Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi"

Transcript

1 Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Typy súvislostí javov a vecí: nepodstatné - vonkajšia súvislosť nevyplýva z vnútornej potreby (javy spoločne vznikajú, majú zhodný priebeh, alebo nasledujú za sebou) podstatné - vonkajšia súvislosť vyplýva z vnútornej potreby. príčinná - kauzálna závislosť (daný jav (účinok, dôsledok) je za určitých podmienok vyvolaný iným javom alebo javmi(príčina)) vzájomná závislosť - jav je dôsledkom iného javu a zároveň môže byť aj jeho príčinou. (vek neviest podmieňuje vek ženíchov a naopak) 23 RNDr. Mária Bohdalová, PhD. Štatistické metódy Typy závislostí: pevné (ku vzťahu medzi príčinou a účinkom dochádza za podmienok, ktoré sú pomerne konštantné) obyčajne sa vyskytujú v prírode opakujú sa vždy rovnako charakterizuje ich jedno pozorovanie 24 RNDr. Mária Bohdalová, PhD. Štatistické metódy

2 Typy závislostí: voľné (ku vzťahu medzi príčinou a účinkom dochádza za podmienok, ktoré sa menia) obyčajne sú spojené komplexy príčin a účinkov obyčajne sa vyskytujú v spoločenských javoch je ich možné skúmať len na základe mnohých pozorovaní - je nutné skúmať hromadné javy dôležitý je výber vhodných štatistických znakov, ktoré javy charakterizujú (nevhodným výberom dochádza ku skresleniu) dostatočný rozsah skúmaného štatistického súboru (pri malých súboroch sa môže skôr prejaviť pôsobenie rôznych vedľajších a náhodných činiteľov) 25 RNDr. Mária Bohdalová, PhD. Štatistické metódy Úloha štatistiky pri skúmaní závislostí objaviť a poznať príčinnú závislosť kvantitatívne charakterizovať závislosť javov ak bola vysvetlená ich podstata štatistika skúma súvislosti medzi kvantitatívnymi a kvalitatívnymi štatistickými znakmi javy, pre ktoré budeme skúmať a analyzovať závislosti musia byť definované nad jedným pravdepodobnostným priestorom 26 RNDr. Mária Bohdalová, PhD. Štatistické metódy

3 Pravdepodobnostný priestor Trojicu (Ω, S, P) nazývame pravdepodobnostným priestorom. Ω je priestor elementárnych udalostí ω (množina všetkých možných výsledkov náhodného pokusu), S jeσ-algebra podmnožín priestoru elementárnych udalostí a (prvky z S nazývame náhodné udalosti, javy). Prvkom z S priraďujeme určitú pravdepodobnosť pomocou pravdepodobnostnej miery P. a Nech S je neprázdny systém podmnožín množiny Ω. S sa nazývaσ algebra, ak je uzavretá na doplnky a spočítateľné zjednotenia, t.j. A S A C S, A n S n=1 An S 27 RNDr. Mária Bohdalová, PhD. Štatistické metódy Axiomatická definícia pravdepodobnosti Pravdepodobnosť je zobrazenie P : S R definované na σ-algebre S podmnožín Ω pričom platí: 1. Ω S 2. A S A C = Ω A S 3. A n S, n = 1, 2,..., n=1 S 4. A S : P(A) 0 5. P(Ω) = 1 6. A n S, n = 1, 2,...,aA i A j = 0, i j P ( n=1 ) = n=1 P(A n ) 28 RNDr. Mária Bohdalová, PhD. Štatistické metódy

4 Náhodný vektor Nech je daný pravdepodobnostný priestor (Ω, S, P). Náhodným vektorom (n-rozmernou náhodnou premennou) X = (X 1, X 2,...,X n ) T nazývame zobrazenie n X : Ω R n ; x = (x 1, x 2,...,x n ) T R n : {ω; X i (ω)<x i } S. i=1 Každá zložka X i, i = 1, 2,...,n náhodného vektora X je náhodná premenná. 29 RNDr. Mária Bohdalová, PhD. Štatistické metódy Popis rozdelenia náhodného vektora X = (X 1, X 2,...,X n ) T Pravidlo, ktoré každej hodnote (každému intervalu) hodnôt priraďuje pravdepodobnosť, že náhodné premenné X 1, X 2,...,X n nadobudnú tieto hodnoty (hodnoty z tohto intervalu), nazývame zákonom rozdelenia náhodného vektora. K popisu rozdelenia náhodného vektora používame rôzne formy a rozlišujeme či sa jedná o nespojitú (diskrétnu) alebo spojitú náhodnú premennú. 30 RNDr. Mária Bohdalová, PhD. Štatistické metódy

5 Popis rozdelenia náhodného vektora X = (X 1, X 2,...,X n ) T Náhodný vektor môžeme popísať pomocou združenej pravdepodobnostnej funkcie združenej distribučnej funkcie marginálnych pravdepodobnostných funkcií podmienených pravdepodobnostných funkcií 31 RNDr. Mária Bohdalová, PhD. Štatistické metódy Združená pravdepodobnostná funkcia Združenou pravdepodobnostnou funkciou diskrétneho náhodného vektora X = (X 1, X 2,...,X n ) T nazývame reálnu funkciu P : R n R, definovanú rovnosťou alebo P (x 1, x 2,...,x n ) = P (X 1 = x 1 X 2 = x 2... X n = x n ), ( n ) P (x 1, x 2,...,x n ) = P {ω; X i (ω) = x i }, i=1 kde (x 1, x 2,...,x n ) T R n 32 RNDr. Mária Bohdalová, PhD. Štatistické metódy

6 Združená distribučná funkcia Združenou distribučnou funkciou náhodného vektora X = (X 1, X 2,...,X n ) T nazývame reálnu funkciu F : R n R, definovanú rovnosťou ( n ) F (x 1, x 2,...,x n ) = P {ω; X i (ω)<x i }, i=1 kde (x 1, x 2,...,x n ) T R n 33 RNDr. Mária Bohdalová, PhD. Štatistické metódy Vlastnosti združenej distribučnej funkcie Nech F (x 1, x 2,...,x n ) je distribučná funkcia náhodného vektora X = (X 1, X 2,...,X n ) T. Potom platí 1. i = 1, 2,...,n : lim xi F (x 1, x 2,...,x n ) = 0 2. lim x1,x 2,...,x n F (x 1, x 2,...,x n ) = 1 3. F (x 1, x 2,...,x n ) je neklesajúca funkcia každej svojej premennej 4. F (x 1, x 2,...,x n ) je zľava spojitá funkcia každej svojej premennej 34 RNDr. Mária Bohdalová, PhD. Štatistické metódy

7 Vlastnosti združenej distribučnej funkcie, pokračovanie 5 Pre ľubovoľné reálne x i a ľubovoľné h i 0 (i = 1, 2,...,n) platí (1) h 1 (2) h 2... (n) h n F (x 1, x 2,...,x n ) 0,, kde (i) h i F (x 1, x 2,...,x n ) = F (x 1,...,x i 1, x i + h, x i+1,...,x n ) F (x 1, x 2,...,x n ) Každá funkcia s týmito vlastnosťami je distribučnou funkciou nejakého náhodného vektora. 35 RNDr. Mária Bohdalová, PhD. Štatistické metódy Korelačná tabuľka Združené pravdepodobnosti 2 náhodných premenných môžeme usporiadať do tzv. korelačnej tabuľky. Ak náhodná premenná X 1 má r rôznych hodnôt a náhodná premenná X 2 má s rôznych hodnôt, tak tabuľka obsahuje r s združených pravdepodobností možných kombinácií hodnôt X 1 a X RNDr. Mária Bohdalová, PhD. Štatistické metódy

8 Marginálne pravdepodobnostné funkcie Marginálna pravdepodobnostná funkcia udáva pravdepodobnosť, že náhodná premenná X 1 nadobúda hodnotu x 1 bez ohľadu na hodnotu náhodnej premennej X 2 (riadkové súčty pravdepodobností v korelačnej tabuľke), Marginálna pravdepodobnostná funkcia udáva pravdepodobnosť, že náhodná premenná X 2 nadobúda hodnotu x 2 bez ohľadu na hodnotu náhodnej premennej X 1 (stĺpcové súčty pravdepodobností v korelačnej tabuľke). Pre n rozmerný náhodný vektor budeme uvažovať marginálne rozdelenie ľubovoľných skupín (m(m < n) premenných bez ohľadu na hodnoty zvyšných n m premenných). 37 RNDr. Mária Bohdalová, PhD. Štatistické metódy Podmienená pravdepodobnostná funkcia Podmieneným rozdelením náhodnej premennej X 1 vzhľadom na x 2 rozumieme rozdelenie náhodnej premennej X 1 za podmienky, že náhodná premenná X 2 nadobudla hodnotu x 2. P(X 1 /x 2 ) = P(x 1, x 2 ) P 2 (x 2 ), P 2(x 2 ) 0 Podmieneným rozdelením náhodnej premennej X 2 vzhľadom na x 1 rozumieme rozdelenie náhodnej premennej X 2 za podmienky, že náhodná premenná X 1 nadobudla hodnotu x 1. P(X 2 /x 1 ) = P(x 1, x 2 ) P 1 (x 1 ), P 1(x 1 ) 0 38 RNDr. Mária Bohdalová, PhD. Štatistické metódy

9 Nezávislosť náhodných premenných Pre viacrozmerný vektor (n > 2) rozlišujeme nezávislosť podvojnú (párovú) Náhodné premenné X 1, X 2,...,X n sú podvojne nezávislé, ak sú nezávislé každé dve z týchto náhodných premenných. vzájomnú Náhodné premenné X 1, X 2,...,X n sú vzájomne nezávislé, ak rozdelenie každej náhodnej premennej nezávisí od hodnôt ostatných náhodných premenných. Ak sú náhodné premenné X 1 a X 2 nezávislé, tak sú úmerné riadky a stĺpce P(x, y) korelačnej tabuľky. 39 RNDr. Mária Bohdalová, PhD. Štatistické metódy Vzájomná nezávislosť náhodných premenných Nech náhodný vektor X = (X 1, X 2,...,X n ) T má združenú pravdepodobnostnú funkciu P(x 1, x 2,...,x n ). Nech P i (x i ) je marginálna pravdepodobnostná funkcia premennej X i, i = 1, 2,...,n. Potom X 1, X 2,...,X n sú vzájomne nezávislé práve vtedy, ak platí P(x 1, x 2,...,x n ) = P 1 (x 1 ) P 2 (x 2 )... P n (x n ) (7) pre x = (x 1, x 2,...,x n ) T R n Obdobná definícia platí ak vychádzame zo združenej distribučnej funkcie F(x 1, x 2,...,x n ). 40 RNDr. Mária Bohdalová, PhD. Štatistické metódy

10 Stredná hodnota náhodného vektora O vektore X = (X 1, X 2,...,X n ) T hovoríme, že má prvé momenty, ak existujú stredné hodnoty jeho zložiek E(X 1 ), E(X 2 ),...,E(X n ) a výraz E(X) = (E(X 1 ), E(X 2 ),...,E(X n )) T nazývame jeho strednou hodnotou. 41 RNDr. Mária Bohdalová, PhD. Štatistické metódy Vlastnosti strednej hodnoty: 1. E(c) = c 2. E(c X) = c E(X) 3. E(X 1 + X X n ) = E(X 1 ) + E(X 2 ) E(X n ) 4. E(a 1 X 1 + a 2 X a n X n ) = a 1 E(X 1 ) + a 2 E(X 2 ) a n E(X n ) 5. Ak sú náhodné premenné X 1, X 2,...,X n nezávislé, tak stredná hodnota ich súčinu sa rovná súčinu ich stredných hodnôt E(X 1 X 2... X n ) = E(X 1 ) E(X 2 )... E(X n ) 42 RNDr. Mária Bohdalová, PhD. Štatistické metódy

11 Kovariancia Nech X = (X 1, X 2,...,X n ) T má konečné druhé momenty E(Xi 2 )<, i = 1, 2,...,n. Potom kovarianciou premenných X i, X j pre 1 i, j n budeme nazývať výraz cov(x i, X j ) = E[(X i E(X i ))(X j E(X j ))], resp. cov(x i, X j ) = E(X i X j ) E(X i ) E(X j ) 43 RNDr. Mária Bohdalová, PhD. Štatistické metódy Vlastnosti kovariancie Kovariancia premenných X i, X j pre 1 i, j n má nasledujúce vlastnosti (Kovariancia je skalárny súčin vektorov u.v = u 1 v 1 + u 2 v 2 ): 1. cov(x i, X j ) = cov(x j, X i ), 2. (cov(x i, X j )) 2 D(X i )D(X j ), 3. Ak cov(x i, X j ) = 0 tak hovoríme, že X i a X j sú nekorelované náhodné premenné, 4. cov(x i, X i ) = D(X i ) 5. a R : cov(x, a) = cov(a, X) = 0 6. a, b R : cov(ax 1 + b, X 2 ) = a cov(x 1, X 2 ) 7. cov(x + Y,Z) = cov(x, Z) + cov(y,z) 44 RNDr. Mária Bohdalová, PhD. Štatistické metódy

12 Vlastnosti disperzie (rozptylu): 1. D(c) = 0 2. D(c X) = c 2 D(X) 3. Pre n aspoň podvojne nezávislých náhodných premenných platí: D(X 1 + X X n ) = D(X 1 ) + D(X 2 ) D(X n ) 4. Pre dve korelované náhodné premenné platí: D(X+Y ) = cov(x+y,x+y ) = cov(x, X+Y )+cov(y,x+ Y ) = cov(x, X) + cov(x, Y ) + cov(y,x) + cov(y,y) = cov(x, X) + 2cov(X, Y ) + cov(y,y), resp. D(X + Y ) = D(X) + D(Y ) + 2 cov(x, Y ) 5. Disperzia súčtu skalárnych násobkov korelovaných náhodných premenných X a Y sa rovná 1 : D(aX + by ) = a 2 D(X) + b 2 D(Y ) + 2 a b cov(x, Y ) 1 disperzia je definovaná ako kvadratická funkcia (x + y) 2 = x 2 + y 2 + 2xy 45 RNDr. Mária Bohdalová, PhD. Štatistické metódy Kovariančná matica Σ Nech X = (X 1, X 2,...,X n ) T je náhodný vektor. Nech pre disperzie náhodných premenných X k, k = 1, 2,...,n platí E(X k )<. Kovariančnou maticou náhodného vektora X nazývame symetrickú n n rozmernú maticu Σ, ktorej (i, j) ty prvok je číslo cov (X i, X j ),i, j = 1, 2,...,n: cov(x 1, X 1 ) cov(x 1, X 2 ) cov(x 1, X n ) cov(x 2, X 1 ) cov(x 2, X 2 ) cov(x 2, X n ) Σ = cov(x n, X 1 ) cov(x n, X 2 ) cov(x n, X n ) 46 RNDr. Mária Bohdalová, PhD. Štatistické metódy

13 Vlastnosti kovariančnej matice Σ 1. je symetrická a kladne definitná 2. platí pre ňu Schwarzova nerovnosť: i, j = 1, 2,...,n : (cov(x i, X j )) 2 D(X i )D(X j ) 3. kovariančnú maticu Σ možno vyjadriť v tvare: Σ = E(X E(X))(X E(X)) T resp. Σ = E(X X T ) E(X) E(X) T 47 RNDr. Mária Bohdalová, PhD. Štatistické metódy Vlastnosti kovariančnej matice Σ 1. Nech X = (X 1, X 2,...,X n ) T je náhodný vektor. B je matica typu m n s reálnymi prvkami a A je m-rozmerný nenáhodný vektor. Potom pre Y = A + B X platí E(Y) = A + B E(X), pre E(X i )<, i = 1, 2,...,n. D(Y) = B Σ B T, pre E(Xi 2 )<, i = 1, 2,...,n 48 RNDr. Mária Bohdalová, PhD. Štatistické metódy

14 Korelačný koeficient Nech X, Y sú náhodné premenné, pre ktoré platí E(X 2 )<, E(Y 2 )<, D(X)>0, D(Y )>0. Potom číslo ρ X,Y = cov(x, Y ) D(X) D(Y ) nazývame korelačným koeficientom náhodných premenných X a Y. 49 RNDr. Mária Bohdalová, PhD. Štatistické metódy Vlastnosti korelačného koeficientu Korelačný koeficient je kosínus uhla α, ktorý zvierajú vektory u a v: cosα = u v u v. V geometrii sú vektory LZ ak zvierajú 0 uhol, tj cos0 = 1 alebo 180 uhol, tj cos180 = 1 a sú LNZ ak zvierajú 90, cos90 = 0: 1. ρ X,Y 1 2. ρ X,Y = 1 ak s pravdepodobnosťou 1 platí Y = ax + b, kde a, b R, a 0 3.ρ 2 X,Y nazývame koeficientom determinácie. Vyjadruje silu lineárnej závislosti dvoch náhodných premenných v percentách (po vynásobení 100) 50 RNDr. Mária Bohdalová, PhD. Štatistické metódy

15 Korelačná matica Maticu R, ktorej (i, j)-ty prvok je čísloρ Xi,Y j nazývame korelačnou maticou náhodného vektora X = (X 1, X 2,...,X n ) T ρ X1,X 1 ρ X1,Y 2 ρ X1,Y n ρ X2,X 1 ρ X2,Y 2 ρ X2,Y n R = ρ Xn,X 1 ρ Xn,Y 2 ρ Xn,Y n 51 RNDr. Mária Bohdalová, PhD. Štatistické metódy Vlastnosti korelačnej matice Nech X, Y sú nezávislé náhodné premenné s konečnými strednými hodnotami E(X) a E(Y ). Potom platí E(XY ) = E(X) E(Y ). Nech X, Y sú nezávislé náhodné premenné s konečnými druhými momentmi. Potom platí Σ = 0, kde Σ je kovariančná matica s prvkami cov(x, Y ) náhodných premenných X a Y Dva vektory X a Y sa nazývajú nekorelované, ak sa ich kovariančná matica rovná nule. 52 RNDr. Mária Bohdalová, PhD. Štatistické metódy

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

množiny F G = {t1, t2,, tn} T a pre ľubovoľný valec C so základňou B1, B2,, Bn v bodoch t1, t2,, tn, takou, že pre t G - F je Bt = E, platí PF(C) = PG

množiny F G = {t1, t2,, tn} T a pre ľubovoľný valec C so základňou B1, B2,, Bn v bodoch t1, t2,, tn, takou, že pre t G - F je Bt = E, platí PF(C) = PG STOCHASTICKÝ PROCES Definícia stochastického procesu Definícia 1 Nech (Ω, F, P) je pravdepodobnostný priestor a nech T je podmnožina R. Pre každé t T nech X(t, ω) je náhodná premenná definovaná na pravdepodobnostnom

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

Základy matematickej štatistiky

Základy matematickej štatistiky 1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov

Διαβάστε περισσότερα

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana. Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus 1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Základy metodológie vedy I. 9. prednáška

Základy metodológie vedy I. 9. prednáška Základy metodológie vedy I. 9. prednáška Triedenie dát: Triedny znak - x i Absolútna početnosť n i (súčet všetkých absolútnych početností sa rovná rozsahu súboru n) ni fi = Relatívna početnosť fi n (relatívna

Διαβάστε περισσότερα

Funkcie - základné pojmy

Funkcie - základné pojmy Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

4. domáca úloha. distribučnú funkciu náhodnej premennej X.

4. domáca úloha. distribučnú funkciu náhodnej premennej X. 4. domáca úloha 1. (rovnomerné rozdelenie) Električky idú v 20-minútových intervaloch. Cestujúci príde náhodne na zastávku. Určte funkciu hustoty rozdelenia pravdepodobnosti a distribučnú funkciu náhodnej

Διαβάστε περισσότερα

Reálna funkcia reálnej premennej

Reálna funkcia reálnej premennej (ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od

Διαβάστε περισσότερα

1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3

1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3 Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 3 1.3 Základné označenia................................. 3 2 Množiny a zobrazenia

Διαβάστε περισσότερα

HANA LAURINCOVÁ KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP Štatistika Poistná matematika

HANA LAURINCOVÁ KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP Štatistika Poistná matematika UNIVERZITA KOMENSKÉHO, BRATISLAVA FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY KATEDRA POISTNEJ MATEMATIKY A ŠTATISTIKY PARCIÁLNA A MNOHONÁSOBNÁ KORELÁCIA: KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP (Bakalárska práca)

Διαβάστε περισσότερα

Metoda hlavních komponent a její aplikace

Metoda hlavních komponent a její aplikace Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Mária Dubová Metoda hlavních komponent a její aplikace Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce:

Διαβάστε περισσότερα

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17 Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.

Διαβάστε περισσότερα

Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017

Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017 Kompilátory Cvičenie 6: LLVM Peter Kostolányi 21. novembra 2017 LLVM V podstate sada nástrojov pre tvorbu kompilátorov LLVM V podstate sada nástrojov pre tvorbu kompilátorov Pôvodne Low Level Virtual Machine

Διαβάστε περισσότερα

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti 4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák

Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák Prednáška 6 6.1. Fourierove rady Základná myšlienka: Nech x Haφ 1,φ 2,...,φ n,... je ortonormálny systém v H, dá sa tento prvok rozvinút do radu x=c 1 φ 1 + c 2 φ 2 +...,c n φ n +...? Ako nájdeme c i,

Διαβάστε περισσότερα

Teória pravdepodobnosti

Teória pravdepodobnosti 2. Podmienená pravdepodobnosť Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 23. februára 2015 1 Pojem podmienenej pravdepodobnosti 2 Nezávislosť náhodných udalostí

Διαβάστε περισσότερα

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných

Διαβάστε περισσότερα

Rozdiely vo vnútornej štruktúre údajov = tvarové charakteristiky

Rozdiely vo vnútornej štruktúre údajov = tvarové charakteristiky Veľkosť Varablta Rozdelene 0 00 80 n 60 40 0 0 0 4 6 8 Tredy 0 Rozdely vo vnútornej štruktúre údajov = tvarové charakterstky I CHARAKTERISTIKY PREMELIVOSTI Artmetcký premer Vzťahy pre výpočet artmetckého

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Lineárne kódy. Ján Karabáš. Kódovanie ZS 13/14 KM FPV UMB. J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19

Lineárne kódy. Ján Karabáš. Kódovanie ZS 13/14 KM FPV UMB. J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19 Lineárne kódy Ján Karabáš KM FPV UMB Kódovanie ZS 13/14 J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19 Algebraické štruktúry Grupy Grupa je algebraická štruktúra G = (G;, 1, e), spolu s binárnou

Διαβάστε περισσότερα

3. kapitola. Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou. priesvitka 1

3. kapitola. Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou. priesvitka 1 3. kapitola Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou priesvitka 1 Axiomatická výstavba modálnej logiky Cieľom tejto prednášky je ukázať axiomatickú výstavbu rôznych verzií

Διαβάστε περισσότερα

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

Analýza hlavných komponentov

Analýza hlavných komponentov Analýza hlavných komponentov Motivácia Úloha: Navrhnite scenáre zmien výnosovej krivky pre účely stresového testovania v dlhopisovom portfóliu Problém: Výnosová krivka sa skladá z väčšieho počtu bodov,

Διαβάστε περισσότερα

2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin

2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin 2. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Verzia: 27. 9. 2009 Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi

Διαβάστε περισσότερα

TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA 1. Funkcia jednej premennej a jej diferenciálny počet

TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA 1. Funkcia jednej premennej a jej diferenciálny počet TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA časťa Funkcia jednej premennej a jej diferenciáln počet Dušan Knežo, Miriam Andrejiová, Zuzana Kimáková 200 RECENZOVALI: prof. RNDr. Jozef

Διαβάστε περισσότερα

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE DIPLOMOVÁ PRÁCA

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE DIPLOMOVÁ PRÁCA FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE DIPLOMOVÁ PRÁCA Bratislava 211 Maroš Komadel Analýza horných a dolných odhadov na oceňovanie ázijských typov košíkových opcií

Διαβάστε περισσότερα

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2 Obsah Úvod Predhovor Sylaby a literatúra Označenia Euklidovské vektorové priestory 3 Skalárny súčin 3 Gram-Schmidtov ortogonalizačný proces 8 Kvadratické formy 6 Definícia a základné vlastnosti 6 Kanonický

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

Reprezentácia dát. Ing. Martin Mariš, Katedra regionalistiky a rozvoja vidieka, SPU, NITRA

Reprezentácia dát. Ing. Martin Mariš, Katedra regionalistiky a rozvoja vidieka, SPU, NITRA Reprezentácia dát Ing. Martin Mariš, Katedra regionalistiky a rozvoja vidieka, SPU, NITRA slovným opisom grafickým zobrazením Typy grafov a ich použitie Najčastejšie používané typy grafov: čiarový graf

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

Číselné charakteristiky náhodných vektorov Regresná priamka

Číselné charakteristiky náhodných vektorov Regresná priamka Číselné charakteristiky náhodných vektorov Regresná priamka I. Jednoduchá dvojica dátových súborov a) Nech vektor x predstavuje určité kontrolné body a vektor y hodnoty namerané v týchto bodoch. To znamená,

Διαβάστε περισσότερα

NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky

NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

FUNKCIE N REÁLNYCH PREMENNÝCH

FUNKCIE N REÁLNYCH PREMENNÝCH FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE

Διαβάστε περισσότερα

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =. Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

Mini minimaliz acia an BUˇ Koˇ sice 2011

Mini minimaliz acia an BUˇ Koˇ sice 2011 Mini minimalizácia Ján BUŠA Košice 2011 RECENZOVALI: Prof. RNDr. Noname, CSc. Doc. RNDr. Emanname, PhD. Prvé vydanie Za odbornú stránku učebného textu zodpovedá autor. Rukopis neprešiel redakčnou ani jazykovou

Διαβάστε περισσότερα

Pravdepodobnos a ²tatistika (1-INF-435) Poznámky k predná²kam. Radoslav Harman, KAM, FMFI UK

Pravdepodobnos a ²tatistika (1-INF-435) Poznámky k predná²kam. Radoslav Harman, KAM, FMFI UK Pravdepodobnos a ²tatistika (1-INF-435) Poznámky k predná²kam Radoslav Harman, KAM, FMFI UK 15. januára 2014 Obsah 1 Úvod 3 2 Axiomatická denícia pravdepodobnosti 3 2.1 Priestor udalostí..................................

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu.

7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu. Teória množín To, že medzi množinami A, B existuje bijektívne zobrazenie, budeme symbolicky označovať A B alebo A B. Vtedy hovoríme, že množiny A, B sú ekvivalentné. Hovoríme tiež, že také množiny A, B

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

4 Reálna funkcia reálnej premennej a jej vlastnosti

4 Reálna funkcia reálnej premennej a jej vlastnosti Reálna unkcia reálnej premennej a jej vlastnosti Táto kapitola je venovaná štúdiu reálnej unkcie jednej reálnej premennej. Pojem unkcie patrí medzi základné pojmy v matematike. Je to vlastne matematický

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα

Základné poznatky molekulovej fyziky a termodynamiky

Základné poznatky molekulovej fyziky a termodynamiky Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky

Διαβάστε περισσότερα

ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov

ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov ALGEBRA Číselné množiny a operácie s nimi. Úprava algebrických výrazov Definícia Množinu považujeme za určenú, ak vieme o ľubovoľnom objekte rozhodnúť, či je alebo nie je prvkom množiny. Množinu určujeme

Διαβάστε περισσότερα

Goniometrické substitúcie

Goniometrické substitúcie Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať

Διαβάστε περισσότερα

Numerické metódy matematiky I

Numerické metódy matematiky I Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc

Διαβάστε περισσότερα

ŠTATISTIKA. Obsah. Predmet štatistiky Popisná štatistika Štatistické charakteristiky jednorozmerných rozdelení.. 17

ŠTATISTIKA. Obsah. Predmet štatistiky Popisná štatistika Štatistické charakteristiky jednorozmerných rozdelení.. 17 ŠTATISTIKA Obsah Predmet štatistiky Meranie a úrovne merania 10 Popisná štatistika 13 Jednorozmerné rozdelenie 14 Štatistické charakteristiky jednorozmerných rozdelení 17 Dvojrozmerné rozdelenie 5 Štatistické

Διαβάστε περισσότερα

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

9. kapitola Boolove funkcie a logické obvody

9. kapitola Boolove funkcie a logické obvody 9. kapitola Boolove funkcie a logické obvody Priesvitka 1 Boolova algebra Elektronické obvody v počítačoch a v podobných zariadeniach sú charakterizované binárnymi vstupmi a výstupmi (rovnajúcimi sa 0

Διαβάστε περισσότερα

Περιεχόμενα. Ιδιότητες του cov(x, Y) Ιδιότητες των εκτιμητών Παράδειγμα. 1 Συσχέτιση Μεταβλητών. 2 Εκτιμητές και κατάλοιπα

Περιεχόμενα. Ιδιότητες του cov(x, Y) Ιδιότητες των εκτιμητών Παράδειγμα. 1 Συσχέτιση Μεταβλητών. 2 Εκτιμητές και κατάλοιπα Περιεχόμενα 1 Συσχέτιση Μεταβλητών Ιδιότητες του cov(x, Y 2 Ιδιότητες των εκτιμητών BEΠ (UPatras Γραμμικά Μοντέλα 4η, 5η Διάλεξη, 2018-19 1 / 12 Συσχέτιση Μεταβλητών Ιδιότητες του cov(x, Y Ένα μέτρο της

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

MATEMATIKA I. Doc. RNDr. Michal Šabo, CSc

MATEMATIKA I. Doc. RNDr. Michal Šabo, CSc MATEMATIKA I Doc. RNDr. Michal Šabo, CSc 2 Obsah Predhovor 5 2 VYBRANÉ STATE Z ALGEBRY 2. Úvod................................... 2.2 Reálne n-rozmerné vektory...................... 2.3 Matice..................................

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27

Διαβάστε περισσότερα

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003 Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

Obsah. 1.1 Základné pojmy a vzťahy Základné neurčité integrály Cvičenia Výsledky... 11

Obsah. 1.1 Základné pojmy a vzťahy Základné neurčité integrály Cvičenia Výsledky... 11 Obsah Neurčitý integrál 7. Základné pojmy a vzťahy.................................. 7.. Základné neurčité integrály............................. 9.. Cvičenia..........................................3

Διαβάστε περισσότερα

3. prednáška. Komplexné čísla

3. prednáška. Komplexné čísla 3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet

Διαβάστε περισσότερα

Pravdepodobnostné modelovanie inverznými distribučnými funkciami: Charakteristiky kvantilových rozdelení

Pravdepodobnostné modelovanie inverznými distribučnými funkciami: Charakteristiky kvantilových rozdelení Katedra štatistiky, Fakulta hospodárskej informatiky, Ekonomická univerzita v Bratislave Pravdepodobnostné modelovanie inverznými distribučnými funkciami: Charakteristiky kvantilových rozdelení Ľubica

Διαβάστε περισσότερα

Tutoriál3 : Využitie grafických možností jazyka Matlab

Tutoriál3 : Využitie grafických možností jazyka Matlab NÁPLŇ 1. ÚVOD DO PRÁCE S GRAFIKOU 2. 2D GRAFIKA 3. 3D GRAFIKA 4. PRÍKLADY NA SAMOSTATNÉ RIEŠENIE 1 Matlab ponúka rýchlu a kvalitnú reprezentáciu funkcií vo forme grafov. Disponuje pokročilou grafikou v

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

Matematika 2. Lineárna algebra. (ver )

Matematika 2. Lineárna algebra. (ver ) Matematika 2 Lineárna algebra (ver.01.03.2011) 1 Úvod Prehľad. Tieto poznámky obsahujú podklady k prednáške Matematika 2 na špecializácii Aplikovaná informatika: jedná sa o 12 dvojhodinových prednášok

Διαβάστε περισσότερα

G. Monoszová, Analytická geometria 2 - Kapitola III

G. Monoszová, Analytická geometria 2 - Kapitola III text obsahuje znenia viet, ktoré budeme dokazovat na prednáškach text je doplnený aj o množstvo poznámok, ich ciel om je dopomôct študentom k lepšiemu pochopeniu pojmov aj súvislostí medzi nimi text je

Διαβάστε περισσότερα

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA S MATEMATICÁ OLYMPIÁDA skmo.sk 2008/2009 58. ročník Matematickej olympiády Riešenia úloh IMO. Nech n je kladné celé číslo a a,..., a k (k 2) sú navzájom rôzne celé čísla z množiny {,..., n} také, že n

Διαβάστε περισσότερα

Vektorové a skalárne polia

Vektorové a skalárne polia Vetorové a salárne pola Ω E e prestorová oblasť - otvorená alebo uavretá súvslá podmnožna bodov prestoru E určených arteánsm súradncam usporadaným trocam reálnch čísel X [ ] R. Nech e salárna unca torá

Διαβάστε περισσότερα

1. POLIA A VEKTOROVÉ PRIESTORY. V tejto kapitole zavedieme dva druhy algebraických štruktúr, ktoré budú hrať v celom

1. POLIA A VEKTOROVÉ PRIESTORY. V tejto kapitole zavedieme dva druhy algebraických štruktúr, ktoré budú hrať v celom 1. POLIA A VEKTOROVÉ PRIESTORY V tejto kapitole zavedieme dva druhy algebraických štruktúr, ktoré budú hrať v celom ďalšom výklade kľúčovú úlohu, a dokážeme o nich niekoľko jednoduchých základných tvrdení.

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

Učební texty k státní bakalářské zkoušce Matematika Vektorové prostory. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vektorové prostory. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vektorové prostory študenti MFF 15. augusta 2008 1 9 Vektorové priestory Požiadavky Základné vlastnosti vektorových priestorov, podpriestorov generovania,

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 28 ιδάσκων: Π. Τσακαλίδης Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης: 3/2/28 Ηµεροµηνία Παράδοσης: 7/2/28

Διαβάστε περισσότερα