Specializarea: Matematică informatică 4 ani (zi), 5 ani (FR) Algebră. Analiză matematică

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Specializarea: Matematică informatică 4 ani (zi), 5 ani (FR) Algebră. Analiză matematică"

Transcript

1 TEMATICILE ŞI BIBLIOGRAFIILE EXAMENULUI DE LICENŢĂ (pre Bologna) pentru absolvenţi din anul universitar 2008/2009 şi anterior Specializarea: Matematică informatică 4 ani (zi), 5 ani (FR) Algebră 1. Mulţimi şi funcţii. Relaţii de echivalenţă. Mulţimi factor. Monoid. Submonoid. Morfism. Grup. Subgrup. Morfism de grupuri. 2. Relaţii de echivalenţă pe un grup în raport cu un subgrup. Teorema lui Lagrange. Subgrup normal. Grup factor. Teoreme de izomorfism pentru grupuri. 3. Grupuri ciclice. Grupul S n al permutărilor unei mulţimi cu n elemente. Transpoziţii. Signatura unei permutări, morfismul signatură. 4. Inel. Subinel. Ideal. Inel factor. Morfisme de inele. Teorema fundamentală de izomorfism la inel. Inelul matricelor, algebra matricelor peste un inel comutativ. 5. Corpuri. Corpul fracţiilor unui domeniu de integritate. 6. Algebra polinoamelor într-o nedeterminată şi într-un număr finit de nedeterminate. Polinoame simetrice. Rădăcini de polinoame. Teorema fundamentală a algebrei. 7. Sisteme de ecuaţii liniare cu coeficienţi într-un corp comutativ. Teoreme de compatibilitate. Ion D. Ion, Tufan Lorena, Bârză Silviu, Lecţii de algebră I, Ed. FRM, Bucureşti, 2007, ISBN Ion D. Ion, Tufan Lorena, Bârză Silviu, Lecţii de algebră II, Ed. FRM, Bucureşti, 2007, ISBN Ion D. Ion, Bârză Silviu, Aritmetică, teoria numerelor şi metode algoritmice în algebră, 2008, ISBN Tufan Lorena, Algebră. Culegere de probleme, Ed. FRM, Bucureşti, 2006, ISBN Tufan Lorena, Module. Teoria corpurilor. Culegere de probleme de algebră, 2006, ISBN Analiză matematică 1. Şiruri şi serii de numere reale. 2. Continuitatea şi derivabilitatea funcţiilor de o variabilă. 3. Continuitatea şi derivabilitatea funcţiilor de mai multe variabile, extreme locale, funcţii implicite. 4. Şiruri şi serii de funcţii. Serii de puteri, dezvoltări în serie Taylor. 5. Integrale Riemann în R n (n {1, 2, 3}), integrale improprii, integrale cu parametru. 6. Integrala curbilinie, formula Green. Duda I., Elemente de analiză matematică, Ed. FRM, Bucureşti, 2007, ISBN Trandafir Rodica, Duda I., Analiză matematică, II, Ed. FRM, Bucureşti,

2 Trandafir Rodica, Duda I., Ioan Rodica, Gonciulea Antoanela, Analiză matematică. Calcul Integral, Ed. FRM, Bucureşti, 2009, ISBN Boboc N., Analiză matematică, vol. I şi vol. II, Ed. Universităţii din Bucureşti, Duda I., Trandafir Rodica, Elemente de analiză matematică Culegere de probleme, Ed. FRM, Bucureşti, 2007, ISBN Duda I., Gradinaru S., Calcul integral şi aplicaţii I, Ed. FRM, Bucureşti, 2007, ISBN Geometrie 1. Forme biliniare, forme pătratice. Teorema lui Gauss. Teorema lui Sylvester. 2. Produse scalare. Spaţii vectoriale euclidiene. Complement ortogonal al unui subspaţiu. Baze ortonormate. Procedeul Gramm-Schmidt. Grupurile O(n), SO(n). Endomorfisme simetrice. Diagonalizarea endomorfismelor simetrice. 3. Forme biliniare antisimetrice. Produs vectorial. 4. Spaţii afine. Combinaţii afine. Coordonate baricentrice. 5. Subspaţii afine. Subspaţiul afin generat de o mulţime. Teorema uniunii a două spaţii afine. Paralelism. 6. Reper afin şi reper cartezian. Ecuaţiile subspaţiilor afine. 7. Morfisme afine. Translaţii, omotetii, simetrii, proiecţii. Grupul afin. 8. Spaţii afine reale. Convexitate. 9. Spaţii punctual-euclidiene. Distanţă. Ortogonalitate. Izometrii. 10. Geometrie analitică în două şi trei dimensiuni. Duda I., Dunca A., Lecţii de geometrie analitică, Ed. FRM, Bucureşti, 2007, ISBN Duda I., Grădinaru S., Lecţii de geometrie diferenţială, Ed. FRM, Bucureşti, 2009, ISBN Nicolescu L., Curs de geometrie, Ed. FRM, Bucureşti, Duda I., Algebră liniară. Geometrie analitică şi diferenţială, Ed. FRM, Bucureşti, Hirică I.E., Nicolescu L., ş.a., Geometrie diferenţială. Probleme. Aplicaţii.Ed. FRM, 1999, ISBN Ecuaţii diferenţiale şi cu derivate parţiale 1. Ecuaţii diferenţiale de ordinul I. Problema lui Cauchy, ecuaţii rezolvabile prin cuadraturi. Ecuaţii omogene. 2. Ecuaţii liniare, ecuaţii de tip Bernoulli şi Ricatti. Ecuaţii algebrice în y. Ecuaţiile Lagrange şi Clairaut. 3. Ecuaţii liniare de ordin superior. Sistem fundamental de soluţii. 4. Ecuaţii diferenţiale cu coeficienţi constanţi. 5. Sisteme de ecuaţii diferenţiale liniare de ordinul I. Sisteme liniare şi omogene. Sisteme liniare cu coeficienţi constanţi. 6. Ecuaţii cu derivate parţiale de ordinul I liniare şi omogene. 7. Ecuaţii cu derivate parţiale de ordinul II liniare şi cvasiliniare, problema lui Cauchy, curbe caracteristice, reducere la forma canonică, clasificare, condiţii iniţiale şi la limită. 2

3 8. Ecuaţii de tip hiperbolic; metoda caracteristicilor, metoda separării variabilelor; aplicaţii la ecuaţia coardei vibrante. 9. Ecuaţii de tip parabolic, metoda separării variabilelor; aplicaţii la ecuaţia propagării căldurii. Roşca I., Lecţii de ecuaţii diferenţiale şi cu derivate parţiale, Ed. FRM, Bucureşti, 2000, ISBN Craiu M., Roşculeţ M., Ecuaţii diferenţiale, Editura Didactică şi Pedagogică, Bucureşti, N. Teodorescu, V. Olariu, Ecuaţii diferenţiale şi cu derivate parţiale, vol. I-II, Editura Tehnică, Teoria probabilităţilor 1. Algebră Boole, σ algebră Boole. Corp de părţi, σ corp de părţi. Câmp de evenimente. Câmp de probabilitate, Probabilitate condiţionată, câmpuri de probabilitate derivate. 2. Variabile aleatoare şi repartiţii. Funcţia de repartiţie. 3. Variabile aleatoare cu două dimensiuni (vectori bidimensionali). Repartiţii bidimensionale. Funcţia de repartiţie. 4. Caracteristici numerice asociate variabilelor aleatoare. Corelaţie, coeficient de corelaţie. Momentele vectorilor aleatori, momente condiţionate. 5. Repartiţii clasice discrete: repartiţiile Bernoulli, Poisson, hipergeometrică şi repartiţii asociate. 6. Repartiţia normală şi teorema limită centrală. Repartiţia normală unidimensională şi bidimensională. 7. Repartiţiile clasice continue: Gamma, Beta, Student, χ 2, exponenţială negativă. 8. Şiruri de variabile aleatoare. Tipuri de convergenţă. Legea numerelor mari: forma slabă şi forma tare. 9. Funcţii caracteristice. Teorema de unicitate a funcţiilor caracteristice, teorema de continuitate, funcţii generatoare. Trandafir Rodica, Ioan Rodica, Ghica Manuela, Teoria probabilităţilor, Ed. FRM, Bucureşti, 2007, ISBN Craiu V., Teoria probabilităţilor cu exemple, Ed. FRM, Algoritmică şi programare 1. Algoritmi. Reprezentare. Programare structurată. 2. Structuri de date fundamentale: liste (stive, cozi, etc.), arbori, etc. Reprezentare în calculator şi manipulare. 3. Limbaje de programare: C şi Pascal. Concepte fundamentale (Tipuri de date şi instrucţiuni). 4. Funcţii (şi proceduri). Recursivitate. Pointeri. 5. Fişiere. 3

4 Albeanu G., Algoritmi şi limbaje de programare, Ed. FRM, Bucureşti, Albeanu G., Luminiţa Radu, Algoritmică şi programare în Pascal, Ed. FRM, Bucureşti, 2001, ISBN Albeanu G., Tehnici de programare. Lucrări practice de programare a calculatoarelor, Ed. FRM, Bucureşti, 2003, ISBN Bârză S., Mihaela Anca, Algoritmică şi programare Culegere de probleme elementare, Ed. FRM, Bucureşti, 2005, ISBN X. Bârză S., Luciana-Maria Morogan, Structuri de date, Ed. FRM., Bucureşti, 2007, ISBN Popa Marin, Popa Mariana, Programare procedurală. Aplicaţii C şi C++., Ed. FRM, Bucureşti, 2006, ISBN X. Tehnici de programare 1. Noţiuni fundamentale în teoria grafurilor. Algoritmi fundamentali (parcurgere, conexitate, existenţa drumurilor, drumuri de lungime minimă, existenţa circuitelor, etc.) 2. Arbori. Caracterizare, memorare în calculator şi parcurgere. Arbore parţial de cost minim. 3. Metode de elaborare a algoritmilor: greedy, divide et impera, backtracking, programare dinamica, branch and bound. 4. Corectitudinea şi complexitatea algoritmilor. Albeanu G., Algoritmi şi limbaje de programare, Ed. FRM, Bucureşti,2000. Albeanu G., Tehnici de programare. Lucrări practice de programare a calculatoarelor, Ed. FRM, Bucureşti, 2003, ISBN Popa Marin, Popa Mariana, Grafuri şi reţele, vol. I, Ed. FRM, Bucureşti, 2004, ISBN Bârză Silviu, Morogan Luciana Maria, Algoritmica grafurilor, Ed. FRM, Bucureşti, 2008, Logică computaţională 1. Calculul propoziţiilor. Teorema deducţiei. Teoremele de compatibilitate şi completitudine. 2. Calculul predicatelor de ordinul I. Teoremele de compatibilitate şi completitudine. 3. Programare logică. Limbajul Prolog. Elemente de bază. 4. Obiecte şi prelucrări în Prolog. 5. Metode de programare logică. State Luminiţa, Introducere în programarea logică, Ed. FRM, Bucureşti, 2008, ISBN State Luminiţa, Elemente de logică matematică şi demonstrarea automată a teoremelor, Litografia Universităţii Bucureşti, Metakides G., Principii de logică şi programare logică, Ed. Tehnică, Tăndăreanu N., Introducere în programarea logică. Limbajul Prolog., INTARF Craiova,

5 Proiectare şi programare orientată obiect 1. Obiecte şi clase. Clase derivate: redefinirea funcţiilor membre, compatibilitatea cu clasa de bază, clase virtuale, clase abstracte. Interfete. Moştenire. Polimorfism. 2. Programarea în C++: Legare statică şi legare dinamică a metodelor; Supradefinirea operatorilor cu funcţii membre si cu funcţii prietene; Conversii de tip definite de programator. Operaţii de intrare / ieşire în C Programarea în JAVA: Tratarea excepţiilor; Interfeţe grafice; Event Delegation Model; Interfeţe şi fire de executare. Applet-uri. Programare distribuită. Schildt Herbert, C++ manual complet, Editura Teora, Bucureşti, Popa M., Popa Mariana, Programare procedurală, Ed. FRM, Bucureşti, 2006, ISBN X. Bălănescu T., Mocanu S., Interfeţe grafice în Java, Ed. FRM, Bucureşti, 2005, ISBN Albeanu G., Algoritmi si limbaje de programare, Ed. FRM, Bucureşti, Fusaru Doina, Mioara Udrică, Cătălina Lucia Cocianu, Programarea orientata pe obiecte, Ed. FRM. Bucureşti, Norton Peter, Ghid de programare in Java, Editura Teora, Bucureşti, Fraizer Colin, Bond Jill, Java API manualul interfeţei de programare a aplicaţiilor, Editura Teora, Bucureşti, Lafore Robert, Waite Mitchell, Structuri de date şi algoritmi în Java, Editura Teora, Bucureşti, Modele ale inteligenţei artificiale 1. Reprezentarea cunoştinţelor prin intermediul formulelor limbajului calculului cu propoziţii. Modelarea proceselor de inferenţa in limbajul calculului cu propoziţii. Stabilirea principiului fundamental al programării logice. Semantica limbajului calculului cu propoziţii. Normalizare CNF. 2. Metoda Davis Putnam pentru verificarea validabilitaţii formulelor limbajului calculului cu propoziţii. 3. Metoda bazata pe rezoluţie pentru verificarea validabilitaţii formulelor limbajului calculului cu propoziţii. 4. Sistemul deducţiei naturale Gentzen; consistenţă şi completitudine 5. Reprezentarea cunoştinţelor prin intermediul formulelor unui limbaj de ordinul I. 6. Unificare. Algoritmul de unificare Robinson 7. Normalizare CNF, normalizare Skolem 8. Metoda bazata pe rezoluţie pentru verificarea validabilitaţii reprezentărilor clauzale 9. Tehnici de problem solving bazate pe reducere; tehnici de problem solving prin descompunere. Reprezentări prin grafuri AND/OR. 10. Principiul căutării informate best first. 11. Tehnici de cautare informata bazata pe euristici 12. Algoritmul A * ( h) ; completitudine si admisibilitate A * h pentru h euristica optimista. 13. Analiza performantei algoritmului ( ) 5

6 14. Analiza performantei algoritmului A * ( h) pentru h euristica consistenta. * * 15. Algoritmii AO, AO, GBF, GBF ; etichetarea si identificarea bazelor de soluţii. 16. Proceduri de problem solving pentru minimizarea riscului. 17. Cautare ghidata de informatie euristica in arbori de joc: algoritmul α β State Luminiţa, Introducere în programarea logică, Ed. FRM, Bucureşti, 2008, ISBN Tăndăreanu, Introducere în programarea logică. Limbajul Prolog., INTARF Craiova, Sâmbotin C., Sisteme expert cu Prolog, Editura Tehnică,

Universitateadin București Facultatea de Matematică și Informatică. Programele de studii de licență - descriere și admitere -

Universitateadin București Facultatea de Matematică și Informatică. Programele de studii de licență - descriere și admitere - Universitateadin București Facultatea de Matematică și Informatică Programele de studii de licență - descriere și admitere - Scurt istoric 1864 Se înființează Facultateade Științe, cu o secție de Matematică

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

FISA DISCIPLINEI. S L P S L P I/1 Analiza matematică I

FISA DISCIPLINEI. S L P S L P I/1 Analiza matematică I TOTAL Credit FISA DISCIPLINEI 1. Date despre program 1.1 Institutia de invatamint superior Universitatea Tehnica din Cluj-Napoca 1.2 Facultatea Automatica si Calculatoare 1.3 Departamentul Calculatoare

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Universitateadin București Facultatea de Matematică și Informatică. Programele de studii de licență - descriere și admitere -

Universitateadin București Facultatea de Matematică și Informatică. Programele de studii de licență - descriere și admitere - Universitateadin București Facultatea de Matematică și Informatică Programele de studii de licență - descriere și admitere - Scurt istoric 1864 Se înființează Facultateade Științe, cu o secție de Matematică

Διαβάστε περισσότερα

TEMATICA PENTRU PROBA DE MATEMATICĂ DIN CADRUL CONCURSULUI DE ADMITERE ÎN ACADEMIA TEHNICĂ MILITARĂ SESIUNEA IULIE 2014

TEMATICA PENTRU PROBA DE MATEMATICĂ DIN CADRUL CONCURSULUI DE ADMITERE ÎN ACADEMIA TEHNICĂ MILITARĂ SESIUNEA IULIE 2014 TEMATICA PENTRU PROBA DE MATEMATICĂ DIN CADRUL CONCURSULUI DE ADMITERE ÎN ACADEMIA TEHNICĂ MILITARĂ SESIUNEA IULIE 2014 Conţinuturi Algebră clasa a IX-a. 1. Mulţimi şi elemente de logică matematică. Mulţimea

Διαβάστε περισσότερα

Teme pentru lucrări de licenţă Anul III

Teme pentru lucrări de licenţă Anul III Teme pentru lucrări de licenţă Anul III 2010-2011 Prof. dr. Constantin Năstăsescu 1. Dimensiunea omologică a inelelor. 2. Teorii de torsiune. 3. Contexte Morita şi contexte Takeuchi. 4. Dualitate Morita

Διαβάστε περισσότερα

1. Mulţimi. Definiţia mulţimii.

1. Mulţimi. Definiţia mulţimii. Definiţia mulţimii. 1. Mulţimi Definiţia 1.1. (Cantor) Prin mulţime înţelegem o colecţie de obiecte bine determinate şi distincte. Obiectele din care este constituită mulţimea se numesc elementele mulţimii.

Διαβάστε περισσότερα

PROGRAMA M1 Clasa a IX-a

PROGRAMA M1 Clasa a IX-a PROGRAMA M1 Clasa a IX-a Mulţimi şi elemente de logică matematică. Mulţimea numerelor reale: operaţii algebrice cu numere reale, ordonarea numerelor reale, modulul unui număr real, aproximări prin lipsă

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice...

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice... Geometrie Afină Contents 1 Spaţii vectoriale 3 1.1 Spaţii vectoriale peste un corp K........................ 3 1.2 Exemple de spaţii vectoriale........................... 4 1.3 Dependenţă liniară de vectori..........................

Διαβάστε περισσότερα

PROGRAMA Etapa sumativă la Matematică 10 Mai 2014

PROGRAMA Etapa sumativă la Matematică 10 Mai 2014 PROGRAMA Etapa sumativă la Matematică 10 Mai 2014 Programa disciplinei Matematică pentru etapa a III-a sumativă a Concursului de Verificare a Cunoștințelor BestEdu cuprinde următoarele conținuri ale învățării,

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

CURS 5 Spaţii liniare. Spaţiul liniar R n

CURS 5 Spaţii liniare. Spaţiul liniar R n CURS 5 Spaţii liniare. Spaţiul liniar R n A. Arusoaie arusoaie.andreea@gmail.com andreea.arusoaie@info.uaic.ro Facultatea de Informatică, Universitatea Alexandru Ioan Cuza din Iaşi 30 Octombrie 2017 Structura

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

3.1. Ecuaţii de gradul întâi Inecua tii de gradul întâi Modul unui număr real... 9

3.1. Ecuaţii de gradul întâi Inecua tii de gradul întâi Modul unui număr real... 9 Cuprins 1 Operaţii cu numere reale 1 11 Radicali, puteri 1 111 Puteri 1 112 Radicali 1 12 Identităţi 2 13 Inegalităţi 3 2 Funcţii 4 21 Noţiunea de funcţii 4 22 Funcţii injective, surjective, bijective

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM

Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM IAŞI 2007 2 Cuprins 1 Ecuaţii diferenţiale liniare de ordin superior 7 1.1 Ecuaţii diferenţiale liniare de ordinul n cu coeficienţi variabili 7 1.2

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

FISA DISCIPLINEI. S L P S L P I/1 Analiza matematică I

FISA DISCIPLINEI. S L P S L P I/1 Analiza matematică I FISA DISCIPLINEI 1. Date despre program 1.1 Institutia de invatamint superior Universitatea Tehnica din Cluj-Napoca 1.2 Facultatea Automatica si Calculatoare 1.3 Departamentul Calculatoare 1.4 Domeniul

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Contract POSDRU/86/1.2/S/ POSDRU ID * Bucureşti 2012

Contract POSDRU/86/1.2/S/ POSDRU ID * Bucureşti 2012 Contract POSDRU/86/1.2/S/62485 Algebră Liniară POSDRU ID 62485 * Bucureşti 212 Prefaţă Algebra liniară şi geometria analitică stau la baza pregătirii matematice universitare, oferind modelări bazate pe

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Geometrie afină. Conf. Univ. Dr. Cornel Pintea

Geometrie afină. Conf. Univ. Dr. Cornel Pintea Geometrie afină Conf Univ Dr Cornel Pintea E-mail: cpintea mathubbclujro Cuprins 1 Săptămâna 13 1 2 Endomorfismele unui spaţiu afin 1 21 Translaţia 1 22 Subspaţii invariante 2 23 Omotetii 2 24 Proiecţii

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Introducere în algebră pentru fizicieni

Introducere în algebră pentru fizicieni Introducere în algebră pentru fizicieni Andrei Mărcuş 30 septembrie 2017 Cuprins 0 Descrierea cursului 5 01 Tematica 5 02 Evaluare 5 1 Mulţimi şi funcţii 6 11 Preliminarii 6 111 Operaţii cu mulţimi 6 12

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ GEOMETRIE

Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ GEOMETRIE Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ ŞI GEOMETRIE IAŞI, 005 CUPRINS 1 MATRICE ŞI SISTEME ALGEBRICE LINIARE 5 1.1 Matrice şi determinanţi.......................... 5 1. Sisteme de ecuaţii algebrice

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Vladimir BALAN. Algebră Liniară, Geometrie Analitică, şi Elemente de Geometrie Diferenţială. Student Web Copy. = Bucureşti 2011 =

Vladimir BALAN. Algebră Liniară, Geometrie Analitică, şi Elemente de Geometrie Diferenţială. Student Web Copy. = Bucureşti 2011 = Vladimir BALAN Algebră Liniară, Geometrie Analitică, şi Elemente de Geometrie Diferenţială = Bucureşti 2011 = Prefaţă Acest material include noţiunile, rezultatele teoretice de bază, precum şi probleme

Διαβάστε περισσότερα

Seminar Algebra. det(a λi 3 ) = 0

Seminar Algebra. det(a λi 3 ) = 0 Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:

Διαβάστε περισσότερα

TITULARIZARE 2000 Varianta 1. cot 2p+1 = 1

TITULARIZARE 2000 Varianta 1. cot 2p+1 = 1 TITULARIZARE 2000 Varianta 1 1. a) Teoremele lui Bernoulli-L Hôpital. b) Relații binare. Relații de echivalență și mulțimi cât. Relații de ordine. Exemple. 2. a) Exemple și contraexemple în predarea noțiunilor

Διαβάστε περισσότερα

ANALIZĂ MATEMATICĂ, GEOMETRIE ANALITICĂ ŞI. pentru studenţi

ANALIZĂ MATEMATICĂ, GEOMETRIE ANALITICĂ ŞI. pentru studenţi ANALIZĂ MATEMATICĂ, ALGEBRĂ LINIARĂ, GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ pentru studenţi în învăţământul superior tehnic Ciprian Deliu 2014 If it sits down, I teach it; if it stands up, I will continue

Διαβάστε περισσότερα

Laborator 6. Integrarea ecuaţiilor diferenţiale

Laborator 6. Integrarea ecuaţiilor diferenţiale Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul

Διαβάστε περισσότερα

GRADUL II n α+1 1

GRADUL II n α+1 1 GRADUL II 2007 BUCUREŞTI 1. Fie A un inel cu unitate. Notăm cu Z(A) = {a A ( )x A,ax = xa}. Să se arate că: a) Z(A) este un subinel comutativ al lui A (numit centrul inelului A). b) Dacă B este un alt

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

5.8. Ecuaţii iraţionale Funcţia exponenţială Ecuaţii exponenţiale Funcţia logaritmică

5.8. Ecuaţii iraţionale Funcţia exponenţială Ecuaţii exponenţiale Funcţia logaritmică Cuprins 1 Elemente de logică matematică 1 11 Propoziţii 1 12 Predicate 4 13 Mulţimi 5 14 Inducţia matematică 7 2 Numere reale 9 21 Numere reale 9 22 Puteri 12 23 Radicali 14 24 Logaritmi 16 3 Şiruri, progresii

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a XII-a. Volumul I: ALGEBRĂ. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a XII-a. Volumul I: ALGEBRĂ. pentru concursuri, olimpiade şi centre de excelenţă Dana euberger Coordonator DANA EUBERGER Vasile Pop MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a XII-a Volumul I: ALGEBRĂ Cuvânt-înainte Colecţia Matematică de excelenţă

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Tematica comuna de examen la MODULELE MASTER de APROFUNDARE

Tematica comuna de examen la MODULELE MASTER de APROFUNDARE FACULTATEA DE AUTOMATICA SI CALCULATOARE Catedra Automatica si Informatica Industriala Tematica comuna de examen la MODULELE MASTER de APROFUNDARE 1. Arhitecturi Orientate pe Servicii pentru Controlul

Διαβάστε περισσότερα

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0 DEFINITIVAT 1993 TIMIŞOARA PROFESORI I 1. a) Metodica predării noţiunii de derivată a unei funcţii. b) Să se reprezinte grafic funci a sinx, dacă x (0,2π] f : [0,2π] R, f(x) = x. 0, dacă x = 0 2. Fie G

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

există n0 N astfel ca pentru orice 1.Teoremă. Orice şir (xn)n din Q convergent la un, x Q are loc xn+p-xn ε (propritatea lui Cauchy).

există n0 N astfel ca pentru orice 1.Teoremă. Orice şir (xn)n din Q convergent la un, x Q are loc xn+p-xn ε (propritatea lui Cauchy). TEOREME CAUCHY În 1810, Cauchy merge la Cherbourg pentru a lucra la fortificaţiile pentru invazia lui Napoleon în Anglia. In această perioadă produce câteva rezultate, inclsiv soluţia unei probleme puse

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

GEOMETRIE ANALITICĂ. Mihai-Sorin Stupariu

GEOMETRIE ANALITICĂ. Mihai-Sorin Stupariu GEOMETRIE ANALITICĂ Mihai-Sorin Stupariu Sem. al II-lea, 007-008 Cuprins 1 Elemente de algebră liniară 3 1.1 Spaţii vectoriale. Definiţie. Exemple................ 3 1. Combinaţii liniare. Baze şi repere..................

Διαβάστε περισσότερα

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază

Διαβάστε περισσότερα

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

GRADUL II 1995 CRAIOVA PROFESORI I

GRADUL II 1995 CRAIOVA PROFESORI I GRADUL II 1995 CRAIOVA PROFESORI I 1. Fie f : R R definită prin f(x) = x(1+e x ). a) Să se arate că f este indefinit derivabilă şi că f (n) (x) = a n e x +b n xe x, ( ) n 3, ( ) x R. Deduceţi că a n+1

Διαβάστε περισσότερα

Curs 7. Definiţia II Un grup G este o mulţime, împreună cu o operaţie binară

Curs 7. Definiţia II Un grup G este o mulţime, împreună cu o operaţie binară Curs 7 II.3 Grupuri II.3.1 Definiţie. Exemple Definiţia II.3.1.1. Un grup G este o mulţime, împreună cu o operaţie binară pe G, notată : G G G, (x, y) x y, astfel încât: (G1) (Asociativitate) (x y) z =

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Elemente de logicǎ matematicǎ

Elemente de logicǎ matematicǎ Elemente de logicǎ matematicǎ 9 noiembrie 2004 - Calcul propoziţional - Calculul predicatelor - Proceduri de decizie pt. realizabilitate - Demonstrare de teoreme prin rezoluţie Elemente de logicǎ matematicǎ

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

2.1 Ecuaţii liniare cu derivate parţiale de ordinul întâi... 25

2.1 Ecuaţii liniare cu derivate parţiale de ordinul întâi... 25 Cuprins 0.1 Prefaţă.................................................. vi 1 Sisteme de ecuaţii diferenţiale ordinare de ordinul întâi 1 1.1 Sisteme de ecuaţii diferenţiale ordinare de ordinul întâi neliniare

Διαβάστε περισσότερα

Matrici şi sisteme de ecuaţii liniare

Matrici şi sisteme de ecuaţii liniare Matrici şi sisteme de ecuaţii liniare 1. Matrici şi determinanţi Reamintim aici câteva proprietăţi ale matricilor şi determinanţilor. Definiţia 1.1. Fie K un corp (comutativ) şi m, n N. O funcţie A : {1,...,

Διαβάστε περισσότερα

Fişier template preliminar

Fişier template preliminar logo.png Contract POSDRU/86/1.2/S/62485 Fişier template preliminar Universitatea Tehnica din Iaşi (front-hyperlinks-colors * 29 iulie 212) UTC.png UTI.png Universitatea Tehnică Gheorghe Asachi din Iaşi

Διαβάστε περισσότερα

Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera

Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera Cuprins Scheme de algoritmi Divide et impera Exemplificare

Διαβάστε περισσότερα

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y).

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y). Ecuaţii diferenţiale Ecuaţii diferenţiale ordinare Ecuaţii cu derivate parţiale Ordinul unei ecuaţii Soluţia unei ecuaţii diferenţiale ordinare Fie I R un interval deschis, G R n, n 1, un domeniu şi f

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

ALGEBRĂ LINIARĂ, GEOMETRIE ANALITICĂ ŞI GEOMETRIE. Teorie şi probleme

ALGEBRĂ LINIARĂ, GEOMETRIE ANALITICĂ ŞI GEOMETRIE. Teorie şi probleme ALGEBRĂ LINIARĂ, GEOMETRIE ANALITICĂ ŞI GEOMETRIE DIFERENŢIALĂ. Teorie şi probleme Florian MUNTEANU Departamentul de Matematici Aplicate, Universitatea din Craiova Al. Cuza 3, 585 Craiova, Dolj, România

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

Ioan Şerdean. Bacalaureat 2017 Matematică M_mate-info EDITURA PARALELA 45. Teme recapitulative 60 de teste, după modelul M.E.N.C.S.

Ioan Şerdean. Bacalaureat 2017 Matematică M_mate-info EDITURA PARALELA 45. Teme recapitulative 60 de teste, după modelul M.E.N.C.S. Adrian Zanoschi Gabriel Popa Ioan Şerdean Gheorghe Iurea Petru Răducanu Bacalaureat 017 Matematică M_mate-info Teme recapitulative 60 de teste, după modelul M.E.N.C.S. Breviar teoretic 1.1. Mulţimi şi

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

POLINOAME ŞI ECUAŢII ALGEBRICE. Universitatea Babeş-Bolyai Facultatea de Matematică şi Informatică

POLINOAME ŞI ECUAŢII ALGEBRICE. Universitatea Babeş-Bolyai Facultatea de Matematică şi Informatică POLINOAME ŞI ECUAŢII ALGEBRICE Andrei Mărcuş Universitatea Babeş-Bolyai Facultatea de Matematică şi Informatică 6 martie 2015 Cuprins 1 Ecuaţii algebrice 1 1.1 Ecuaţii binome. Grupul rădăcinilor de ordin

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ. Simina Mariş Simona Epure Ioan Rodilǎ

Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ. Simina Mariş Simona Epure Ioan Rodilǎ Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ Liliana Brǎescu Eva Kaslik Simina Mariş Simona Epure Ioan Rodilǎ CURS DE GEOMETRIE Timişoara 2007

Διαβάστε περισσότερα

Sisteme liniare - metode directe

Sisteme liniare - metode directe Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K

Διαβάστε περισσότερα

Siruri de numere reale

Siruri de numere reale Siruri de numere reale efinitie. Un sir de elemente dintr-o multime M este o functie x : N M (sau x : N k M unde N k = {k, k +,...}). Un sir x : N M il vom nota cu (x n ) n N sau (x n ) n unde x n = x(n)

Διαβάστε περισσότερα

PROGRAMELE DISCIPLINELOR PENTRU CONCURSUL DE ADMITERE LA STUDIILE UNIVERSITARE DE LICENŢĂ 1. LIMBA ENGLEZĂ

PROGRAMELE DISCIPLINELOR PENTRU CONCURSUL DE ADMITERE LA STUDIILE UNIVERSITARE DE LICENŢĂ 1. LIMBA ENGLEZĂ PROGRAMELE DISCIPLINELOR PENTRU CONCURSUL DE ADMITERE LA STUDIILE UNIVERSITARE DE LICENŢĂ Anexa nr. 2 Extras din Metodologia organizării şi desfăşurării admiterii în Academia Forţelor Terestre Nicolae

Διαβάστε περισσότερα

Un semestru de logică

Un semestru de logică Un semestru de logică Prof. Dr. George Georgescu La Facultatea de Matematică şi Informatică, în primul semestru al anului I se predă un curs de logică matematică şi computaţională. Destinat studenţilor

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

elemente de geometrie euclidiană

elemente de geometrie euclidiană Universitatea de Vest din Timişoara Facultatea de Fizică Algebră liniară şi elemente de geometrie euclidiană Adrian NECULAE - Curs pentru uzul studenţilor - Timişoara - 2010 Tipografia Universităţii de

Διαβάστε περισσότερα

1 Corpuri finite. 1.1 Introducere. Reamintim mai intai

1 Corpuri finite. 1.1 Introducere. Reamintim mai intai 1 Corpuri finite. 1.1 Introducere Reamintim mai intai Definiţie 1 Se numeşte corp un inel comutativ (K,+, ) cu proprietatea ca orice element nenul x din k este inversabil, i.e. există x 1 k astfel încât

Διαβάστε περισσότερα

Sortare. 29 martie Utilizarea şi programarea calculatoarelor. Curs 16

Sortare. 29 martie Utilizarea şi programarea calculatoarelor. Curs 16 Sortare 29 martie 2005 Sortare 2 Sortarea. Generalitǎţi Sortarea = aranjarea unei liste de obiecte dupǎ o relaţie de ordine datǎ (ex.: pentru numere, ordine lexicograficǎ pt. şiruri, etc.) una din clasele

Διαβάστε περισσότερα

Capitolul 3. Serii Fourier. a unei funcţii periodice de perioadă Dezvoltarea în serie Fourier

Capitolul 3. Serii Fourier. a unei funcţii periodice de perioadă Dezvoltarea în serie Fourier Capitolul Serii Fourier 7-8. Dezvoltarea în serie Fourier a unei funcţii periodice de perioadă Pornind de la discuţia asupra coardei vibrante începută în anii 75 între Euler şi d Alembert, se ajunge la

Διαβάστε περισσότερα

Algebră liniară CAPITOLUL 3

Algebră liniară CAPITOLUL 3 Algebră liniară CAPITOLUL 3 TRANSFORĂRI LINIARE 3.. Definiţia transformării liniare Definiţia 3... Fie V şi W două spaţii vectoriale peste un corp comutativ K. O funcţie u: V W se numeşte transformare

Διαβάστε περισσότερα

Varietăţi algebrice. 1.1 Definiţia spaţiului proiectiv şi primele proprietăţi

Varietăţi algebrice. 1.1 Definiţia spaţiului proiectiv şi primele proprietăţi Facultatea de Matematică Anul II Master, Geometrie Algebrică Varietăţi algebrice 1 Spaţiul proiectiv 1.1 Definiţia spaţiului proiectiv şi primele proprietăţi Fie n N şi E un spaţiu vectorial de dimensiune

Διαβάστε περισσότερα

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα