünteetiline käsitlus) Prisma ja püramiid, nende pindala ja ruumala, 1) kirjeldab hulktahukate ja pöördkehade liike ning nende korrapärased hulktahukad. pindalade arvutamise valemeid; Pöördkehad; silinder, koonus 2) tuletab silindri, koonuse või kera ruumala valemi; ja kera, nende pindala ja 3) kujutab joonisel prismat, püramiidi, silindrit, koonust ja kera ruumala, kera segment, kiht, ning nende lihtsamaid lõikeid tasandiga; vöö ja sektor. Ülesanded 4) arvutab kehade pindala ja ruumala ning nende kehade ja tasandi hulktahukate ja pöördkehade lõike pindala; kohta. Hulktahukate ja 5) kasutab hulktahukaid ja pöördkehi kui mudeleid ümbritseva pöördkehade lõiked ruumi objekte uurides. tasandiga. Rakendusülesanded. XIV. Matemaatika rakendused, reaalsete protsesside uurimine Matemaatilise mudeli tähendus, nähtuse modelleerimise etapid, mudeli headuse ja rakendatavuse hindamine. Tekstülesannete (sh protsentülesannete) lahendamine võrrandite kui 1) selgitab matemaatilise modelleerimise ning selle protseduuride üldist olemust; 2) tunneb lihtsamate mudelite koostamiseks vajalikke meetodeid ja funktsioone; 3) kasutab mõningaid loodus- ja majandusteaduste olulisemaid mudeleid ning meetodeid; 4) lahendab tekstülesandeid võrrandite abil; ülesannete matemaatiliste 5) märkab reaalse maailma valdkondade mõningaid mudelite koostamise ja seaduspärasusi ja seoseid; lahendamise abil. 6) koostab kergesti modelleeritavate reaalsuse nähtuste

18 Lineaar-, ruut- ja eksponentfunktsioone rakendavad mudelid loodusning majandusteaduses, tehnoloogias ja mujal (nt füüsikaliste suuruste seosed, orgaanilise kasvamise mudelid bioloogias, nõudlusja pakkumisfunktsioonid ning marginaalfunktsioonid majandusteaduses, materjalikulu arvutused tehnoloogias jne). Kursuse käsitlus tugineb arvutusvahendite kasutamisele (tasku- ja personaalarvutid). matemaatilisi mudeleid ning kasutab neid tegelikkuse uurimiseks; 7) kasutab tasku- ja personaalarvutit ülesannete lahendamisel. IKT ainekavas Ainekavas on öeldud, et IKT võimalusi kasutatakse nii seoseid visualiseerides, hüpoteese püstitades kui ka teadmisi kinnistades. Ainekavale vastavad IKT kasutamist eeldavad õppematerjalid on koondatud veebilehele Et arvuteid oleks võimalik kasutada metoodiliselt õigesti, on matemaatika ainekavas õpikeskkonnale esitatud nõue, et kool varustab klassiruumid, kus õpetatakse matemaatikat, internetiühendusega sülearvutite või lauaarvutite komplektiga arvestusega vähemalt üks arvuti viie õpilase kohta I ja II kooliastmes ja üks arvuti kahe õpilase kohta III kooliastmes. Arvutite olemasolu klassiruumis võimaldab arvuteid kasutada vastavalt vajadusele. Näiteks drillprogramme pole alati vaja kasutada tervel klassil. Tugevamad õpilased vajavad harjutamist kindlasti vähem. Samal ajal, kui mõned õpilased lahendavad arvutil harjutusülesandeid, saab õpetaja tegeleda ülejäänud õpilastega. Kui ainetund toimub arvutiklassis, siis olude sunnil on õpilane terve tunni arvuti taga. Nii aine omandamise kui ka lapse tervise seisukohalt on hoopis efektiivsem harjutada korraga minutit ühes matemaatika tunnis ja seda siis sagedamini. Kui aga arvutit kasutatakse tööriistana probleemülesannete lahendamisel või hüpoteeside püstitamisel, siis on parem, kui õpilased töötavad kahekesi ühe arvuti taga.

19 HINDAMINE Hindamise aluseks on Koeru Keskkooli õppekavas sätestatud hindamisjuhend. Hindamise vormidena kasutatakse kujundavat ja kokkuvõtvat hindamist. Kujundav hindamine annab infot ülesannete üldise lahendamisoskuse ja matemaatilise mõtlemise ning õpilase suhtumise kohta matemaatikasse. Õppetunni või muu õppetegevuse vältel antakse õpilasele tagasisidet aine ja ainevaldkonna teadmistest ja oskustest ning õpilase hoiakutest ja väärtustest. Koostöös kaaslaste ning õpetajaga saab õpilane seatud eesmärkide ja õpitulemuste põhjal täiendavat, julgustavat ning konstruktiivset tagasisidet oma tugevuste ja nõrkuste kohta. Praktiliste tööde ja ülesannete puhul ei hinnata mitte ainult töö tulemust, vaid ka protsessi. Kokkuvõtva hindamise korral võrreldakse õpilase arengut õppekavas toodud oodatavate tulemustega, kasutades numbrilist hindamist. 5 ( väga hea ) % võimalikust punktide arvust; 4 ( hea ) 75-89% võimalikust punktide arvust; 3 ( rahuldav ) 50-74% võimalikust punktide arvust; 2 ( puudulik ) 20-49% võimalikust punktide arvust; 1 ( nõrk ) 0-19% võimalikust punktide arvust. FÜÜSILINE ÕPIKESKKOND Kool korraldab õppe klassis, kus on tahvlile joonestamise vahendid. Kool võimaldab kasutada internetiühendusega varustatud arvutiklassi. Kool võimaldab kasutada tasandiliste ja ruumiliste kujundite komplekt. AINEALASED PROJEKTID Kõik gümnaasiumi õpilased võtavad osa kooli aritmeetikakonkursist. Õpetaja soovitusel ja juhendamisel on võimalik osaleda matemaatikavõistlustel Südames matemaatika, Känguru, Pranglimise peastarvutamine ja matemaatikaolümpiaadil. KASUTATAV ÕPPEKIRJANDUS JA ÕPPEVAHENDID Abel, E., Jõgi, E., Mitt, E Matemaatika ülesannete kogu keskkoolile. AS Koolibri. Afanasjeva, H., Afanasjev, J Gümnaasiumi kitsa matemaatika töövihik I IX. AS BIT. Afanasjeva, H., Afanasjev, J Gümnaasiumi kitsas matemaatika I IX. AS BIT. Keeru, V., Zoo, E Matemaatika kontrolltööd 11. klassile. Avita. Lepmann, T., Lepmann, L., Velsker, K Matemaatika 10. klassile. Avita.

20 Lepmann, T., Lepmann, L., Velsker, K Matemaatika 11. klassile. Avita. Lepmann, T., Lepmann, L., Velsker, K Matemaatika 12. klassile. Avita. Levin, A., Tõnso, T., Veelmaa, A Matemaatika 11. klassile. Mathema. Oks, A., Taperson, H Matemaatika lisamaterjal klassile. Avita. Tõnso, T., Veelmaa, A Matemaatika 10. klassile. Mathema. Tõnso, T., Veelmaa, A Matemaatika 12. klassile. Mathema. Veelmaa, A Matemaatika tööraamat gümnaasiumi lõpetajale. Maurus Kirjastus OÜ

Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35

Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35 Matemaatika VI kursus Tõenäosus, statistika Permutatsioonid, kombinatsioonid ja variatsioonid. Sündmus. Sündmuste liigid. Klassikaline tõenäosus. Geomeetriline tõenäosus. Sündmuste liigid: sõltuvad ja

Διαβάστε περισσότερα

Kitsas matemaatika-3 tundi nädalas

Kitsas matemaatika-3 tundi nädalas Kitsas matemaatika-3 tundi nädalas Õpitulemused I kursus-arvuhulgad. Avaldised. Võrrand, võrratus. 1) eristab ratsionaal-, irratsionaal- ja reaalarve; 2) eristab võrdust, samasust, võrrandit ja võrratust;

Διαβάστε περισσότερα

Ainevaldkond Matemaatika gümnaasiumi ainekava

Ainevaldkond Matemaatika gümnaasiumi ainekava Ainevaldkond Matemaatika gümnaasiumi ainekava 1. Ainevaldkonna õppeainete kohustuslikud kursused Lai matemaatika koosneb 14 kursusest: 10 klass: 1. Avaldised ja arvuhulgad 2. Võrrandid ja võrrandisüsteemid

Διαβάστε περισσότερα

Ainevaldkond Matemaatika

Ainevaldkond Matemaatika Ainevaldkond Matemaatika 1 Matemaatikapädevus Matemaatika õpetamise eesmärk gümnaasiumis on matemaatikapädevuse kujundamine, see tähendab suutlikkust tunda matemaatiliste mõistete ja seoste süsteemsust;

Διαβάστε περισσότερα

1.2. Ainevaldkonna õppeainete kohustuslikud kursused ja valikkursused

1.2. Ainevaldkonna õppeainete kohustuslikud kursused ja valikkursused Vabariigi Valitsuse 06.01.2011. a määruse nr 2 Gümnaasiumi riiklik õppekava lisa 3 1. Ainevaldkond Matemaatika 1.1. Matemaatikapädevus Matemaatikapädevus tähendab matemaatiliste mõistete ja seoste süsteemset

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on

Διαβάστε περισσότερα

Geomeetrilised vektorid

Geomeetrilised vektorid Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.

Διαβάστε περισσότερα

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori

Διαβάστε περισσότερα

Vektor. Joone võrrand. Analüütiline geomeetria.

Vektor. Joone võrrand. Analüütiline geomeetria. Vektor. Joone võrrand. Analüütiline geomeetria. Hele Kiisel, Hugo Treffneri Gümnaasium Analüütilise geomeetria teemad on gümnaasiumi matemaatikakursuses jaotatud kaheks osaks: analüütiline geomeetria tasandil,

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

Lokaalsed ekstreemumid

Lokaalsed ekstreemumid Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül.

Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül. Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln.6 I kursus NÄIDISTÖÖ nr.: Astmed.. Arvutada avaldise täpne väärtus. 8 * (,8)

Διαβάστε περισσότερα

Kompleksarvu algebraline kuju

Kompleksarvu algebraline kuju Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa

Διαβάστε περισσότερα

Õppeprotsessi kirjeldus III kooliastmele

Õppeprotsessi kirjeldus III kooliastmele - 1 - Õppeprotsessi kirjeldus III kooliastmele Õppeprotsessi kirjelduses on klasside kaupa lahti kirjutatud õppesisu ja taotletavad õpitulemused. Märgitud on ka muutused võrreldes 2002.a. Lisatud on soovitusi

Διαβάστε περισσότερα

1 MTMM Kõrgem matemaatika, eksamiteemad 2014

1 MTMM Kõrgem matemaatika, eksamiteemad 2014 1 MTMM.00.188 Kõrgem matemaatika, eksamiteemad 2014 Eksamitöö annab kokku 80 punkti ja ülesanded jagunevad järgmisse kuude gruppi: P1 ( 10p ) - ülesanded I kontrolltöö põhiteemade peale; P2 ( 10p ) - ülesanded

Διαβάστε περισσότερα

Ruumilise jõusüsteemi taandamine lihtsaimale kujule

Ruumilise jõusüsteemi taandamine lihtsaimale kujule Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D

Διαβάστε περισσότερα

Funktsiooni diferentsiaal

Funktsiooni diferentsiaal Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral

Διαβάστε περισσότερα

,millest avaldub 21) 23)

,millest avaldub 21) 23) II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.

Διαβάστε περισσότερα

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika

Διαβάστε περισσότερα

2.2.1 Geomeetriline interpretatsioon

2.2.1 Geomeetriline interpretatsioon 2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides

Διαβάστε περισσότερα

1 Funktsioon, piirväärtus, pidevus

1 Funktsioon, piirväärtus, pidevus Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks

Διαβάστε περισσότερα

IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel

IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel Allar Veelmaa, Loo Keskkool Gümnaasiumi riiklik õppekava 1 (edaspidi GRÕK) järgi võib õpilane valida kitsa ja laia matemaatikakursuse

Διαβάστε περισσότερα

4.1 Funktsiooni lähendamine. Taylori polünoom.

4.1 Funktsiooni lähendamine. Taylori polünoom. Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised

Διαβάστε περισσότερα

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α = KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α

Διαβάστε περισσότερα

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka

Διαβάστε περισσότερα

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}

Διαβάστε περισσότερα

Funktsioonide õpetamisest põhikooli matemaatikakursuses

Funktsioonide õpetamisest põhikooli matemaatikakursuses Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,

Διαβάστε περισσότερα

HULGATEOORIA ELEMENTE

HULGATEOORIA ELEMENTE HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad

Διαβάστε περισσότερα

Eesti koolinoorte XLIX täppisteaduste olümpiaad

Eesti koolinoorte XLIX täppisteaduste olümpiaad Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.

Διαβάστε περισσότερα

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed

Διαβάστε περισσότερα

Sissejuhatus mehhatroonikasse MHK0120

Sissejuhatus mehhatroonikasse MHK0120 Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti

Διαβάστε περισσότερα

Analüütilise geomeetria praktikum II. L. Tuulmets

Analüütilise geomeetria praktikum II. L. Tuulmets Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga

Διαβάστε περισσότερα

Füüsika ainekava 10. klassile Õppe- ja kasvatuseesmärgid Gümnaasiumi füüsikaõppega taotletakse, et õpilane: 1) arendab loodusteaduste- ja

Füüsika ainekava 10. klassile Õppe- ja kasvatuseesmärgid Gümnaasiumi füüsikaõppega taotletakse, et õpilane: 1) arendab loodusteaduste- ja Füüsika ainekava 10. klassile Õppe- ja kasvatuseesmärgid Gümnaasiumi füüsikaõppega taotletakse, et õpilane: 1) arendab loodusteaduste- ja tehnoloogiaalast kirjaoskust, loovust ning süsteemset mõtlemist

Διαβάστε περισσότερα

Ehitusmehaanika harjutus

Ehitusmehaanika harjutus Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative

Διαβάστε περισσότερα

Excel Statistilised funktsioonid

Excel Statistilised funktsioonid Excel2016 - Statistilised funktsioonid Statistilised funktsioonid aitavad meil kiiresti leida kõige väiksemat arvu, keskmist, koguarvu, tühjaks jäänud lahtreid jne jne. Alla on lisatud sellesse gruppi

Διαβάστε περισσότερα

20. SIRGE VÕRRANDID. Joonis 20.1

20. SIRGE VÕRRANDID. Joonis 20.1 κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii

Διαβάστε περισσότερα

MATEMAATILINE ANAL U US II Juhend TT U kaug oppe- uli opilastele

MATEMAATILINE ANAL U US II Juhend TT U kaug oppe- uli opilastele MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele TALLINNA TEHNIKAÜLIKOOL Matemaatikainstituut MATEMAATILINE ANALÜÜS II Juhend TTÜ kaugõppe-üliõpilastele Tallinn 24 3 MATEMAATILINE ANALÜÜS II

Διαβάστε περισσότερα

HAPE-ALUS TASAKAAL. Teema nr 2

HAPE-ALUS TASAKAAL. Teema nr 2 PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused

Διαβάστε περισσότερα

Geomeetria põhivara. Jan Willemson. 19. mai 2000.a.

Geomeetria põhivara. Jan Willemson. 19. mai 2000.a. Geomeetria põhivara Jan Willemson 19. mai 2000.a. 1 Kolmnurk Kolmnurgas tasub mõelda järgmistest lõikudest ja sirgetest: kõrgused, nurgapoolitajad, välisnurkade poolitajad, külgede keskristsirged, mediaanid,

Διαβάστε περισσότερα

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1 laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad

Διαβάστε περισσότερα

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning

Διαβάστε περισσότερα

Eesti LIV matemaatikaolümpiaad

Eesti LIV matemaatikaolümpiaad Eesti LIV matemaatikaolümpiaad 31. märts 007 Lõppvoor 9. klass Lahendused 1. Vastus: 43. Ilmselt ei saa see arv sisaldada numbrit 0. Iga vähemalt kahekohaline nõutud omadusega arv sisaldab paarisnumbrit

Διαβάστε περισσότερα

YMM3740 Matemaatilne analüüs II

YMM3740 Matemaatilne analüüs II YMM3740 Matemaatilne analüüs II Gert Tamberg Matemaatikainstituut Tallinna Tehnikaülikool gert.tamberg@ttu.ee http://www.ttu.ee/gert-tamberg G. Tamberg (TTÜ) YMM3740 Matemaatilne analüüs II 1 / 29 Sisu

Διαβάστε περισσότερα

6 Mitme muutuja funktsioonid

6 Mitme muutuja funktsioonid 6 Mitme muutu funktsioonid Reaalarvude järjestatud paaride (x, ) hulga tasandi punktide hulga vahel on üksühene vastavus, st igale paarile vastab üks kindel punkt tasandil igale tasandi punktile vastavad

Διαβάστε περισσότερα

Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias

Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias ektorid Matemaatikas tähistab vektor vektorruumi elementi. ektorruum ja vektor on defineeritud väga laialt, kuid praktikas võime vektorit ette kujutada kui kindla arvu liikmetega järjestatud arvuhulka.

Διαβάστε περισσότερα

MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM

MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM Lea Lepmann Tiit Lepmann MATEMAATIKA KITSA JA LAIA KURSUSE RIIGIEKSAM Ülesanded, lahendused, kommentaarid ja soovitused Kõigi käesolevas kogumikus kasutatud riigi- ja katseeksamite ülesannete autoriõigused

Διαβάστε περισσότερα

Tuletis ja diferentsiaal

Tuletis ja diferentsiaal Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.

Διαβάστε περισσότερα

Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32

Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32 Sisukord Sündmused ja t~oenäosused 4. Sündmused................................... 4.2 T~oenäosus.................................... 7.2. T~oenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni

Διαβάστε περισσότερα

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Διαβάστε περισσότερα

Sisukord. 4 Tõenäosuse piirteoreemid 36

Sisukord. 4 Tõenäosuse piirteoreemid 36 Sisukord Sündmused ja tõenäosused 5. Sündmused................................... 5.2 Tõenäosus.................................... 8.2. Tõenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni

Διαβάστε περισσότερα

PLASTSED DEFORMATSIOONID

PLASTSED DEFORMATSIOONID PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb

Διαβάστε περισσότερα

Mathematica kasutamine

Mathematica kasutamine mathematica_lyhi_help.nb 1 Mathematica kasutamine 1. Sissejuhatus Programmi Mathematica avanemisel pole programmi tuum - Kernel - vaikimisi käivitatud. Kernel on programmi see osa, mis tegelikult teostab

Διαβάστε περισσότερα

Andmeanalüüs molekulaarbioloogias

Andmeanalüüs molekulaarbioloogias Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.

Διαβάστε περισσότερα

; y ) vektori lõpppunkt, siis

; y ) vektori lõpppunkt, siis III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf

Διαβάστε περισσότερα

4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32

4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32 Sisukord 1 Sündmused ja t~oenäosused 4 1.1 Sündmused................................... 4 1.2 T~oenäosus.................................... 7 1.2.1 T~oenäosuse arvutamise konkreetsed meetodid (üldise

Διαβάστε περισσότερα

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].

Διαβάστε περισσότερα

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud... Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega

Διαβάστε περισσότερα

Matemaatiline analüüs IV praktikumiülesannete kogu a. kevadsemester

Matemaatiline analüüs IV praktikumiülesannete kogu a. kevadsemester Matemaatiline analüüs IV praktikumiülesannete kogu 4. a. kevadsemester . Alamhulgad ruumis R m. Koonduvad jadad. Tõestage, et ruumis R a) iga kera s.o. ring) U r A) sisaldab ruutu keskpunktiga A = a,b),

Διαβάστε περισσότερα

Matemaatilised ja trigonomeetrilised funktsioonid

Matemaatilised ja trigonomeetrilised funktsioonid Matemaatilised ja trigonomeetrilised funktsioonid Alustame nüüd Exceli põhiliste töövahenditega - funktsioonidega. Võtame esimesena sihikule Matemaatilised ja trigonomeetrilised funktsioonid. Kuigi kogu

Διαβάστε περισσότερα

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:

Διαβάστε περισσότερα

3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE

3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3.1. Loendamise põhireeglid Kombinatoorika on diskreetse matemaatika osa, mis uurib probleeme, kus on tegemist kas diskreetse hulga mingis mõttes eristatavate osahulkadega

Διαβάστε περισσότερα

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD 1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki

Διαβάστε περισσότερα

6.6 Ühtlaselt koormatud plaatide lihtsamad

6.6 Ühtlaselt koormatud plaatide lihtsamad 6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline

Διαβάστε περισσότερα

Trigonomeetria gümnaasiumis

Trigonomeetria gümnaasiumis Trignmeetria gümnaasiumis Hannes Jukk, Tartu Ülikl Trignmeetria võib meile tähendada kahte pisut erinevat matemaatikavaldknda. Ajalliselt n see tähendanud esmalt klmnurkade mõõtmise ja lahendamisega senduvat

Διαβάστε περισσότερα

LOOGIKA ELEMENTE MATEMAATIKAS. GEOMEETRIA AKSIOMAATILISEST ÜLESEHITUSEST. Koostanud Hilja Afanasjeva

LOOGIKA ELEMENTE MATEMAATIKAS. GEOMEETRIA AKSIOMAATILISEST ÜLESEHITUSEST. Koostanud Hilja Afanasjeva LOOGIKA ELEMENTE MATEMAATIKAS. GEOMEETRIA AKSIOMAATILISEST ÜLESEHITUSEST EESSÕNA Koostanud Hilja Afanasjeva Enne selle teema käsitlemist avame mõned materjalist arusaamiseks vajalikud mõisted hulgateooriast.

Διαβάστε περισσότερα

Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist

Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist Loeng 2 Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist P2 - tuleb P1 lahendus T P~Q = { x P(x)~Q(x) = t} = = {x P(x)

Διαβάστε περισσότερα

ANTSLA GÜMNAASIUM FÜÜSIKA AINEKAVA

ANTSLA GÜMNAASIUM FÜÜSIKA AINEKAVA ANTSLA GÜMNAASIUM FÜÜSIKA AINEKAVA Lisa 9 Füüsika ainekava Antsla Gümnaasiumi gümnaasiumiosa õppekava 1. Ainevaldkond ja pädevused Füüsika õppes käsitletakse nähtusi süsteemselt, taotledes terviklikku

Διαβάστε περισσότερα

Ainevaldkond Loodusained gümnaasiumis. Loodusteaduslik pädevus gümnaasiumis. Ainevaldkonna õppeained ja valikkursused

Ainevaldkond Loodusained gümnaasiumis. Loodusteaduslik pädevus gümnaasiumis. Ainevaldkonna õppeained ja valikkursused Ainevaldkond Loodusained gümnaasiumis Loodusteaduslik pädevus gümnaasiumis Loodusteaduslik pädevus väljendub loodusteaduste- ja tehnoloogiaalases kirjaoskuses, mis hõlmab oskust vaadelda, mõista ja selgitada

Διαβάστε περισσότερα

Matemaatiline analüüs II praktikumiülesannete kogu a. kevadsemester

Matemaatiline analüüs II praktikumiülesannete kogu a. kevadsemester Matemaatiline analüüs II praktikumiülesannete kogu 5. a. kevadsemester . Kahe ja kolme muutuja funktsiooni määramispiirkond, selle raja, kinnisus ja lahtisus. Olgu X ja Y hulgad. Kujutus e. funktsioon

Διαβάστε περισσότερα

FÜÜSIKA AINEKAVA GÜMNAASIUMILE Loksa Gümnaasium

FÜÜSIKA AINEKAVA GÜMNAASIUMILE Loksa Gümnaasium FÜÜSIKA AINEKAVA GÜMNAASIUMILE Loksa Gümnaasium 1. Füüsika 1.1. Õppe- ja kasvatuseesmärgid Gümnaasiumi füüsikaõppega taotletakse, et õpilane: 1) arendab loodusteaduste- ja tehnoloogiaalast kirjaoskust,

Διαβάστε περισσότερα

Lexical-Functional Grammar

Lexical-Functional Grammar Lexical-Functional Grammar Süntaksiteooriad ja -mudelid 2005/06 Kaili Müürisep 6. aprill 2006 1 Contents 1 Ülevaade formalismist 1 1.1 Informatsiooni esitus LFG-s..................... 1 1.2 a-struktuur..............................

Διαβάστε περισσότερα

Ehitusmehaanika. EST meetod

Ehitusmehaanika. EST meetod Ehitusmehaanika. EST meetod Staatikaga määramatu kahe avaga raam /44 4 m q = 8 kn/m 00000000000000000000000 2 EI 4 EI 6 r r F EI p EI = 0 kn p EI p 2 m 00 6 m 00 6 m Andres Lahe Mehaanikainstituut Tallinna

Διαβάστε περισσότερα

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS

Διαβάστε περισσότερα

Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27

Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27 Suhteline salajasus Peeter Laud peeter l@ut.ee Tartu Ülikool TTÜ, 11.12.2003 p.1/27 Probleemi olemus salajased sisendid avalikud väljundid Program muud väljundid muud sisendid mittesalajased väljundid

Διαβάστε περισσότερα

FÜÜSIKA AINEKAVA GÜMNAASIUM Üldalused Õppe-eesmärgid

FÜÜSIKA AINEKAVA GÜMNAASIUM Üldalused Õppe-eesmärgid FÜÜSIKA AINEKAVA GÜMNAASIUM 1.1. Üldalused 1.1.1. Õppe-eesmärgid Gümnaasiumi füüsikaõppega taotletakse, et õpilane: 1) teadvustab füüsikat kui looduse kõige üldisemaid põhjuslikke seoseid uurivat teadust

Διαβάστε περισσότερα

Skalaar, vektor, tensor

Skalaar, vektor, tensor Peatükk 2 Skalaar, vektor, tensor 1 2.1. Sissejuhatus 2-2 2.1 Sissejuhatus Skalaar Üks arv, mille väärtus ei sõltu koordinaatsüsteemi (baasi) valikust Tüüpiline näide temperatuur Vektor Füüsikaline suurus,

Διαβάστε περισσότερα

Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2

Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2 Vektorite sklrkorrutis Vtleme füüsikkursusest tuntud olukord, kus kehle mõjub jõud F r j keh teeb selle jõu mõjul nihke s Konkreetsuse huvides olgu kehks rööbsteel liikuv vgun Jõud F r mõjugu vgunile rööbstee

Διαβάστε περισσότερα

Aritmeetilised ja loogilised operaatorid. Vektor- ja maatriksoperaatorid

Aritmeetilised ja loogilised operaatorid. Vektor- ja maatriksoperaatorid Marek Kolk, Tartu Ülikool Viimati muudetud : 6.. Aritmeetilised ja loogilised operaatorid. Vektor- ja maatriksoperaatorid Aritmeetilised operaatorid Need leiab paletilt "Calculator" ja ei vaja eraldi kommenteerimist.

Διαβάστε περισσότερα

Statistiline andmetöötlus, VL-0435 sügis, 2008

Statistiline andmetöötlus, VL-0435 sügis, 2008 Praktikum 6 Salvestage kursuse kodulehelt omale arvutisse andmestik lehmageen.xls. Praktikum püüab kirjeldada mõningaid võimalusi tunnuste vaheliste seoste uurimiseks. Kommentaarid andmestiku kohta Konkreetselt

Διαβάστε περισσότερα

Füüsika. I kursus Sissejuhatus füüsikasse. Kulgliikumise kinemaatika. 1. Sissejuhatus füüsikasse. Õppesisu

Füüsika. I kursus Sissejuhatus füüsikasse. Kulgliikumise kinemaatika. 1. Sissejuhatus füüsikasse. Õppesisu Füüsika Gümnaasiumi 10. klassi füüsikaõpe koosneb kolmest kursusest Esimese kursuse Füüsikalise looduskäsitluse alused põhifunktsioon on selgitada, mis füüsika on, mida ta suudab ja mille poolest eristub

Διαβάστε περισσότερα

FÜÜSIKA ÜLDALUSED ÕPPE-EESMÄRGID. Gümnaasiumi füüsikaõppega taotletakse, et õpilane:

FÜÜSIKA ÜLDALUSED ÕPPE-EESMÄRGID. Gümnaasiumi füüsikaõppega taotletakse, et õpilane: FÜÜSIKA ÜLDALUSED ÕPPE-EESMÄRGID Gümnaasiumi füüsikaõppega taotletakse, et õpilane: 1) teadvustab füüsikat kui looduse kõige üldisemaid põhjuslikke seoseid uurivat teadust ja olulist kultuurikomponenti;

Διαβάστε περισσότερα

Kõnepuuetega klass Loodusõpetus.

Kõnepuuetega klass Loodusõpetus. Kõnepuuetega klass 2.1. Loodusõpetus. 2.1.1. Õppe- ja kasvatuseesmärgid: Põhikooli loodusõpetusega taotletakse, et õpilane: 1) tunneb huvi looduse vastu, huvitub looduse uurimisest ja loodusainete õppimisest;

Διαβάστε περισσότερα

FÜÜSIKA AINEKAVA GÜMNAASIUM Üldalused Õppe- ja kasvatuseesmärgid

FÜÜSIKA AINEKAVA GÜMNAASIUM Üldalused Õppe- ja kasvatuseesmärgid FÜÜSIKA AINEKAVA GÜMNAASIUM 1.1. Üldalused 1.1.1. Õppe- ja kasvatuseesmärgid Gümnaasiumi füüsikaõppega taotletakse, et õpilane: 1) arendab loodusteaduste- ja tehnoloogiaalast kirjaoskust, loovust ning

Διαβάστε περισσότερα

siis on tegemist sümmeetrilise usaldusvahemikuga. Vasakpoolne usaldusvahemik x i, E x = EX, D x = σ2

siis on tegemist sümmeetrilise usaldusvahemikuga. Vasakpoolne usaldusvahemik x i, E x = EX, D x = σ2 Vahemikhinnangud Vahemikhinnangud Olgu α juhusliku suuruse X parameeter ja α = α (x 1,..., x n ) parameetri α hinnang. Kui ε > 0 on kindel suurus, siis vahemiku (α ε, α +ε) otspunktid on samuti juhuslikud

Διαβάστε περισσότερα

= 5 + t + 0,1 t 2, x 2

= 5 + t + 0,1 t 2, x 2 SAATEKS Käesoleva vihikuga lõpeb esimene samm teel füüsikastandardini. Tehtule tagasi vaadates tahaksime jagada oma mõtteid füüsikaõpetajatega, kes seni ilmunud seitsmes vihikus sisalduva õpilasteni viivad.

Διαβάστε περισσότερα

2. HULGATEOORIA ELEMENTE

2. HULGATEOORIA ELEMENTE 2. HULGATEOORIA ELEMENTE 2.1. Hulgad, nende esitusviisid. Alamhulgad Hulga mõiste on matemaatika algmõiste ja seda ei saa def ineerida. Me võime vaid selgitada, kuidas seda abstraktset mõistet endale kujundada.

Διαβάστε περισσότερα

Eesti LV matemaatikaolümpiaad

Eesti LV matemaatikaolümpiaad Eesti LV matemaatikaolümpiaad 2. veebruar 2008 Piirkonnavoor Kommentaarid Kokkuvõtteks Selleaastast komplekti võib paremini õnnestunuks lugeda kui paari viimase aasta omi. Lõppvooru pääsemise piirid protsentides

Διαβάστε περισσότερα

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85 7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat

Διαβάστε περισσότερα

Skalaar, vektor, tensor

Skalaar, vektor, tensor Peatükk 2 Skalaar, vektor, tensor 1 2.1. Sissejuhatus 2-2 2.1 Sissejuhatus Skalaar Üks arv, mille väärtus ei sõltu koordinaatsüsteemi (baasi) valikust Tüüpiline näide temperatuur Vektor Füüsikaline suurus,

Διαβάστε περισσότερα

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008 Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub

Διαβάστε περισσότερα

LOODUSAINED. Ainevaldkonna kirjeldus. Ainevaldkonna õppeained

LOODUSAINED. Ainevaldkonna kirjeldus. Ainevaldkonna õppeained LOODUSAINED Ainevaldkonna kirjeldus Ainevaldkonna kirjelduse, pädevuste, lõimumiste ja läbivate teemade osas lähtutakse Vabariigi Valitsuse 2011. aasta 6. jaanuari määruse nr 14 Põhikooli riiklik õppekava

Διαβάστε περισσότερα

Ainekava. Õppeaine: füüsika Klass: 9 klass

Ainekava. Õppeaine: füüsika Klass: 9 klass Ainekava Õppeaine: füüsika Klass: 9 klass Õppekirjandus: 1. Koit Timpmann Füüsika IX klassile. Elektriõpetus 2. Enn Pärtel, Jaak Lõhmus Füüsika IX klassile. Soojusõpetus. Aatom ja Universum 3. Enn Pärtel

Διαβάστε περισσότερα

Põhimõisted: loodus, loodusteadus, füüsika, vaatleja, nähtavushorisont, makro-, mikro- ja megamaailm.

Põhimõisted: loodus, loodusteadus, füüsika, vaatleja, nähtavushorisont, makro-, mikro- ja megamaailm. FÜÜSIKA ainekava IV kooliaste 10.klass ÕPETAMISE EESMÄRGID Gümnaasiumi füüsikaõppega taotletakse, et õpilane: 1) teadvustab füüsikat kui looduse kõige üldisemaid põhjuslikke seoseid uurivat teadust ja

Διαβάστε περισσότερα

Füüsika. 1. Õppe- ja kasvatuseesmärgid. 2. Õppeaine kirjeldus

Füüsika. 1. Õppe- ja kasvatuseesmärgid. 2. Õppeaine kirjeldus Füüsika 1. Õppe- ja kasvatuseesmärgid Gümnaasiumi füüsikaõppega taotletakse, et õpilane: 1) arendab loodusteaduste- ja tehnoloogiaalast kirjaoskust, loovust ning susteemset mõtlemist loodusnähtusi kirjeldades

Διαβάστε περισσότερα

Füüsika kohustuslikud kursused gümnaasiumile

Füüsika kohustuslikud kursused gümnaasiumile Füüsika kohustuslikud kursused gümnaasiumile Õppesisu FÜÜSIKALISE LOODUSKÄSITLUSE ALUSED 1. Sissejuhatus füüsikasse (3 tundi) 1) Jõudmine füüsikasse, tuginedes isiklikule kogemusele. Inimene kui vaatleja.

Διαβάστε περισσότερα

T~oestatavalt korrektne transleerimine

T~oestatavalt korrektne transleerimine T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:

Διαβάστε περισσότερα