Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus"

Transcript

1 1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových priestorov, ktorá však pre potreby kvantového počítania môže byť prezentovaná v zjednodušenej podobe konečnorozmerného lineárneho priestoru so skalárnym súčinom. V tejto prednáške naformulujeme základy teórie konečnorozmerných lineárnych priestorov nad komplexnými číslami. 1.1 Pole skalárov Prv než pristúpime k formulácii pojmu lineárny priestor, musíme si presne špecifikovať pojem skalár a pole skalárov. Pod skalárom budeme rozumieť ľubovolné (1) racionálne číslo, (2) iracionálne číslo, alebo (3) komplexné číslo. Nech C = { a,b,c,... } je množina skalárov, ktoré vyhovujú trom sadám axióm: A. Ku každej dvojici a,b C je priradený skalár a+ b C nazývaný súčet, pričom (1) a+ b= b+ a (komutatívny zákon), (2) a+ ( b+ c) = ( a+ b) + c (asociatívny zákon) (3) existuje 0 C (nula), pričom a+ 0 = a, a C taký, že a+ ( a) = 0. (4) ku každému a C existuje skalár ( ) B. Ku každej dvojici a,b C je priradený skalár ab C nazývaný súčin, pričom (1) ab = ba (komutatívny zákon), (2) a ( b c) = ( a b) c (asociatívny zákon), (3) existuje 1 C (jednotka, pričom a 1 = a, 1 (4) ku každému skaláru a 0 existuje skalár a 1 C taký, že aa = 1. C. Súčin je distributívny vzhľadom k súčtu a b+ c = a b+ a c (1) ( ) Definícia 1.1. Množinou skalárov C nazýva pole skalárov (alebo jednoducho len pole) vtedy a len vtedy, ak nad touto množinou sú definované dve binárne operácia súčtu a súčinu, pričom sú splnené sady axióm A C. Ďalšie vlastnosti skalárov z pola C a ilustračné príklady sú uvedené v príkladoch (verzia )

2 1.2 Lineárny priestor Predpokladajme, že máme definované pole skalárov C. Nech H = { α, β,..., ϕ, ψ,... } je množina vektorov. Nech elementy vektory tejto množiny vyhovujú týmto trom sadám axióm: A. Ku každej dvojici αβ, H je priradený vektor α +β H nazývaný súčet, pričom (1) α+β=β+α (komutatívny zákon), (2) α+ ( β+γ ) = ( α+β ) +γ (asociatívny zákon) (3) existuje nulový vektor o H (nula), pričom α + 0 =α, (5) ku každému α H existuje vektor ( α) H taký, že α + ( α ) = o. B. Ku každej dvojici a C a α H je priradený vektor aα H, ktorý sa nazýva súčin skalára a s vektorom α, pričom (1) a( bα ) = ( ab) α (asociatívny zákon), (2) 1α =α, kde 1 C je skalárna jednotka. C. Distributívne zákony pre súčin skalár a vektor a+ b α= aα+ bα, (1) ( ) (2) a( α+β ) = aα+ aβ. Definícia 1.2. Množinou vektorov H spolu s polom skalárov C sa nazýva lineárny priestor nad polom skalárov (alebo vektorový priestor nad polom skalárov) vtedy a len vtedy, ak nad množinou H a polom C sú definované dve binárne operácia súčtu a súčinu, pričom sú splnené sady axióm A C. Ďalšie vlastnosti vektorov z lineárneho priestoru H a ilustračný príklad jeho možnej realizácie sú ukázané v príkladoch 1.5 a Lineárna závislosť Nech množina B = { β1, β2,..., βn} H obsahuje n vektorov a množina B = { b 1,b 2,...,bn} C obsahuje n skalárov, potom výraz b1β 1+ b 2β bnβ n (1.1) sa nazýva lineárna kombinácia vektorov β1, β2,..., βn H s koeficientmi a b 1,b 2,...,bn C. Definícia 1.3. Hovoríme, že množina vektorov { } B = β, β,..., β H je lineárne nezávislá vtedy a len vtedy, ak jej lineárna kombinácia sa rovná nulovému vektoru bβ+ b β b β = o (1.2) len pre nulové koeficienty b 1 = b 2 =... = b n = o. Jednoduchou negáciou tejto definície dostaneme pojem lineárnej závislosti, potom lineárna kombinácia je nulová, b 1 β+ 1 b 2 β b n β n = o, pre nenulové koeficienty. Pre jednoduchosť 2 (verzia )

3 predpokladajme, že týmto nenulovým koeficientom je b 1 0, potom z (1.2) dostaneme špecifikáciu vektora β 1 ako lineárnej kombinácie ostatných vektorov β = b2 bn n b β b β (1.3) Veta 1.1. Nech { } 1 1 B = β, β,..., β H je množina lineárne nezávislých vektorov, potom vektor ϕ je určený jednoznačne pomocou lineárnej kombinácie vektorov z B ϕ= bβ + b β bβ Dôkaz tejto vety je vykonaný v príklade 1.7. Definícia 1.4. (1) Hovoríme, že lineárny priestor H je n-rozmerny vtedy a len vtedy, ak v ňom existuje dim H = n. maximálne práve n lineárne nezávislých vektorov, čo zapisujeme ( ) (2) Hovoríme, že množina n vektorov B {,,..., } H = β β β tvorí bázu n-rozmerného priestoru H vtedy a len vtedy, ak sú tieto vektory lineárne nezávislé, čo zapisujeme báza H = β, β,..., β. ( ) { } Veta 1.2. V n-rozmernom priestore H s bázou { } určený jednoznačne ako lineárna kombinácia vektorov báze ϕ= bβ + b β bβ B = β, β,..., β H, každý vektor ϕ je Koeficienty b 1,b 2,...,b n nazývame súradnice vektora ϕ v báze B. Dôkaz tejto vety je uskutočnený v príklade Podpriestor Nech H H je podmnožina lineárneho priestoru H nad polom skalárov C. Definícia 1.5. Hovoríme, že podmnožina H H je lineárny podpriestor (vzhľadom k lineárnemu priestoru H) vtedy a len vtedy, ak H je lineárny priestor nad polom skalárov C, pričom binárne operácie súčtu a súčinu sú rovnaké ako v pôvodnom priestore H. Dimenzia podpriestoru H je určená vzťahom (dôkaz je uvedený v príklade 1.9) dim( H ) dim( H) (1.4) rovnosť platí len vtedy, keď H = H. To znamená, že dimenzia priestoru patrí medzi najdôležitejšie charakteristiky lineárnych priestorov. Táto skutočnosť bude ešte potvrdená v ďalšej časti tejto kapitoly (pozri kapitolu 1.X), keď budeme špecifikovať izomorfizmus (niečo ako rovnocennosť alebo podobnosť) medzi lineárnymi priestormi. Bude ukázané, že ak dva priestory majú rovnakú dimenziu, potom sú aj izomorfné. 3 (verzia )

4 Najjednoduchšia špecifikácia podpriestoru je pomocou množiny vektorov. Nech B = { β1, β2,..., βn} H je množina n vektorov (nepredpokladáme, že sú lineárne nezávislé, potom podpriestor H H môže byť špecifikovaný tak, že obsahuje všetky možné lineárne kombinácie vektorov z B (dôkaz tohto tvrdenia je uvedený v príklade 1.10) H = b β + b β b β ; b,b,...,b C (1.5) { } Hovoríme, že podpriestor H je lineárny obal vektorov z { } H span( B) B = β, β,..., β H = (1.6) Pre dimenziu podpriestora H platí (dôkaz je uvedený v príklade 1.11) dim H n (1.7) ( ) kde rovnosť platí vtedy a len vtedy, ak množina { } B = β, β,..., β H obsahuje len lineárne nezávislé vektory. Nech H,H 1 2 H sú dva podpriestory priestoru H, suma týchto podpriestorov, označená H1+ H2, je množina, ktorá obsahuje všetky lineárne kombinácie vektorov z H 1 a H 2 { } H + H = aα+ b β;a,b C ; α H ; β H (1.8) Veta 1.3. Množina H1+ H2 je lineárnym priestorom, t. j. podpriestorom H. Dôkaz tejto vety je uskutočnený v príklade Nech podpriestory H,H 1 2 majú spoločný prienik tvorený len nulovým vektorom H1 H2 = { o} (1.9a) Potom suma týchto podpriestorov prechádza na priamu sumua H H = H + H H H = o (1.9b) ( { }) Veta 1.4. Každý vektor z H1 H2 je vyjadrený jednoznačne suma dvoch vektorov z = x1+ x2 kde x1 H1 a x2 H 2. Dôkaz tejto vety je uskutočnený v príklade Veta 1.5. Dimenzia priamej sumy podpriestorov je určená sumou dimenzií jednotlivých podpriestorov dim H H = dim H + dim H Táto veta je dokázaná v príklade ( ) ( ) ( ) Izomorfizmus Dva lineárne priestory H a G sú izomorfné vtedy, ak existuje také zobrazenie H na G, ktoré zachováva súčet a súčin vektorov. Dva izomorfné priestory sú skoro identické, ich matematické vlastnosti sú skoro totožné, odlišujú sa len v realizácii vektorov. 4 (verzia )

5 Definícia 1.6. Lineárne priestory H a G sa nazývajú izomorfné ( H G) vtedy a len vtedy, ak existuje také 1-1 značné zobrazenie f:h G, ktoré zachováva lineárnu kombináciu vektorov f aα+ a α = a f α + a f α (1.10) ( ) ( ) ( ) Veta 1.6. Lineárne priestory H a G sú izomorfné vtedy a len vtedy, ak majú rovnakú dimenziu H G dim H = dim G Veta 1.6. je dokázaná v príklade ( ) ( ) Ako dôsledok tejto vlastnosti je, že každý lineárny n-rozmerný priestor definovaný nad polom skalárov C, je izomorfný s priestorom C n, ktorý bol špecifikovaný v príklade 1.6. To znamená, že ilustračné príklady lineárnej algebry, ktoré sú založené na tomto vektorov priestore, nie sú obmedzím všeobecnosti ilustračných príkladov. Pojem izomorfizmu medzi lineárnymi priestormi je veľmi dôležitý. Ukazuje, že nie je dôležité, akým spôsobom je priestor realizovaný, ale podstatným znakom je ich dimenzia. Všetky vlastnosti špeciálneho priestoru H automaticky platia aj pre ostatné lineárne priestory, ktoré majú rovnakú dimenziu ako H. Riešenie príkladov Príklad 1.1. Dokáže pomocou axióm poľa skalárov tieto vlastnosti: (1) 0 + a= a (2) x + a= b x = b a (3) ( a+ b= a+ c) ( b= c) (3) a+ ( b a) = b (4) a 0= 0 a = 0 (5) ( 1) a = ( a) (6) ( a) ( b) = a b (7) ( ab = 0) ( a= 0) ( b= 0) 1 (8) xa= b x = a b (pre a 0 ) (9) ab = ac b = c ( pre a 0) je množina celých čísel, pričom nad touto množinou sú definované obvyklým spôsobom operácie súčtu a súčinu. Je C pole skalárov? Príklad 1.2. Nech C = {..., 2, 1012,,,,...} Príklad 1.3. Nech = { pq} C (množina racionálnych čísel, kde p a q sú celé a nesúdeliteľné čísla. Je C pole skalárov? 5 (verzia )

6 Príklad 1.4. Nech C = { 012,,,...,x, 1+ x,..., 1+ x + x 2,...} je množina všetkých polynómov s celočíselnými koeficient, pričom nad polom C je definovaný súčet a súčin obvyklým spôsobom. Je C pole skalárov? Príklad 1.5. Dokáže pomocou axióm lineárneho priestoru tieto vlastnosti: (1) 0 +α=α, (2) ( o) = o, (3) ao = o, 1 α = α, (4) ( ) ( ) (5) 0α= o, (6) vektorová rovnica α +β=γ, kde α je neznáma, má riešenie α =γ β, (7) ( α+β=α+γ) ( β=γ ) (7) ( a o) ( a 0) ( o) α = = α=. Príklad 1.6. Najznámejším príkladom lineárneho priestoru je množina usporiadaných n-tic komplexných čísel n H = {( z 1,z 2,...,z n) ;z 1,z 2,...,zn C} = C C... C = C n krát kde C je pole komplexných čísel. Operácie súčtu a súčinu sú definované obvyklým spôsobom. Nech α= ( a 1,a 2,...,an ) a β= ( b 1,b 2,...,bn ), potom α+β= ( a1+ b 1,a2 + b 2,...,an + bn) aα= a ( aa 1,aa 2,...,aan ) ( α ) = ( a 1, a 2,..., an ) o = ( 00,,..., 0) Dokážte, že takto špecifikovaná množina H vektorov a pole komplexných čísel C je lineárny priestor, t. j. axiómy lineárneho priestoru sú splnené. Príklad 1.7. Dokážte vetu 1.1. Príklad 1.8. Dokážte, že v n-rozmernom priestore H s bázou { } B = β1, β2,..., βn H, každý vektor ϕ je vyjadritený jednoznačne ako lineárna kombinácia vektorov báze ϕ= bβ + b β bβ Príklad 1.9. Dokážte vzťah (1.4). Príklad Dokážte, že množina H (1.5) je lineárnym priestorom. Príklad Dokážte reláciu (1.7). Príklad Dokáže pomocou (1.8a), že rozklad (1.8c) špecifikuje vektor z jednoznačne. 6 (verzia )

7 Príklad Dokážte rovnosť (1.9). Príklad Dokážte nutnú podnienku (implikácia zľava do prava v (1.11)) izormfizmu medzi vektormi H a G, 7 (verzia )

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3

1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3 Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 3 1.3 Základné označenia................................. 3 2 Množiny a zobrazenia

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin

2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin 2. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Verzia: 27. 9. 2009 Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi

Διαβάστε περισσότερα

Učební texty k státní bakalářské zkoušce Matematika Vektorové prostory. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vektorové prostory. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vektorové prostory študenti MFF 15. augusta 2008 1 9 Vektorové priestory Požiadavky Základné vlastnosti vektorových priestorov, podpriestorov generovania,

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený

Διαβάστε περισσότερα

Lineárne kódy. Ján Karabáš. Kódovanie ZS 13/14 KM FPV UMB. J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19

Lineárne kódy. Ján Karabáš. Kódovanie ZS 13/14 KM FPV UMB. J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19 Lineárne kódy Ján Karabáš KM FPV UMB Kódovanie ZS 13/14 J. Karabáš (FPV UMB) Lineárne kódy Kodo ZS 13/14 1 / 19 Algebraické štruktúry Grupy Grupa je algebraická štruktúra G = (G;, 1, e), spolu s binárnou

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

1. POLIA A VEKTOROVÉ PRIESTORY. V tejto kapitole zavedieme dva druhy algebraických štruktúr, ktoré budú hrať v celom

1. POLIA A VEKTOROVÉ PRIESTORY. V tejto kapitole zavedieme dva druhy algebraických štruktúr, ktoré budú hrať v celom 1. POLIA A VEKTOROVÉ PRIESTORY V tejto kapitole zavedieme dva druhy algebraických štruktúr, ktoré budú hrať v celom ďalšom výklade kľúčovú úlohu, a dokážeme o nich niekoľko jednoduchých základných tvrdení.

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2 Obsah Úvod Predhovor Sylaby a literatúra Označenia Euklidovské vektorové priestory 3 Skalárny súčin 3 Gram-Schmidtov ortogonalizačný proces 8 Kvadratické formy 6 Definícia a základné vlastnosti 6 Kanonický

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

3. prednáška. Komplexné čísla

3. prednáška. Komplexné čísla 3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

(IP3) (f, g) = (g, f) (symetria), (IP4) (f, f) > 0 pre f 0 (kladná definitnosť). Z podmienok (IP1) (IP4) sa ľahko dokážu rovnosti:

(IP3) (f, g) = (g, f) (symetria), (IP4) (f, f) > 0 pre f 0 (kladná definitnosť). Z podmienok (IP1) (IP4) sa ľahko dokážu rovnosti: Hilbertove priestory Veľké množstvo aplikácií majú lineárne normované priestory, v ktorých norma je odvodená od skalárneho (vnútorného) súčinu, podobne ako v bežnom trojrozmernom euklidovskom priestore.

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

XVIII. ročník BRKOS 2011/2012. Pomocný text. Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú

XVIII. ročník BRKOS 2011/2012. Pomocný text. Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú Pomocný text Číselné obory Číselné obory Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú ľudia začali vnímať. Abstrakcia spočívala v tom, že množstvo, ktoré sa snažili

Διαβάστε περισσότερα

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17 Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy

Διαβάστε περισσότερα

Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke

Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke 23.5.26 Príklad č. Riešte sústavu Bx = r (B r) 2 3 4 2 3 4 6 8 8 2 (B r) = 6 9 2 6 3 9 2 3 4 2 3 2

Διαβάστε περισσότερα

1 Úvod Sylabyaliteratúra Základnéoznačenia... 3

1 Úvod Sylabyaliteratúra Základnéoznačenia... 3 Obsah 1 Úvod 3 1.1 Sylabyaliteratúra.... 3 1.2 Základnéoznačenia.... 3 2 Množiny a zobrazenia 4 2.1 Dôkazy... 4 2.1.1 Základnétypydôkazov... 4 2.1.2 Matematickáindukcia... 4 2.1.3 Drobnéradyakodokazovať....

Διαβάστε περισσότερα

Prirodzené čísla. Kardinálne čísla

Prirodzené čísla. Kardinálne čísla Prirodzené čísla Doteraz sme sa vždy uspokojili s tým, že sme pod množinou prirodzených čísel rozumeli množinu N = { 1, 2,3, 4,5, 6, 7,8,9,10,11,12, } Túto množinu sme chápali intuitívne a presne sme ju

Διαβάστε περισσότερα

MATEMATIKA I. Doc. RNDr. Michal Šabo, CSc

MATEMATIKA I. Doc. RNDr. Michal Šabo, CSc MATEMATIKA I Doc. RNDr. Michal Šabo, CSc 2 Obsah Predhovor 5 2 VYBRANÉ STATE Z ALGEBRY 2. Úvod................................... 2.2 Reálne n-rozmerné vektory...................... 2.3 Matice..................................

Διαβάστε περισσότερα

G. Monoszová, Analytická geometria 2 - Kapitola III

G. Monoszová, Analytická geometria 2 - Kapitola III text obsahuje znenia viet, ktoré budeme dokazovat na prednáškach text je doplnený aj o množstvo poznámok, ich ciel om je dopomôct študentom k lepšiemu pochopeniu pojmov aj súvislostí medzi nimi text je

Διαβάστε περισσότερα

Deliteľnosť a znaky deliteľnosti

Deliteľnosť a znaky deliteľnosti Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

MATEMATICKÁ ANALÝZA 1

MATEMATICKÁ ANALÝZA 1 UNIVERZITA PAVLA JOZEFA ŠAFÁRIKA V KOŠICIACH Prírodovedecká fakulta Ústav matematických vied Božena Mihalíková, Ján Ohriska MATEMATICKÁ ANALÝZA Vysokoškolský učebný text Košice, 202 202 doc. RNDr. Božena

Διαβάστε περισσότερα

1-MAT-220 Algebra februára 2012

1-MAT-220 Algebra februára 2012 1-MAT-220 Algebra 1 12. februára 2012 Obsah 1 Grupy 3 1.1 Binárne operácie.................................. 3 1.2 Cayleyho veta.................................... 3 2 Faktorizácia 5 2.1 Relácie ekvivalencie

Διαβάστε περισσότερα

priradí skalár ( αβ, ) C sa nazýva skalárny súčin vtedy a len vtedy, ak platia tieto 4 axiómy:,

priradí skalár ( αβ, ) C sa nazýva skalárny súčin vtedy a len vtedy, ak platia tieto 4 axiómy:, 2. predáška lieára algebra II 2. predáška Lieára algebra II skaláry súči, orma, metrika, ortogoálosť, ortoormálosť, ortogoály doplok, lieáre operátory, maticová reprezetácia, hodosť a defekt operátorov

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

Analytická geometria

Analytická geometria Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je

Διαβάστε περισσότερα

2 Základy vektorového počtu

2 Základy vektorového počtu 21 2 Základy vektorového počtu Fyzikálne veličíny sa dajú rozdeliť do dvoch skupín. Prvú skupinu fyzikálnych veličín tvoria tie, pre ktorých jednoznačné určenie postačí poznať veľkosť danej fyzikálnej

Διαβάστε περισσότερα

13. EUKLIDOVSKÉ PRIESTORY

13. EUKLIDOVSKÉ PRIESTORY 13. EUKLIDOVSKÉ PRIESTORY Naše štúdium vektorových priestorov sa doteraz nieslo prevažne v algebraickom duchu a bolo vedené takmer výlučne algebraickými prostriedkami. Geometria bola v tomto poňatí zredukovaná

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu.

7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu. Teória množín To, že medzi množinami A, B existuje bijektívne zobrazenie, budeme symbolicky označovať A B alebo A B. Vtedy hovoríme, že množiny A, B sú ekvivalentné. Hovoríme tiež, že také množiny A, B

Διαβάστε περισσότερα

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti 4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme

Διαβάστε περισσότερα

Matematika 2. Lineárna algebra. (ver )

Matematika 2. Lineárna algebra. (ver ) Matematika 2 Lineárna algebra (ver.01.03.2011) 1 Úvod Prehľad. Tieto poznámky obsahujú podklady k prednáške Matematika 2 na špecializácii Aplikovaná informatika: jedná sa o 12 dvojhodinových prednášok

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

Funkcie - základné pojmy

Funkcie - základné pojmy Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny

Διαβάστε περισσότερα

Polynómy. Hornerova schéma. Algebrické rovnice

Polynómy. Hornerova schéma. Algebrické rovnice Polynómy. Hornerova schéma. Algebrické rovnice Teoretické základy Definícia 1 Nech (koeficienty) a 0, a 1,..., a n sú komplexné čísla a nech n je nezáporné celé číslo. Výraz P n (x) = a n x n + a n 1 x

Διαβάστε περισσότερα

Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák

Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák Prednáška 6 6.1. Fourierove rady Základná myšlienka: Nech x Haφ 1,φ 2,...,φ n,... je ortonormálny systém v H, dá sa tento prvok rozvinút do radu x=c 1 φ 1 + c 2 φ 2 +...,c n φ n +...? Ako nájdeme c i,

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov

ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov ALGEBRA Číselné množiny a operácie s nimi. Úprava algebrických výrazov Definícia Množinu považujeme za určenú, ak vieme o ľubovoľnom objekte rozhodnúť, či je alebo nie je prvkom množiny. Množinu určujeme

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

BANACHOVE A HILBERTOVE PRIESTORY

BANACHOVE A HILBERTOVE PRIESTORY BANACHOVE A HILBERTOVE PRIESTORY 1. ZÁKLADNÉ POJMY Normovaným lineárnym priestorom (NLP) nazývame lineárny (= vektorový) priestor X nad telesom IK, na ktorom je daná nezáporná reálna funkcia : X IR + (norma)

Διαβάστε περισσότερα

Reálna funkcia reálnej premennej

Reálna funkcia reálnej premennej (ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od

Διαβάστε περισσότερα

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

Planárne a rovinné grafy

Planárne a rovinné grafy Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia

Διαβάστε περισσότερα

FUNKCIE N REÁLNYCH PREMENNÝCH

FUNKCIE N REÁLNYCH PREMENNÝCH FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE

Διαβάστε περισσότερα

II. Diferencovateľné variety

II. Diferencovateľné variety II. Diferencovateľné variety 1. Potreba diferenciálneho počtu na množinách bez lineárnej štruktúry 1.1. Príklad. Ideálne kyvadlo. Ide o pohyb hmotného bodu na nehmotnej niti v zvislej rovine pod vplyvom

Διαβάστε περισσότερα

Numerická lineárna algebra. Zobrazenie

Numerická lineárna algebra. Zobrazenie Numerická lineárna algebra. Zobrazenie reálnych čísiel v počítači Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Reálne čísla v počítači 1/16

Διαβάστε περισσότερα

množiny F G = {t1, t2,, tn} T a pre ľubovoľný valec C so základňou B1, B2,, Bn v bodoch t1, t2,, tn, takou, že pre t G - F je Bt = E, platí PF(C) = PG

množiny F G = {t1, t2,, tn} T a pre ľubovoľný valec C so základňou B1, B2,, Bn v bodoch t1, t2,, tn, takou, že pre t G - F je Bt = E, platí PF(C) = PG STOCHASTICKÝ PROCES Definícia stochastického procesu Definícia 1 Nech (Ω, F, P) je pravdepodobnostný priestor a nech T je podmnožina R. Pre každé t T nech X(t, ω) je náhodná premenná definovaná na pravdepodobnostnom

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

9. kapitola Boolove funkcie a logické obvody

9. kapitola Boolove funkcie a logické obvody 9. kapitola Boolove funkcie a logické obvody Priesvitka 1 Boolova algebra Elektronické obvody v počítačoch a v podobných zariadeniach sú charakterizované binárnymi vstupmi a výstupmi (rovnajúcimi sa 0

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Funkcie komplexnej premennej

Funkcie komplexnej premennej (prezentácia k prednáške FKP/10) doc. RNDr., PhD. 1 1 ondrej.hutnik@upjs.sk umv.science.upjs.sk/analyza Prednáška 1 16. februára 2016 Podmienky Obsah nepovinná účast (!prelínanie prednášok a cvičení!)

Διαβάστε περισσότερα

Numerické metódy matematiky I

Numerické metódy matematiky I Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc

Διαβάστε περισσότερα

Ján Buša Štefan Schrötter

Ján Buša Štefan Schrötter Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Goniometrické substitúcie

Goniometrické substitúcie Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať

Διαβάστε περισσότερα

Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi

Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Typy súvislostí javov a vecí: nepodstatné - vonkajšia súvislosť nevyplýva z vnútornej potreby (javy spoločne vznikajú, majú zhodný priebeh, alebo

Διαβάστε περισσότερα

Mini minimaliz acia an BUˇ Koˇ sice 2011

Mini minimaliz acia an BUˇ Koˇ sice 2011 Mini minimalizácia Ján BUŠA Košice 2011 RECENZOVALI: Prof. RNDr. Noname, CSc. Doc. RNDr. Emanname, PhD. Prvé vydanie Za odbornú stránku učebného textu zodpovedá autor. Rukopis neprešiel redakčnou ani jazykovou

Διαβάστε περισσότερα

UNIVERZITA MATEJA BELA V BANSKEJ BYSTRICI FAKULTA PRÍRODNÝCH VIED. Pavol Hanzel, Pavel Klenovčan ČÍSLA A POČÍTANIE

UNIVERZITA MATEJA BELA V BANSKEJ BYSTRICI FAKULTA PRÍRODNÝCH VIED. Pavol Hanzel, Pavel Klenovčan ČÍSLA A POČÍTANIE UNIVERZITA MATEJA BELA V BANSKEJ BYSTRICI FAKULTA PRÍRODNÝCH VIED Pavol Hanzel, Pavel Klenovčan ČÍSLA A POČÍTANIE BANSKÁ BYSTRICA 2013 Názov: Čísla a počítanie Autori: Prof. RNDr. Pavol Hanzel, CSc. Doc.

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

3. kapitola. Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou. priesvitka 1

3. kapitola. Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou. priesvitka 1 3. kapitola Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou priesvitka 1 Axiomatická výstavba modálnej logiky Cieľom tejto prednášky je ukázať axiomatickú výstavbu rôznych verzií

Διαβάστε περισσότερα

PageRank algoritmus. Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky

PageRank algoritmus. Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky PageRank algoritmus Bakalárska práca Študijný program: Informatika Študijný odbor: 9.2.1 Informatika Školiace pracovisko: Katedra

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

Fakulta matematiky, fyziky a informatiky Univerzita Komenského v Bratislave. dizertačná práca

Fakulta matematiky, fyziky a informatiky Univerzita Komenského v Bratislave. dizertačná práca Fakulta matematiky, fyziky a informatiky Univerzita Komenského v Bratislave dizertačná práca jún 2008 Mgr. Peter Novotný Fakulta matematiky, fyziky a informatiky Univerzita Komenského v Bratislave Katedra

Διαβάστε περισσότερα

Obyčajné diferenciálne rovnice

Obyčajné diferenciálne rovnice (ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú

Διαβάστε περισσότερα

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =. Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

Výroky, hypotézy, axiómy, definície a matematické vety

Výroky, hypotézy, axiómy, definície a matematické vety Výroky, hypotézy, axiómy, definície a matematické vety Výrok je každá oznamovacia veta (tvrdenie), o ktorej má zmysel uvažovať, či je pravdivá alebo nepravdivá. Výroky označujeme pomocou symbolov: A, B,

Διαβάστε περισσότερα

ZÁPISKY Z MATEMATICKEJ ANALÝZY 1

ZÁPISKY Z MATEMATICKEJ ANALÝZY 1 UNIVERZITA PAVLA JOZEFA ŠAFÁRIKA V KOŠICIACH Prírodovedecká fakulta Ústav matematických vied 4 3 4 n 6 4 3 2 3 2 4 3 6 5 6 7 3 4 2 3 3/5 /2 2/5 /3 /4 /5 /0 d 0/ /0 /5 /4 /3 2/5 6 3 2 3 2 6 5 6 7 3 4 2

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Príklady na precvičovanie Fourierove rady

Príklady na precvičovanie Fourierove rady Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru

Διαβάστε περισσότερα

zlomok poznatel nej časti skutočnosti. Robí tak prostredníctvom svojich pojmov (tento proces môžeme nazvat formalizácia), jej hlavnou úlohou je potom

zlomok poznatel nej časti skutočnosti. Robí tak prostredníctvom svojich pojmov (tento proces môžeme nazvat formalizácia), jej hlavnou úlohou je potom 0 Úvod 1 0 Úvod 0 Úvod 2 Matematika (a platí to vo všeobecnosti pre každú vedu) sa viac či menej úspešne pokúša zachytit istý zlomok poznatel nej časti skutočnosti. Robí tak prostredníctvom svojich pojmov

Διαβάστε περισσότερα

NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky

NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory

Διαβάστε περισσότερα

23. Zhodné zobrazenia

23. Zhodné zobrazenia 23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:

Διαβάστε περισσότερα

UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky. Dua lne c ı sla. Bakala rska pra ca. S tudijny odbor: Matematika

UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky. Dua lne c ı sla. Bakala rska pra ca. S tudijny odbor: Matematika UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky Dua lne c ı sla Bakala rska pra ca S tudijny odbor: Matematika Vedu ci bakala rskej pra ce: RNDr. Pavel Chalmoviansky, PhD.

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

STREDOŠKOLSKÁ MATEMATIKA

STREDOŠKOLSKÁ MATEMATIKA TECHNICKÁ UNIVERZITA V KOŠICIACH FAKULTA ELEKTROTECHNIKY A INFORMATIKY KATEDRA MATEMATIKY A TEORETICKEJ INFORMATIKY STREDOŠKOLSKÁ MATEMATIKA pre študentov FEI TU v Košiciach Ján BUŠA Štefan SCHRÖTTER Košice

Διαβάστε περισσότερα

VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL. Matematická logika

VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL. Matematická logika Matematická logika VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL Matematická logika Slovenská technická univerzita v Bratislave 2006 prof. Ing. Vladimír Kvasnička, DrSc., doc. RNDr. Jiří Pospíchal, DrSc. Lektori:

Διαβάστε περισσότερα

4 Reálna funkcia reálnej premennej a jej vlastnosti

4 Reálna funkcia reálnej premennej a jej vlastnosti Reálna unkcia reálnej premennej a jej vlastnosti Táto kapitola je venovaná štúdiu reálnej unkcie jednej reálnej premennej. Pojem unkcie patrí medzi základné pojmy v matematike. Je to vlastne matematický

Διαβάστε περισσότερα

9. kapitola. Viachodnotové logiky trojhodnotová Łukasiewiczova logika a Zadehova fuzzy logika. priesvitka

9. kapitola. Viachodnotové logiky trojhodnotová Łukasiewiczova logika a Zadehova fuzzy logika. priesvitka 9. kapitola Viachodnotové logiky trojhodnotová Łukasiewiczova logika a Zadehova fuzzy logika 1 Úvodné poznámky o viachodnotových logikách V klasickej logike existujú prípady, keď dichotomický pravdivostný

Διαβάστε περισσότερα

16. Základne rovinné útvary kružnica a kruh

16. Základne rovinné útvary kružnica a kruh 16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)

Διαβάστε περισσότερα