Mehanika, kinematika i elastičnost

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Mehanika, kinematika i elastičnost"

Transcript

1 Mehanika, kinematika i elastičnost Marko Petković Sreda, 9. Mart 006. god. 1 Osnovne relacije 1. Drugi Njutnov zakon: m v t = F ; m a = F + mω R + m( v ω). Priraštaj impulsa sistema: p p 1 = F t (ako je F konstantna ili t malo). 3. Moment impulsa, moment sile: L = r p, M = r F. 4. Priraštaj momenta impulsa sistema: L = L c + r c p. 5. Hukov zakon elastičnosti: l l = 1 E F S Zadaci 1. (I.1.63) Na strmu ravan nagibnog ugla α postavljena su dva tela, jedno do drugog. Mase tela su m 1 i m, a koeficijenti trenja tela o podlogu su redom µ 1 i µ. Naći: a) Silu interakcije izmedju tela tokom kretanja, b) Uslov pri kome će tela ostati spojena tokom kretanja, c) Vrednosti ugla α pri kojima neće biti kretanja.. (I.1.57) Kupa sa uglom otvora α i poluprečnikom osnove R kotrlja se uniformno bez klizanja po horiznontalnoj podlozi. Vrh kupe je uzglobljen u tački O koja se nalazi na istom nivou sa tačkom C, centrom osnove kupe. Brzina tačke C je v. Naći: a) Vektor ugaone brzine kupe, b) Vektor ugaonog ubrzanja kupe. 3. N samonavodećih raketa nalazi se u temenima pravilnog N-tougla stranice a. Svim raketama se istovremeno zada da krećuci se brzinom v stalno ide u pravcu prema njoj susednoj raketi (u counterclockwise smeru). Kada će doći do sudara? 4. Merdevine dužine r naslonjene su jednim krajem na pod a drugim na vertikalni zid, tako da je ugao izmedju njih i poda α 0. Ove merdevine počinju da klize bez početne brzine, pri čemu donji kraj klizi po podu a gornji po zidu. U toku kretanja merdevine ostaju u vertikalnoj ravni, a trenje sa zidom i podom se može zanemariti. a) Naći ubrzanje centra mase merdevina. b) Naći vreme padanja merdevina. 5. (I.1.17) Na jednakim platformama 1 i nalazi se po jedan čovek. Platforme se kreću po inerciji bez trenja po paralelnim šinama, jedna drugoj u susret. Kada su se platforme poravnale oba čoveka su preskakanjem u pravcu normalnom na pravac šina, promenili mesta na platformama. Zbog toga se platforma 1 zaustavila a brzina platforme postala v. Nači prvobitne brzine v 1 i v platformi ako je masa svake od platformi (bez čoveka) M i svakog čoveka m. 1

2 6. Dve elastične glatke kuglice istovremeno izleću iz temena A i B jednakostraničnog trougla. Njihove brzine su jednake po intenzitetu i usmerene su ka tački C. Masa kuglice A je 3 puta veća od mase kuglice B a radijusi su im jednaki. Koliki će biti ugao izmedju brzina kuglica posle sudara? 7. Dve elastične glatke kuglice poluprečnika r kreću se jedna drugoj u susret po paralelnim pravcima tako da je najviša tačka prve kuglice na istoj visini kao centar druge. Brzina prve kuglice je puta veća od brzine druge. Naći ugao izmedju brzina kuglica posle sudara. 8. Dva identična tela u obliku krsta stranice l na čijim krajevima su kuglice mase m kreću se jedan drugom u susret. Naći: a) Ukupan moment impulsa sistema u odnosu na proizvoljnu tačku C. b) Brzinu i ugaonu brzinu oba krsta posle sudara. 9. Kuglica mase m i brzine v se sudara sa istom takvom kuglicom koja je pre sudara mirovala. Ugao izmedju pravca kretanja prve kuglice i pravca koji u trenutku sudara spaja njihove centre je α. Ako su kuglice glatke, naći koji deo kinetičke energije upadne kuglice je prešao u potencijalnu energiju deformacije u trenutku kad je deformacija maksimalna. 10. Štap mase M i dužine l je okačen jednim svojim krajem o plafon. U početnom trenutku štap se drži u horizontalnom položaju, a zatim se pusti. U trenutku kad štap dodje u vertikalni položaj, svojim drugim krajem se elastično sudari sa telom mase m koje je pre sudara mirovalo na horizontalnoj podlozi. Odrediti potencijalnu energiju deformacije tela u trenutku njihove najveće deformacije. 11. (I.1.314) Horizontalno postavljeni štap dužine l rotira oko vertikalne ose koja prolazi kroz njegovu sredinu ugaonom brzinom ω. a) Naći ukupno izduženje štapa. b) Ako je maksimalna sila zatezanja koju štap može da izdrži F max, naći maksimalnu ugaonu brzinu rotacije tako da se štap ne pokida. Površina poprečnog preseka štapa je S a Jungov modul elastičnosti E. 1. (I.1.315) Prsten radijusa r, napravljen od olovne žice rotira oko vertikalne nepokretne ose koja prolazi kroz njegov centar ugaonom brzinom ω. Naći: a) Naći ukupno izduženje štapa. b) Ako je maksimalna sila zatezanja koju ˇprsten može da izdrži F max, naći maksimalnu ugaonu brzinu rotacije tako da se ˇprsten ne pokida. Površina poprečnog preseka štapa je S a Jungov modul elastičnosti E. 13. (Okruzno raz.) Telo mase M klizi niz strmu ravan nagibnog ugla α. Kada telo predje put l, u njega udara kuglica mase m, koja leti ka telu u horizontalnom pravcu. Koliku brzinu treba da ima kuglica da bi se posle apsolutno neelastičnog sudara telo zaustavilo? Pretpostavlja se da je vreme trajanja sudara malo. 14. Posmatrajmo isti sistem kao u prethodnom zadatku, pri čemu je sad vreme sudara izmedju tela i kuglice konačno i iznosi t s. Kolika je sad potrebna brzina da bi se telo zaustavilo? 15. (Opšta grupa, godina) Lopta se nalazi na nekoj visini od hrapave horizontalne podloge. Kako treba baciti loptu da bi ona išla tamo-amo istom trajektorijom? Sudar lopte je elastičan i nema klizanja u tački kontakta. 16. (I.1.119) Preko kotura je prebačen konopac na čijem jednom kraju vise merdevine sa čovekom a na drugom uravnotežavajući teg mase M. Čovek mase m pomerio se za l naviše u odnosu na merdevine i zaustavio se. Zanemarujući mase konopca i kotura kao i trenje u osovini kotura, naći: a) Pomeraj centra mase l tog sistema. b) Pomeraj tega.

3 17. (I.1.167) Čestica mase m kreće se brzinom v 1 pod uglom α 1 u odnosu na normalu na ravan koja razdvaja oblasti u kojima su potencijalne energije čestice U 1 i U. Pod kojim uglom α će se, u odnosu na normalu, kretati čestica posle prolaska kroz tu ravan? Pri kom uslovu čestica ne može preći u oblast sa potencijalnom energijom U? 18. (I.1.168) Nit je prebačena preko horizontalnih glatkih štapova 1 i. Na krajevima i o sredinu niti okačeni su tereti jednakih masa A, B i C. Rastojanje izmedju štapova je l. U jednom trenutku teret C je pažljivo pišten i sistem se počeo kretati. Naći brzinu tereta C u trenutku kada je kinetička energija sistema maksimalna i maksimalno pomeranje tereta C prilikom kretanja nadole. 19. (I.1.160) Malo telo A sklizne sa visine H po nagnutom žljebu koji prelazi u polukrug radijusa h. Naći brzinu tela u najvišoj tački njegove putanje (posle odvajanja od žljeba). Trenje se zanemaruje. 3 Rešenja nekih zadataka Zad. 18. Zad i 14. Za vreme trajanja sudara kuglica deluje na telo (a i telo na kuglicu, prema 3. Njutnovom zakonu) silom F u horizontalnom pravcu. Takodje, na telo deluje i sila otpora podloge N normalno na površinu strme ravni. Pretpostavićemo da je sila F konstantna tokom celog sudara (to u opstem slučaju nije tako, ali cak i tada se može uzeti vrednost srednje sile tokom celog sudara). Iz drugog Njutnovog zakona za telo imamo: a za kuglicu: Ma = Mg sin α F cos α (1) ma k = F () Ako sad jednačinu (1) pomnožimo sa t i iskoristimo da je v t = a (pošto su sve sile konstantne tokom celog sudara, onda su takva i ubrzanja pa možemo uzeti da je t veliko ) imamo: A kad isto to uradimo sa () imamo: Kad sad zamenimo F t iz (4) u (3) imamo: M v = Mg sin α t F cos α t (3) m v k = F t (4) M v = Mg sin α t + m v k cos α (5) Ako sad stavimo da je t = t s, v = v 0 0 = v 0 i v k = v 0 = v i zamenimo u 5 dobijamo: Mv 0 = Mg sin αt s + mv cos α (6) odnosno: v 0 = g sin αt s + m v cos α (7) M 3

4 Ako je t s malo, onda je član g sin αt s zanemarljiv pa je v 0 = m M v cos α. U zvaničnom rešenju sa takmičenja stoji da je sistem telo-kuglica u horizontalnom pravcu izolovan i da ne deluje nijedna spoljna sila. Očigledno, pritom je zaboravljena sila otpora podloge N. Kad napišemo drugi Njutnov zakon u horizontalnom pravcu imamo: Ma x = N sin α F (8) Kad pomnožimo ovu relaciju sa t i radimo slično kao u prethodnom slučaju imamo: Mv 0x = N sin α t F t = N sin αt s + mv (9) Kad sad uzmemo da t s 0 NE dobijamo da N sin αt s 0 jer je N = (Mg) + F, pa ako t s 0, onda F = m v t = m v t s + pa i N +. Kad se izračuna dobije se da Nt s const 0! 16. a) Neka je pomeraj tega nagore (merdevina nadole) jednak l 1. Sada je ukupan pomeraj čoveka u odnosu na početni položaj l l 1. Pošto je sistem u ravnoteži, imamo da je masa merdevina: m m = M m. Ukupan pomeraj centra mase sistema po y osi jednak je: l = m(l l 1 ) (M m)l 1 + Ml 1 M = ml M b) Napišimo drugi Njutnov zakon redom za čoveka, merdevine i teg: (1) ma cv = N mg, (M m)a = (M m)g + N F z, Ma = F Mg () gde je N sila kojom čovek deluje na merdevine tokom kretanja a F z sila zatezanja konopca. Ako sada eliminišemo F z i N dobijamo: (M m)a = (M m)g + mg + ma cv M(a + g) = ma cv Ma (3) odnosno imamo da je (M m)a = ma cv. Napomenimo da je a cv ubrzanje čoveka u odnosu na kotur (ne u odnosu na merdevine). U neinercijalnom referentnom sistemu vezanom za merdevine je a cvm = a cv + a pa zamenom dobijamo Ma = ma cvm odnosno: a = m M a cvm (4) Primetimo da ubrzanja a cvm i a nisu konstantna tokom kretanja (na kraju kretanja i čovek i merdevine ponovo miruju). Ako prethodni izraz pomnožimo sa malim t dobićemo: v = m M v cvm (5) Podelimo sada vremenski interval (t s, t) (gde je t s trenutak početka kretanja) na n malih delova dužina t i = t. Za svaki delić važi relacija (5). Ako sve te relacije sumiramo dobičemo da je: (v v s ) = m M (v cvm v cvms ) (6) Pošto je brzina čoveka u odnosu na merdevine na pocetku kretanja jednaka nuli v cvms = 0, kao i brzina merdevina (odnosno tega) v s = 0, na osnovu prethodne formule zaključujemo da je: v = m M v cvm (7) Analogno, još jednim deljenjem itervala (t s, t) na n delova i sumiranjem dobijamo da je: Primetimo na kraju da je l = l 1. l 1 = m M l (8) 4

5 17. Na osnovu zakona održanja energije imamo da je: mv 1 + U 1 = mv + U (1) Prilikom prelaza izmedju dve oblasti, na telo deluje sila normalna na ravan koja ih razdvaja (pošto se duž te ravni potencijalna energija ne menja). Zbog toga, komponenta brzine paralelna ravni ostaje nepromenjena, odnosno važi: Iz ova dva izraza, eliminacijom v dobijamo: Rešavanjem po α dobijamo: Ili ekvivalentno: mv 1 v 1 sin α 1 = v sin α () ( sin ) α 1 sin 1 α sin α = = U 1 U sin α (U 1 U ) mv 1 v 1 sin α 1 tan α = cos α 1 + (U 1 U ) m 18. Teret C će se kretati vertikalno naniže dok će se tereti A i B kretati vertikalno naviše. Označimo SC = y, AC = x, α = ACS. (3) (4) Zad. 18. Imamo da je x = y + l 4. Neka je F z sila zatezanja konca AC i BC (zbog simetrije, te dve sile su jednake). Drugi Njutnov zakon za telo C glasi: ma C = mg F z cos α (1) Sve dok je a C 0, teret C će se ubrzavati, a sa njim i A i B. Nije teško videti da će sistem oscilovati oko ravnotežnog položaja koji je odredjen uslovom a C = 0. Tada će kinetička energija sistema tela biti maksimalna. Iz zakona održanja energije imamo: mv A Uslov a C = 0 ekvivalentan je sa cos α = 1 Zamenom dobijamo da je: v A = dx dt = + mv C = mg(l + y x) () pa je y = l y y + l 4 i x = l 3 3. Dalje je: dy dt = y x v C = 1 v C 3mv C 4 = mg(l + y x) = mgl 3 5 (3)

6 Odnosno: v C = gl( 3) 3 Posmatrajmo trenutak kad teret C dostigne najnižu tačku. Tada je v C = v A = 0. Iz () imamo: l + y x = l + y l + 4y = 0 y = l 3 6

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Fizička mehanika i termofizika, junski rok

Fizička mehanika i termofizika, junski rok Fizička mehanika i termofizika, junski rok 5.7.2001. 1. Po strmoj ravni, nagibnog ugla α, kotrlja se bez klizanja masivni šuplji cilindar, mase M i poluprečnika R. Po unutrašnjosti cilindra se kreće pas.

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

1. Kolokvijum iz MEHANIKE (E1)

1. Kolokvijum iz MEHANIKE (E1) Fakultet tehničkih nauka Novi Sad Katedra za Mehaniku 1. Kolokvijum iz MEHANIKE (E1) A grupa A1 Padobranac mase m je iskočio iz aviona. U trenutku otvaranja padobrana, u kom je imao brzinu v 0 usmerenu

Διαβάστε περισσότερα

2. Kolokvijum iz MEHANIKE (E1)

2. Kolokvijum iz MEHANIKE (E1) Fakultet tehničkih nauka Novi Sad Katedra za Mehaniku 2. Kolokvijum iz MEHANIKE (E1) A grupa A3 Dva robota se kreću po glatkoj horizontalnoj podlozi. Robot A, mase 20, 0 kg, kreće se brzinom 2, 00 m/s

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

Analitička geometrija

Analitička geometrija 1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i

Διαβάστε περισσότερα

Rad, energija i snaga

Rad, energija i snaga Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).

Διαβάστε περισσότερα

Dinamičke jednačine ravnog kretanja krutog tela.

Dinamičke jednačine ravnog kretanja krutog tela. Dinamičke jednačine ravnog kretanja krutog tela. Prve dve dinamičke jednačine ravnog kretanja krutog tela, u prvoj varijanti, imaju oblik: 1) m & x X, ) m & y = Y. = i i Dok, u drugoj varijanti, njihov

Διαβάστε περισσότερα

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE): Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

1 Kinematika krutog tela

1 Kinematika krutog tela M. Tadić, Predavanja iz Fizike 1, ETF, grupe P2 i P3, IV predavanje, 2017. 1 Kinematika krutog tela Kruto telo je sistem materijalnih tačaka čija se međusobna udaljenost ne menja tokom vremena. Kruta tela

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će

Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će se bez obzira na masu kretati istim ubrzanjem Zanimljivo

Διαβάστε περισσότερα

OTPORNOST MATERIJALA

OTPORNOST MATERIJALA 3/8/03 OTPORNOST ATERIJALA Naponi ANALIZA NAPONA Jedinica u Si-sistemu je Paskal (Pa) Pa=N/m Pa=0 6 Pa GPa=0 9 Pa F (N) kn/cm =0 Pa N/mm =Pa Jedinična površina (m ) U tečnostima pritisak jedinica bar=0

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1 Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

TEHNIƒKA MEHANIKA 2 Osnovne akademske studije, III semestar

TEHNIƒKA MEHANIKA 2 Osnovne akademske studije, III semestar TEHNIƒKA MEHANIKA 2 Osnovne akademske studije, III semestar Prof. dr Stanko Br i Prof. dr Rastislav Mandi Doc. dr Stanko ori email: cstanko@grf.bg.ac.rs Graževinski fakultet Univerzitet u Beogradu k. god.

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: Refleksija S φ u odnosu na pravu kroz koordinatni početak Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: ( ) ( ) ( ) x cos 2φ

Διαβάστε περισσότερα

Sila i Njutnovi zakoni (podsetnik)

Sila i Njutnovi zakoni (podsetnik) Sila i Njutnovi zakoni (podsetnik) -Sila je mera interakcije (međusobnog delovanja) tela. I Njutnov zakon (zakon inercije) II Njutnov zakon (zakon sile) III Njutnov zakon (zakon akcije i reakcije) [] =

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

RIZIK OD MEHANIČKIH DEJSTAVA

RIZIK OD MEHANIČKIH DEJSTAVA Univerzitet u Nišu Fakultet zaštite na radu u Nišu REŠENI ZADACI SA VEŽBI IZ PREDMETA RIZIK OD MEHANIČKIH DEJSTAVA - Interni nerecenzirani materijal - Predmetni nastavnik: Dr Dragan Stojiljković, red.

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Slika 1: Uz zadatak 2.

Slika 1: Uz zadatak 2. Univerzitet u Beogradu-Elektrotehnički fakultet Junski ispitni rok iz Fizike 1, 8.6.016. godine Predmetni nastavnici: Jovan Cvetić (P1), Predrag Marinković (P) i Milan Tadić (P3) Trajanje ispita je 3h

Διαβάστε περισσότερα

Zadatak Rješenje: skica problema O R b φ a. Dinamika gibanja krutog tijela. Kinetička energija krutog tijela. E-L jednadžbe

Zadatak Rješenje: skica problema O R b φ a. Dinamika gibanja krutog tijela. Kinetička energija krutog tijela. E-L jednadžbe Homogeni štap mase M i duljine 2a kreće se bez trenja u sfernom udubljenju polumjera R tako da stalno ostaje u okomitoj ravnini koja prolazi kroz centar sfere. Na dite kinetičku energiju štapa. Rješenje:

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova)

šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) šupanijsko natjecanje iz zike 017/018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) U prvom vremenskom intervalu t 1 = 7 s automobil se giba jednoliko ubrzano ubrzanjem

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Prosti cevovodi

MEHANIKA FLUIDA. Prosti cevovodi MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

Junski ispitni rok iz Fizike 1, godine

Junski ispitni rok iz Fizike 1, godine Univerzitet u Beogu-Elektrotehnički fakultet Junski ispitni rok iz Fizike 1, 196215 godine Predmetni nastavnici: Jovan Cvetić (P1), Predrag Marinković (P2) i Milan Tadić (P3) Trajanje ispita je 3 h 1 Tačka

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Sistem sučeljnih sila

Sistem sučeljnih sila Sistm sučljnih sila Gomtrijski i analitički način slaganja sila, projkcija sil na osu i na ravan, uslovi ravnotž Sistm sučljnih sila Za sistm sila s kaž da j sučljni ukoliko sil imaju zajdničku napadnu

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50 INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VI predavanje, 2017.

M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VI predavanje, 2017. M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VI predavanje, 2017. 1 Kretanje neslobodne materijalne tačke Telo može biti primorano da se kreće po površi ili liniji. Takav oblik kretanja naziva se neslobodno

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

TEHNIƒKA MEHANIKA 2 Osnovne akademske studije, III semestar

TEHNIƒKA MEHANIKA 2 Osnovne akademske studije, III semestar TEHNIƒKA MEHANIKA 2 Osnovne akademske studije, III semestar Prof. dr Stanko Br i Prof. dr Rastislav Mandi Doc. dr Stanko ori email: cstanko@grf.bg.ac.rs Graževinski fakultet Univerzitet u Beogradu k. god.

Διαβάστε περισσότερα