ima oblik ravnokrakog pravouglog trougla. Naći moment inercije u odnosu na osu koja se poklapa sa jednom od kateta.
|
|
- Κλεόπατρος Βαρουξής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Klatn je sastavljen d tankg vertikalng štapa mase m i dužine l i prstena mase m, unutrašnjeg pluprečnika r i spljašnjeg r (slika. Odrediti mment inercije klatna u dnsu na hrintalnu su (nrmalnu na ravan crteža kja prlai kr grnji kraj štapa. (N. Čalukvić, Fiika - udžbenik a prvi rared matematičke gimnaije slika. Tanka, hmgena plčica mase m, 6kg ima blik ravnkrakg pravuglg trugla. Naći mment inercije u dnsu na su kja se pklapa sa jednm d kateta. Dužina katete je a mm. 3 Pkaati da a tanku plčicu privljng blika pstji vea među mmentima inercije 3, gde su, i 3 tri uajamn nrmalne se kje prlae kr jednu tačku, pri čemu se i leže u ravni plćice. Kristeši vu veu, naći mment inercije tankg, hmgeng, kruglg diska radijusa R i mase m, u dnsu na su kja se pklapa sa jednim d njegvih dijametara. 4 Hmgeni disk radijusa R ima kružni ire (slika. Masa takvg diska je m. Naći njegv mmnet inercije u dnsu na su kja je nrmalna na njegvu pvršinu, a prlai kr: a tačku O b kr njegv centar mase. slika. 5 Bure mase M napunjen je naftm mase m i ktrlja se ni strmu ravan nagibng ugla 3 (slika 3. Bure se mže smatrati šupljim valjkm sa tankim snvama kji je napravljen d hmgeng materijala. Spljšnji pluprečnik čupljeg valjka je R, a unutrašnji η R ( η <. Odrediti ubranje bureta. Trenje imeđu idva bureta i nafte smatrati anemarljiv malim. Pretpstaviti da se bure ktrlja be prkliavanja ni strmu ravan. Takđe smatrati da je sa simetrije bureta paralelna hrintalnj ravni tkm kretanja. (Saven takmičenje učenika srednjih škla, rared, šklska 3/4. slika 3. 6 Sa vrha strme ravni nagibng ugla 45 istvremen i mirvanja kreću lpta i prsten iste mase i pluprečnika. Oba tela se ktrljaju be prkliavanja. Nađite dns vremena ptrebnih lpti i prstenu da stignu u pdnžje stre ravni. Kje tel će stići prv? (Mladi fiičar Ok valjka mase M (slika 4 namtan je uže čiji je jedan kraj prebačen prek učvršćeng ktura i vean a pkretni ktur. Na pkretnm kturu se nalai drug uže kjim su a njega veana tela masa m i m. Odrediti ubranje tela mase m u dnsu na pdlgu ak se valjak ktrlja be klianja. Pretpstaviti da su mase kturva i užadi anemarljive, a užad neistegljiva. (Republičk takmičenje učenika srednjih škla, rared, šklska 3/4. slika 4.
2 8 U sistemu, prikaanm na slici 5. pnati su masa hmgeng valjka m, njegv radujus R i mase tela m i m. Klianja niti i trenja u si valjka nema. Naći ugan ubranje valjka i dns sila ateanja vertikalnih delva niti T /T u prcesu kretanja. slika 5. 9 U sistemu prikaanm na slici 6. pnate su mase tela m i m, keficijent trenja imeđu tela m i hrintalne ravni µ, a masa ktura je m i mže se smatrati hmgenim diskm. Nit p kturu ne klia. U pčetnm trenutku tel m pčinje da se spušta. Zanemarujući masu niti i trenje u si blka, naći: a ubranje tela mase m i b rad sile trenja, kja deluje na tel mase m, u tku prvih t sekundi d pčetka kretanja. slika 6. U sistemu prikaanm na slici 7. hmgenm valjku sapštena je ugana brina k hrintalne se O, a atim je pažljiv na njega spušten kraj A štapa AB tak da štap aklapa sa vertikalm uga d 45. Trenje pstji sam imeđu valjka i štapa. Keficijent trenja je µ, 3. Ak rtira u smeru kretanja kaaljki časvnika, valjak d austavljanja napravi n brta, a ak rtira u suprtnm smeru n. Naći dns n / n pd pretpstavkm da su u ba slučaja pčetne ugane brine bile iste. slika 7. Na valjku pluprečnika r učvršćen je dbš pluprečnika R prek kga je namtan neistegljiv lak uže (slika 8. Drugi kraj užeta prebačen je prek lakg ktura i na njemu visi teg mase m. Masa valjka sa dbšem je M, a mment inercije u dnsu na hrintalnu su kr centar mase je. Klik je ubranje tega ak se valjak ktrlja be klianja? (N. Čalukvić, M. Rasppvić, Fiika M - birka rešenih adataka a rared matematičke gimnaije i pripreme takmičenja slika 8. Hmgeni tanak cilindar, pluprečnika R i mase M mže slbdn da rtira k nepkretne hrintalne svine (slika 9. Na cilindar je namtan hmgen tank uže dužine l i mase m. Odrediti avisnst: a ugang ubranja cilindra d dužine dmtang dela užeta slika 9. b sile ateanja užeta d (G. Dimić, M. Mitrinvić, Zbirka adataka i fiike D 3 Na dva jednaka valjka mase m simetričn su namtana dva laka, neistegljiva knca (slika. Grnji valjak pričvršćen je na svinu u kjj je trenje anemrljiv, a dnji valjak pada dmtavajući uže. Klika je sila ateanja knca? (N. Čalukvić, M. Rasppvić, Fiika M - birka rešenih adataka a rared matematičke gimnaije i pripreme takmičenja slika.
3 4 Kalem mase m i unutrašnjeg pluprečnika r i mmneta inercije, bešen je pmću dva užetana način prikaan na slici. Pmću trećeg užeta, kje je takđe namtan na kalem, bešen je tel mase m. a Klikim ubranjem pada kalem? b Klike su sile ateanja svih užadi? slika. 5 Masa kalema prikaang na slici je M, a mment inercije u dnsu na su O O je. Prek kalema su namtane neistegljive lake niti ka št je prikaan na slici. Za kraj niti namtane k šireg dela kalema vean je tel mase m. Klik je ubranje tg tela? Pluprečnik užeg dela kalema je R, a šireg R. (N. Čalukvić, M. Rasppvić, Fiika M - birka rešenih adataka a rared matematičke gimnaije i pripreme takmičenja slika. 6 U sistemu prikaanm na slici 3. pnata je masa m tega A, masa M stepenastg ktura B, mment inercije ktura u dnsu na njegvu su i radijusi ktura R i R. Masa kanapa se anemaruje. Naći ubranje tega. slika 3. 7 Hmgeni valjak radijusa R artira se k svje se simetrije uganm brinm ω i pstavi u uga ka na slici 4. Keficijent trenja imeđu valjka i ida je i pdlge je µ. Klik će brta napraviti valjak d austavljivanja? (N. Čalukvić, M. Rasppvić, Fiika M - birka rešenih adataka a rared matematičke gimnaije i pripreme takmičenja slika 4. 8 Na glatkh hrintalnj pdli nalai se daska mase m. Na dasci se nalae dva ista valjka mase M i pluprečnika snve R, a prek njih je plžena druga daska mase m, slika 5. U pčetnm trenutku sistem je pstavljen simetričn i miruje. Na grnju dasku pčne da deluje sila inteiteta F u hrintalnm pravcu. Ak se valjci kreću be prkliavanja, drediti brinu dasaka. (Saven takmičenje učenika srednjih škla, rared, šklske 3/4 slika 5. 9 Hmgeni valjak mase m leži na dvema hrintalnim daskama (slika 6. Na valjak je namtana laka neistegljiva nit čiji se slbdni kraj vuče naniže vertikalnm silm F. Odrediti maksimalni inteitet te sile pri kjem će se valjak ktrljati be klianja, ak je keficijent trenja µ. slika 6.
4 (N. Čalukvić, M. Rasppvić, Fiika M - birka rešenih adataka a rared matematičke gimnaije i pripreme takmičenja Na hrintalng glatkj pdli nalai se klin mase M. P strmj ravni klina, nagiba ϕ, ktrlja se be klianja kugla mase m. Klik je ubranje klina? (N. Čalukvić, M. Rasppvić, Fiika M - birka rešenih adataka a rared matematičke gimnaije i pripreme takmičenja Prek nepkretng masivng diska pluprečnika R namtana je laka neistegljiva nit na čijem kraju je teg mase m. Teg se pusti da pada. Odrediti mment impulsa vg sistema, u dnsu na su k kje rtira disk, nakn vremena t d pčetka kretanja. (N. Čalukvić, M. Rasppvić, Fiika M - birka rešenih adataka a rared matematičke gimnaije i pripreme takmičenja Na masivni disk pluprečnika 5cm namtana je laka neistegljiva nit na čijem je kraju mali teg. Nit je prebačena prek glatkg hrintalng štapa C kji štrči i ida (slika 7. Kliki je mment inpulsa sistema, U dnsu na su k kje se brše disk, nakn 4s d pčetka kretanja, ak je sila pritiska niti na štap 5N? (N. Čalukvić, M. Rasppvić, Fiika M - birka rešenih adataka a rared matematičke gimnaije i pripreme takmičenja slika 7. KARAKTERSTČN AKSJALN MOMENT NERCJE NEKH PRAVLNH GEOMETRJSKH TELA Tel Mment inercije Tel Mment inercije
5 Tanak štap Puna lpta ml mr 5 Disk Puni cilindar mr 4 mr y y mr m ( l 3r Tanka plča Šuplji cilindar mb ma y m ( a b y m ( R r m l 3( R [ r ] Šuplja lpta tankih idva mr 3 Kvadar m y ( b a m ( c a 3 m ( c b Šuplji cilindar tankih idva Kupa y mr m ( l 6r 3 mr y 3m r h 4
Podloge za predavanja iz Mehanike 1 STATIČKI MOMENT SILE + SPREG SILA. Laboratori j z a m umerič k u m e h a n i k u
Plge a preavanja i ehanike 1 STATIČKI OENT SILE + SPREG SILA Labratri j a m umerič k u m e h a n i k u 1 Statički mment sile Sila u insu 225 N jeluje na ključ prema slici. Oreiti mment sile birm na tčku
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Trigonometrijski oblik kompleksnog broja
Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.
MEHANIKA FLUIDA. Isticanje kroz velike otvore
MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni
1. Kolokvijum iz MEHANIKE (E1)
Fakultet tehničkih nauka Novi Sad Katedra za Mehaniku 1. Kolokvijum iz MEHANIKE (E1) A grupa A1 Padobranac mase m je iskočio iz aviona. U trenutku otvaranja padobrana, u kom je imao brzinu v 0 usmerenu
Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I
. Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne
3 SISTEM PROIZVOLJNIH SILA I SPREGOVA U RAVNI
3 SISTEM PROIZVOLJNIH SIL I SPREGOV U RVNI Ravanski sistem prizvljnih sila F 1,..., F n i spregva m M 1,..., M k čine sile čije napadne linije leže u jednj ravni, dk su spregvi, ka vektri, upravni na tu
RIZIK OD MEHANIČKIH DEJSTAVA
Univerzitet u Nišu Fakultet zaštite na radu u Nišu REŠENI ZADACI SA VEŽBI IZ PREDMETA RIZIK OD MEHANIČKIH DEJSTAVA - Interni nerecenzirani materijal - Predmetni nastavnik: Dr Dragan Stojiljković, red.
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.
Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Mehanika, kinematika i elastičnost
Mehanika, kinematika i elastičnost Marko Petković Sreda, 9. Mart 006. god. 1 Osnovne relacije 1. Drugi Njutnov zakon: m v t = F ; m a = F + mω R + m( v ω). Priraštaj impulsa sistema: p p 1 = F t (ako je
SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA
SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini
r i Projekcije vektora položaja r i su odgovarajuće koordinate tačke xi
Središte sistema materijalnih tačaka. Neka je proivoljni sistem sačinjen od konačnog broja materijalnih tačaka čija međusobna rastojanja mogu biti i promenljiva. Svaka materijalna tačka sistema ima svoju
NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi
NEKE POVŠI U Pvrši kje se njčešće sreću u dcim su:. Elipsidi. Hiperlidi. Prlidi 4. Knusne pvrši 5. Cilindrične pvrši. Elipsidi Osnvn jednčin elipsid ( knnsk) je : + + = c, i c su dsečci n, i si. Presek
Fizička mehanika i termofizika, junski rok
Fizička mehanika i termofizika, junski rok 5.7.2001. 1. Po strmoj ravni, nagibnog ugla α, kotrlja se bez klizanja masivni šuplji cilindar, mase M i poluprečnika R. Po unutrašnjosti cilindra se kreće pas.
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
TRIGONOMETRIJSKI KRUG
TRIGONOMETRIJSKI KRUG Uglvi mgu da se mere u stepenima i radijanima Sa pjmm stepena sm se upznali jš u snvnj škli i ak se sećate, njega sm pdelili na minute i sekunde( `, ``` ) Da bi bjasnili šta je t
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Statika je grana mehanike u kojoj se predočavaju stanja mirovanja tijela, kada su opterećenja koja na njih djeluju u međusobnoj ravnoteži.
PM ELEMETI STOJEVA I MEHAIZAMA-PODLOGE ZA PEDAVAJA OSOVE IZ MEHAIKE STATIKA Statika je grana mehanike u kjj se predčavaju stanja mirvanja tijela, kada su pterećenja kja na njih djeluju u međusbnj ravnteži.
INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50
INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Rotacija krutog tijela
Rotacija krutog tijela 6. Rotacija krutog tijela Djelovanje sile na tijelo promjena oblika tijela (deformacija) promjena stanja gibanja tijela Kruto tijelo pod djelovanjem vanjskih sila ne mijenja svoj
OTPORNOST MATERIJALA
3/8/03 OTPORNOST ATERIJALA Naponi ANALIZA NAPONA Jedinica u Si-sistemu je Paskal (Pa) Pa=N/m Pa=0 6 Pa GPa=0 9 Pa F (N) kn/cm =0 Pa N/mm =Pa Jedinična površina (m ) U tečnostima pritisak jedinica bar=0
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Vremenski promenljive struje
Vremenski prmenljive struje D sada sm razmatrali kla kd kjih su izvri napajanja bili vremenski neprmenljivi (DC direct current) i kd kjih struja prtiče u jednm dreñenm smeru. U kviru prgrama predmeta Osnvi
Mašinski fakultet, Beograd - Mehanika 1 Predavanje 4 1. Spreg sila A C = AC OC = OC CB OC D B = OD = CBF AC CB = =
ašiski fakultet, Begad - ehaika Pedavaje 4 Speg sila Slagaje dveju paalelih sila Psmata se sistem d dve paalele sile istg smea i, kje deluju u tačkama A i B tela. že se pkazati da se vaj sistem sila mže
Slika 1: Slika uz zadatak 3.
Univerzitet u Beogradu-Elektrotehnički fakultet Oktobarski ispitni rok iz Fizike 1, 14.9.2016. godine Ispit sadrži 6 zadataka. Trajanje ispita je 3h. Predmetni nastavnici: Jovan Cvetić (P1), Predrag Marinković
Dinamika tijela. a g A mg 1 3cos L 1 3cos 1
Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:
Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.
Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ
Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Osnovne vrste naprezanja: Aksijalno naprezanje Smicanje Uvijanje. Savijanje. Izvijanje
Osnovne vrste napreanja: ksijalno napreanje Smicanje Uvijanje Savijanje Ivijanje 1 SVIJNJE GREDE SI Greda je opterećena na desnom kraju silom paralelno jednoj od glavnih centralnih osa inercije (y osi).
PROSTORNI STATIČKI ODREĐENI SUSTAVI
PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Slika 1: Uz zadatak 2.
Univerzitet u Beogradu-Elektrotehnički fakultet Junski ispitni rok iz Fizike 1, 8.6.016. godine Predmetni nastavnici: Jovan Cvetić (P1), Predrag Marinković (P) i Milan Tadić (P3) Trajanje ispita je 3h
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
2. Kolokvijum iz MEHANIKE (E1)
Fakultet tehničkih nauka Novi Sad Katedra za Mehaniku 2. Kolokvijum iz MEHANIKE (E1) A grupa A3 Dva robota se kreću po glatkoj horizontalnoj podlozi. Robot A, mase 20, 0 kg, kreće se brzinom 2, 00 m/s
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Dimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
Dinamičke jednačine ravnog kretanja krutog tela.
Dinamičke jednačine ravnog kretanja krutog tela. Prve dve dinamičke jednačine ravnog kretanja krutog tela, u prvoj varijanti, imaju oblik: 1) m & x X, ) m & y = Y. = i i Dok, u drugoj varijanti, njihov
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Uvijanje. OTPORNOST MATERIJALA I 11/12 82
*Grupa autra, Elaststatika I, Tehnički fakultet, Bihać, 003 *JM Gere, BJ Gdn, Mechanics f Materials, Cengage Learning, Seventh Editin, 009. OTPORNOST MATERIJALA I 11/1 www.mf.unze.ba 8 Osnvni pjmvi Mment
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona.
Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona Prema osnovnoj formuli za dimenzionisanje maksimalni tangencijalni napon τ max koji se javlja u štapu mora biti manji
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Impuls i količina gibanja
FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba 4 Impuls i količina gibanja Ime i prezime prosinac 2008. MEHANIKA
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog
Izučavanje dinamike rotacionog kretanja
Glava 10 Izučavanje dinamike rotacionog kretanja 10.1 Uvod Kinematika rotacije Rotacijom oko ose ϖ za ugao ϕ zovemo pomeranje sistema kod kojeg za svaku tačku sistema postoji kružnica K kroz čiji centar
l r redukovana dužina (zavisno od dužine i načina vezivanja)
Vežbe 6 IZVIJANJE 1 IZVIJANJE Izvijanje se javlja kod aksijalno napregnutih štapova na pritisak, kada imaju relativno veliku dužinu u odnosu na površinu poprečnog preseka. Zbog postojanja geometrijskih
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.
Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):
Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja
PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva
Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2006/2007 Fizika 1 Auditorne vježbe 5 Dinamika: Newtonovi zakoni 12. prosinca 2008. Dunja Polić (dunja.polic@fesb.hr)
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε
Deformae. Duljinska (normalna) deformaa. Kutna (posmina) deformaa. Obujamska deformaa Θ Tenor deformaa tenor drugog reda 9 podatakamjerna jedinia Simetrinost tenora deformaa 6 podataka 4. Duljinska deformaa
Prostorni spojeni sistemi
Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka
Masa, Centar mase & Moment tromosti
FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:
Dinamika krutog tijela. 14. dio
Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Geometrijske karakteristike poprenih presjeka nosaa. 9. dio
Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino
ŠIFRA: PRIJEMNI ISPIT IZ FIZIKE NA TEHNOLOŠKO-METALURŠKOM FAKULTETU UNIVERZITETA U BEOGRADU god.
94 ТЕХНОЛОШКО-МЕТАЛУРШКИ ФАКУЛТЕТ ŠIFRA: 38765 PRIJEMNI ISPIT IZ FIZIKE NA TEHNOLOŠKO-METALURŠKOM FAKULTETU UNIVERZITETA U BEOGRADU 1.7.2005.god. (Tekst sadrži 20 zadataka. Svako pitanje mora da ima samo
Numeričko modeliranje u geotehnici STABILNOST BESKONAČNE KOSINE
str. 1 STABILNOST BESKONAČNE KOSINE Numeričkim mdeliranjem će se ilustrirati stabilnst besknačne ksine, za kju pstje analitički izrazi za faktr sigurnsti, kji prizlaze iz ravnteže elementa tla kjemu su
C 273,15, T 273,15, 1 1 C 1 50 C 273,15 K 50K 323,15K 50K 373,15K C 40 C 40 K
1 Zadatak temperatura K- C Telo A se nalazi na temperaturi 50 C i zagreje se za 50 K. Telo B se nalazi na temperaturi 313 K.i zagreje se za 40 C. Koje je telo toplije posle zagravanja i kolika je razlika
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
Junski ispitni rok iz Fizike 1, godine
Univerzitet u Beogu-Elektrotehnički fakultet Junski ispitni rok iz Fizike 1, 196215 godine Predmetni nastavnici: Jovan Cvetić (P1), Predrag Marinković (P2) i Milan Tadić (P3) Trajanje ispita je 3 h 1 Tačka
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će
Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će se bez obzira na masu kretati istim ubrzanjem Zanimljivo
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
BORBENI ZAOKRET AVIONA
Docent dr Miljko Popoić pukonik dipl. inž. Vojna akademija Beograd BORBENI ZAOKRET AVIONA UDC: 63.746.34 : 67.7.07 Reime: U radu su prikaane jednačine kretanja težišta aiona u borbenom aokretu i analia
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike