Slika 1: Slika uz zadatak 3.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Slika 1: Slika uz zadatak 3."

Transcript

1 Univerzitet u Beogradu-Elektrotehnički fakultet Oktobarski ispitni rok iz Fizike 1, godine Ispit sadrži 6 zadataka. Trajanje ispita je 3h. Predmetni nastavnici: Jovan Cvetić (P1), Predrag Marinković (P2) i Milan Tadić (P3). 1. Tačka se kreće u ravni u skladu sa parametarskim jednačinama u Dekartovom koordinatnom sistemu: x(t) = sin(ωt) i y(t) = cos(ωt), gde su i ω pozitivne konstante, a t vreme. Naći: (a) [20] jednačinu trajektorije i skicirati je; (b) [20] intenzitete tangencijalnog i normalnog ubrzanja; (c) [20] poluprečnik krivine trajektorije; (d) [20] ugao između vektora brzine i ubrzanja i (e) [20] jednačinu hodografa brzine i skicirati je. 2. Telo, malih dimenzija, mase m 1, leži na dasci mase m 2, koja je na glatkoj horizontalnoj podlozi. Između tela i daske postoji trenje i koeficijent trenja je µ. Odrediti: (a) [50] maksimalni intenzitet horizontalne sile (u oznaci F max ) kojom se može daska vući u pravcu daske, a da telo na njoj ne sklizne; (b) [50] vreme potrebno da telo sklizne sa daske, ako se ona povuče horizontalnom silom u pravcu daske intenziteta F 0 > F max i ako je na početku telo bilo na ivici daske na mestu gde se deluje silom, a daska je dužine L. Ubrzanje Zemljine teže je g. 3. [100] Telo mase m se sporo vuče naviše uz brdo silom intenziteta F. Sila je u svakoj tački usmerena po tangenti na površ kao na slici 1 uz zadatak. ko je visina brda h, horizontalno rastojanje od početne tačke do vrha brda l i koeficijent trenja između tela i brda µ, izračunati rad koji izvrši spoljna sila. Ubrzanje Zemljine teže je g. Slika 1: Slika uz zadatak [100] Na slici 2, uz zadatak, je prikazano telo oblika tankog šupljeg poludiska mase m, homogene gustine. Poluprečnik šupljine je R/2, a spoljašnji poluprečnik je R. Odrediti moment inercije tela oko ose OO. Slika 2: Slika uz zadatak Kruti homogeni tanki štap zanemarljive mase može da rotira bez trenja oko tanke osovine koja prolazi kroz tačku na rastojanju L/3 od njegovog levog kraja. Za levi kraj štapa pričvršćena je kuglica mase M, a za ovu kuglicu prikačena je opruga krutosti 2k, dok je za desni kraj štapa pričvršćena kuglica mase m, a za nju opruga krutosti k Slika 3: Slika uz zadatak 5.

2 (videti sliku 3). Opruge su lake (zanemarljivo male mase) i postavljene su vertikalno. U ravnoteži štap je u horizontalnom položaju, a opruge su nenapregnute. Odrediti: (a) [20] masu leve kuglice M i intenzitet sile reakcije osovine na štap N u ravnotežnom položaju; (b) [80] za M određeno pod (a) odrediti kružnu učestanost malih oscilacija ovog sistema ω. 6. Nivo intenziteta zvuka na rastojanju r 1 = 20 m od tačkastog izvora je L 1 = 30 db. ko je sredina u kojoj se prostire zvuk nedisipativna i izotropna, izračunati: (a) [50] nivo intenziteta zvuka L 2 na rastojanju r 2 = 10 m od izvora; (b) [50] najmanje rastojanje od izvora na kome se zvuk ne čuje. Napomene: (1) Na vrhu naslovne strane vežbanke napisati oznaku grupe i prezime predmetnog nastavnika: P1-Cvetić, P2-Marinković, P3-Tadić. (2) Studenti koji su zadovoljni poenima ostvarenim na kolokvijumu u tekućoj školskoj godini rade zadatke 3-6 za vreme 3h. Na naslovnoj strani vežbanke, u poljima rednih brojeva 1 i 2, treba da upišu oznaku K1 da bi poeni ostvareni na kolokvijumu bili priznati. (3) Studenti koji nisu zadovoljni poenima ostvarenim na kolokvijumu ili nisu radili kolokvijum u tekućoj školskoj godini rade SVE ZDTKE (1-6) za vreme 3h. (4) Zadatak koji nije rađen ili čije rešenje ne treba bodovati jasno označiti na koricama sveske, u odgovarajućoj rubrici, oznakom X. (5) Na koricama sveske (u gornjem desnom uglu) napisati broj poena sa prijemnog ispita iz fizike, ako je rađen, u formi PR-ISP= poena. ko nije rađen PR-ISP=NE. (6) Dozvoljena je upotreba neprogramabilnih kalkulatora i svih vrsta pisaljki, sem onih koje pišu crvenom bojom. (7) List sa tekstom zadataka poneti sa sobom, ne ostavljati u vežbanci. (8) Ispit se može napustiti po isteku najmanje jednog sata od početka ispita.

3 Rešenja zadataka na ispitu iz Fizike 1 Oktobarski ispitni rok 2015/ y/ x/ Slika 4: Slika uz rešenje zadataka (a) Jednačina trajektorije je ( x ) 2 ( y ) 2 + = sin 2 ωt+cos 2 ωt = 1. Radi se o krugu radijusa R (slika 4). (b) Tangencijalno ubrzanje je (ẋ = ωcosωt, ẍ = ω 2 sinωt, ẏ = ωsinωt i ÿ = ω 2 cosωt) Normalno ubrzanje je a τ = v a v = ẋẍ+ẏÿ ẋ2 +ẏ 2 = = 2 ω 3 sinωtcosωt+ 2 ω 3 sinωtcosωt 2 ω 2 sin 2 ωt+ 2 ω 2 cos 2 ωt a n = a = ẍ 2 +ÿ 2 = (c) Polupečnik krivine trajektorije je = 0 ω = 0. 2 ω 4 sin 2 ωt+ 2 ω 4 cos 2 ωt = ω 2. R = v2 a n = 2 ω 2 ω 2 =. (d) Ugao između vektora brzine i ubrzanja se nalazi iz izraza v a = vacosθ. Kako je v a = 0, sledi cosθ = 0, odnosno θ = π/2. (e) Projekcije brzine su: v x = ẋ = ωcosωt i v y = ẏ = ωsinωt. Jednačina hodografa je (vidi sliku 5) ( vx ) 2 ( vy ) 2 + = cos 2 ωt+sin 2 ωt = 1. ω ω

4 v y /(ω) v /(ω) x Slika 5: Slika uz rešenje zadataka (a) U odnosu na Zemlju, za dasku se može pisati F max F t = m 2 a 2, gde je a 2 ubrzanje daske prema Zemlji i maksimalna sila trenja F t = µm 1 g. Za telo, prema sistemu vezanom za dasku, važi m 1 a 2 F t = m 1 a 1 = 0, jer je ubrzanje tela prema dasci a 1 = 0. Odavde sledi m 1 a 2 = µm 1 g, a 2 = µg. Iz prethodnih jednačina sledi (b) Za telo u odnosu na dasku se piše F max = µ(m 1 +m 2 )g. m 1 a 2 µm 1 g = m 1 a 1, odakle je Za dasku važi odakle je Odatle je Traženo vreme je t = a 1 = a 2 µg. F 0 µm 1 g = m 2 a 2, a 2 = F 0 µm 1 g m 2. a 1 = F 0 µm 1 g m 2 µg. 2L 2Lm 2 = a 1 F 0 µ(m 1 +m 2 )g.

5 Slika 6: Slika uz rešenje zadatka Kako je kretanje sporo, ubrzanje mase m je zanemraljivo malo, pa je F = ( F tr + N+m g). Rad sile F je vidi sliku 6 B = Fd r = ( F tr + N +m g)d r. Pomeraj mase je moguće izraziti kao d r = dx e τ /cosθ ili u Dekartovom sistemu d r = dx e x + dy e y. Kako je F tr = µn e τ = µmgcosθ e τ i g = g e y, sledi B = µn e τ dx e τ /cosθ m g(dx e x +dy e y ) = = mg(lµ+h). 4. Primenom teoreme o upravnim osama lako se dobija I OO = 5 16 mr2. 5. (a) Koristeći uslove ravnoteže krutog tela (momentnu tačku pogodno postaviti u tački oslonca): Mg L 3 = mg2l 3 M = 2m, (1) (b) Momentna jednačina je (θ je ugao rotacije): N = 3mg. (2) I θ = 2k L 3 sinθl 3 cosθ k2l 3 sinθ2l 3 cosθ +2mgL 3 cosθ mg2l 3 cosθ. (3) Za male oscilacije je sinθ θ, cosθ 1. Pored toga, moment inercija sistema je: Prema tome: I = 2m L2 9 +m4l2 9 = 2 3 ml2. (4) 2 3 ml2 θ = 2 3 kl2 θ, (5)

6 odnosno: θ + k θ = 0. (6) m Kružna učestanost oscilovanja sistema je: ω = k m. (7) 6. (a) Na rastojanju r 1 je: Na rastojanju r 2 je: Koristeći I = C/r 2, gde je C = const: L 1 = 10log I 1 I 0. (8) L 2 = 10log I 2 I 0. (9) L 2 L 1 = 10log r2 1. (10) r2 2 Sledi: (b) Za rastojanje r 0 : gde je L 0 = 0 db. Odavde sledi: L 2 = L 1 +20log r 1 r 2 = 36,02 db. (11) L 0 L 1 = 20log r 1 r 0, (12) r 0 = r 1 10 L 1/20 = 632,46 m. (13)

3. (a) [50] Formulisati i dokazati teoremu o promeni količine kretanja

3. (a) [50] Formulisati i dokazati teoremu o promeni količine kretanja Elektrotehnički fakultet u Beogradu Ispit iz Fizike Ispitni rok: januar 4. (8..4. godine). Trajanje ispita je 3 h Predmetni nastavnici: (P) Jovan Cvetić, (P) Predrag Marinković i (P3) Milan Tadić. Parametarske

Διαβάστε περισσότερα

Slika 1: Uz zadatak 2.

Slika 1: Uz zadatak 2. Univerzitet u Beogradu-Elektrotehnički fakultet Junski ispitni rok iz Fizike 1, 8.6.016. godine Predmetni nastavnici: Jovan Cvetić (P1), Predrag Marinković (P) i Milan Tadić (P3) Trajanje ispita je 3h

Διαβάστε περισσότερα

Junski ispitni rok iz Fizike 1, godine

Junski ispitni rok iz Fizike 1, godine Univerzitet u Beogu-Elektrotehnički fakultet Junski ispitni rok iz Fizike 1, 196215 godine Predmetni nastavnici: Jovan Cvetić (P1), Predrag Marinković (P2) i Milan Tadić (P3) Trajanje ispita je 3 h 1 Tačka

Διαβάστε περισσότερα

Ispit iz Fizike 1 u februarskom roku (školska 2009/10.) ETF, Beograd,

Ispit iz Fizike 1 u februarskom roku (školska 2009/10.) ETF, Beograd, Ispit iz Fizike 1 u februarskom roku 2010. (školska 2009/10.) ETF, Beograd, 21.2.2010. 1. Telo, koje se može smatrati materijalnom tačkom, bačeno je kao kosi hitac sa neke visine pod nekim početnim elevacionim

Διαβάστε περισσότερα

Slika 1: Uz zadatak 1.

Slika 1: Uz zadatak 1. Elektrotehnički fakultet u Beogradu Ispit iz Fizike 1 Ispitni rok: septembarski 214. (21.8.214. godine). Trajanje ispita je 3 h Predmetni nastavnici: (P1) Jovan Cvetić, (P2) Predrag Marinković i (P3) Milan

Διαβάστε περισσότερα

ISPIT IZ FIZIKE 1 ETF, Beograd,

ISPIT IZ FIZIKE 1 ETF, Beograd, ISPIT IZ FIZIKE 1 ETF, Beograd, 0901013 1 Parametarske jednačine kretanja tačke su x() t Acost i yt () Asint, A, 0 Naći: (a) [10] vektor brzine tačke, (b) [10] vektor ubrzanja tačke, (c) [0] tangencijalno

Διαβάστε περισσότερα

(1) [70] poluprečnik Zemlje, (2) [10] relativnu nesigurnost (relativnu grešku) merenja ako je tačna vrednost poluprečnika Zemlje R 0 = 6378 km.

(1) [70] poluprečnik Zemlje, (2) [10] relativnu nesigurnost (relativnu grešku) merenja ako je tačna vrednost poluprečnika Zemlje R 0 = 6378 km. Elektrotehnički fakultet u Beogradu Ispit iz Fizike 1 Ispitni rok: februarski 014. (9.1.014. godine). Trajanje ispita je 3 h Predmetni nastavnici: (P1) Jovan Cvetić, (P) Predrag Marinković i (P3) Milan

Διαβάστε περισσότερα

2.Čamac mase m se kreće pravolinijski po površi jezera brzinom konstantnog intenziteta v 0

2.Čamac mase m se kreće pravolinijski po površi jezera brzinom konstantnog intenziteta v 0 ISPIT IZ FIZIKE (Ispit traje 3 sata) ETF, Beograd, 4. ebruar 5.. (a) [5] Izvesti izraz za poluprečnik krivine trajektorije kod kosog hica u unkciji vreena. Poznati su intenzitet početne brzine v i elevacioni

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

m 2 Slika 1: Slika uz zadatak 2.

m 2 Slika 1: Slika uz zadatak 2. ISPIT IZ FIZIKE ETF, Beograd, 0.09.00.. Zavisnost vektora ubrzanja aterijalne tačke od vreena, napisana u polarno koordinatno sisteu, je a = (R v 0/ρ 3 ) e ρ, gde je ρ = ρ(t). Vektor brzine tačke u početno

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VI predavanje, 2017.

M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VI predavanje, 2017. M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VI predavanje, 2017. 1 Kretanje neslobodne materijalne tačke Telo može biti primorano da se kreće po površi ili liniji. Takav oblik kretanja naziva se neslobodno

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50 INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα

1. Kolokvijum iz MEHANIKE (E1)

1. Kolokvijum iz MEHANIKE (E1) Fakultet tehničkih nauka Novi Sad Katedra za Mehaniku 1. Kolokvijum iz MEHANIKE (E1) A grupa A1 Padobranac mase m je iskočio iz aviona. U trenutku otvaranja padobrana, u kom je imao brzinu v 0 usmerenu

Διαβάστε περισσότερα

2. Kolokvijum iz MEHANIKE (E1)

2. Kolokvijum iz MEHANIKE (E1) Fakultet tehničkih nauka Novi Sad Katedra za Mehaniku 2. Kolokvijum iz MEHANIKE (E1) A grupa A3 Dva robota se kreću po glatkoj horizontalnoj podlozi. Robot A, mase 20, 0 kg, kreće se brzinom 2, 00 m/s

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

1 Ubrzanje u Dekartovom koordinatnom sistemu

1 Ubrzanje u Dekartovom koordinatnom sistemu M. Tadić, Predavanja iz Fizike 1, ETF, grupe P2 i P3, II predavanje, 2017. 1 Ubrzanje u Dekartovom koordinatnom sistemu Posmatrajmo materijalnu tačku koja se kreće po trajektoriji prikazanoj na slici 1.

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

1 Osnovni problemi dinamike materijalne tačke

1 Osnovni problemi dinamike materijalne tačke M. Tadić, Predavanja iz Fizike 1, ETF, grupe P2 i P3, V predavanje, 2017. 0.1 III Njutnov zakon Posmatrajmo dva tela za koja smatramo da su materijalne tačke. Ove dve čestice međusobno interaguju tako

Διαβάστε περισσότερα

M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VII predavanje, 2017.

M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VII predavanje, 2017. M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VII predavanje, 2017. Konzervativne sile i potencijalna energija 1 Konzervativne sile Definicija konzervativne sile. Sila je konzervativna ako rad te sile

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Fizička mehanika i termofizika, junski rok

Fizička mehanika i termofizika, junski rok Fizička mehanika i termofizika, junski rok 5.7.2001. 1. Po strmoj ravni, nagibnog ugla α, kotrlja se bez klizanja masivni šuplji cilindar, mase M i poluprečnika R. Po unutrašnjosti cilindra se kreće pas.

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, XII predavanje, 2017.

M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, XII predavanje, 2017. M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, XII predavanje, 2017. Mehaničke oscilacije Oscilacije neke fizičke veličine su periodične promene te veličine oko ravnotežne vrednosti. Posmatrajmo sistem

Διαβάστε περισσότερα

RIZIK OD MEHANIČKIH DEJSTAVA

RIZIK OD MEHANIČKIH DEJSTAVA Univerzitet u Nišu Fakultet zaštite na radu u Nišu REŠENI ZADACI SA VEŽBI IZ PREDMETA RIZIK OD MEHANIČKIH DEJSTAVA - Interni nerecenzirani materijal - Predmetni nastavnik: Dr Dragan Stojiljković, red.

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

1 Vektor ubrzanja u prirodnom koordinatnom sistemu

1 Vektor ubrzanja u prirodnom koordinatnom sistemu M. Tadić, Predavanja iz Fizike 1, ETF, grupe P2 i P3, III predavanje, 2017. 1 Vektor ubrzanja u prirodnom koordinatnom sistemu Posmatrajmo trajektoriju materijalne tačke prikazanu na slici 1. Smatramo

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

ISPIT GRUPA A - RJEŠENJA

ISPIT GRUPA A - RJEŠENJA Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga AB oslonjena je na dva čelična štapa u A i B i opterećena trouglastim opterećenjem, kao na slici desno. Ako su oba štapa iste dužine L,

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Analitička geometrija

Analitička geometrija 1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

1 Kinematika krutog tela

1 Kinematika krutog tela M. Tadić, Predavanja iz Fizike 1, ETF, grupe P2 i P3, IV predavanje, 2017. 1 Kinematika krutog tela Kruto telo je sistem materijalnih tačaka čija se međusobna udaljenost ne menja tokom vremena. Kruta tela

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Dinamičke jednačine ravnog kretanja krutog tela.

Dinamičke jednačine ravnog kretanja krutog tela. Dinamičke jednačine ravnog kretanja krutog tela. Prve dve dinamičke jednačine ravnog kretanja krutog tela, u prvoj varijanti, imaju oblik: 1) m & x X, ) m & y = Y. = i i Dok, u drugoj varijanti, njihov

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

1.1 Tangentna ravan i normala površi

1.1 Tangentna ravan i normala površi Površi. Tangentna ravan i normala površi Zadatak Data je površ r(u, v) = (u cos v, u sin v, a 2 u 2 ), a = const. Ispitati o kojoj se površi radi i odrediti u i v linije. Zadatak 2 Data je površ r(u, v)

Διαβάστε περισσότερα

OTPORNOST MATERIJALA

OTPORNOST MATERIJALA 3/8/03 OTPORNOST ATERIJALA Naponi ANALIZA NAPONA Jedinica u Si-sistemu je Paskal (Pa) Pa=N/m Pa=0 6 Pa GPa=0 9 Pa F (N) kn/cm =0 Pa N/mm =Pa Jedinična površina (m ) U tečnostima pritisak jedinica bar=0

Διαβάστε περισσότερα

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R. Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1.

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1. . U zračnom rasporu d magnetnog kruga prema slici akumulirana je energija od,8 mj. Odrediti: a. Struju I; b. Magnetnu energiju akumuliranu u zračnom rasporu d ; Poznato je: l = l =, m; l =, m; d = d =

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

Sila i Njutnovi zakoni (podsetnik)

Sila i Njutnovi zakoni (podsetnik) Sila i Njutnovi zakoni (podsetnik) -Sila je mera interakcije (međusobnog delovanja) tela. I Njutnov zakon (zakon inercije) II Njutnov zakon (zakon sile) III Njutnov zakon (zakon akcije i reakcije) [] =

Διαβάστε περισσότερα

Značenje indeksa. Konvencija o predznaku napona

Značenje indeksa. Konvencija o predznaku napona * Opšte stanje napona Tenzor napona Značenje indeksa Normalni napon: indeksi pokazuju površinu na koju djeluje. Tangencijalni napon: prvi indeks pokazuje površinu na koju napon djeluje, a drugi pravac

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα