ZI. NEODREðENI INTEGRALI
|
|
- Ποδαργη Καψής
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ZI. Nodrđni intgrali 7 ZI. NEODREðENI INTEGRALI. Antidrvacij. Pronañi tri antidrivacij funkcij.. Odrdi sv antidrivacij funkcij.. Pronañi dvij antidrivacij funkcij.. Pronañi antidrivaciju funkcij za koju j.. Pronañi onu antidrivaciju funkcij za koju vrijdi. 6. Pronañi antidrivaciju funkcij koja zadovoljava uvjt. 7. Ima li fukcija antidrivaciju za koju j? 8. Odrdi bar jdnu antidrivaciju funkcij. 9. Odrdi bar jdnu antidrivaciju funkcij.. Uz pomoć jdnog trigonomtrijskog idntitta pronañi antidrivaciju funkcij.. J li funkcija antidivacija funkcij?. J li funkcija antidrivacija funkcij?. J li funkcija antidrivacija funkcij?
2 8 Zbirka zadataka. Intgriranj pomoću tablic i osnovnih pravila Služći s tablicom i osnovnim pravilima pronañi nodrñn intgral
3 ZI. Nodrñni intgrali 9. Mtoda zamjn Pogodnim zamjnama odrdi intgral Rijši intgral tako da kvadratni izraz prvo prdočiš kao zbroj ili razliku kvadrata, a zatim uvdš zamjnu Mtoda djlomičn intgracij Djlomičnim intgriranjm odrdi intgral Dvostrukom primjnom formul za djlomičnu intgraciju zadani intgral svdi na intgralnu jdnadžbu, a potom ju rijši
4 Zbirka zadataka. Intgriranj racionalnih funkcija Odrdi intgral djlomičnih razlomaka Odrdi intgral pravih racionalnih funkcija Odrdi intgral racionalnih funkcija
5 ZI. Nodrñni intgrali 6. Intgriranj funkcija s korijnom Pogodnim zamjnama zadan intgral svdi na intgral racionalnih funkcija i rijši ih Intgriranj trigonomtrijskih funkcija Uz pomoć formula koj umnožak sinusa i kosinusa prtvaraju u zbroj ili razliku rijši intgral intgral Uz pomoć nk od zamjna,, ili rijši
6 Zbirka zadataka 8. Različiti zadatci Rijši intgral
7 ZII. Odrđni intgrali ZII. ODREðENI INTEGRALI. Računanj odrñnog intgrala Služći s tablicom, osnovnim pravilima i Libniz-Nwtonovom formulom izračunaj vrijdnost odrñnih intgrala. d. 7 d. d. cos d d d 9 8. ( ) d 9. ( ) d 6. ( ) d 6. 6 d 6. 6 d 6. ( ) d Služći s mtodom zamjn i Libniz-Nwtonovom formulom izračunaj vrijdnost odrñnih intgrala 6. + d 6. d 66. sin cosd ( + ) 67. d 68. d + ln d d 7. + d 7 6 ( + ) 7. d
8 Zbirka zadataka Služći s mtodom djlomičn intgracij i Libniz-Nwtonovom formulom izračunaj vrijdnost odrñnih intgrala cosd log d lnd arctan d d log d Izračunaj intgral: sin d cosd ( + ) ln d + d ( + ) arctan d d + Izračunaj intgral tako da prvo provjriš parnost podintgraln funkcij ili njnih pribrojnika ( + ) d ( sin cos ) d ( sin ctg+ ) d ( cos ) d ( + sin ) tgd d ( sin + cos ) Odrdi funkciju f ( ) i izračunaj f ( ), ako j f ( ) 9. f ( ) 9. f ( ) 9. = tdt, = =, dt t t dt t = =, = ( ) f ( ) = t + t dt, = 8 ( ) f ( ) = t dt, = f ( ) = + t dt, = t+
9 ZII. Odrđni intgrali. Površina ravninskog lika Izračunaj površinu lika omñnog krivuljama 97. =, =, 99. =, = + =, =,. =, = sin za. =, =, =, = +. =, = +, = 98. =, =, =, ( ) = = +, = + =. =, =, =, =. = +, = =, =, =, = = 6. =, =, = +, = sin 8.. =, = +, = +, = = = + 6,. =, = + = + 7. =, =,. = =, =, 7. =. 6. =, =, = = =, tangnta u točki T (,)
10 6 Zbirka zadataka U nardnim zadatcima površinu lika omñnog zadanim krivuljama izračunaj na dva načina: intgriranjm funkcija ( ) po intgriranjm funkcija ( ) po 8... =, = = +, = 9.. =, = + 6, =. =, = =, = +, = + =, = +. =, =, = tan, = /. =, =, =, = ln. Obujam rotacijskog tijla Izračunaj obujam tijla nastalog vrtnjom, oko osi, lika omñnog krivuljama 6. =, =, =, = +, = = 7. =, 9. =, = +. =, =, =, = =, = +.. = = = =, =, =, = = Izračunaj obujam tijla nastalog vrtnjom, oko osi, lika omñnog krivuljama 6. =, 8. =, =,. = 7. = 9. =, =, =. =, =, = =, =, = 8=, =
11 ZII. Odrđni intgrali 7. Duljina luka ravninsk krivulj Izračunaj duljinu luka krivulj.... = za 9, B, = za 8 = izmñu točaka A ( ) i ( ) = izmñu točaka A, i B, = ln za 6. ( ) = za ln ln 8 = ln sin za = arcsin za ln ln. Površina rotacijsk ploh Izračunaj površinu ploh nastal vrtnjom, oko osi, luka krivulj.... = za = izmñu točaka A(, ) i B (, ) + = za = sin za Izračunaj površinu ploh nastal vrtnjom, oko osi, luka krivulj.. 6. = za = izmñu točaka A(,) i B (,) = za
12 8 Zbirka zadataka 6. Numrička intgracija Trapznom formulom, uz zadani korak h, izračunaj približnu vrijdnost odrñnih intgrala ( + ) sin d, h=,, ln ( + ) d, h=, d, h=, log sin d, h=, +,7 ( arctan ) d, h=, cosd, h=, 6d, h=, + d, h=, + 6 d, h=, ( + ) arcsin d, h=, Simpsonovom formulom, uz zadani korak h, izračunaj približnu vrijdnost odrñnih intgrala lnd, h=, 6 d, h=, +,8 d, h=, tan d, h=,. + ln d, h=, cos logd, h=,. + d, h=, + + d, h=, cotd, h=, sin d, h=, arctan
13 ZII. Odrđni intgrali 9 7. Različiti zadatci Izračunaj vrijdnost intgrala: d d d + d + + d cos d d ( ) ( ) d d d + d + d sin sin + d d Uz pomoć intgralnog računa izvdi formul za 9. površinu i opsg kruga 9. obujam i površinu uspravnog kružnog stožca 9. obujam i površinu kugl 9. obujam i površinu torusa
14 Zbirka zadataka ZIII. DIFERENCIJALNE JEDNADŽBE. Provjra rjšnja Provjri jsu li funkcij rjšnja difrncijalnih jdnadžbi 9. + = cos, = sin + cos 96. +=, = =, = C 98. tg + =, = C sin sin=, = cos. = +, =. cos sin=, = tan. + = +, = C + sin+ C cos. + =, =. + + =, = ln. + + = cos, = sin =, = C + C + C
15 ZIII. Difrncijaln jdnadžb. Difrncijaln jdnadžb koj s rjšavaju nposrdnim intgriranjm Nposrdnim intgriranjm odrdi opć rjšnj difrncijlanih jdnadžbi 7. = cos 8. + = 9. =. = ln+. = =. = +. = cos sin. = 6. = cos 7. + ( + ) = 8. = ln Pronañi pojdinačno rjšnj difrncijalnih jdnadžbi koj zadovoljava zadan uvjt 9. = + : ( ) =. = cos sin : ( ) = ().. = : () = () = : ( ) =, () = 6. = : ( ) = (), () = sin cos. = + : ( ) =, = ( ) = cos sin. = : () =, () =, () = 6 6. = 6 : 6 () =, () = 8, () = 8
16 Zbirka zadataka. Difrncijaln jdnadžb prvog rda.. Difrncijalna jdnadžba s razdvojnim promjnljivim Rijši difrncijaln jdnadžb 7. d= d 8. d = d 9. ln d d =. d d + =. ( + sin ) d= ( + cos ) d. d( + ) d Rijši difrncijaln jdnadžb tako da prvo razdvojiš difrncijal i promjnljiv. =. =. + = 6. = + 7. = + 8. =
17 ZIII. Difrncijaln jdnadžb.. Homogna difrncijalna jdnadžba Zamjnom difrncijaln jdnadžb z=, a potom razdvajanjm promjnljivih i z, rijši 9. =. = ( ). =. ln = (ln ) Zamjnom z=, a potom razdvajanjm promjnljivih i z, rijši difrncijaln jdnadžb =. = + = 6. sin = sin + Rijši difrncijaln jdnadžb 7. ( + ) = 8. = + ( ) 9. = +. = + sin cos
18 Zbirka zadataka.. Linarna difrncijalna jdnadžba Odrdi opć rjšnj homognih linarnih difrncijalnih jdnadžbi. + =. =. + (sin ) =. (ln+ ) = Pronañi opć rjšnj difrncijalnih jdnadžbi tako da prvo rijšiš njihov homogn jdnadžb, a zatim primijniš mtodu varijacij konstant. = 6. + = 7. + = = cos 9. = 6. (sin ) sin + = 6. + = 6. = ln 6. + = 6. = cos Pronañi pojdinačno rjšnj difrncijlanih jdnadžbi koj zadovoljava zadani uvjt 6. = : ( ) = = : ( ) = 67. (cos ) = : () = 68. = : () =
19 ZIII. Difrncijaln jdnadžb.. Brnoulliva difrncijalna jdnadžba Pronañi opć rjšnj difrncijalnih jdnadžbi tako da prvo rijšiš njihov homogn jdnadžb, a zatim primijniš mtodu varijacij konstant C t razdvojiš promjnljiv i C = 7. = = 7. + = + = 7. + =. Difrncijaln jdnadžb drugog rda.. Linarna difrncijalna jdnadžba Snižavanjm rda rijši linarn difrncijaln jdnadžb 7. = 76. = = 6ln 78. sin cos= sin
20 6 Zbirka zadataka.. Linarna difrncijalna jdnadžba s konstantnim koficijntima Odrdi opć rjšnj homognih linarnih difrncijalnih jdnadžbi = 8. = 8. + = 8. + = 8. + = = Pronañi opć rjšnj difrncijalnih jdnadžbi tako da prvo rijšiš njihov homogn jdnadžb, a zatim primijniš mtodu varijacij konstanti 8. + = = = = = sin 9. + = sin+ cos 9. + = sin cos 9. = sin 9. = ( ) 9. ( + )( + ) = Pronañi pojdinačno rjšnj difrncijalnih jdnadžbi koj zadovoljava zadan uvjt 9. + = : ( ) =, ( ) = = : ( ) = 6 9 sin, () = + = : () =, ( ) = = : () =, () =
21 ZIII. Difrncijaln jdnadžb 7. Različiti zadatci Rijši difrncijaln jdnadžb 99. =. ln( ) =. d +d =. d +d =. ( + ) =. =. sin= 6. + = = 8. + = 9. = = cos Snižavanjm rda rijši difrncijaln jdnadžb. + =. + = IV. = IV. =
22 8 Zbirka zadataka R. RJEŠENJA,,.., Jst. Nij. Jst
23 R. Rjšnja
24 Zbirka zadataka
25 R. Rjšnja
26 Zbirka zadataka ln ln ln ln 8ln ln ln ln ln f ( ) =, 6 f () = 9. f ( ) = +, 9. f ( ) = ln ln, f ( ) = ln 7 9. f ( ) = +, f () = 9. f ( ) =, f () = f ( ) = ln +, f () = ln + + f () =
27 R. Rjšnja 9 = + d= 8. ( ) 7. P ( ) P= d= 9. P= ( + ) d=. P ( ) P ( ) d ( ) = d= P= + d d= d= 6 = d=. P ( ), P= 8 8 P= + d d= d= 6 P= d+ d= d=. ( 6 ) ( 6 ) = d= 8 + P= d = d ln 6 = ln + P= arctg d= tgd+ d= P= d lnd= d= V = d+ d= V = d+ d d=
28 Zbirka zadataka 6. V = + d d=. ( ) ( ) 96 V = + + d d=. ( 6) ( ) V 8d d d 7 = + = ln ( ) 8.. cos d sin. ln( + ) + l= + = ln ln 7. ln ln 9 ln 8 + l= d= ln. cos P= + d= sin sin ( ) ln + P= d + = 7.,6 8.,8 9.,9 6., 6. 8,8 6., 6.,8 6. 6,8 6., 9 66.,9 67., ,8 69.,998 7., 7., 7.,7 7., 7. 87, , 6 76., 6
29 R. Rjšnja ( ) d+ d= = d+ + d= 8. d ( ) ( ) a a 9. P= a d=a l= a d= a a v v a a + v P= a ( ) + d= a a+ a + v a 9. V = d= av v = a d= a 9. V ( ) a 9. Promatraj vrtnju kružnic ( ) a V = 8b a d= ab v a P= a d= a + b = a oko osi a P= 8ab d= ab a
30 6 Zbirka zadataka 9. Jst 96. Nij 97. Jsu 98. Nisu 99. Jst. Nij. Jst. Jsu. Jst. Jst. Nij 6. Jsu 7. = sin+ C 8. = + C 9. = lnc. = ln + ln+ C. = + + C+ C. = + ln + C+ C 6. = + C lnc. = cos+ sin+ C+ C. = C + C+ C = + C + C+ C = sin+ C + C+ 8. = ln + ln+ C + C+ C 9. = + ln +. = sin+ cos C. = +. = +. = +. 6 = tan+ cot+. = 6. = = C 8. = + C 9. = ln + C. + = C
31 R. Rjšnja 7. (cos+ sin) = C. ( ) = C. = C. = C. + = C 6. = C 7. = ln( + ) + C 8. + = C 9. = lnc. = lnc. + ln C =.. = lnc. ln C = = ln. = lnc 6. ln C + cos = 7. = lnc 8. + lnc = ln 9. lnc = tan. = arctanc. = C. = C C. cos = C. = C ) ( = + C 6. = C + + C = cos = sin + + cos = ( C) 6. = C + + C 6. C = + 6. = (ln + C) 6. = ( + C) tg 6. = C
32 8 Zbirka zadataka 6. = = + sin = 68. = 69. = 7. + C = ( + C) 7. =± + C 7. = ± + C 7. = + C 7. = ( + C) 7. C C = = C + C = ln + C ln+ C 78. = cos + C cos+ C 79. = C + C 8. = C + C 8. = ( C + C ) + 8. = ( C+ C ) 8. = C sin+ C cos 8. = ( C sin + C cos) 8. = + C+ C 86. = C sin+ C cos+ ( ) 87. = C + ( C ) 88. = C + ( + C ) 89. = C sin+ ( C ) cos 9. = C + C + cos 9. = C )sin + ( C )cos ( + 9. = C + C (sin+ cos) 9. = ( + C) + C 9. = C + C + ( + ) ln( ) +
33 R. Rjšnja 9 9. = = 97. = (sin + ) 98. = + C+ C 99. = C. = + C + C ln + C + C+. + = C. = C. = lnc.. = C+ cos 6. C = = ( C + +) 7. = ( C sin + C cos ) 8. ( ) = C + C + 9. = C + C. + = C + ( C + sin+ cos ). = C + C + C. = + C sin+ C cos+ C = C + C + C+ C.. = C+ C + C + C
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Integrali Materijali za nastavu iz Matematike 1
Integrali Materijali za nastavu iz Matematike Kristina Krulić Himmelreich i Ksenija Smoljak 202/3 / 44 Definicija primitivne funkcije i neodredenog integrala Funkcija F je primitivna funkcija (antiderivacija)
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5
MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012
MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.
Specijalna vrsta nepravih integrala jesu oni koji sadrze potencije ili geometrijski red u podintegralnoj funkciji.
Mt Vijug: Rijsni zdci iz vis mtmti 9. NEPRAVI INTEGRALI 9. Opcnito o nprvim intgrlim Intgrl oli f d s nziv nprviln o: ) jdn ili oj grnic intgrcij nisu oncn vc soncn:, ) pod intgrln funcij f j prinut u
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i
Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.
ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin
Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije
Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
4.1 Elementarne funkcije
. Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.
. Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.
I. NEODREðENI INTEGRALI
I. NEODREðENI INTEGRALI Uvod s povijesnim osvrom Deriviranje, kao posupak, eče uglavnom lako. Uz pomoć nekoliko pravilaformula mogu se derivirai sve elemenarne funkcije. Anideriviranje, posupak suproan
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
f(x) = a x, 0<a<1 (funkcija strogo pada)
Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0
Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:
Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Sistem sučeljnih sila
Sistm sučljnih sila Gomtrijski i analitički način slaganja sila, projkcija sil na osu i na ravan, uslovi ravnotž Sistm sučljnih sila Za sistm sila s kaž da j sučljni ukoliko sil imaju zajdničku napadnu
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
Κεφάλαιο 8 Το αόριστο ολοκλήρωµα
Κεφάλαιο 8 Το αόριστο ολοκλήρωµα 8 Θεµελίωση έννοιας αορίστου ολοκληρώµατος Στο 7 0 Κεφάλαιο ορίσαµε την έννοια της αντιπαραγώγου µιας συνάρτησης f σ ένα κλειστό και φραγµένο διάστηµα Γενικότερα Ορισµός
3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1
Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )
Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija
MATEMATIKA 2. Ivan Slapničar Nevena Jakovčević Stor Josipa Barić. Zbirka zadataka.
Ivan Slapničar Nevena Jakovčević Stor Josipa Barić Ivančica Mirošević MATEMATIKA Zbirka zadataka http://www.fesb.hr/mat Sveučilište u Splitu Fakultet elektrotehnike, strojarstva i brodogradnje Split, ožujak
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Trigonometrija Trigonometrijska kružnica Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Projektna nastava Osnovne trigonometrijske relacije:. +. tgx. ctgx tgx.
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις δεύτερου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 08-9. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε τα arccos και arcsin των 0, ±, ±, ±, ±. Λύση: Στο διάστημα [ π, π ] είναι (κατά αύξουσα διάταξη των γωνιών και
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
Signali i sustavi - Zadaci za vježbu II. tjedan
Signali i sustavi - Zadaci za vježbu II tjedan Periodičnost signala Koji su od sljedećih kontinuiranih signala periodički? Za one koji jesu, izračunajte temeljni period a cos ( t ), b cos( π μ(, c j t
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
Dužina luka i oskulatorna ravan
Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
No 5 Άσκηση παραγώγισης γινοµένου. ( 4 x 2 3 ) 3 x 4 ) 2 x 3 ) 6 ( 4 x 2 3 ) x 2. = 8 x ( 1. = 24 x 20 x 4 + 9 x 2. 3 x 4 ) 12 ( 2 x 2 1 ) x 3
Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα, Λυµένες Ασκήσεις, Βοήθεια στη λύση Εργασιών. Θ. Χριστόπουλος, www.maths.gr, Tηλ.: 69 79 0 5 Ασκήσεις παραγώγισης γινοµένου No Άσκηση παραγώγισης γινοµένου
Geometrijske karakteristike poprenih presjeka nosaa. 9. dio
Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino
( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,
2x 2 + x + 1 (x + 3)(x 1) 2 dx, 2x (x + 1) dx. b x 1 + x dx x x 2 1, 6u 5 u 3 + u 2 du = 6u 3 u + 1 du. = u du.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 8: Τεχνικές ολοκλήρωσης Α Οµάδα. Υπολογίστε τα ακόλουθα ολοκληρώµατα : + + d, + + ( + 3)( ) d, 3 + 3 + 3 + + + d. Υπόδειξη. (α) Γράφουµε + + d
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Μαθηματική Ανάλυση Ι
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 6: Παράγωγοι Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
Teorema Rezidurilor şi Bucuria Integralelor Reale
Torma Ridurilor şi Bucuria Intgrallor Ral Prntar d Alandru Ngrscu Intgral cu funcţii raţional c dpind d sin t şi cos t u notaţia it, avm: cos t ( + sin t ( i dt d i, iar intgrara s va fac d-a lungul crcului
Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a
Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
I. dio. Zadaci za ponavljanje
I. dio Zadaci za ponavljanje ZADACI ZA PONAVLJANJE. BROJEVI: Prirodni, cijeli, racionalni i realni brojevi. Izgradnja skupova N, Z, Q, R.. Odredi najveću zajedničku mjeru M(846, 46).. Napiši broj u sustavu
TEHNIČKO VELEUČILIŠTE U ZAGREBU ELEKTROTEHNIČKI ODJEL MATEMATIKA 2
TEHNIČKO VELEUČILIŠTE U ZAGREBU ELEKTROTEHNIČKI ODJEL MATEMATIKA Poglvlj. Nodrđni ingrl Poglvlj. Odrđni ingrl Poglvlj. Nprvi ingrli Poglvlj. Primjn odrđnog ingrl Mr.sc. Pronil Loknr SADRŽAJ NEODREĐENI
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),
ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)
ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα