(Σχολικό βιβλίο, σελ. 71)
|
|
- Χλωρίς Καζαντζής
- 5 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 0 ΙΟΥΝΙΟΥ 09 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡ/ΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΟΜΑΔΑ ΚΑΘΗΓΗΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΟΥ «ΕΚΠΑΙΔΕΥΣΗ» ΘΕΜΑ Α Α. α) Σχολικό βιβλίο, σελ. 5 β) i. Σχολικό βιβλίο, σελ. 35 ii. Σχολικό βιβλίο, σελ Α. Σχολικό βιβλίο, σελ. 4 Α3. Σχολικό βιβλίο, σελ. 35 Α4. α) Λ π.χ., x 0 f (x) (Σχολικό βιβλίο, σελ. 34), x 0 β) Λ π.χ. f(x), x x 3, x (Σχολικό βιβλίο, σελ. 7) Α5. γ ΘΕΜΑ Β u x x u Β. f(x) e λ e λ 0 λ x x u λ = Β. Έστω g(x) = f(x) x, x [, 3] g συνεχής [, 3] ως πράξεις (διαφορά) συνεχών EKΠΑΙ ΕΥΣΗ: Με Οράματα και Πράξεις για την Παιδεία --
2 g() = f() = e + = e > 0 g(3) = f(3) 3 = e = e 3 3 e = e e Άρα g() g(3) < 0 Από Θεώρημα Bolzano στη g στο [, 3], υπάρχει ένα τουλάχιστον x 0 (, 3): g(x 0 ) = 0 Είναι g παραγωγίσιμη [, 3] με g (x) = (e x + ) < 0 Άρα g γνησίως φθίνουσα στο [, 3] Επομένως x 0 μοναδική Β3. Είναι f παραγωγίσιμη στο με f (x) = e x < 0 Άρα f, άρα και ως γνησίως μονότονη Άρα, ορίζεται η f Είναι: f(x) e x x f(x) x x e 0 f f, f(x), f(x), συν x x Έστω y = f(x) y = e x + e x = y, y > lne x = ln(y ), y > x = ln(y ), y > x = ln(y ), y > Άρα f (x) = ln(x ), x > f x (x) x u x ln(x ) lnu ( ) u0 u0 Άρα η x = κατακόρυφη ασύμπτωτη της C f EKΠΑΙ ΕΥΣΗ: Με Οράματα και Πράξεις για την Παιδεία --
3 ΘΕΜΑ Γ Γ. Αφού η f παραγωγίσιμη στο, θα είναι και συνεχής στο, άρα και στο x 0 =. Τότε: f() f(x) f(x) α β α = β x x f παραγωγίσιμη στο x 0 =. Άρα: x f(x) f() x x f(x) f() x x x α α x e x x βx α x (x )(x ) x x e x x αx α x x e x x α(x ) x = + α α = 0 0 x x e e αφού: άρα β = x x DLH x Γ. (x) e f x, x, x x Στο (, ) η f παραγωγίσιμη με f (x) = e x + > 0 Στο (, + ) η f παραγωγίσιμη με f (x) = x > 0 Όμως η f είναι συνεχής στο x 0 = άρα f f(x), f(), Είναι: f, f συν x u x x x u Γιατί: e e 0 f x f u u, f(), f(x), συν x x, αφού f(x) e x 0 ( ) x x αφού f(x) (x x x ) x x Άρα f() = Γ3. i. 0 f([, + ), άρα δεν υπάρχει x 0 [, + ): f(x 0 ) = 0 0 f((, 0)), άρα υπάρχει από Θ.Ε.Τ. ένα τουλάχιστον x 0 (, 0): f(x 0 ) = 0 και επειδή f γνησίως μονότονη σ αυτό, το x 0 είναι μοναδικό f f(x), f(0), Διότι: f, συν x e EKΠΑΙ ΕΥΣΗ: Με Οράματα και Πράξεις για την Παιδεία -3-
4 ii. Έστω h(x) = f (x) x 0 f(x), x (x 0, + ) Έστω ότι η h(x) = 0 έχει ρίζα την x = x Τότε: h(x ) = 0 f (x ) x 0 f(x ) = 0 f(x )(f(x ) x 0 ) = 0 f(x ) = 0 ή f(x ) = x 0 Όμως f(x ) = 0 αδύνατη, αφού η f(x) = 0 έχει μοναδική ρίζα την x = x 0 από Γ3(i). Επιπλέον η f(x ) = x 0 αδύνατη, αφού x > x 0 f f(x) > f(x 0 ) f(x) > 0 και x 0 < 0 Γ4. (ΜΟΚ)(t) = E(t) = x(t) y(t) x(t) (t) 3 (t) x(t) E (t) 3x (t) x(t) x(t) Την t = t 0 : x(t 0 ) = 3 μον y(t 0 ) = μον x (t 0 ) = μον/sec τετρ. μον. / sec E (t0) y 0 M (x(t), y(t)) K(x(t), 0) x ΘΕΜΑ Δ Δ. f(x) = (x )ln(x x + ) + αx + β παραγωγίσιμη στο ως πράξεις παραγωγίσιμων Αφού η (ε): y = x + εφάπτεται της C f στο Α είναι: f() = και f () = f() = α + β = f (x) = ln(x x + ) + α + (x ) f () = α = x x Άρα β = Δ. Ε(Ω) = (x )ln(x x ) dx Είναι x 0 για κάθε x [, ] Έστω h(x) = ln(x x + ) EKΠΑΙ ΕΥΣΗ: Με Οράματα και Πράξεις για την Παιδεία -4-
5 h παραγωγίσιμη με h (x) = 0 για κάθε x [, ] x Είναι: x h (x) + h Άρα h(x) 0 για κάθε x [, ] Συνεπώς (x )ln(x x + ) 0 για κάθε x [, ] Άρα E(Ω) (x )ln(x x ) dx Θέτω u = x x + άρα du = (x )dx Για x =, u = Για x =, u = Τότε E(Ω) lnudu (u) lnudu ulnu du ln u ln τ. μον. Δ3. i. f (x) = ln(x x + ) + f (x) = (x )(x x x x 4(x )(x x (x ) x x ) f (x) 0 x x ) (x ) (x ) 4(x ) x x 4x 4 x x x f (x) + f 4(x ) 4x 3 (x ) 4 f (x) f () f (x) για κάθε x EKΠΑΙ ΕΥΣΗ: Με Οράματα και Πράξεις για την Παιδεία -5-
6 ii. f λ f(λ) Εφαρμόζουμε το Θεώρημα Μέσης Τιμής στο λ, λ f λ f(λ) Υπάρχει ξ λ, λ τέτοιο ώστε f'(ξ) = Από Δ3. i. έχουμε: f'(ξ) f λ f(λ) Δ4. Από Δ3(i) είναι f (x) για κάθε x. Το ίσον ισχύει για x = Αν δειχθεί ότι g (x) για κάθε x. Το ίσον ισχύει μόνο για x = 0. g (x) = 3x g (x) = 6x x 0 g (x) + g Μ Άρα g (x) g (0) g (x) Είναι g (0) = και f () = Άρα οι C f και C g δέχονται μοναδική κοινή εφαπτομένη στα σημεία Α(, ) και Β(0, ) αντίστοιχα με εξίσωση: (ε): y g(0) = g (0) (x 0) y = x y = x + Επαλήθευση (ε): y f() = f ()(x ) y = (x ) y = x + ΣΧΟΛΙΟ: Τα φετινά θέματα εξέταζαν αρκετά μεγάλο μέρος της ύλης. Απαιτούσαν ικανότητα σε πράξεις και άρτια γνώση της θεωρίας. Η διαβάθμιση της δυσκολίας κρίνεται ικανοποιητική. Το άριστα θα κριθεί στο ερώτημα Δ4. EKΠΑΙ ΕΥΣΗ: Με Οράματα και Πράξεις για την Παιδεία -6-
Α4. α. Λάθος, Σχόλιο σχολικού βιβλίου σελίδα 134 β. Λάθος, Σχόλιο 3ο (σχήμα 39β) σχολικού βιβλίου σελίδα 41 Αντιπαράδειγμα σελίδα 71 = = +,
ΘΕΜΑ Α Α. α. Ορισμός σχολικού βιβλίου σελίδα 5 β. (i, ii) Σχολικό σελίδες 5,6 A. Θεώρημα σχολικού βιβλίου σελίδα 4 Α. Θεώρημα σχολικού βιβλίου σελίδα 5 Α4. α. Λάθος, Σχόλιο σχολικού βιβλίου σελίδα 4 β.
Διαβάστε περισσότεραΠανελλαδικές εξετάσεις Μαθηµατικά Προσανατολισµού Γ Λυκείου. Ενδεικτικές Απαντήσεις ϑεµάτων. Θέµα Β. (α) ϑεωρία. (ϐ) i, ii) ϑεωρία.
Πανελλαδικές εξετάσεις 09 Μαθηµατικά Προσανατολισµού Γ Λυκείου Ενδεικτικές Απαντήσεις ϑεµάτων Θέµα Α Α α) ϑεωρία ϐ) i, ii) ϑεωρία Α ϑεωρία Α3 ϑεωρία Α4 α) Λάθος {, x < 0 διότι για τη συνάρτηση fx) = ισχύει
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ. Α4. α) Λάθος. Το θεώρημα ισχύει για διάστημα και όχι για ένωση διαστημάτων που είναι το σύνολο Α. Π.χ.
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ENNIA (9) ΕΝΔΕΙΚΤΙΚΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ Α. α) Θεωρία σχολικού βιβλίου
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Δευτέρα Ιουνίου 9 Λύσεις των θεμάτων Έκδοση η (/6/9, 9:3) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα συλλογικής δουλειάς
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Ιουνίου 9 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απαντήσεις Θεμάτων Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων ΘΕΜΑ Α Α. α) Ορισμός σχ. βιβλίο σελ.
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ
ΔΕΥΤΕΡΑ 6 28 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ Θέμα Α Α Σελίδα 5, ορισμός. β) i. Σελίδα 35, από Έστω...
Διαβάστε περισσότεραΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΛ 2019
ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΛ 09 ΘΕΜΑ Α Α. α) ορισμός σελ.5 β)i) για να έχει μια συνάρτηση αντίστροφη πρέπει να είναι -. ii) ορισμός σελ.35 Α. ορισμός σελ.4 Α3. απόδειξη σελ.35 Α4. α)λ
Διαβάστε περισσότεραΜΑΘΗΜΑ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ
ΜΑΘΜΑ ΕΞΕΤΑΖΟΜΕΝ ΥΛ ΜΑΘΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ /6/9 ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ Α Α α) Σχολικό βιβλίο σελίδα 5 β) i) Σχολικό βιβλίο σελίδα 5 ii) Σχολικό βιβλίο σελίδα 5-6 Α Σχολικό βιβλίο σελίδα 4 Α Σχολικό
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Αα) Ορισμός σχολικού βιβλίου σελ 5 Έστω Α ένα υποσύνολο
Διαβάστε περισσότεραΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΛΥΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 10/06/2019
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΛΥΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 0/06/09 ΘΕΜΑ Α. Α. α) Σχολικό βιβλίο σελίδα 5. β) (i) Σχολικό βιβλίο σελίδα 35. (ii) Σχολικό βιβλίο σελίδα 35-36. Α. Σχολικό βιβλίο
Διαβάστε περισσότεραx x f x για κάθε f x x ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. α) Σχολικό σελίδα 15
ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α. α) Σχολικό σελίδα 5 β) i. Μια συνάρτηση : είναι συνάρτηση -, αν και μόνο αν για οποιαδήποτε A y y A, η συνεπαγωγή: αν τότε ii. Μια συνάρτηση g: με την οποία
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ Α Α. α) Σχολικό βιβλίο σελ 5 β) i) Μια συνάρτηση f έχει
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ
ΜΑΘΗΜΑΤΙΚΑ : Σελίδα από ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ: /6/9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: Μαθηματικά ΟΠ Θετικών Σπουδών & Σπουδών Οικονομίας & Πληροφορικής ΠΡΟΤΕΙΝΟΜΕΝΕΣ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019
ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 9 ΘΕΜΑ Α Α α Σχολικό σελ 5 β i Σχολικό σελ 35 ii Σχολικό σελ 36 Α Σχολικό σελ
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν ΘΕΜΑ Α Α. Θεώρημα σχολικό βιβλίο
Διαβάστε περισσότεραΕπομένως ο γεωμετρικός τόπος των εικόνων του z είναι ο κύκλος με κέντρο
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ 6 Α Σχολικό
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ & ΤΕΧΝΟΛΟΓΙΚΉΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Ε Ν Δ Ε
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 99 Α. α) Ψ β) Η συνάρτηση
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Θεωρία σχολ βιβλίου σελ 99 Α α ψευδής β g Α Θεωρία
Διαβάστε περισσότεραΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο
Διαβάστε περισσότερα1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ
1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 1 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. Σχολικό βιβλίο σελ. 99 Α.α. Ψευδής. β. Σχολικό βιβλίο σελ. 5, Θεωρούμε
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 Σχολικό βιβλίο σελ Α2 Σχολικό βιβλίο σελ. 28 Α3. α σωστό, β σωστό, γ λάθος, δ λάθος, ε σωστό. ΘΕΜΑ Β
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β) ΔΕΥΤΕΡΑ 6 ΜΑΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ 6 6
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Α Απόδειξη θεωρήματος σελ 99 σχολικού βιβλίου
Διαβάστε περισσότεραγια κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 6 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) & ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α Α Έστω
Διαβάστε περισσότεραΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. α. Ορισμός στο σχολικό βιβλίο σελίδα 15. β. i) Μια συνάρτηση
Διαβάστε περισσότεραΠΛΗΡ/ΚΗΣ: τηλ -8856 ΕΠΑ.Λ.: τηλ -694 Κ.Ε.Κ. ERGOWAY: τηλ -647 Αό το 975 στο Μαρούσι ERGOWAY ΠΛΗΡΟΦΟΡΙΚΗ: τηλ -647 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΛΑ Β ) ΤΕΤΑΡΤΗ 8
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Ημερομηνία: Ιουνίου 08 Απαντήσεις Θεμάτων Θέμα Α Α.. Θεωρία σχολικού βιβλίου,
Διαβάστε περισσότεραΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 5 ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ & ΤΕΧΝΟΛΟΓΙΚΉΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Ε Ν Δ Ε
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης: 3 ώρες
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 17 ΔΕΚΕΜΒΡΙΟΥ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΔΕΚΕΜΒΡΙΟΥ 7 ΘΕΜΑ A Α α Σωστό β Σωστό γ Σωστό δ Σωστό ε Λάθος ΑΠΑΝΤΗΣΕΙΣ Αα Είναι ΑΓΒ 8 ο 5 ο 5 ο και ΑΒΓ 9 ο Άρα το ΑΒΓ είναι ορθογώνιο και
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σελίδα από Φάνης Μαργαρώνης Φροντιστήρια Ρούλα Μακρή Τομέας μαθηματικών ΘΕΜΑ
Διαβάστε περισσότερα2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση:
ΘΕΜΑΤΑ ΘΕΜΑ Γ. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f () f(), η οποία ικανοποιεί τη σχέση: (f () + f () ) f () + f (), για κάθε. Γ. Να αποδείξετε ότι f() ln( ),. Μονάδες 8 Γ. Να μελετήσετε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
9 Ιουνίου ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απαντήσεις Θεμάτων Επαναληπτικών Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων (Νέο & Παλιό Σύστημα)
Διαβάστε περισσότερα( ) ( ) ΘΕΜΑ Β Β1. Θέτουμε z = x + yi, x, y ΙR Είναι: 2 x + y + 2xi 4 2i = 0 2x + 2y 4 + (2x 2)i = 0. 2y = 2 y = 1 ήy= 1 = = = Άρα = 1+ i, z2. z 1 Β2.
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β) ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Θεωρία - Σχολικό
Διαβάστε περισσότεραΘΕΜΑ 1 ο. Α1. Θεωρία, στη σελίδα 260 του σχολικού βιβλίου (Θ. Fermat). Α2. Θεωρία, στη σελίδα 169 του σχολικού βιβλίου.
ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Πέμπτη, 9/6/6 ΘΕΜΑ ο Α. Θεωρία,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
Κανάρη 6, Δάφνη Τηλ 9794 & 976976 ΜΑΘΗΜΑΤΙΚΑ ΟΠ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέμα Α Α Σχολικό βιβλίο σελ 99 Α Σχολικό βιβλίο σελ 8 Α Σχολικό βιβλίο σελ 6 Α4 α) Σ β)
Διαβάστε περισσότερα#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΑΠΡΙΛΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΤΕΚΑ (11) ΘΕΜΑ Α Α1. Σχολικό
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Ιουνίου 08 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απαντήσεις Θεμάτων Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων Μαθηματικά Ομάδας Προσανατολισμού
Διαβάστε περισσότεραΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 8 IOYNIOY 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 8 IOYNIOY 019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΟΜΑ Α ΚΑΘΗΓΗΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΦΡΟΝΤΙΣΤΗΡΙΟΥ «ΕΞΕΛΙΞΗ» ΘΕΜΑ Α Α1. Θεωρία σχολικό
Διαβάστε περισσότεραΓ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Σάββατο Νοεμβρίου 7 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Να διατυπώσετε το θεώρημα του Bolzano και να δώσετε τη γεωμετρική
Διαβάστε περισσότεραΘΕΜΑ Α ΘΕΜΑ Β. Β1. Η είναι συνεχής και παραγωγίσιμη στο R ως ρητή με πρώτη παράγωγο. x Μονοτονία της f oλικό ελάχιστο στο 0 το f(0)=0
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΙΜΕΛΕΙΑ : Χ.ΚΟΜΝΗΝΑΚΙΔΗΣ ΜΑΘΗΜΑΤΙΚΟΣ M.Sc. ΘΕΜΑ Α Α1. Θεωρία σχολικού βιβλίου, σελίδα 262. Α2. Θεωρία σχολικού βιβλίου, σελίδα 141
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΠΛΗΡΕΙΣ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 3 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ
ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 3 Ιανουαρίου 019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΘΕΜΑΤΑ Α1 Αν μια συνάρτηση f είναι παραγωγίσιμη στο σημείο x 0, να αποδείξετε ότι
Διαβάστε περισσότεραΓ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Ιανουαρίου 07 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω η συνάρτηση ()
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις Επιμέλεια: Ομάδα Μαθηματικών http://www.othisi.gr Δευτέρα, 11 Ιουνίου 018 Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ A1. Να αποδείξετε ότι, αν μια
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016
ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 16 ΘΕΜΑ Α Α1 Σχολικό Βιβλίο σελ 6 Α Σχολικό Βιβλίο σελ 141 Α Σχολικό Βιβλίο σελ
Διαβάστε περισσότεραΔιαγώνισμα Προσομοίωσης Εξετάσεων 2017
Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 05 ΜΑΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 5 ΜΑΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Θεωρία Σχολικού Βιβλίου σελ 5 Α ) Θεωρία Σχολικού Βιβλίου σελ 46-47 ) Θεωρία Σχολικού Βιβλίου σελ 8 Α3 ) Λ ) Σ 3)
Διαβάστε περισσότεραΕΠΙΜΕΛΕΙΑ: ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ ΣΥΝΤΟΝΙΣΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ, 2 Ο ΠΕ.ΚΕ.Σ. ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ
ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 08-09/ 0-06-09 ΕΠΙΜΕΛΕΙΑ: ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ ΣΥΝΤΟΝΙΣΤΗΣ
Διαβάστε περισσότεραf( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της
ΘΕΜΑΤΑ. Η συνάρτηση f είναι παραγωγίσιµη στο κλειστό διάστηµα [, ] και ισχύει f () > για κάθε (, ). Αν f() και f(), να δείξετε ότι: α. η ευθεία y τέµνει τη γραφική παράσταση της f σ' ένα ακριβώς σηµείο
Διαβάστε περισσότεραρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης
ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης ευτέρα, Ιουνίου 4 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()
Διαβάστε περισσότερακαι γνησίως αύξουσα στο 0,
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. Σχολικό βιβλίο σελ 6 (i) A. Σχολικό βιβλίο σελ 141 Α. Σχολικό βιβλίο σελ 46-47 Α4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β Β1. Ισχύει D f επειδή 1 1 1 Για κάθε η f είναι παραγωγίσιμη
Διαβάστε περισσότεραΘΕΜΑ 1 ο. Α3. Έστω η συνάρτηση f(x) = x ν, ν ϵ N-{0, 1}. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: , δηλαδή x 1
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 ΠΑΡΑΣΚΕΥΗ, 6 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013 Απαντήσεις Θεμάτων Θεμα Α Α1. Θεωρία σχολικού βιβλίου σελ. 334-335
Διαβάστε περισσότεραΓ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).
ΘΕΜΑΤΑ ΘΕΜΑ Γ. ίνεται η συνάρτηση f(),. Γ. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (, ). Γ. Να αποδείξετε ότι η εξίσωση f( ( )) έχει στο σύνολο
Διαβάστε περισσότεραΑπαντήσεις στα Μαθηματικά Κατεύθυνσης 2016
ΘΕΜΑ Α Απαντήσεις στα Μαθηματικά Κατεύθυνσης 6 Α.. Σχολ. Βιβλίο, Θεωρία, σελ.6-(i) Α.. Σχολ. Βιβλίο, Θεωρία, σελ. 4 Α. Σχολ. Βιβλίο, Θεωρία, σελ. 46,47 Α.4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β B. Η συνάρτηση
Διαβάστε περισσότερα= R * ως πράξη παραγωγίσιμων συναρτήσεων με 0 x 4 2x 8x 8 x x x x x. και γνησίως αύξουσα στο (0, + ). = με τιμή ( )
ΘΕΜΑ Α Α σχ βιβλίο σελ 99 παράγραφος Α α Ψ σχ βιβλίο σελ 5 παράγραφος β Αντιπαράδειγμα:, =, H είναι - όμως δεν είναι γνησίως μονότονη Α σχ βιβλίο σελ 7 παράγραφος 5 Α4 α Λ β Λ γ Σ δ Σ ε Σ ΘΕΜΑ Β Β H είναι
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 Ε_3.Μλ3ΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης:
Διαβάστε περισσότεραΜαθηματικά προσανατολισμού
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 06 Μαθηματικά προσανατολισμού Α Σχολικό βιβλίο, σελ: 60 ΘΕΜΑ Α Α Σχολικό βιβλίο, σελ: 69 Α Σχολικό βιβλίο, σελ: 80 Α4 α) Λάθος β) Λάθος γ) Σωστό δ) Λάθος ε) Λάθος ΘΕΜΑ
Διαβάστε περισσότεραΤομέας Mαθηματικών "ρούλα μακρή"
Τομέας Mαθηματικών "ρούλα μακρή" ΑΠΑΝΤΗΣΕΙΣ Πρότυπου Εκπαιδευτικού Οργανισμού ρούλα μακρή ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 ΜΑΪΟΥ
Διαβάστε περισσότερα- + Απαντήσεις. Θέμα Β Β1. Από την Cf παρατηρούμε ότι 0. f x για κάθε (0,4) συνεπώς η f είναι γνήσια αύξουσα στο [4, 5] και γνήσια φθίνουσα στο [0,4].
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 3//7 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ο.Π ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) Απαντήσεις Θέμα Α Α. Θεωρία σχολικού βιβλίου σελ. 99 Α. Θεωρία σχολικού βιβλίου σελ. 6
Διαβάστε περισσότερα2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ
ΑΠΟ 3//7 ΕΩΣ 5//8 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Αν μία συνάρτηση f είναι
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 25 Μαΐου 2015
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημερομηνία: 5 Μαΐου 5 Απαντήσεις Θεμάτων Θέμα Α Α. Θεωρία, βλ. σχολικό βιβλίο σελ. 94
Διαβάστε περισσότεραΑπαντήσεις Διαγωνίσματος Μαθηματικών Προσανατολισμού Γ Λυκείου 03/11/2018
ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΤΜΗΜΑ: ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 7077 594 ΑΡΤΑΚΗΣ - Κ ΤΟΥΜΠΑ THΛ: 993 9494 ΗΜΕΡΟΜΗΝΙΑ: Απαντήσεις Διαγωνίσματος Μαθηματικών Προσανατολισμού Γ Λυκείου 03//08 Θέμα Α A Σχολικό βιβλίο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 Ενδεικτικές απαντήσεις
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 Ενδεικτικές απαντήσεις Θέμα Α Α. Σχολικό βιβλίο σελίδα 35 Α. α. Ψ β. Παράδειγμα η συνάρτηση f ( ) είναι συνεχής στο αλλά όχι παραγωγίσιμη σε αυτό. Α3. Σχολικό
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές λύσεις)
ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ 04--07 (ενδεικτικές λύσεις) ΘΕΜΑ A Α. Θεωρία / Σχολικό Βιβλίο / Σελίδα 99 Α. Θεωρία / Σχολικό Βιβλίο / Σελίδα 3 Α3. α) Ο ισχυρισμός είναι Ψ (ψευδής). β)
Διαβάστε περισσότεραx x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική
ΘΕΜΑΤΑ ΘΕΜΑ Γ. Δίνεται η συνάρτηση f() ( )ln, >. Γ. Να αποδείξετε ότι η συνάρτηση f είναι γνησίως φθίνουσα στο διάστημα Δ (, ] και γνησίως αύξουσα στο διάστημα Δ [, ). Στη συνέχεια να βρείτε το σύνολο
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ. y > x + (y - 1) = 1 + y x + (y - 1) = (y + 1) = y + 2y + 1. B2. w(w + 3i) = i(3w + i) ww + 3wi = 3wi - 1
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ Α A. Σχολικό βιβλίο σελίδα
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Ημερομηνία: Ιουνίου 08 Απαντήσεις Θεμάτων Θέμα Α Α.. Θεωρία σχολικού βιβλίου,
Διαβάστε περισσότερα2x 4 0, αδύνατη. x Πανελλαδικές Εξετάσεις Μαθηματικά Κατεύθυνσης 11 Ιουνίου Θέμα Α Α1. Σχολικό βιβλίο σελ.99
Πανελλαδικές Εξετάσεις Μαθηματικά Κατεύθυνσης Ιουνίου 08 Θέμα Α Α Σχολικό βιβλίο σελ99 Α α Λ β Αντιπαράδειγμα, σχολικό βιβλίο σελ5, σχ g, 0, είναι - αλλά όχι γνησίως μονότονη, 0 Α Σχολικό βιβλίο σελ6 Α
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
Κανάρη 6, Δάφνη Τηλ 9794 & 976976 ΜΑΘΗΜΑΤΙΚΑ ΟΠ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ 4 Α Σχολικό βιβλίο σελ 6 Α α) Σ β) Σ γ) Σ δ) Λ ε) Λ ΘΕΜΑ B Β
Διαβάστε περισσότεραΛύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος
Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, 3/3/6 ΘΕΜΑ ο : Α. Τι ονομάζουμε αρχική
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΘΕΜΑ Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σουδών Ημερομηνία: 18 Μαΐου 216 Ααντήσεις Θεμάτων Θέμα Α Α1. Θεωρία, βλ. σχολικό βιβλίο
Διαβάστε περισσότεραΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018
ΘΕΜΑ Α ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Απόδειξη
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης: 3 ώρες
Διαβάστε περισσότεραΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4)
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 4 ΠΑΡΑΣΚΕΥΗ, 22 ΑΠΡΙΛΙΟΥ 216 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Διαβάστε περισσότεραα) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ΕΥΤΕΡΑ 6 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 18 ΔΕΚΕΜΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. f x = x 6x + 3, x 1, 1. Η f είναι συ-
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 8 ΔΕΚΕΜΒΡΙΟΥ 06 ΘΕΜΑ Α Α. i. Σωστό ii. Λάθος iii. Λάθος iv. Λάθος v. Λάθος ΑΠΑΝΤΗΣΕΙΣ f = 6 +,,. Η f είναι συ- Α. Θεωρούμε συνάρτηση ( ) [ ]
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 MAΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A Έστω μια συνάρτηση f, η οποία
Διαβάστε περισσότεραf(x) 0 (x f(x) g(x), lim f(x) lim g(x).
8 6 () A. f (, f f() ( f() (,, f( ) f. A. f, g 4 A. 4 A4., f:[, G f, f(t)dt G(. f,g f() g(), lim f() lim g(). f, f() (, (. f -,, y, y f(). f [, f [ M m. f(),. B. f f f. 6 B. f, f 9 B. f. 7 B4.,, f. e,.
Διαβάστε περισσότεραΣημειώσεις Μαθηματικών 2
Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 3 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Συνέχεια Συναρτήσεων 3.1 Όρισμός Συνεχούς Συνάρτησης Ορισμός Μια συνάρτηση f ονομάζεται συνεχής στο x 0 Df αν υπάρχει το πραγματικός
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΠΛΗΡΕΙΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Α. Σχολικό βιβλίο σελίδα
Διαβάστε περισσότερα, για κάθε x. Άρα, υπάρχει σταθερά c τέτοια, ώστε G(x) F(x) c, για κάθε x. ΘΕΜΑ Β. x,y
ΕΠ ΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ ΙΟΥΝΙΟΥ 05 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Λύσεις Α Κάθε συνάρτηση της μορφής G() F() c, όπου c, είναι
Διαβάστε περισσότερα(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο
Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -4- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, /4/6 ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 08 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Σχολικό βιβλίο σελ. 99 Α. α) Ψευδής β), 0 f, 0 Βλέπε σχήμα στο σχολικό βιβλίο σελίδα 5 Στο,0 f είναι
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 29 ΜΑΡΤΙΟΥ 2015 ΑΠΑΝΤΗΣΕΙΣ
ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΜΑΡΤΙΟΥ 15 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α 1. α.λ, β.λ, γ.σ, δ.σ, ε.λ. α) Το πεδίο ορισμού της συνάρτησης f είναι το R. Η συνάρτηση f είναι
Διαβάστε περισσότεραΛύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος
Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»
Διαβάστε περισσότεραΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1.i. Να διατυπώσετε το θεώρημα ενδιαμέσων τιμών (Μονάδες 2) και στη
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ () ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Διαβάστε περισσότεραΜεθοδικό Φροντιςτήριο Βουλιαγμένησ & Κύπρου 2, Αργυρούπολη, Τηλ:
Πανελλήνιεσ Εξετάςεισ Ημερήςιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 6 Μαίου Απαντήσεις Θεμάτων Θεμα Α Α. Θεωρία από το ςχολικό βιβλίο (Θεώρημα Fermat)
Διαβάστε περισσότεραΜαθηματικά Γ Λυκείου
Μαθηματικά Γ Λυκείου Θέμα Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε ότι η f είναι σταθερή σε όλο το διάστημα
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Ημερομηνία: Ιουνίου 08 Απαντήσεις Θεμάτων Θέμα Α Α.. Θεωρία σχολικού βιβλίου,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΖΗΤΗΜΑ ο Α. α Έστω μια συνάρτηση, η οποία είναι συνεχής σε ένα διάστημα Δ. Να αποδείξετε ότι, αν > σε κάθε εσωτερικό σημείο του Δ, τότε η είναι γνησίως αύξουσα σε όλο το
Διαβάστε περισσότεραΑ3. Σχολικό βιβλίο σελ. 142 Γεωμετρική ερμηνεία του θ. Fermat: Στο σημείο (x o, f(x o )) η εφαπτομένη της C f είναι οριζόντια.
ΑΠΑΝΤΗΣΕΙΣ ΠΡΟΣΟΜΟΙΗΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α. Σχολικό βιβλίο σελ. 76 Α. α. Ψ β. Σχολικό
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΑΠΑΝΤΗΣΕΙΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0 03 ΜΑΘΗΜΑ / ΤΑΞΗ : ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 5 05 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. ΘΕΩΡΙΑ ΣΕΛ. 7 ΒΙΒΛΙΟ ΜΠΑΡΛΑ. Α. ΘΕΩΡΙΑ ΣΕΛ. 66 ΒΙΒΛΙΟ ΜΠΑΡΛΑ. Α3. α Σ, β Λ, γ Λ, δ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Έστω η δύο φορές παραγωγίσιμη συνάρτηση f: (, + ) R με f (), για κάθε > για την οποία ισχύει η σχέση: u f() ( ) + f(t) dt du, για κάθε >. () i. Να δείξετε ότι η f
Διαβάστε περισσότεραÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση
Διαβάστε περισσότερα, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο, να αποδείξετε ότι και
Διαβάστε περισσότερα