Numeričko modeliranje u geotehnici STABILNOST BESKONAČNE KOSINE
|
|
- Νάρκισσος Αλαφούζος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 str. 1 STABILNOST BESKONAČNE KOSINE Numeričkim mdeliranjem će se ilustrirati stabilnst besknačne ksine, za kju pstje analitički izrazi za faktr sigurnsti, kji prizlaze iz ravnteže elementa tla kjemu su dvije stranice vertikalne (d dubine z) a dvije su paralelne s nagibm ksine (pd kutm β) s tim da se grnja stranica elementa pklapa s pvršinm ksine. Ak suh tl ima zapreminsku težinu γ tada je efektivn naprezanje nrmaln na stranicu elementa na dubini z, paralelnu s ksinm σ 2 n = γ z cs β (1) dk je psmičn naprezanje na tj stranici (2) τ = γ z sin β cs β Tada je faktr sigurnsti ksine 2 τ f c + σ n tanϕ c + γ zcs β FS= = = τ τ γ z sin β cs β (3) dnsn c tanϕ FS = + γ z sin β cs β tan β (4) Ak je c =, izraz za faktr sigurnsti se pjednstavljuje na tanϕ FS = () tan β Grnji izraz () za faktr sigurnsti vrijedi i kada je tl u ptpunsti ptpljen vdm, dnsn kada je razina vde iznad ksine (za slučaj c = ). U izrazima (1) i (2) tada se pjavljuje γ = γ - γ w umjest γ, pa za c izraz (4) prelazi u c tanϕ FS = + γ z sin β cs β tan β (6) Ak vda struji niz ksinu, uslijed sile d strujanja vde, u izrazu (1) se pjavljuje γ, dk u izrazu (2) staje γ tak da faktr sigurnsti za c glasi
2 c γ tanϕ FS = + γ z sin β cs β γ tan β str. 2 (7) a za c = γ tanϕ FS = (8) γ tan β Treba učiti da se u izrazima (4), (6) i (7) za c pjavljuje dubina z na kjj se nalazi stranica prmatrang elementa tla paralelna s ksinm i da faktr sigurnsti visi tj dubini. Mdelirat će se di besknačne ksine pd nagibm V:H = 1:2 pa je tan β =, a β =26,6. Zapreminska težina tla je 21 kn/m 3. I. Suh tl s c = Mdel tla prikazan je na slici I-1. Ksina je duljine 67,8 m. Parametri čvrstće su c =, ϕ = 3. Efektivna su naprezanja jednaka ukupnima. I.1. Kružne klizne plhe Zadana je mreža središta kružnih kliznih plha, kje sve prlaze nžicm nasipa. Rezultati prračuna stabilnsti ksine prikazani su na slici I-2. Budući da je c =, za sve je dubine z isti faktr sigurnsti tan 3 FS = = 1,4, pa je tak dbivena vrl plitka kružna klizna plha, gtv na pvršini ksine, ka št prikazuje slika I-3. Prračunm je dbiven faktr sigurnsti 1,2. U vakvim se slučajevima (kada je c = ), središte kružne klizne plhe s najmanjim faktrm sigurnsti bičn pjavljuje na grnjem rubu mreže središta. Bez bzira klik visk zadali središta kružnih kliznih plha, u tm će slučaju uvijek izračunati najmanji faktr sigurnsti biti na grnjem rubu mreže središta kliznih plha, sa sve plićim kliznim plhama.
3 str Slika I-1. Mdel tla za prračun stabilnsti
4 str Slika I-2. Rezultati prračuna stabilnsti
5 str. Slika I-3. Klizna plha s najmanjim faktrm sigurnsti I.2. Zadana klizna plha U sljedećem će prračunu biti zadana ksina na ksini (slika I-4). Grnji di mdela, visine m, simulira besknačnu ksinu, kja je paralelna s dnjm ksinm. Parametri tla za grnju ksinu isti su ka u prethdnm primjeru, dk sada dnji di mdela ima zapreminsku težinu 18 kn/m 3 i parametre čvrstće c = 2 kn/m 2, ϕ = Slika I-4. Mdel tla s besknačnm ksinm i zadanm kliznm plhm
6 str. 6 Klizna je plha zadana p dnjem rubu besknačne ksine. Ovakva se klizna plha zadaje tak da se pd KeyIn Analysis Settings Slip Surface Slip Surface Optin izabere Fully Specified, zatim se pmću pcije Draw Fully-Specified Slip Surface ucrta klizna plha. Jš treba zadati središte rtacije klizne plhe pmću pcije Draw Slip Surface Axis. Zadat će se veći brj lamela u dnsu na default vrijednst d. Pd KeyIn Analysis Settings Advanced Number f slices zada se 1 lamela kak bi se minimizira utjecaj rezanja lamela na vrhu p hrizntalnj ravnini krz niži vrh lamele. Rezultat vg prračuna prikazan je na slici I-, gdje se vidi i zadana klizna plha. Faktr sigurnsti je 1,, isti ka i analitički. Na slici I-6 prikazane su sile na lamelu brj 44. Treba učiti da su za besknačnu ksinu međulamelarne sile. Vertikalna sila d 63 kn/m rezultat je umnška 21 x x,6, gdje je visina lamele m, a njena je širina,6 m Slika I-. Rezultati prračuna stabilnsti sa zadanm kliznm plhm
7 str. 7 Slice 44 - Mrgenstern-Price Methd Slika I-6. Sile na lamelu brj 44 II. Ptpljen tl s c = Ak je razina vde iznad tla, tl je ptpljen, ptpun saturiran i sada su efektivna naprezanja jednaka ukupnim naprezanjima umanjenim za tlak vde. II.1. Vda je zadana iznad tla ka materijal bez čvrstće Mdel tla, u kjem su zadane razina vde m iznad grnjeg lijevg ugla besknačne ksine i vda ka materijal bez čvrstće, prikazan je na slici II-1. Rezultati vg prračuna stabilnsti ksine prikazani su na slici II-2. Opet je dbiven faktr sigurnsti 1,, jer su faktri sigurnsti isti za suh i za ptpljen tl ak je c =. Na slici II-3 prikazana je raspdjela tlaka vde na snvicama lamela. Tlak vde raste duž snvica lamela d k 1 kpa d k kpa. Na snvici lamele brj 44 tlak vde iznsi 226, kpa.
8 str Slika II-1. Mdel tla za ptpljen tl Slika II-2. Rezultati prračuna stabilnsti za ptpljen tl
9 str. 9 Pre-Water Pressure vs. Slice # Tlak vde (kpa) Lamela Slika II-3. Tlak vde na snvicama lamela II.2. Zadana je urnjena težina tla Alternativni način prračuna stabilnsti ptpljenga tla je da se, umjest zapreminske težine tla, za grnji di mdela, kji je relevantan za prračun stabilnsti, zada urnjena težina tla γ = γ - γ w = 21 9,81 = 11,19 kn/m 3, bez zadavanja vde. Mdel tla isti je ka na slici I-4. Rezultati vg prračuna prikazani su na slici II-4. Opet je dbiven isti faktr sigurnsti ka za suh i ptpljen tl, 1,. Na slici II- prikazane su sile na lamelu brj 44. Opet, ka na slici I-6 nema sila na vertikalne stranice lamele. U dnsu na sliku I-6, gdje je vertikalna sila na lamelu d vlastite težine mase tla njme buhvaćene bila 63 kn/m, sada je va vertikalna sila bitn manja i iznsi 33,7 kn/m, u skladu sa zadanm urnjenm težinm tla.
10 str Slika II-4. Rezultati prračuna stabilnsti s urnjenm težinm tla Slice 44 - Mrgenstern-Price Methd Slika II-. Sile na lamelu brj 44
11 str. 11 III. Strujanje vde niz ksinu s c = Za strujanje vde niz ksinu treba prvesti prračun strujanja vde krz tl prgramm SEEP/W. Za besknačnu ksinu, ekviptencijale bi trebale biti kmite na ksinu, a strujnice paralelne s ksinm. Mdel tla kjim se takv strujanje krz tl mže simulirati prikazan je na slici III-1. Nagib ksine isti je ka i za mdel sa slike I-1. Keficijent prpusnsti je 1 x 1-7 m/s. Rubni uvjet na ksini zadan je tak da je piezmetarska visina, dnsn tlak vde,. Okmit na ksinu zadani su rubni uvjeti kji dgvaraju knstantnm hidrauličkm ptencijalu (ekviptencijale). Tak je na lijevm rubu zadan H = 39 m, št dgvara y krdinati čvra u grnjem lijevm uglu mdela. Na desnm je rubu zadan H = 24 m, št dgvara y krdinati čvra u grnjem desnm uglu mdela. Rezultati prračuna prikazani su na slikama III-2 i III-3. Na slici III-2 prikazana je strujna mreža, u kjj se vidi da su ekviptencijale kmite na ksinu, a strujnice s njm paralelne. Na slici III-3 prikazani su vektri strujanja vde, kji takđer idu paraleln s ksinm Slika III-1. Mdel tla i rubni uvjeti za strujanje vde niz ksinu
12 str Slika III-2. Strujna mreža za strujanje vde niz ksinu (ekviptencijale su u metrima) Slika III-3. Vektri strujanja za strujanje vde niz ksinu
13 str. 13 Sada treba mdelirati sličan mdel tla, sa strujanjem vde paraleln s ksinm, ali s vertikalnim stranicama, kji će dgvarati grnjem dijelu mdela sa slike I-4. Na vertikalnim stranicama nvg mdela treba zadati dgvarajuće rubne uvjete. Na slici III-4 prikazan je di gemetrije nvg mdela (kraća ksina d ne sa slike I-4) debljim linijama. Budući da su ekviptencijale kmite na ksinu, krz dnji lijevi i dnji desni uga mdela prlaze dgvarajuće ekviptencijale, čije vrijednsti treba zadati u tim čvrvima (tanje linije). Ove vrijednsti dgvaraju y krdinatama tčaka u kjima ekviptencijale sijeku grnji rub ksine (tčke A i B). Zanima nas vertikalna udaljenst x između tčke A i dnjeg lijevg ugla mdela, dnsn tčke B i dnjeg desng ugla mdela. Iz gemetrije sa slike III-4 prizlazi da je x = = = 2 2 cs β cs 26,6 4 m T znači da će rubni uvjet u dnjem lijevm i dnjem desnm uglu mdela biti hidraulički ptencijal, kji je za 4 m veći d y krdinata tih čvrva. Nvi mdel tla za simulaciju strujanja vde paraleln s ksinm, kji dgvara grnjem dijelu mdela sa slike I-4, prikazan je na slici III-. y krdinata tčke 2 sa slike III- je, št znači da u tm čvru treba zadati hidraulički ptencijal H = 44 m. y krdinata tčke 1 sa slike III- je 1, pa u tm čvru treba zadati hidraulički ptencijal H = 14 m. Duž ksine je zadana piezmetarska visina (dnsn tlak vde). Slika III-4. Gemetrija dijela nvg mdela s dgvarajućim ekviptencijalama na dnjim uglvima mdela (krz tčke A i B)
14 str Slika III-. Mdel tla za prračun strujanja vde paraleln s ksinm Čvr na lijevm rubu mdela između tčaka 2 i 3, dnsn na desnm rubu mdela između tčaka 1 i 2, udaljen je 2, m d uglva mdela. Analgn rubnm uvjetu u dnjim uglvima mdela, za ve je čvrve x = = = 2 2 2, cs β 2, cs 26,6 2 m št znači da će hidraulički ptencijal u tim čvrvima biti za 2 m veći d njihvih y krdinata. y krdinata srednjeg čvra na lijevm vertikalnm rubu mdela sa slike III- je 42,, št znači da u tm čvru treba zadati hidraulički ptencijal H = 44, m. y krdinata srednjeg čvra na desnm vertikalnm rubu mdela sa slike III- je 12,, pa u tm čvru treba zadati hidraulički ptencijal H = 14, m. Rezultati prračuna strujanja vde paraleln s ksinm za vaj su mdel prikazani na slikama III-6 (ekviptencijale) i III-7 (vektri strujanja). Ekviptencijale su kmite na ksinu, a vektri strujanja s njm paralelni.
15 44 2 Numeričk mdeliranje u getehnici str Slika III-6. Ekviptencijale (m) za strujanje vde paraleln s ksinm Slika III-7. Vektri strujanja za strujanje vde paraleln s ksinm
16 str. 16 Ovaj ćem mdel tla ukmpnirati u gemetriju mdela sa slike I-4. Odgvarajuća mreža knačnih elemenata za prgram SEEP/W prikazana je na slici III-8. Keficijent prpusnsti za dnji di mdela je 1 x 1-1 m/s. Rubni su uvjeti za grnji di mdela isti ka i u prethdnm mdelu. Za dnji di mdela je na njegvm lijevm grnjem rubu i na lijevj vertikalnj stranici zadan hidraulički ptencijal H = 44 m, a na desnm grnjem rubu i desnj vertikalnj stranici hidraulički ptencijal H = 14 m. Rezultati prračuna strujanja vde niz ksinu prikazani su na slikama III-9 (ekviptencijale) i III-1 (strujnice). U dijelu mdela kji nas zanima za prračun stabilnsti (grnji di mdela), ekviptencijale su kmite na ksinu, a sve se strujanje vde dvija sam u grnjem mdelu i vektri strujanja vde su paralelni s ksinm. Sada ćem u prgramu SLOPE/W kristiti tlak vde prračunat prgramm SEEP/W. Rezultati prračuna stabilnsti prikazani su na slici III-11. Očekivani faktr sigurnsti je, prema izrazu (8) 11,19 tan 3 FS = =,746 21, Faktr sigurnsti iz prračuna prgramm SLOPE/W je,747, št ukazuje na t da va ksina, sa strujanjem vde niz nju, nije stabilna Slika III-8. Mreža knačnih elemenata i rubni uvjeti za strujanje vde niz ksinu
17 42 18 Numeričk mdeliranje u getehnici str Slika III-9. Ekviptencijale (m) za strujanje vde niz ksinu Slika III-1. Vektri strujanja za strujanje vde niz ksinu
18 str Slika III-11. Rezultati prračuna stabilnsti ksine sa strujanjem vde niz ksinu IV. Suh tl s c IV.1. Zadana klizna plha Prv ćem prvesti prračun stabilnsti ksine sa zadanm kliznm plhm, paralelnm s ksinm, prema mdelu sa slike I-4. Sada je khezija 1 kn/m 2. Rezultati vg prračuna stabilnsti ksine prikazani su na slici IV-1. Očekivani je faktr sigurnsti, prema izrazu (4) 1 tan 3 FS = + = 1, sin 26,6 cs26,6, Prračunm prgramm SLOPE/W dbiven je isti rezultat.
19 str Slika IV-1. Rezultati prračuna stabilnsti ksine sa zadanm khezijm IV.2. Kružne klizne plhe Za razliku d prračuna stabilnsti ksine za tl kjemu je khezija, u slučaju khezije veće d nula, dbiju se kružne klizne plhe, kje su dublje d pvršine ksine. Za sve kružne klizne plhe ćem pstaviti da prlaze krz nžicu nasipa. Mdel tla je isti ka na slici I-1. Rezultati vg prračuna prikazani su na slici IV-2. Dbiveni faktr sigurnsti 1,78 dgvara bi kliznj plhi paralelnj s ksinm, kja je na dubini z d pvršine, a dbije se iz izraza tanϕ c c tanϕ FS z z FS tan β = = γ sin β cs β γ sin β cs β tan β 1 tan 3 z = 1,78 3,3 m 21sin 26,6 cs 26,6 =, Iz pdataka za lamele mže se vidjeti da je najdublja lamela kružne klizne plhe sa slike IV-2 visine 8,4 m.
20 str Slika IV-2. Rezultati prračuna stabilnsti ksine s kružnim kliznim plhama V. Ptpljen tl s c V.1. Zadana klizna plha Za ptpljen tl zadajem razinu vde m iznad grnjeg lijevg ugla besknačne ksine i vdu ka materijal bez čvrstće. Rezultati ve analize stabilnsti prikazani su na slici V-1. Očekivani je faktr sigurnsti, prema izrazu (6) 1 tan 3 FS = + = 1,847 11,19 sin 26,6 cs 26,6, U vm je prračunu dbiven gtv isti faktr sigurnsti, 1,848.
21 str Slika V-1. Rezultati prračuna stabilnsti ptpljene ksine V.2. Kružne klizne plhe Rezultati vg prračuna za ptpljen tl prikazani su na slici V-2 kada se vda zada ka materijal bez čvrstće, dnsn na slici V-3 kada se zada tlak vde iznad pvršine terena. Dbiveni faktri sigurnsti gtv su jednaki i klizne plhe s najmanjim faktrm sigurnsti su iste. Faktr sigurnsti 1,939 sa slike V-3 dgvara bi kliznj plhi paralelnj s ksinm, kja je na dubini z d pvršine, a dbije se iz izraza tanϕ c c tanϕ FS z z FS tan β = = γ sin β cs β γ sin β cs β tan β 1 tan 3 z = 1,939 4,1 m 11,19sin 26,6 cs 26,6 =, Ova je dubina veća neg št je bil u prračunu za suh tl s kružnim kliznim plhama, št se vidi i uspredbm slika IV-2 i V-3. Iz pdataka za lamele (prračun sa slike V-3) mže se vidjeti da je najdublja lamela kružne klizne plhe sada visine 9,34 m.
22 str Slika V-2. Rezultati prračuna stabilnsti ksine s kružnim kliznim plhama i vdm zadanm ka materijal bez čvrstće
23 str Slika V-3. Rezultati prračuna stabilnsti ksine s kružnim kliznim plhama i zadanim tlakm vde iznad pvršine terena VI. Strujanje vde niz ksinu s c VI.1. Zadana klizna plha Za strujanje vde niz ksinu, kristim prgram SEEP/W s istm mrežm knačnih elemenata i rubnim uvjetima ka za analgni prračun s c = (slika III-7). Rezultati ve analize stabilnsti prikazani su na slici VI-1. Očekivani je faktr sigurnsti, prema izrazu (7) 1 11,19 tan 3 FS = + =, sin 26,6 cs 26,6 21,
24 str. 24 U vm je prračunu dbiven gtv isti faktr sigurnsti,, Slika VI-1. Rezultati prračuna stabilnsti ksine sa strujanjem vde niz ksinu VI.2. Kružne klizne plhe Sada je ptrebn zadati mdel tla u kjem će se uz ksinu dnjeg mdela sa slike I-4 ukmpnirati slj tla, zapreminske težine 21 kn/m 3 i s parametrima čvrstće c = 1 kn/m 2, ϕ = 3, sličan nme sa slike III-, krz kji će vda strujati paraleln s ksinm. Ovaj će slj sada biti debljine 1 m kak bi bil mguće analizirati dublje kružne klizne plhe. Mdel tla za vaj primjer, s mrežm knačnih elemenata i rubnim uvjetima, za prgram SEEP/W prikazan je na slici VI-2. U svim čvrvima ksine zadana je piezmetarska visina (dnsn tlak vde). Na grnjem lijevm i vertikalnm lijevm rubu mdela zadan je hidraulički ptencijal H = m. Na grnjem desnm i vertikalnm desnm rubu mdela zadan je hidraulički ptencijal H = 1 m. Analgn prračunu za rubne uvjete na vertikalnim stranicama grnjeg dijela mdela sa slike III-, u prvj tčki lijeve vertikalne stranice vg mdela ispd njegvg grnjeg lijevg ugla, H = 39, m, u drugj je H = 39 m, u trećj H = 38, m a u četvrtj H = 38 m, jer je y krdinata četvrte tčke. U prvj tčki desne vertikalne stranice vg mdela ispd njegvg grnjeg desng ugla, H = 9, m, u drugj je H = 9 m, u trećj H = 8, m a u četvrtj H = 8 m, jer je y krdinata četvrte tčke.
25 1 Numeričk mdeliranje u getehnici str Slika VI-2. Mreža knačnih elemenata za prračun prgramm SEEP/W Rezultati prračuna strujanja vde paraleln s ksinm prikazani su na slici VI-3, gdje se vide ekviptencijale, kje su kmite na ksinu i dvije strujnice s njm paralelne u pdručju d interesa za prračun stabilnsti ksine. Na slici VI-4 su prikazani vektri strujanja paralelni s ksinm. Vidi se da se vektri srujanja pjavljuju sam u dijelu mdela kji dgvara materijalu d interesa Slika VI-3. Ekviptencijale (m) i dvije strujnice u pdručju d interesa
26 str Slika VI-4. Vektri strujanja u pdručju d interesa Treba svakak naglasiti da rubni uvjeti, kak su pstavljeni u vm mdelu, nisu realni, št se vidi i na strujnicama sa slike VI-3. Takvim sm rubnim uvjetima frsirali strujanje vde paraleln s ksinm u pdručju d interesa za prračun stabilnsti ksine. Sada se s tlakm vde iz prgrama SEEP/W ulazi u prračun stabilnsti ksine sa strujanjem vde paraleln s ksinm, prgramm SLOPE/W. Mdel tla sa zadanim kružnim kliznim plhama prikazan je na slici VI-. Rezultati vg prračuna prikazani su na slici VI-6. Dbiveni bi faktri sigurnsti 1,96 dgvara kliznj plhi paralelnj s ksinm, kja je na dubini z d pvršine, a dbije se iz izraza γ tanϕ c c γ tanϕ FS z z FS γ tan β = = γ sin β cs β γ sin β cs β γ tan β 1 11,19 tan 3 z = 1,96 3,4 m 21sin 26,6 cs 26,6 = 21, Iz pdataka za lamele mže se vidjeti da je najdublja lamela kružne klizne plhe sa slike VI-6 visine 6,76 m. Cijela je klizna plha unutar materijala d interesa, unutar kjeg vda struji paraleln s ksinm.
27 str Slika VI-. Mdel tla za prračun stabilnsti ksine s kružnim kliznim plhama
28 str Slika VI-6. Rezultati prračuna stabilnsti ksine s kružnim kliznim plhama
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
Podloge za predavanja iz Mehanike 1 STATIČKI MOMENT SILE + SPREG SILA. Laboratori j z a m umerič k u m e h a n i k u
Plge a preavanja i ehanike 1 STATIČKI OENT SILE + SPREG SILA Labratri j a m umerič k u m e h a n i k u 1 Statički mment sile Sila u insu 225 N jeluje na ključ prema slici. Oreiti mment sile birm na tčku
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Istjecanje iz nepotopljenog otvora u vertikalnoj tankoj stjenci
Praktikum iz hidraulike Str. 4-1 IV vježba Istjecanje iz neptpljeng tvra u vertikalnj tankj stjenci U hidrtehničkj praksi se čest javlja ptreba računanja prtka krz tvre kji se nalaze na dnu ili na bčnj
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I
. Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Riješeni primjer testa iz matematike i kemije za razredbeni ispit (slovo ispred točnog rješenja je podebljano) a ± b, jednak:
Riješeni primjer testa iz matematike i kemije za razredbeni ispit (slv ispred tčng rješenja je pdebljan). 0% d. + 0.7 4 je: 0 ; B: 4 ; C: 0 ; D:. Izraz a 7 a iznsi: 8 7 a ; B: a ; C: a ; D: a a b a b.
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Trigonometrijski oblik kompleksnog broja
Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA
SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini
Dimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Procesi tečenja u tlu i stijeni VODA U TLU
str. 1 VODA U TLU I. Uvod Kada ne bi bilo vode u tlu, geotehničko bi inženjerstvo bila puno jednostavnija grana građevinarstva. Koliko opterećenje na tlo, tolika promjena ukupnih naprezanja i, kao rezultat,
MEHANIKA FLUIDA. Isticanje kroz velike otvore
MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,
Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
TRIGONOMETRIJSKI KRUG
TRIGONOMETRIJSKI KRUG Uglvi mgu da se mere u stepenima i radijanima Sa pjmm stepena sm se upznali jš u snvnj škli i ak se sećate, njega sm pdelili na minute i sekunde( `, ``` ) Da bi bjasnili šta je t
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
9. ZADATAK ZUPČANI PRIJENOS (dimenzioniranje i sile u ozubljenju)
Elemei srjeva (Audire vježbe šk.gd. 004/05) - ZUPČANICI 9. ZADATAK ZUPČANI PRIJENOS (dimeziiraje i sile u zubljeju) Elekrmr sage,85 kw i brzie vrje 960 mi -, prek zupčag prijesika pkreće B EM S VI Z radi
TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β
TRUG Mngug kji im ti stnie zve se tug. snvni elementi tugl su : - Temen,, - Stnie,, ( p dgvu stnie se eležvju nsupt temenu, np nspm temen je stni, itd) - Uglvi, unutšnji α, β, γ i spljšnji α, β, γ γ α
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Osnovni elementi klizišta
STABILNOST KOSINA Klizište 1/ Klizanje kao geološki fenomen: - tektonski procesi - gravitacijske i hidrodinamičke sile 2/ Klizanja nastala djelovanjem ljudi: - iskopi, nasipi, dodatno opterećenje kosina
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
[ ] VAŽNO UVIJANJE ŠTAPOVA. Kut uvijanja (torzije) ϕ M I. Maksimalno posmino naprezanja τ. Dimenzioniranje štapova optereenih na uvijanje
UVJNJE ŠTPV VŽN Psmin naprezanje ρ aksimaln psmin naprezanja za: d ρ r Plarni mmen rmsi: Plarni mmen pra: [ ] cm Ku uvijanja (rzije) ϕ ϕ l G [ rad] Krus presjeka šapa na uvijanje: G 5 Dimenziniranje šapva
TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA
TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
Statika je grana mehanike u kojoj se predočavaju stanja mirovanja tijela, kada su opterećenja koja na njih djeluju u međusobnoj ravnoteži.
PM ELEMETI STOJEVA I MEHAIZAMA-PODLOGE ZA PEDAVAJA OSOVE IZ MEHAIKE STATIKA Statika je grana mehanike u kjj se predčavaju stanja mirvanja tijela, kada su pterećenja kja na njih djeluju u međusbnj ravnteži.
Zadatak 003 (Vesna, osnovna škola) Kolika je težina tijela koje savladava silu trenja 30 N, ako je koeficijent trenja 0.5?
Zadata 00 (Jasna, osnovna šola) Kolia je težina tijela ase 400 g? Rješenje 00 Masa tijela izražava se u ilograia pa najprije orao 400 g pretvoriti u ilograe. Budući da g = 000 g, orao 400 g podijeliti
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P =
Zadatak (Tomislav gimnazija) Nađite sve pravokutne trokute čije su stranice tri uzastopna parna roja Rješenje inačica pća formula za parne rojeve je n n N udući da se parni rojevi povećavaju za možemo
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Masa, Centar mase & Moment tromosti
FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:
BIPOLARNI TRANZISTOR Auditorne vježbe
BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Uvijanje. OTPORNOST MATERIJALA I 11/12 82
*Grupa autra, Elaststatika I, Tehnički fakultet, Bihać, 003 *JM Gere, BJ Gdn, Mechanics f Materials, Cengage Learning, Seventh Editin, 009. OTPORNOST MATERIJALA I 11/1 www.mf.unze.ba 8 Osnvni pjmvi Mment
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:
PRORAČUN GLAVNOG KROVNOG NOSAČA
PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
GEOTEHNIČKO INŽENJERSTVO
GEOTEHNIČKO INŽENJERSTVO POMOĆNI DIJAGRAMI, TABLICE I FORMULE ZA ISPIT dopunjeno za ak.god. 016/017 Slika 1. Parcijalni koeficijenti za GEO/STR za djelovanja, parametre materijala i otpore prema EC-7 Slika.
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
9. Vježbe. između fluida i remena za slučaj Q = 0.
9 VJEŽBE MEANIKA FIDA II / 9 9 Vježbe 4 Široki remen, prema slici, postavljen je vertikalno između dva spremnika ispunjena istim fluidom i giba se prema gore konstantnom brzinom v, povlačeći fluid iz donjeg
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
3 Populacija i uzorak
3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.
NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi
NEKE POVŠI U Pvrši kje se njčešće sreću u dcim su:. Elipsidi. Hiperlidi. Prlidi 4. Knusne pvrši 5. Cilindrične pvrši. Elipsidi Osnvn jednčin elipsid ( knnsk) je : + + = c, i c su dsečci n, i si. Presek
Izvori jednosmernog napona (nastavak) - Stabilizatori - regulatori napona 1. deo - linearni regulatori
vri jednmerng napajanja Sadržaj vri jednmerng napna (nasvak) - Sbiliatri - regulatri napna 1. de - linearni regulatri 1. Uvd 2. Usmerači napna 2.1 Jedntran usmeravanje 2.2 Dvtran usmeravanje 2.3 Umnžavažavači
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj
Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A
Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
PLOVNI PUTEVI I LUKE: poglavlje 2. Sadržaj
PLOVNI PUTEVI I LUKE: pglavlje Sadržaj 0 UVOD...1 1 GIBANJA MORA...1 IDEALNI VALOVI...1.1 DEFINICIJA IDEALNOG VALA...1. VRSTE IDEALNI VALOVA....3 DETERMINISTIČKI OPIS VALOVA I VALNA OSNOVA....4 MEANIKA
ima oblik ravnokrakog pravouglog trougla. Naći moment inercije u odnosu na osu koja se poklapa sa jednom od kateta.
Klatn je sastavljen d tankg vertikalng štapa mase m i dužine l i prstena mase m, unutrašnjeg pluprečnika r i spljašnjeg r (slika. Odrediti mment inercije klatna u dnsu na hrintalnu su (nrmalnu na ravan
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija