Otvorenost na tržištu dobara i usluga i financijskim tržištima
|
|
- ÊΦάνης Ελευθερόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 i financijskim tržištima i na financijskim tržištima Blanchard: Poglavlj 18. Makro-vjžb (O.Vukoja) i financijskim tržištima #1 i na financijskim tržištima Outlin prdavanja: 1. otvornost na tržištu dobara i usluga 2. otvornost na financijskim tržištima 3 dimnzij otvornosti: 1. otvornost na tržištu dobara mogućnost potrošača i poduzća da biraju izmđu domaćih i stranih dobara (ograničavajući faktor carin i kvot smanjuju s) 2. otvornost na financijskim tržištima mogućnost financijskih invstitora da biraju izmđu domać i stran financijsk imovin (ograničavajući faktor kontrola kapitala polako nstaj) 3. otvornost na tržištu faktora mogućnost odabira lociranja proizvodnj i mjsta zaposlnja (prsljnj tvornica na područja jftinij radn snag i migracij radnika u bogatija područja) naglasak na kratkom i srdnjm roku pa s koncntriramo na 1. i 2. dimnziju otvornosti Makro-vjžb (O.Vukoja) i financijskim tržištima #2
2 i financijskim tržištima Izvoz i uvoz trnd porasta uvoza i izvoza u udjlu BDP-a u prošlom stoljću porast obujma trgovin uvoz i izvoz s n krću uvijk ujdnačno razdoblja trgovinskog dficita (uvoz > izvoz) i suficita (izvoz > uvoz) mjr stupnja otvornosti: obujam trgovin = udio izvoza ili uvoza u BDP-u nij najbolja mjra otvornosti (SAD: 13%) mnogi sktori izložni stranoj konkurnciji bz da s to vidi u povćanom uvozu (otpor putm nižih cijna) udio agrgatnog outputa kojg čin utrživa dobra (tradabl goods) dobra koj s natjču sa stranim dobrima bilo na domaćm bilo na stranim tržištima bolji pokazatlj otvornosti (SAD: 60%) SAD i Japan imaju jdan od najmanjih udjla izvoza u BDP-u, oko 10%, dok Njmačka ima 33%, a Blgija čak 84% Mož li izvoz zmlj biti vći od BDP-a? mož jr izvoz sadrži i intrmdijarna dobra (Singapur) vličina udjla izvoza u BDP-u ovisi o gografskom položaju (udaljnosti od tržišta) i vličini zmlj (mal zmlj imaju vći udio izvoza/uvoza u BDP-u jr s spcijaliziraju za nkoliko proizvoda) Makro-vjžb (O.Vukoja) i financijskim tržištima #3 Izbor izmđu domaćih i stranih dobara otvorna konomija odluk potrošača: potrošnja ili štdnja potrošnja domaćih ili stranih dobara ( domaćg ili stranog outputa) odluk o portošnji tmlj s na rlativnoj cijni stranih dobara u odnosu na domaća ralni dvizni tčaj cijna stran rob u trminima domać rob vs. nominalni dvizni tčaj rlativn cijn valuta Nominalni dvizni tčaj 2 načina izražavanja nominalnog dviznog tčaja (E = xchang rat): 1) cijna domać valut izražna u stranoj valuti (HRK 1 = EUR 0.13) 2) cijna stran valut izražna u domaćoj valuti (EUR 1 = HRK 7,5) koristit ćmo ovaj način! mjrnj promjna dviznog tčaja: nominalna aprcijacija cijna domać valut porasla u trminima stran valut, što znači da j došlo do pada tčaja (E) pala j cijna stran valut u trminima domać nominalna dprcijacija cijna domać valut pala u trminima stran valut, što znači da j došlo do rasta tčaja (E) porasla j cijna stran valut Makro-vjžb (O.Vukoja) i financijskim tržištima #4
3 i financijskim tržištima primjr: razdoblj t EUR 1 = HRK 7.5 a) razdoblj t+1 EUR 1 = HRK 7.3 tčaj j pao, a kuna aprcirala (cijna kun rast, ujdno cijna ura pada pada tčaj) b) razdoblj t+1 EUR 1 = HRK 7,7 tčaj porastao, a kuna dprcirala (cijna kun pada, ujdno cijna ura rast rast tčaj) u uvjtima fiksnog dviznog tčaja zmlj mogu donijti odluku o njgovoj promjni: dvalvacija povćanja tčaja rvalvacija smanjnja tčaja ako s Hrvatska odluči na dvalvaciju (povćati tčaj prma uru), tada ć npr. Nijmci za istu količinu ura dobiti viš kuna, što ih mož potaknuti na vću kupovinu hrvatskih dobara (vći izvoz Hrvatsk) mđutim Nijmc n zanima samo koliko ć kuna dobiti za uro, ngo i kolika j cijna hrvatskih dobara u odnosu na ona u Njmačkoj ključno izračunavanj ralnog dviznog tčaja Makro-vjžb (O.Vukoja) i financijskim tržištima #5 Od nominalnog prma ralnom tčaju primjr prtpostavka: SAD proizvodi samo jdno dobro (Cadillac), kao i VB (Jaguar) za SAD kao domać gospodarstvo računamo ralni dvizni tčaj kao cijnu britanskih dobara u trminima amričkih dobara nominalni dvizni tčaj: 1 = $1.5 izračun rlativn cijn Jaguara u trminima Cadillaca ($): (1) Jaguar: x 1.5 po funti = $ (2) Cadillac: $ (3) $/40.000$ = 1.12 ralni dvizni tčaj izmđu SAD-a i VB = 1.12 ralni dvizni tčaj za sva proizvdna dobra izračun tmljm cjnovnih indksa za sva dobra u obj zmlj BDP dflator P* = BDP dflator stran zmlj (* ć svugdj označavati inozmstvo) P = BDP dflator domać zmlj E = nominalni dvizni tčaj Makro-vjžb (O.Vukoja) i financijskim tržištima #6
4 i financijskim tržištima Slika Izračun ralnog dviznog tčaja za cijli konomski sustav cijna britanskih dobara u funtama P* cijna britanskih dobara u dolarima EP* cijna amričkih dobara u dolarima P ralni tčaj ε = EP*/P napomna: ralni dvizni tčaj j indks i sam po sbi n daj nikakvu informaciju, ali j zato bitna njgova promjna ako npr. ralni dvizni tčaj (u SAD-u) izmđu SAD-a i VB porast za 10%, to znači da su sad amrička dobra 10% jftinija u odnosu na britanska promjn u ralnim dviznim tčajvima: ralna aprcijacija porast rlativn cijn domaćih dobara u trminima inozmnih dobara, ujdno i pad ralnog dviznog tčaja ralna dprcijacija smanjnj rlativn cijn domaćih dobara u trminima stranih dobara, ujdno i rast ralnog dviznog tčaja Makro-vjžb (O.Vukoja) i financijskim tržištima #7 "ralna" promjn rlativnih cijna dobara, a n promjn rlativnih cijna valuta važno: 1. nominalni i ralni dvizni tčaj n moraju s krtati u istom smjru! npr. mož doći do nominaln aprcijacij (njmački turist mož kupiti manj kuna s istim iznosom ura), ali i istovrmn raln dprcijacij zbog vć stop inflacij u Njmačkoj ngo u Hrvatskoj (cijn dobara u Hrvatskoj su manj ngo u Njmačkoj) P*/P > E 2. fluktuacij nominalnog dviznog tčaja djluju na ralni tčaj danas su razlik u stopama inflacij izmđu zmalja mal promjn u P*/P mal u odnosu na značajn promjn u E Od bilatralnih do multilatralnih dviznih tčajva zmlj imaju po nkoliko trgovinskih partnra, a n samo jdnog multilatralni/ fktivni ralni tčaj = pondrirani prosjk ralnih bilatralnih dviznih tčajva pondr za svaku zmlju trgovinskog partnra = udio trgovin s njom obično prosjk uvoza i izvoza (% izvoza+% uvoza)/ 2 multilatralni ralni tčaj kun prosjčna cijna hrvatskih dobara naspram prosjčnih cijna dobara hrvatskih trgovinskih partnra Makro-vjžb (O.Vukoja) i financijskim tržištima #8
5 i financijskim tržištima omogućuj divrzifikaciju portflja, špkulacij o krtanju domaćih i inozmnih kamatnih stopa, tčajva kupovina i prodaja financijsk imovin vći broj dviznih transakcija otvornost na financijskim tržištima zmlji omogućuj postojanj trgovinskog dficita/ suficita razlika s očituj u zaduživanju/ posuđivanju Bilanca plaćanja anja agrgirani popis vrijdnosti svih transakcija rzidnata nk zmlj s inozmstvom u tijku jdn godin uključuj trgovinsk i financijsk tokov 2 podbilanc: I Bilanca tkućih transakcija (tkući račun) 1. bilanca roba i usluga vanjskotrgovinska bilanca 2. nto dohodak (od ulaganja) 3. nto tkući transfri II Bilanca kapitalnih transakcija (račun kapitala) 1. kapitaln transakcij 2. nto financijsk transakcij 3. mđunarodn pričuv HNB-a idntitt BP suma podbilanci trbala bi biti jdnaka 0, ali u praksi nij kao korkcija katgorija statistička pogrška Makro-vjžb (O.Vukoja) i financijskim tržištima #9 BDP i BNP BDP vrijdnost dodana u zmlji BNP vrijdnost dodana od stran faktora proizvodnj u vlasništvu rzidnata BNP = BDP + nto faktorsk zarad (plaćanja iz svijta plaćanja svijtu) Izbor izmđu domać i stran imovin u otvornom gospodarstvu dvij odluk: da li držati stranu ili domaću valutu? da li držati stranu ili domaću imovinu koja donosi kamatu? ograničavanj imovin samo na obvznic; valut služ za domać transakcij primjr: izbor izmđu amričkih i britanskih obvznica za amričkog invstitora odluka invstiranja u amričk obvznic za svaki dolar uložn u obvznicu ov godin, drug s godin dobiva (1+i t ) dolara odluka invstiranja u britansk obvznic prvo j potrbno kupiti funt svaki dolar = 1/E t funti drug godin dobiva s (1/E t )(1+i t *) funti konvrzija funti u dolar iznos povrata u dolarima = (1/E t )(1+i t *)E t+1 E t+1 = očkivani nominalni tčaj drug godin kod invsticijskih odluka nij s dovoljno povoditi samo za razlikama u kamatnoj stopi, bitno j i što ć s događati s tčajm Makro-vjžb (O.Vukoja) i financijskim tržištima #10
6 i financijskim tržištima Slika Očkivani povrat od jdnogodišnj obvznic (SAD ili VB) za amričkog invstitora Godina t Godina t+1 SAD obvznic VB obvznic $1 $(1+i t ) $1 $(1/E t )(1+i t * )E t+1 (1/E t ) (1/E t )(1+i t * ) Makro-vjžb (O.Vukoja) i financijskim tržištima #11 prtpostavka: invstitorima bitna samo očkivana stopa povrata i zato žl držati samo imovinu s najvćom očkivanom stopom povrata za dani slučaj, ako s žli držati i amričk i britansk obvznic, on moraju imati istu stopu povrata pa mora vrijditi sljdća rlacija arbitraž: rorganiziramo: 1 + i 1 = (1 + i E t * )( E t t t + 1 E * t i = (1 + i ) t t E t 1 ) (npokrivni) kamatni paritt uncovrd intrst rat počtna prtpostavka proštra jr zanmaruj transakcijsk troškov i rizik uvjt kamatnog paritta j dobra aproksimacija stvarnosti za razvijn zmlj s otvornim, dobro organiziranim financijskim tržištima (Nw York, Frankfurt, London, Tokyo), dok ostal zmlj sa slabij razvijnim tržištm kapitala ili vćim kontrolama kapitala viš odstupaju od navdn rlacij Makro-vjžb (O.Vukoja) i financijskim tržištima #12
7 i financijskim tržištima Kamatna stopa i dvizni tčaj pišmo kamatni paritt kao: E E * t+ 1 t 1 + i = (1 + i ) 1 + t t E t ( E E )/ E t+ 1 t t j očkivana stopa dprcijacij domać valut ako j izraz ngativan radi s o aprcijaciji domać valut sv dok kamatna stopa ili očkivana dprcijacija nisu prvlik (do cca. 20%) vrijdi: E E * t + 1 t i i + t t E t iz arbitraž proizlazi da domaća kamatna stopa mora (otprilik) biti jdnaka inozmnoj kamatnoj stopi uvćanoj za očkivanu dprcijaciju domać valut primjr: razlika u kamatama na obvznic izmđu SAD-a i VB jdnaka 1,5% amričkim invstitorima s isplati ulagati u britansk obvznic samo ako očkuju dprcijaciju vću od 1.5% ako s n očkuj dprcijacija ili aprcijacija (izraz u zagradi j 0) onda ć domaći kamatnjak biti jdnak stranom primjr brazilskih obvznica Makro-vjžb (O.Vukoja) i financijskim tržištima #13
Otvorenost na tržištu dobara i usluga i financijskim tržištima
Ovornos na ržišu dobara i usluga i financijskim ržišima Ovornos na ržišu dobara i usluga i na financijskim ržišima Blanchard: Poglavlj 8. Makro-vjžb (O.Vukoja) Ovornos na ržišu dobara i usluga i financijskim
Phillipsova krivulja i Okunov zakon. Uvod. Uvod Što nam pokazuje osnovni AS-AD model?
Phillipsova krivulja i Okunov zakon Uvod Šo nam pokazuj osnovni AS-AD modl? Dohodak s vraća na prirodnu razinu U srdnjm roku razina cijna j jdnaka očkivanoj Ako j razina cijna jdnaka očkivanoj, nma priiska
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
Tržište dobara i usluga u otvorenom gospodarstvu
Tržište dobara i usluga u otvorenom gospodarstvu lanchard: Poglavlje 19. Makro-vježbe (O.Vukoja) #1 Outline predavanja: 1. IS relacija (tržište dobara) u otvorenom gospodarstvu 2. Ravnotežni output i vanjskotrgovinska
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.
Sistem sučeljnih sila
Sistm sučljnih sila Gomtrijski i analitički način slaganja sila, projkcija sil na osu i na ravan, uslovi ravnotž Sistm sučljnih sila Za sistm sila s kaž da j sučljni ukoliko sil imaju zajdničku napadnu
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
ZI. NEODREðENI INTEGRALI
ZI. Nodrđni intgrali 7 ZI. NEODREðENI INTEGRALI. Antidrvacij. Pronañi tri antidrivacij funkcij.. Odrdi sv antidrivacij funkcij.. Pronañi dvij antidrivacij funkcij.. Pronañi antidrivaciju funkcij za koju
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
ZADACI 18. Blanchard. 3. Pretpostavite slijedeće IS-LM jednadžbe: M P. E pri čemu je E
1 ZDCI 18 Blanchard 1. Nominalni devizni tečaj, realni devizni tečaj, strana i domaća inflacija Koristeći definiciju realnog deviznog tečaja (i matematički dodatak u knjizi) možete, pokazati da vrijedi
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković
Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Vanr. prof. dr Abdulah Akšamović, dip.ing.el.
ANALOGNA ELEKTONKA Trć prdavanj Vanr. prof. dr Abdulah Akšamović, dip.ing.l. 1 adna tačka i radna prava tranzistora u pojačavaču u spoju ZE E 1 C g C p g stosmjrni ržim 1 E E = + 1 1 1 = U + = + + = =
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Specijalna vrsta nepravih integrala jesu oni koji sadrze potencije ili geometrijski red u podintegralnoj funkciji.
Mt Vijug: Rijsni zdci iz vis mtmti 9. NEPRAVI INTEGRALI 9. Opcnito o nprvim intgrlim Intgrl oli f d s nziv nprviln o: ) jdn ili oj grnic intgrcij nisu oncn vc soncn:, ) pod intgrln funcij f j prinut u
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
MAKROEKONOMIJA. 13. siječnja 2007.
MAKROEKONOMIJA 13. siječnja 2007. 1 UVOD I OSNOVNI POJMOVI 1 1 UVOD I OSNOVNI POJMOVI Bruto domaći proizvod (BDP) - Mjera ukupnog proizvoda u računima nacionalnog dohotka tijekom danog razdoblja 1. BDP
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
7. Troškovi Proizvodnje
MIKROEKONOMIJA./. 7. Troškovi Proizvodnje Autori: Penezić Andrija Miković Ivana Pod vodstvom: Prof.dr. Đurđice Fučkan Prezentacije su napravljene prema : Pindyck, R.S./ Rubinfeld, D.L. () MIKROEKONOMIJA
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006.
šnj A/ kolokvijum iz prdmt MENI SISEMI U ELEKOMUNIKACIJAMA. jnur. Zdtk. D i prikznim urđjm mogl mriti mplitud čtvrtog hrmonik u mmorijki lok tr d ud upin ditrovn zin unkcij ( t) y co π Izlz iz urđj j td
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
10.1. Bit Error Rate Test
.. Bt Error Rat Tst.. Bt Error Rat Tst Zadata. Izračuat otrba broj rth formacoh bta u BER tstu za,, ogršo dttovaa bta a rjmu, tao da s u sstmu sa brzoom sgalzacj od Mbs mož tvrdt da j vrovatoća grš rosa
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Mundell-Flemingov model sa krivuljom vanjske ravnoteže
Mundell-Flemingov model sa krivuljom vanjske ravnoteže 1. Uvod Na nastavi smo istaknuli da IS-LM model prilagođen otvorenoj ekonomiji nazivamo Mundell- Flemingov model. Za razumijevanje tog modela definitivno
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Složeno periodično i neprekidno ukamaćivanje
Matematičke financije 1 Složeno periodično i neprekidno ukamaćivanje Zadatak 1: Guverner kolonije Nova Nizozemska, Peter Minuit, kupio je 1626. godine od Indijanaca otok Manhattan plativši im u robi čija
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
2. KAMATNI RAČUN 2.1. POJAM KAMATE I KAMATNE STOPE
1 2. KAMATNI RAČUN 2.1. POJAM KAMATE I KAMATNE STOPE Pod pojmom kamata podrazumijeva se naknada koju dužnik plaća za posuđenu glavnicu. Pri tom se pod glavnicom najčešće podrazumijeva određena svota novca,
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Ekonomski rast. Ekonomski rast kroz povijest
Ekonomski rast Ekonomski rast kroz povijest S obzirom da se ekonomska kriza polako približava kraju potrebno je razumjeti kako će svijet izgledati nakon krize. Posebno kako će se ostvariti ekonomski rast
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
1. Prisjetimo se modela vremenski konzistentne monetarne politike. Prvo, poslodavci formiraju. π π. Isplata monetarne vlasti dana je kao funkcija 2 *
Vjžb 9 1. Prisjtimo s modla vrmnski konzistntn montarn politik. Prvo, poslodavi formiraju očkivanj inflaij,. Drugo, montarna vlast promatra ovo očkivanj i bira stvarnu inflaiju,. Isplata poslodavu j (
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
TABLICE AKTUARSKE MATEMATIKE
Na temelju članka 160. stavka 4. Zakona o mirovinskom osiguranju («Narodne novine», br. 102/98., 127/00., 59/01., 109/01., 147/02., 117/03., 30/04., 177/04., 92/05., 43/07., 79/07., 35/08., 40/10., 121/10.,
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
EuroCons Group. Karika koja povezuje Konsalting, Projektovanje, Inženjering, Zastupanje
EuroCons Group Karika koja povezuje Filtracija vazduha Obrok vazduha 24kg DNEVNO Većina ljudi ima razvijenu svest šta jede i pije, ali jesmo li svesni šta udišemo? Obrok hrane 1kg DNEVNO Obrok tečnosti
Small Basic zadatci - 8. Razred
Small Basic zadatci - 8. Razred 1. Izradi program koji de napisati na ekranu Ovo je prvi program crvenom bojom. TextWindow.ForegroundColor = "red" TextWindow.WriteLine("Ovo je prvi program") 2. Izradi
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
konst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka
1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje
PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
3 Populacija i uzorak
3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika