PROGRAM & INFORMACIJE ZA UČESNIKE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PROGRAM & INFORMACIJE ZA UČESNIKE"

Transcript

1 P o d p o k r o v i t e l j s t v o m E A N M PROGRAM & INFORMACIJE ZA UČESNIKE Hotel Zira / Beograd / Srbija KONGRES NUKLEARNE MEDICINE SRBIJE 2016 s a m e đ u n a r o d n i m u č e š ć e m NUKLEARNA MEDICINA: OD FUNKCIJE DO MOLEKULARNOG ISPITIVANJA I TERAPIJE Organizatori УНИВЕРЗИТЕТ У БЕОГРАДУ МЕДИЦИНСКИ ФАКУЛТЕТ Sekcija za nuklearnu medicinu Srpskog lekarskog društva Udruženje nuklearne medicine Srbije Centar za nuklearnu medicinu Klinički centar Srbije Medicinski fakultet Univerziteta u Beogradu 1

2 Dobrodošli Nuklearna medicina: od funkcije do molekularnog ispitivanja i terapije Dobrodošli Zadovoljstvo nam je i velika čast da vas pozovemo na Kongres nuklearne medicine Srbije2016 sa međunarodnim učešćem pod nazivom Nuklearna medicina: od funkcije do molekularnog ispitivanja i terapije, koji će se održati 29. septembra do 1.oktobra godine u Beogradu u Hotelu Zira u zajedničkoj organizaciji Sekcije za nuklearnu medicine Srpskog lekarskog društva, Udruženja nuklearne medicine Srbije, Centra za nuklearnu medicine Kliničkog centra Srbije i Medicinskog fakulteta Univerziteta u Beogradu. Naučni program Kongresa je posvećen dostignućima u nuklearnoj medicini u Srbiji, savremenim temama u funkcionalnom, molekularnom i hibridnom ispitvanju i personalizovanoj terapiji. U radu Kongresa će pored domaćih predavača po pozvu, učestvovati i eminentni stručnjaci iz inostranstva koji će prezentovati svoja iskustva u nuklearnoj medicini. Verujemo da će program Kongresa ispuniti vaša očekivanja i omogućiti razmenu naučnih iskustava i kliničke prakse u nuklearnoj medicini. Nadamo se i da će Beograd, drevni grad na učću Save u Dunav biti dobar domaćin i u prijatnoj atmoferi omogućiti zajedničko druženje, obnavljanje starih i stvaranje novih prijateljstava. Želimo vam srdačnu dobrodošlicu i uspešan rad na Kongresu nuklearne medicine Dragana Šobić Šaranović, Vera Artiko, Aida Afgan Naučni odbor Boris Ajdinović, Beograd Vera Artiko, Beograd Marika Bajc, Lund Amela Begić, Sarajevo Arturo Chiti, Rossano-Milano Savvas Frangos, Nikozija Raffaele Giubbini, Breša Elma Kučukalić, Sarajevo Jolanta Kunikowska, Varšava Maria Koutelu, Atina Elena Lazzeri, Piza Venjamin Majstorov, Skoplje Mario Marengo, Bolonja Milovan Matović, Kragujevac Jasna Mihailović, Novi Sad Daniela Miladinova, Skoplje Raluca Mititelu, Bukurešt Kristoff Muylle, Brisel Vladimir Obradović, Beograd Vasilios Prasopoulos, Atina Zvezdana Rajkovača, Banja Luka Dragana Šobić Šaranović, Beograd Ana Ugrinska, Skoplje Marina Vlajković, Niš Ivana Žagar, Ljubljana Radmila Žeravica, Novi Sad Organizacioni odbor Aida Afgan, Beograd Vojislav Antić, Beograd Vera Artiko, Beograd Slobodanka Beatović, Beograd Mirjana Blagić, Beograd Leposava Brajković, Beograd Isidora Grozdić-Milojević, Beograd Ana Ješić, Beograd Emilija Krajnović Jakšić, Beograd Nebojša Kozarević, Beograd Tatjana Krkalović, Beograd Jasna Mihailović, Novi Sad Igor Milošević, Beograd Strahinja Odalović, Beograd Jelena Pantović, Beograd Nebojša Petrović, Beograd Branislava Radović, Beograd Radmila Rebić, Beograd Milica Stojiljković, Beograd Dragana Šobić Šaranović, Beograd Mila Todorović Tirnanić, Beograd Ljiljana Zivgarević, Beograd Svetlana Žunić, Beograd 2

3 Informacije za učesnike Organizatori: Sekcija za nuklearnu medicinsu Srpskog lekarskog društva, Udruženje nuklearne medicine Srbije, Centar za nuklearnu medicinu Kliničkog centra Srbije, Medicinski fakultet Univerziteta u Beogradu Predsedništvo Kongresa: Dragana Šobić Šaranović, Vera Artiko, Aida Afgan Datumi održavanja: Mesto održavanja: Hotel Zira, Beograd, Srbija Jezik: Zvanični jezik je engleski. Registracija i informacije: Registracioni i info pult će biti na usluzi učesnicima kongresa svakog dana za vreme trajanja skupa od 7:30 do kraja predavanja. Učesnici koji se nisu pravovremeno prijavili za učešće će moći da se registruju na licu mesta. Prilikom registracije učesnici će dobiti ID tagove. Samo registrovani učesnici će moći učestvovati u kongresnim aktivnostima. Svaki učesnik će po završetku dobiti sertifikat o učešću. Registracija je dostupna putem on-line formulara na sajtu kongresa: Registracija je otvorena do 30. juna tekuće godine. Kotizacije: Trodnevna Jednodnevna Tehničari Lekari ispod 35 g rsd 4000 rsd 2000 rsd 4000 rsd Smeštaj: Smeštaj se može rezervisati u hotelu Zira, ili u nekom alternativnom hotelu. Za sve dodatne informacije možete kontaktirati sekretarijat na info@kongresnuklearnemedicine2016.com Tehnički organizator i sekretarijat: Evolve d.o.o. Cvijićeva /12, Beograd T/F: +381 (0) , Mob: +381 (0) info@evolve.rs 3

4 Četvrtak, :30-17:00 Registracija učesnika I DOSTIGNUĆA U NUKLEARNOJ MEDICINI 2015: Takmičenje za nagradu Milovan Antić Predsedavajući: Milena Rajić, Drina Janković 09:00-09:15 Vera Artiko, Beograd Da li 18F-FDG PET/CT može da utiče na planiranje terapije i prognozu recidivantnog kolorektalnog karcinoma? 09:15-09:30 Ljiljana Jauković, Beograd Značaj limfoscintigrafije i biopsije sentinel limfnog nodusa kod melanoma kože u stejdžingu i planiranju terapije 09:30-09:45 Branka Radović, Beograd Evаluacija SIOPEN semi-kvatitativnog sistema na planarnoj MIBG scintigrafiji kod dece obolele od neuroblastoma 09:45-10:00 Dragana Šobić Šaranović, Beograd Uporedna analiza 18F-FDG PET/CT i MDCT za stejdžing i restejdžing nesitnoćelijskog karcinoma pluća 10:00-10:15 Kafe pauza II PERSPEKTIVE NUKLEARNE MEDICINE U ENDOKRINOLOGIJI Predsedavajući: Vera Artiko, Jasna Mihailović 10:15-10:30 Elma Kučukalić, Sarajevo Dijagnostička i terapijska strategija radioaktivnog jod-refrakternog diferenciranog karcinoma štitaste žlezde 10:30-10:45 Ana Ugrinska, Skoplje Optimizacija radiojodne terapije diferentovanog karcinoma štitaste žlezde 10:45-11:00 Jasna Mihailović, Novi Sad Rekurentna bolest u diferentovanom karcinomu štitaste žlezde iskustvo Instituta za onkologiju Vojvodine 11:00-11:15 Milena Rajić, Niš Uticaj kratkotrajnog tretmana Litijum karbonatom na efikasnost radioiodine terapije kod pacijenata sa dugotrajnim Grejvsovim hipertiroidizmom 11:15-11:30 Savvas Frangos, Nikozija Karcinom štitaste žlezde - najnovije preporuke 11:30-11:45 Diskusija 4

5 Četvrtak, CEREMONIJA OTVARANJA KONGRESA 12:15-12:30 Dragana Šobić Šaranović, Vera Artiko, Aida Afgan Dobrodošlica 12:30-12:45 Nacionalni predstavnici 12:45-13:00 Dodela nagrada Udruženje nuklearne medicine Srbije Nagrade: Akademik Vladimir Bošnjaković i Milovan Antić 13:00-13:30 Arturo Chiti, Predsednik EANM Plenarno predavanje: Budućnost i presepktive primene radiofarmaceutika 13:30-14:30 PRIJEM DOBRODOŠLICE I RUČAK III NUKLEARNA MEDICINA: QUANUM, MOLEKULARNI IMIDŽING I TERAPIJA: PRVI DEO Predsedavajući: Vladimir Obradović, Neboiša Petrović 14:30-14:45 Mario Marengo, Bolonja QUANUM program u kliničkoj praksi 14:45-15:00 Kristoff Muylle, budući Predsednik EANM, Brisel Uloga PET-a u personalizovanoj medicini 15:00-15:15 Nebojša Petrović, Beograd PET i SPECT u ranoj dijagnostici recidiva tumora mozga 15:15-15:30 Daniela Miladinova, Skoplje Nuklearno-medicinski imidžing osteosarkoma 15:30-15:45 Silvija Lučić, Novi Sad Hibridni PET/CT imidžing u ginekološkim malignim tumorima 15:45-16:00 Elena Lazzeri, Piza Uloga nuklearne medicine u detekciji infekcija muskuloskeletnog sistema 16:00-16:15 Diskusija 16:15-16:45 Kafe pauza IV POSTER PREZENTACIJE RADOVA 16:45-18:15 Predsedavajući: Zoran Janković, Dolores Srbovan 5

6 Petak, :00-17:00 Registracija V USMENE PREZENTACIJE RADOVA 09:00-10:30 Predsedavajući: Mila Todorović Tirnanić, Ljiljana Jauković 6-8 usmenih prezentacija sa diskusijom 10:30-11:00 Kafe pauza VI NUKLEARNA KARDIOLOGIJA I SCINTIGRAFIJA PLUĆA: POZNATE DAME U NOVOM RUHU Predsedavajući: Dragana Šobić- Šaranović, Nebojša Kozarević 11:00-11:15 Raffalele Giubbini, Breša Koliko je pouzdana kvantifikacija u nuklearnoj kardiologiji? Da li je korisna i upotrebljiva? 11:15-11:30 Maria Koutelo, Atina Novine u nuklearnoj kardiologiji 11:30-11:45 Venjamin Majstorov, Skoplje Perfuziona scintigrafija miokarda u sistemskom lupusu eritematozusu 11:45-12:00 Marika Bajc, Lund Klinička primena SPECT ventilaciono/perfuzionog skena za dijagnostiku plućne embolije i plućnih ko-morbiditeta prema EANM preporukama 12:00-12:15 Amela Begić, Sarajevo Značaj ventilaciono/perfuzione tomografije pluća u detekciji drugih plućnih oboljenja kod pacijenata sa suspektnom plućnom embolijom 12:15-12:30 Diskusija 12:30-13:30 Ručak 13:30-14:30 SKUPŠTINA ČLANOVA UDRUŽENJA NUKLEARNE MEDICINE SRBIJE 6

7 Petak, VII NUKLEARNA MEDICINA: MOLEKULARNO ISPITIVANJE I TERAPIJA: DRUGI DEO Predsedavajući: Marina Vlajković, Slobodanka Beatović 14:30-14:45 Vasilios Prasopoulos, Atina Molekularno ispitivanje u eri ciljane terapije: put prema preciznoj medicini 14:45-15:00 Jolanta Kunikowska, Sekretar EANM, Varšava Perspektive nuklearne medicine u NET i PRRT 15:00-15:15 Ivana Žagar, Ljubljana Lečenje α emiterom Ra-223 bolesnika sa metastatskim, hormonsko rezistentnim rakom prostate i simptomatskim mestastazama u kostima 15:15-15:30 Raluca Mititelu, Bukurešt Osteotropni radiofarmaci u bolnim koštanim metastazama 15:30-15:45 Marina Vlajković, Niš, Milovan Matović, Kragujevac Analiza preživljavanja pacijenta sa dediferentovanim karcinomom štitaste žlezde lečenih peptid-receptor radionuklidnom terapijom-preliminarni rezultati 15:45-16:00 Predavanje 16:00-16:15 Diskusija 16:15-16:45 Kafe pauza VIII DA LI SE JOŠ UVEK PRIMENJUJU NUKLEARNO-MEDICINSKA FUNKCIONALNA ISPITIVANJA U KLNIČKOJ PRAKSI? Predsedavajući: Slobodan Ilić, Boris Ajdinović 16:45-17:00 Slobodanka Beatović, Beograd Prediktivna vrednost dinamske scintigrafije u praćenju funkcije bubrega kod dece sa antenatalnom hidronefrozom 17:00-17:15 Radmila Žeravica, Novi Sad Uloga Kaptoprilske scintigrafije u inicijalnog dijagnostici i praćenju renovaskularne bolesti 17:15-17:30 Mila Todorović Tirnanić, Beograd Obeleženi trombociti u primarnoj imunološkoj trombocitopeniji 17:30-17:45 Diskusija 7

8 Subota, :00-11:00 Registracija IX USMENE PREZENTACIJE RADIOLOŠKIH TEHNIČARA U NUKLEARNOJ MEDICINI 09:00-10:30 Predsedavajući: Tatjana Krkalović, Milan Perovanović 6 usmenih prezentacija sa diskusijom 10:30-11:00 Kafe pauza X DA LI JE MOGUĆA PRIMENA SAVREMENE TEHNOLOGIJE, RADIOFIZIKE I RADIOHEMIJE U ZEMLJAMA U RAZVOJU? Predsedavajući: Milovan Matović, Olivera Ciraj-Bjelac 11:00-11:15 Milovan Matović, Kragujevac Preoperativna 3D komjuterska simulacija kao koristan alat za detekciju sentinelnih limfnih nodusa kod hirurškog lečenja karcinoma dojke, naše rešenje 11:15-11:30 Milica Janković, Beograd Alati za kvantitativnu analizu i vizuelizaciju nuklearno-medicinskih slika 11:30-11:45 Ana Ješić, Beograd Akvizicija i rekonstrukcija podataka u PET imidžingu 11:45-12:00 Olivera Ciraj-Bjelac, Clarita Saldarriaga Vargas, Drina Janković, Ivana Vukanac, Miloš Živanović, Sandra Ćeklić, Danijela Aranđić, Lara Struelens, Beograd i Mol Etaloniranje, interkompracija i kontola kvaliteta radionujlidnih kalibratora u nuklearnoj medicine 12:00-12:15 Vojislav Antić, Beograd Uloga novih PET tehničko-tehnoloških rešenja u BMI konceptu optimizacije pacijentne doze 12:15-12:30 Igor Milošević, Beograd Izloženost osoblja pri separaciji i aplikaciji PET radiofarmakom ( FDG ): manuelni,poluautomatski i automatski separator doza 12:30-12:45 Radmila Rebić, Beograd Radiohemija/Radiofarmacija, zakonska regulativa u Srbiji i EU 12:45-13:00 Diskusija 13:00-13:15 ZATVARANJE KONGRESA 8

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤ. Πιστοποιητικό της Επάρκειας της Ελληνοµάθειας - Μάϊος

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤ. Πιστοποιητικό της Επάρκειας της Ελληνοµάθειας - Μάϊος ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤ Πιστοποιητικό της Επάρκειας της Ελληνοµάθειας - Μάϊος Α' ΕΠΙΠΕ Ο 133 STEVOVIĆ BOJANA Επιτυχία Επιτυχία 134 TOMIĆ ANA Επιτυχία Επιτυχία 135 JELIĆ-MARIOKOV ANA Επιτυχία

Διαβάστε περισσότερα

Juniorski četverac bez kormilara sezona 2014/2015 sa osvrtom na završne pripreme pred EP i SP. Aleksandar Smiljanić

Juniorski četverac bez kormilara sezona 2014/2015 sa osvrtom na završne pripreme pred EP i SP. Aleksandar Smiljanić Juniorski četverac bez kormilara sezona 2014/2015 sa osvrtom na završne pripreme pred EP i SP Aleksandar Smiljanić Generacija 1996 / 1997 8 + SP Hamburg 2014 4 - SP Rio de Janeiro 1. Cvijetić Nikola (1997)

Διαβάστε περισσότερα

GODIŠNJI KONGRES REUMATOLOGA SRBIJE (UReS) I UDRUŽENJA OBOLELIH OD REUMATSKIH BOLESTI SRBIJE (ORS)

GODIŠNJI KONGRES REUMATOLOGA SRBIJE (UReS) I UDRUŽENJA OBOLELIH OD REUMATSKIH BOLESTI SRBIJE (ORS) UDRUŽENJE REUMATOLOGA SRBIJE (UReS) UDRUŽENJE OBOLELIH OD REUMATSKIH BOLESTI SRBIJE (ORS) GODIŠNJI KONGRES REUMATOLOGA SRBIJE (UReS) I UDRUŽENJA OBOLELIH OD REUMATSKIH BOLESTI SRBIJE (ORS) PROGRAM Hotel

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

NACIONALNI KONGRES ZDRAVSTVENIH RADNIKA SRBIJE (SA MEĐUNARODNIM UČEŠĆEM) Hoćemo i možemo bolje

NACIONALNI KONGRES ZDRAVSTVENIH RADNIKA SRBIJE (SA MEĐUNARODNIM UČEŠĆEM) Hoćemo i možemo bolje NACIONALNI KONGRES ZDRAVSTVENIH RADNIKA SRBIJE (SA MEĐUNARODNIM UČEŠĆEM) Hoćemo i možemo bolje P O K R O V I T E LJ Ministarstvo zdravlja Republike Srbije ORGANIZACIJU I RAD KONGRESA POMOGLA KOMORA MEDICINSKIH

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

Implementacija HE4 i ROMA indeksa u Klinici za tumore Centru za maligne bolesti KBCSM

Implementacija HE4 i ROMA indeksa u Klinici za tumore Centru za maligne bolesti KBCSM Implementacija HE4 i ROMA indeksa u Klinici za tumore Centru za maligne bolesti KBCSM Dr.sc. Ljiljana Mayer, spec.med.biokemije Zagreb, 18. ožujka 2017. Klinika za tumore Centar za maligne bolesti, KBCSM

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE **** MLADEN SRAGA **** 0. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE α LOGARITMI Autor: MLADEN SRAGA Grafički urednik: Mladen Sraga

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Μεηαπηπρηαθή Δξγαζία. Αηζζεηηθέο «αλαγλώζεηο» ζην δωγξαθηθό έξγν ηεο Nadežda Petrović (1873-1915)

Μεηαπηπρηαθή Δξγαζία. Αηζζεηηθέο «αλαγλώζεηο» ζην δωγξαθηθό έξγν ηεο Nadežda Petrović (1873-1915) ΥΟΛΗ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΔΡΙΦΔΡΔΙΑΚΩΝ ΠΟΤΓΩΝ ΣΜΗΜΑ ΒΑΛΚΑΝΙΚΩΝ, ΛΑΒΙΚΩΝ ΚΑΙ ΑΝΑΣΟΛΙΚΩΝ ΠΟΤΓΩΝ Π.Μ..: πνπδέο ζηηο Γιώζζεο θαη ηνλ Πνιηηηζκό ηωλ Υωξώλ ηεο Ννηηναλαηνιηθήο Δπξώπεο Μεηαπηπρηαθή Δξγαζία Αηζζεηηθέο

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΡΟΦΙΜΩΝ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΚΟΙΝΟΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΥΠΟΔΟΜΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΕΦΑΡΜΟΓΗΣ ΠΑΑ ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΪΚΟ ΓΕΩΡΓΙΚΟ ΤΑΜΕΙΟ

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

MJESEČNI IZVJEŠTAJ SLUŽBE ZA TRŽIŠTE ELEKTRIČNE ENERGIJE. AVGUST god.

MJESEČNI IZVJEŠTAJ SLUŽBE ZA TRŽIŠTE ELEKTRIČNE ENERGIJE. AVGUST god. MJESEČNI IZVJEŠTAJ SLUŽBE ZA TRŽIŠTE ELEKTRIČNE ENERGIJE AVGUST 2016. god. Izvještaj je urađen korišćenjem podataka aplikacije Market management- COTEE, GoogleEarth 1 81 GWh GWh 38 GWh 43 GWh RAZMJENA

Διαβάστε περισσότερα

Hotel SPLENDID, Bečići, Budva, Crna Gora jun 2016.

Hotel SPLENDID, Bečići, Budva, Crna Gora jun 2016. AD RPROGRAM Hotel SPLENDID, Bečići, Budva, Crna Gora 01. 05. jun 2016. Dragi prijatelji, Sa zadovoljstvom vas obavještavam da će se u Bečićima, u Hotelu Splendid, od 01.06-05.06.2016. održati tradicionalni

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

ΙΚΤΥΑ ΙΑΝΟΜΗΣ ΤΡΟΦΙΜΩΝ - ΠΟΤΩΝ

ΙΚΤΥΑ ΙΑΝΟΜΗΣ ΤΡΟΦΙΜΩΝ - ΠΟΤΩΝ ABN TRADE d.o.o. 11070 Novi Beograd; Pariske Komune 61 Tel./fax: (381 11) 31 91 555; 31 92 308; Mob.: (381 63) 216 260; 065 216 2600 E-mail: abn@abn.rs, abn@abn.co.rs Internet: http://www.abn.co.rs/ Alca

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

L 158/370 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης 10.6.2013

L 158/370 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης 10.6.2013 L 158/370 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης 10.6.2013 ΠΑΡΑΡΤΗΜΑ ΜΕΡΟΣ Α ΑΜΟΙΒΑΙΑ ΑΝΑΓΝΩΡΙΣΗ ΤΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΤΙΤΛΩΝ Η οδηγία 2005/36/ΕΚ τροποποιείται ως εξής: 1. Στο άρθρο 49 παράγραφος 2 πρώτο

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Korektivno održavanje

Korektivno održavanje Održavanje mreže Korektivno održavanje Uzroci otkaza mogu biti: loši radni uslovi (temperatura, loše održavanje čistoće...), operativne promene (promene konfiguracije, neadekvatno manipulisanje...) i nedostaci

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

XIV Regionalno savetovanje iz kliničke patologije i terapije životinja "Clinica veterinaria 2012" Subotica jun 2012.godna

XIV Regionalno savetovanje iz kliničke patologije i terapije životinja Clinica veterinaria 2012 Subotica jun 2012.godna XIV Regionalno savetovanje iz kliničke patologije i terapije životinja "Clinica veterinaria 2012" Subotica 14-16. jun 2012.godna Organizatori: Stručni organizator: Suorganizator: Univerzitet u Beogradu

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

EuroCons Group. Karika koja povezuje Konsalting, Projektovanje, Inženjering, Zastupanje

EuroCons Group. Karika koja povezuje Konsalting, Projektovanje, Inženjering, Zastupanje EuroCons Group Karika koja povezuje Filtracija vazduha Obrok vazduha 24kg DNEVNO Većina ljudi ima razvijenu svest šta jede i pije, ali jesmo li svesni šta udišemo? Obrok hrane 1kg DNEVNO Obrok tečnosti

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Izbor statističkih testova Ana-Maria Šimundić

Izbor statističkih testova Ana-Maria Šimundić Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

GLAZBENA UMJETNOST. Rezultati državne mature 2010.

GLAZBENA UMJETNOST. Rezultati državne mature 2010. GLAZBENA UJETNOST Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 112 k 61 72,5 St. pogreška mjerenja 5,06 edijan 76,0 od 86 St. devijacija 15,99 Raspon 66

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

MIKROBIOLOŠKI PRAKTIKUM. Školska 2014/2015 KATEDRA ZA MIKROBIOLOGIJU. Nastavnici: Prof. dr Branka Vuković-Gačić, šef Katedre

MIKROBIOLOŠKI PRAKTIKUM. Školska 2014/2015 KATEDRA ZA MIKROBIOLOGIJU. Nastavnici: Prof. dr Branka Vuković-Gačić, šef Katedre MIKROBIOLOŠKI PRAKTIKUM Školska 2014/2015 KATEDRA ZA MIKROBIOLOGIJU Nastavnici: Prof. dr Branka Vuković-Gačić, šef Katedre Prof. dr Jelena Knežević-Vukčević Prof. dr Slaviša Stanković Doc. dr Tanja Berić

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50 INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun

Διαβάστε περισσότερα

MIKROBIOLOŠKI PRAKTIKUM. Školska 2015/2016 KATEDRA ZA MIKROBIOLOGIJU. Nastavnici: Prof. dr Jelena Knežević-Vukčević, šef Katedre

MIKROBIOLOŠKI PRAKTIKUM. Školska 2015/2016 KATEDRA ZA MIKROBIOLOGIJU. Nastavnici: Prof. dr Jelena Knežević-Vukčević, šef Katedre MIKROBIOLOŠKI PRAKTIKUM Školska 2015/2016 KATEDRA ZA MIKROBIOLOGIJU Nastavnici: Prof. dr Jelena Knežević-Vukčević, šef Katedre Prof. dr Branka Vuković-Gačić Prof. dr Slaviša Stanković Prof. dr Tanja Berić

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

SADRŽAJ RADIONUKLIDNI GENERATORI

SADRŽAJ RADIONUKLIDNI GENERATORI SADRŽAJ RADIONUKLIDNI GENERATORI................................ 2 Univerzalni 99 Mo/ 99m Tc generator.................................... 3 RADIOFARMACEUTSKI KITOVI................................ 4 Komplet

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Evolucija kontaktnih tesnih dvojnih sistema W UMa tipa

Evolucija kontaktnih tesnih dvojnih sistema W UMa tipa Evolucija kontaktnih tesnih dvojnih sistema W UMa tipa B.Arbutina 1,2 1 Astronomska opservatorija, Volgina 7, 11160 Beograd, Srbija 2 Katedra za astronomiju, Univerzitet u Beogradu, Studentski trg 16,

Διαβάστε περισσότερα