Μαθηματικά Γ Λυκείου
|
|
- Καλλιστώ Αλιβιζάτος
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Μαθηματικά Γ Λυκείου Θέμα Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε ότι η f είναι σταθερή σε όλο το διάστημα Δ. Μονάδες 9 Α. Έστω μια συνάρτηση f με πεδίο ορισμού το Α. Πότε λέμε ότι η f παρουσιάζει στο Aτοπικό μέγιστο; Μονάδες 6 Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Κάθε συνεχής συνάρτηση σε διάστημα Δ έχει παράγουσα στο διάστημα αυτό. β) Αν θέση τοπικού ακροτάτου μιας συνάρτησης f τότε ισχύει πάνταf '( ). γ) Αν f '() για κάθε R *τότε η f είναι σταθερή στο R*. δ) Αν μια συνάρτηση f είναι συνεχής σε ένα του πεδίου ορισμού της τότε η f είναι παραγωγίσιμη σε αυτό. ε) Κάθε πολυωνυμική συνάρτηση δευτέρου βαθμού δεν έχει ασύμπτωτες. Μονάδες Θέμα Β, Έστω η συνάρτηση: f() Β. Να δείξετε ότι α=., η οποία είναι συνεχής στο. Μονάδες 4
2 Β. Να αποδείξετε ότι η f δεν είναι παραγωγίσιμη στο =. Β. Να μελετηθεί η συνάρτηση f ως προς τη μονοτονία και τα ακρότατα και να βρεθεί το σύνολο τιμών της. Μονάδες 7 Β4. Να βρεθεί το πλήθος των ριζών της f()=λ για τις διάφορες τιμές του. Μονάδες 9 Θέμα Γ λ Έστω η συνάρτηση f(),, λ και η συνάρτηση h τέτοια ώστε: h() f (), για κάθε Γ. Να δείξετε ότι η εξίσωση h() έχει μοναδική ρίζα στο (, ) Γ. Αν h( ), να εξετάσετε την f ως προς την μονοτονία, τα ακρότατα και να βρείτε το σύνολο τιμών και το πρόσημό της. Μονάδες 7 Γ. Για λ να δείξετε ότι: ι) Υπάρχει ρ (, ) τέτοιο ώστε η εφαπτομένη στη c f στο σημείο M(ρ,f(ρ)) να είναι παράλληλη προς την ευθεία που ορίζεται από τα σημεία Κ(, ), Λ(,f( )) Μονάδες 6 ιι) Ισχύει f ( ) f ( ) Μονάδες 7 Θέμα Δ Δίνεται η συνάρτηση f() ( )ln c, και F:(, ) (, ) 94 μια αρχική της f για την οποία ισχύει F() F( ). 8 Δ. Να αποδείξετε ότι c. Μονάδες Δ. Να αποδείξετε ότι η f έχει ένα ακριβώς σημείο καμπής A(,f( )), (, ).
3 Δ. Να αποδείξετε ότι η f είναι γνησίως αύξουσα στο (, ). Δ4. Να βρείτε την εφαπτομένη της f στο και να αποδείξετε ότι f(f())d. Μονάδες 7 Δ5. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από το γράφημα της f, τον άξονα ' και τις ευθείες = και f(). Απαντήσεις Θέμα Α Α. Αρκεί να αποδείξουμε ότι για οποιαδήποτε ϵ Δ ισχύει f( ) = f( ). Πράγματι Αν =, τότε προφανώς f( ) = f( ). Αν <, τότε στο διάστημα [, ] η f ικανοποιεί τις υποθέσεις του θεωρήματος μέσης τιμής. Επομένως, υπάρχει ξ ϵ (, ) τέτοιο, ώστε Επειδή το ξ είναι εσωτερικό σημείο του Δ, ισχύει f ʹ(ξ) =, οπότε, λόγω της (), είναι f( ) = f( ). Αν <, τότε ομοίως αποδεικνύεται ότι f( ) = f( ). Σε όλες, λοιπόν, τις περιπτώσεις είναι f( ) = f( ). Α. Μια συνάρτηση f, με πεδίο ορισμού Α, θα λέμε ότι παρουσιάζει στο ϵ A τοπικό μέγιστο, όταν υπάρχει δ >, τέτοιο ώστε f() f( ) για κάθε ϵ A ( δ, + δ). Το λέγεται θέση ή σημείο τοπικού μεγίστου, ενώ το f( ) τοπικό μέγιστο της f. Α. α) Σ, β) Λ, γ) Λ, δ) Λ, ε) Σ ()
4 Θέμα Β B. Η συνάρτηση f είναι συνεχής στο συνεπώς και στο =, άρα limf() limf() f() limf() lim ( ), f() limf() lim( ), συνεπώς :. Θεωρούμε g(),. Η g είναι συνεχής και παραγωγίσιμη στο ως σύνθεση και διαφορά παραγωγίσιμων με: g () ( ) άρα η συνάρτηση g είναι γνησίως φθίνουσα στο. Για = είναι: g(). Το = είναι μοναδική ρίζα αφού η g είναι γνησίως φθίνουσα, άρα και «-». Επομένως α=. f() f() ( )( ) B. lim lim lim lim( ) f() f() DLH lim lim lim( ) άρα f() f() f() f() lim lim συνεπώς η f δεν είναι παραγωγίσιμη στο =., B. Για α=f(), Για κάθε < η f είναι παραγωγίσιμη ως πολυωνυμική με f () ( ) f (),f (), f () (,). Για κάθε > η f είναι παραγωγίσιμη ως σύνθεση και διαφορά παραγωγίσιμων με f () ( ) ( ). Η f είναι συνεχής στο άρα είναι γνησίως φθίνουσα σε καθένα από τα διαστήματα (,],[, ) και f γνησίως αύξουσα στο [,]. f H f παρουσιάζει τοπικό ελάχιστο για = το f() =. H f παρουσιάζει τοπικό μέγιστο για = το f()=. Για το σύνολο τιμών έχουμε: f((,)) (limf(),limf()) (, ) αφού είναι: limf() lim ( ) lim 4
5 f([,]) [f(),f()] [,] f((, )) (limf(),limf()) (,), y y αφού είναι: limf() lim ( ) lim ( ). y Το σύνολο τιμών της f είναι η ένωση των παραπάνω διαστημάτων, δηλαδή: f( ) f((,)) f([,]) f((, )) [, ). B4. Αν η εξίσωση f()=λ είναι αδύνατη γιατί f( ). Αν η εξίσωση f()=λ έχει μοναδική λύση γιατί f([,])η f είναι μονότονη στο [,] και f((,)), f((, )). Αν η εξίσωση f()=λ έχει τρεις ακριβώς ρίζες γιατί f([,]), f((,)), f((, )) και η f είναι μονότονη σε καθένα από τα διαστήματα (,),[,],(, ). Αν η εξίσωση f()=λ έχει δύο ρίζες γιατί f((,)), f([,])η f είναι μονότονη σε καθένα από τα διαστήματα (,),[,] και f((, )). Αν η εξίσωση f()=λ έχει μοναδική λύση γιατί f((, )) η f είναι μονότονη στο (, ) και f((,)), f([,]). Θέμα Γ Γ. Για η f είναι παραγωγίσιμη ως άθροισμα, διαφορά, γινόμενο και σύνθεση παραγωγίσιμων συναρτήσεων με: λ f (), λ άρα λ h() f () h() h() λ χ, λ Η h παραγωγίσιμη ως διαφορά γινόμενο και σύνθεση παραγωγίσιμων για με h () 4 4 ( ) για κάθε και αφού η h συνεχής στο (, ) η h γνησίως φθίνουσα στο (, ) lim h() lim(λ ) λ lim h() lim (λ ) Αφού η h συνεχής και γνησίως φθίνουσα στο (, ) το σύνολο τιμών της θα είναι το (,λ), λ Αλλά το ανήκει στο σύνολο τιμών της h άρα υπάρχει ένα τουλάχιστον χ (, ) τέτοιο ώστε h(χ ). Το χ μοναδικό αφού η h γνησίως φθίνουσα στο (, ) 5
6 Γ. h( ) λ λ συνεπώς f(), f (), Η f παραγωγίσιμη για ως σύνθεση διαφορά και πηλίκο 4 παραγωγίσιμων με f () 4 για κάθε άρα η f γνησίως αύξουσα στο (, ) Είναι h( ) f ( ) άρα: Για έχουμε f () f ( ) f () f και f συνεχής στο (, ] f άρα η f γνησίως φθίνουσα στο (, ] Για έχουμε f () f ( ) f () και f συνεχής στο [, ) άρα η f γνησίως αύξουσα στο [, ) Συνεπώς η f παρουσιάζει ολικό ελάχιστο στο το f( ) και Ακόμα: lim f() lim αφού lim και lim f() lim αφού lim Άρα το σύνολο τιμών της f είναι το [, ) Θα είναι f() άρα f() για κάθε Γ. f(), ι) Η f είναι συνεχής ως πηλίκο άθροισμα διαφορά και σύνθεση συνεχών συναρτήσεων στο [, ] (, ) Η f είναι παραγωγίσιμη στο (, ) ως γινόμενο, άθροισμα, διαφορά και σύνθεση παραγωγίσιμων συναρτήσεων, με f () Επομένως σύμφωνα με το Θεώρημα Μέσης Τιμής υπάρχει ένα τουλάχιστον f( ) f( ) ρ (, ) τέτοιο ώστε, f (ρ) δηλαδή η εφαπτόμενη ευθεία στη c f στο σημείο M(ρ,f(ρ)) είναι παράλληλη στην ευθεία ΚΛ αφού f( ) και f( ) f( ) λab 6
7 f( ) f( ) ιι) Είναι f (ρ) ( ) Ακόμα ρ και η f είναι γνησίως αύξουσα από το ερώτημα Γ) άρα: f f ( ) f (ρ) f ( ) f ( ) f f (ρ) f ( ) f ( ) f ( ) Θέμα Δ Δ. F() F( ) F() F( ) 8 8 και αφού F μια αρχική της f από το Θεμελιώδες Θεώρημα το ολοκληρωτικού λογισμού έχουμε: F() F( ) f()d ( )ln c d ln d c 6 8c( ) ln d c( ) c( ) c 8 8 Δ. Η f είναι παραγωγίσιμη στο (, ) ως γινόμενο και άθροισμα παραγωγίσιμων με f () ln ln. Η f είναι παραγωγίσιμη στο (, ) ως γινόμενο, άθροισμα και πηλίκο παραγωγίσιμων με f () ln. Η f είναι παραγωγίσιμη στο (, ) ως γινόμενο, άθροισμα και πηλίκο παραγωγίσιμων με f () για κάθε (, ) άρα η f είναι 7
8 γνησίως αύξουσα. lim f () lim ln άρα υπάρχει ''κοντά'' στο τέτοιο ώστε f ( ). f ( ) ln. Η f είναι συνεχής στο [, ] ως γινόμενο, άθροισμα και πηλίκο συνεχών, f ( ) f( ) άρα ισχύει το Θεώρημα Bolzano, οπότε υπάρχει ένα τουλάχιστον (, ) (, ) τέτοιο ώστε f ( ). Το μοναδικό αφού f είναι γνησίως αύξουσα άρα και ''-''. Για κάθε f f () f ( ) f () f f f f () f ( ) f () Άρα η f αλλάζει κυρτότητα εκατέρωθεν του και είναι παραγωγίσιμη στο (δέχεται εφαπτομένη) άρα το A(,f( )) είναι σημείο καμπής. Δ. Αφού η f συνεχής στο (, ) και σύμφωνα με τον διπλανό πίνακα η f παρουσιάζει f για ολικό ελάχιστο το f ( ) ln. f Ισχύει f ( ) ln. Από τις δυο προηγούμενες σχέσεις έχουμε: f ( ) ln αφού (, ) (, ). Άρα f () f ( ) για κάθε (, ) και αφού η f είναι συνεχής θα είναι γνησίως αύξουσα στο (, ). Δ4. Η εφαπτομένη στο χ= θα είναι y f( ) f ( )( ) y Από το ερώτημα β) η f είναι κυρτή στο [, ) με και η y είναι εφαπτομένη, άρα για κάθε θα ισχύει f() (). Αλλά F() για κάθε συνεπώς για F(w) στην () έχουμε: ff(w) F(w) ή f F() F() f F() d d f F() d 8
9 Δ5. Το ζητούμενο εμβαδόν θα είναι E είναι το σύνολο τιμών της Θέτουμε f(ω) f άρα χ ω f() ω d f (ω)dω f () f() f () d. Άρα ω 9 9. Το πεδίο ορισμού της f f() f() E f () d f ()d E f (f(ω))f (ω)dω ωωlnω dω ( ω lnω )dω ω lnω ω dω ω 4 97 τ. μ. 9 Από το Μαθηματικό Τμήμα των Φροντιστηρίων Πουκαμισάς Ηρακλείου συνεργάστηκαν : Γ. Ανδρουλιδάκης, Μ. Βυνιχάκης, Α. Δουλγεράκης, Μ. Μπαρμπούνη, Ζ. Μπομπότη, Π. Σιδερής, Α. Τσιλιφώνης, Γ. Φαρσάρης, Μ. Χαρωνιτάκη. 9
Μαθηματικά Προσανατολισμού Γ' Λυκείου
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α Να αποδείξετε ότι αν μια συνάρτηση f είναι παραγωγίσιμη στο, τότε είναι
Διαβάστε περισσότερα, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο, να αποδείξετε ότι και
Διαβάστε περισσότερατου πεδίου ορισμού της τότε η f είναι παραγωγίσιμη σε αυτό. ε) Κάθε πολυωνυμική συνάρτηση δευτέρου βαθμού δεν έχει ασύμπτωτες.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέμα Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής
Διαβάστε περισσότερα5o Επαναληπτικό Διαγώνισμα 2016
5o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A Α Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ Να αποδείξετε ότι αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο του Δ, να αποδείξετε
Διαβάστε περισσότεραΛύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος
Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, 3/3/6 ΘΕΜΑ ο : Α. Τι ονομάζουμε αρχική
Διαβάστε περισσότεραΛύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος
Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»
Διαβάστε περισσότεραΛύσεις του διαγωνίσματος στις παραγώγους
Λύσεις του διαγωνίσματος στις παραγώγους Θέμα ο Α Έστω ότι f ), για κάθε α, ), β) Επειδή η f είναι συνεχής στο θα είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα α, ] και [, β) Επομένως, για ισχύει
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 7 ΘΕΜΑ Α A Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ Αν f σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα
Διαβάστε περισσότεραΔιαγώνισμα Προσομοίωσης Εξετάσεων 2017
Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο
Διαβάστε περισσότεραz i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0
ΕΚΠ. ΕΤΟΥΣ -4 Λύσεις Θέμα ο α) H f παραγωγίσιμη στο (,) ως άθροισμα παραγωγίσιμων συναρτήσεων με: f() για κάθε (,). Αφού η f είναι συνεχής στο (,) και f() για κάθε (,) είναι γνησίως αύξουσα στο (,) άρα
Διαβάστε περισσότεραΓ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /4/7 έως τις /4/7 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη Απριλίου 7 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
5 Σεπτεμβρίου 7 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απαντήσεις Θεμάτων Επαναληπτικών Πανελλαδικών Εξετάσεων Ημερησίων και Εσπερινών Γενικών Λυκείων ΘΕΜΑ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΘΕΜΑ Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
Διαβάστε περισσότεραf ( x) f ( x ) για κάθε x A
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 3/04/06 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ονομάζουμε ρυθμό μεταβολής του y = f() ως προς το στο σημείο 0 ;
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη Μαΐου 09 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω f μια συνεχής συνάρτηση σ ένα διάστημα [., ] Αν G είναι μια παράγουσα
Διαβάστε περισσότεραΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C f
Διαβάστε περισσότερα4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου
4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 8-9 Θέμα A A Αν οι συναρτήσεις,g είναι παραγωγίσιμες στο, να αποδείξετε ότι η συνάρτηση και ισχύει: g g παραγωγίσιμη στο μονάδες
Διαβάστε περισσότεραΓ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /4/8 ΕΩΣ 4/4/8 ΤΑΞΗ: ΜΑΘΗΜΑ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Απριλίου 8 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση ορισμένη σε ένα διάστημα Δ Αν o
Διαβάστε περισσότερα5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A
5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου 7-8 Θέμα A A Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα στο οποίο όμως η f είναι συνεχής Αν η f διατηρεί πρόσημο στο α,,β ότι το
Διαβάστε περισσότερα2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ
ΑΠΟ 3//7 ΕΩΣ 5//8 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Αν μία συνάρτηση f είναι
Διαβάστε περισσότεραf(x) x 3x 2, όπου R, y 2x 2
Δίνεται η συνάρτηση με τύπο,. Μαθηματικά κατεύθυνσης f(), όπου R, α) Να αποδειχθεί ότι η f παρουσιάζει ένα τοπικό μέγιστο, ένα τοπικό ελάχιστο και ένα σημείο καμπής. β) Να αποδειχθεί ότι η εξίσωση f()
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε
Διαβάστε περισσότεραΔιαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].
ΘΕΜΑ Α Διαγώνισμα 1 A 1. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () > σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο το Δ. (Μονάδες
Διαβάστε περισσότεραΛύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος
Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»
Διαβάστε περισσότερα) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2
Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 7 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ 9.6.7 ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f ()
Διαβάστε περισσότεραΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Α. Θεωρία (Θεώρημα σελίδα 5 σχολικού βιβλίου) Α. Α) ΨΕΥΔΗΣ Β) Θα δώσουμε ένα αντιπαράδειγμα Έστω η συνάρτηση
Διαβάστε περισσότεραΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.
Διαβάστε περισσότερα2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A
wwwaskisopolisgr ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου 7-8 Θέμα A Α Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα, Αν: η f είναι συνεχής στο, f f να
Διαβάστε περισσότεραγια κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 6 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) & ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α Α Έστω
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]
Διαβάστε περισσότεραΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ
ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Ο Α1. Έστω η συνάρτηση f ( x,,1. Nα αποδείξετε ότι η f είναι παραγωγίσιμη στο. v v 1 και ισχύει : x vx A2. Να διατυπώσετε και να ερμηνεύσετε γεωμετρικά το Θεώρημα Bolzano.
Διαβάστε περισσότερα3o Επαναληπτικό Διαγώνισμα 2016
3o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A A Έστω μια συνάρτηση παραγωγίσιμη σ ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του,στο οποίο όμως η είναι συνεχής Να αποδείξετε ότι Αν () στο (α,
Διαβάστε περισσότεραΓ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ
Επαναληπτικά Θέµατα ΟΕΦΕ 9 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και ένα εσωτερικό σηµείο του. Αν η f παρουσιάζει τοπικό
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Α Απόδειξη θεωρήματος σελ 99 σχολικού βιβλίου
Διαβάστε περισσότερα= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και ένα εσωτερικό σημείο
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν ΘΕΜΑ Α Α. Θεώρημα σχολικό βιβλίο
Διαβάστε περισσότερα0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x
wwwaskisopolisgr ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 5 ΣΕΠΤΕΜΒΡΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Θέμα Α ΑΈστω μια συνάρτηση
Διαβάστε περισσότεραΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο
Διαβάστε περισσότεραΓ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).
ΘΕΜΑΤΑ ΘΕΜΑ Γ. ίνεται η συνάρτηση f(),. Γ. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (, ). Γ. Να αποδείξετε ότι η εξίσωση f( ( )) έχει στο σύνολο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7 Ε_3.Μλ3ΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Τετάρτη 9 Απριλίου 7 ιάρκεια Εξέτασης: 3 ώρες
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Άσκηση i. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της στο Δ, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της
Διαβάστε περισσότεραΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α A Έστω μια
Διαβάστε περισσότεραΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ
ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β ΑΙΓΑΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ
Διαβάστε περισσότεραΜαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Θεωρούμε μια συνάρτηση f συνεχή σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ. α) Θα λέμε ότι η f είναι κυρτή ή στρέφει τα κοίλα άνω στο Δ, αν η f
Διαβάστε περισσότερα(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο
Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -4- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, /4/6 ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση
Διαβάστε περισσότεραΗμερομηνία: Πέμπτη 5 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 18/1/016 ΕΩΣ 05/01/017 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Πέμπτη 5 Ιανουαρίου 017 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Έστω η συνάρτηση
Διαβάστε περισσότεραΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ A. Έστω μια συνάρτηση
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σελίδα από Φάνης Μαργαρώνης Φροντιστήρια Ρούλα Μακρή Τομέας μαθηματικών ΘΕΜΑ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι
Διαβάστε περισσότερα9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου
9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 7-8 ΘΕΜΑ Α (α) Δίνεται η συνάρτηση, συνεχής στο διάστημα [ ].Αν η G είναι μια παράγουσα της στο [ ], τότε να αποδείξετε ότι : d
Διαβάστε περισσότεραΠ Α Ν Ε Λ Λ Α Δ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ Κ Ε Ρ Δ Ι Σ Ε Ε Ξ Υ Π Ν Α Μ Ο Ν Α Δ Ε Σ Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ
Π Α Ν Ε Λ Λ Α Δ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ Κ Ε Ρ Δ Ι Σ Ε Ε Ξ Υ Π Ν Α Μ Ο Ν Α Δ Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α Θ Ε Τ Ι Κ Η Σ Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η Σ Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ Πολλές φορές στις πανελλαδικές εξετάσεις
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x
Γ' ΛΥΚΕΙΟΥ-ΤΕΧΝΟΛΟΓΙΚΩΝ/ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΩΡΙΑ. Πότε δύο συναρτήσεις και g είναι ίσες;. Πότε μία συνάρτηση με πεδίο ορισμού Α λέγεται " " ; 3. Πότε μία συνάρτηση λέγεται συνεχής στο σημείο o του πεδίου
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2008
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 8 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 8 ΕΠΙΚΑΙΡΟΠΟΙΗΜΕΝΗ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΝΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
Διαβάστε περισσότερα( ) ( ) ( 3 ) ( ) = ( ) ( ) ( ) ( ) ( ) ( 1) ( ) (( ) ( )) ( ) + = = και και και και. ζ να ταυτισθούν, δηλαδή θα πρέπει: f x ημ x. 6 x x x.
Ενδεικτικές Λύσεις Διαγωνίσματος (9--9) ΘΕΜΑ Α A. Απόδειξη σχολικού βιβλίου σελ. 5 Α. α. ψ β. Αντιπαράδειγμα σχολικού βιβλίου σελ. 99 Α. Ορισμός σχολικού βιβλίου σελ. 6 Α4. α) Σ β) Λ γ) Λ δ) Σ ε) Λ ΛΥΣΗ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3)
3 o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 0: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο,, 3) ΘΕΜΑ Α. (i) Βλέπε σχολικό βιβλίο «Μαθηματικά θετικής
Διαβάστε περισσότεραα) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ΕΥΤΕΡΑ 6 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
Διαβάστε περισσότεραΤελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.
Δίνεται η συνάρτηση ln Τελευταία Επανάληψη α) Να βρείτε το πεδίο ορισμού της β) Να μελετήσετε την ως προς την μονοτονία της γ) Να βρείτε το πλήθος των ριζών της εξίσωσης e, δ) Να υπολογίσετε το εμβαδόν
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
9 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A Να αποδείξετε ότι, αν μια συνάρτηση είναι παραγωγίσιμη σε ένα σημείο 0,
Διαβάστε περισσότερα1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ
1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 1 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. Σχολικό βιβλίο σελ. 99 Α.α. Ψευδής. β. Σχολικό βιβλίο σελ. 5, Θεωρούμε
Διαβάστε περισσότεραΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ, ΟΡΙΟ, ΣΥΝΕΧΕΙΑ ΚΑΙ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
Διαβάστε περισσότεραqwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj
qwφιeryuiopasdfghjklερυυξnmηq σwωψerβνyuςiopasdρfghjklcvbn mqweryuiopasdfghjklcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ qπςπζαwωeτrνyuτioρνμpκaλsdfghςj Τάξη : Γ Λυκείου klcvλοπbnαmqweryuiopasdfghjkl
Διαβάστε περισσότεραΓ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών
Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό ΦΡΟΝΤΙΣΤΗΡΙΑ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 6 Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο 11 Μαΐου 19 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Έστω f μια
Διαβάστε περισσότεραΕξετάσεις 11 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
Εξετάσεις Ιουνίου 8 Μαθηματικά Προσανατολισμού Γ Λυκείου (Θετικών Σπουδών και Σπουδών Οικονομίας-Πληροφορικής) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 777 59 ΑΡΤΑΚΗΣ - Κ ΤΟΥΜΠΑ THΛ: 99
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ. f (f )(x) x f (f )(x) x f (f )(x) (f ) (x)
ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 4 Ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Βλέπε Σχολικό βιβλίο σελίδα 4 A α) Βλέπε Σχολικό βιβλίο
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ 1. Αν f συνεχής στο [α, β] είναι f ( ) d 0 f ( ) 0 2. Αν f συνεχής και γν. αύξουσα στο [α, β] ισχύει ότι: f ( ) d 0. 3. Αν f ( ) d g( ) d, ό f ( ) g( ) ά [, ]. 4. Το σύνολο τιμών
Διαβάστε περισσότεραΗ Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
Διαβάστε περισσότερακαι δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x
ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελ. 15 Α. α) Ψ β) Σχήμα 1 και μελέτη της f, όπου η f είναι συνεχής στο και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α. Ορισμός σελ. 7 Α. α) Λ β) Σ γ)
Διαβάστε περισσότεραΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ Α A. Να αποδείξετε ότι,
Διαβάστε περισσότεραΛύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016
Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Διαβάστε περισσότεραx x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική
ΘΕΜΑΤΑ ΘΕΜΑ Γ. Δίνεται η συνάρτηση f() ( )ln, >. Γ. Να αποδείξετε ότι η συνάρτηση f είναι γνησίως φθίνουσα στο διάστημα Δ (, ] και γνησίως αύξουσα στο διάστημα Δ [, ). Στη συνέχεια να βρείτε το σύνολο
Διαβάστε περισσότεραΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 13/04/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 3/04/06 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ονομάζουμε ρυθμό μεταβολής του y = f( ως προς το στο σημείο 0 ;
Διαβάστε περισσότερα********* Β ομάδα Κυρτότητα Σημεία καμπής*********
********* Β ομάδα Κυρτότητα Σημεία καμπής********* 5 Για την δύο φορές παραγωγίσιμη στο R συνάρτηση ισχύει: e για κάθε R. Να αποδείξετε ότι η γραφική παράσταση της δεν παρουσιάζει σημείο καμπής. Υποθέτουμε
Διαβάστε περισσότεραΓ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Ιανουαρίου 07 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω η συνάρτηση ()
Διαβάστε περισσότεραΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ (3) A. Έστω μια συνάρτηση
Διαβάστε περισσότερα). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Αποδεικνύουμε το θεώρημα στην περίπτωση που
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Θεωρία σχολ βιβλίου σελ 99 Α α ψευδής β g Α Θεωρία
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης
ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης Τετάρτη, 9 Μα ου Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της f στο Δ, τότε
Διαβάστε περισσότεραx, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0]
Απαντήσεις στο ο Διαγώνισμα Μαθηματικών Κατεύθυνσης Γ Λυκείου Θέμα ο Α Έστω ότι f( ), για κάθε (, ) (, ) Επειδή η f είναι συνεχής στο θα είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα (, ] και [,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Παύλος Βασιλείου Σε όλους αυτούς που παλεύουν για έναν καλύτερο κόσμο ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Αα) Ορισμός σχολικού βιβλίου σελ 5 Έστω Α ένα υποσύνολο
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ( ) ( )
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9-5- ΘΕΜΑ Α Α. Σχολικό βιβλίο σελ. Α. Σχολικό βιβλίο σελ. 79 Α. Σχολικό βιβλίο σελ. 7 Α. α) ΣΩΣΤΟ β) ΣΩΣΤΟ γ) ΛΑΘΟΣ δ) ΛΑΘΟΣ ε) ΣΩΣΤΟ
Διαβάστε περισσότεραΠροτεινόμενες λύσεις. f (x) f (x ) f (x) f (x ) f (x) f (x ) (x x ). f (x) f (x ) lim[f (x) f (x )] lim (x x ) lim[f (x) f (x )] 0 lim f (x) f (x ),
Πανελλαδικές Εξετάσεις 8 Μαθηματικά Προσανατολισμού /6/8 ΘΕΜΑ Α Προτεινόμενες λύσεις Α Αφού η f είναι παραγωγίσιμη στο σημείο του πεδίου ορισμού της, ισχύει ότι: Για κάθε έχουμε: Επομένως ισχύει ότι: Δηλαδή:
Διαβάστε περισσότεραΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ 2 Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 18 ΜΑΙΟΥ 2018 ΘΕΜΑ Α. η f ικανοποιεί τις υποθέσεις του θεωρήματος μέσης.
ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 8 ΜΑΙΟΥ 8 ΘΕΜΑ Α Α. Εστω μια συνάρτηση f και x ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x, όταν Α. lim f ( x) f
Διαβάστε περισσότεραΠανελλαδικές εξετάσεις 2017
Πανελλαδικές εξετάσεις 7 Ενδεικτικές απαντήσεις στο μάθημα «Μαθηματικά ΟΠ» Θέμα Α Α Θεωρία σχολικού βιβλίου σελ 36 Α α) Λ β) H συνάρτηση ( ) είναι παραγωγίσιμη σε αυτό αφού: ( ) () lim lim είναι συνεχής
Διαβάστε περισσότεραf κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και
13η Επαναληπτική Δίνεται η συνάρτηση, δύο φορές παραγωγίσιμη στο [1,] [,1], επιπλέον για την ισχύουν 8 lim στο [1,] Να αποδείξετε ότι ε1 ε Υπάρχουν, με, ώστε στο οποίο η η, έχει σημείο καμπής ε3 Υπάρχει
Διαβάστε περισσότερα1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.
o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α Δίνεται τετράγωνο με κορυφές τα σημεία Α,, Β,, Γ, και Δ, και μία συνεχής στο, συνάρτηση της οποίας η γραφική παράσταση βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ. B. Nα βρείτε
Διαβάστε περισσότεραΠες το με μία γραφική παράσταση
Πες το με μία γραφική παράσταση Μαθηματικά Κατεύθυνσης Γ Λυκείου www askisopolisgr ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Να γράψετε και να σχεδιάσετε γραφικές παραστάσεις (ορισμένες σε διάστημα ή σε ένωση διαστημάτων):
Διαβάστε περισσότερα2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ
Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 49 ΟΡΙΣΜΟΣ 6 4 Πότε μια συνάρτηση λέγεται κυρτή και πότε κοίλη σε ένα διάστημα Δ ; Απάντηση : Έστω μία συνάρτηση σ υ ν ε χ ή ς σ ένα
Διαβάστε περισσότερα( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x
ΕΞΕΤΑΣΕΩΝ 05 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα. Αν η F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις
Διαβάστε περισσότερα2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.
. Έστω η συνάρτηση f : με την παρακάτω γραφική παράσταση. Α. Να προσδιορίσετε τα διαστήματα στα οποία η f είναι γνησίως αύξουσα, γνησίως φθίνουσα, κυρτή, κοίλη, καθώς και τα τοπικά ακρότατα και τα σημεία
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και ένα εσωτερικό σηµείο του Αν η f παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιµη στο σηµείο αυτό, να αποδείξετε
Διαβάστε περισσότεραÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ A. Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα. Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις
Διαβάστε περισσότεραΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ () ΘΕΜΑ Α A. Να αποδείξετε ότι,
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ κύριο ΦΟΥΝΤΟΥΛΑΚΗ ΜΑΝΩΛΗ κυρία ΦΟΥΝΤΟΥΛΑΚΗ ΑΓΓΕΛΙΚΗ του ΦΡΟΝΤΙΣΤΗΡΙΟΥ
Διαβάστε περισσότεραΕπιμέλεια: Παναγιώτης Γιαννές
Λ Υ Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Η Ν Ι Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 08 Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ ΟΥ Επιμέλεια: Παναγιώτης Γιαννές ΘΕΜΑ Α Α Θεωρία σχολικού βιβλίου σελίδα 99 Α α Ο ισχυρισμός
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Ημερομηνία: Ιουνίου 08 Απαντήσεις Θεμάτων Θέμα Α Α.. Θεωρία σχολικού βιβλίου,
Διαβάστε περισσότερα