Mõõtmised, andmetöötlus ja automaatika lihanduses ja piimanduses, VL-1112 & VL-1122
|
|
- Ἁλκυόνη Γούσιος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Praks 2(3) Eel- ja järeltöö 1. Salvestage arvutisse andmestik lammas.xls ( 2. Avage salvestatud fail MS Excel is. 3. Peale ülesannete lahendamist salvestage fail nimega perekonnanimi_lammas.xls ja saatke e-meiliga aadressil Kommentaarid andmestiku kohta Rümpade EUROP klassifitseerimine on EL riikides kehtiv lihakehade klassifitseerimissüsteem, kus hinnatakse iga lihakeha kommertsväärtust. Rümbad jaotatakse järgmistesse kategooriatesse: alla 12 kuu vanuste lammaste e tallede rümbad (tähis L ) ning kõigi ülejäänud lammaste rümbad (tähis S ); visuaalselt hinnatatud lihakusklasside osas eristatakse: E (ekstra), U (väga hea), R (hea), O (rahuldav), P (lahja), P- (eriti lahja); visuaalselt hinnatud rasvasusklasside osas eristatakse: 1 (väherasvane), 2 (kergelt rasvane), 3 (keskmiselt rasvane), 4 (rasvane), 5 (väga rasvane). Antud andmestik sisaldab 686 lambarümba andmeid (56-lt omanikult) aasta sügisest (tapetud ja hinnatud kõik samas tapamajas). Iga lamba kohta on lisaks eelnevalt nimetatud kolmele rühmitavale tunnusele: rümba kategooria {L, S}, lihakusklass {E, U, R, O, P, P-} ja rasvasusklass {1, 2, 3, 4, 5}, fikseeritud ka see, kas loom oli pärit jõudluskontrollialusest karjast või mitte (vastavalt jkk = 1 või 0), kas realiseerimine leidis aset läbi ELaS-i turustusgrupi või mitte (vastavalt realis = 1 või 0), samuti on teada rümba mass (kg) ja hind (EEK), mille alusel on arvutatud rümba 1 kg hind (EEK/kg). Tanel Kaart sügis,
2 Ülesanded Praktikumi tehniline pool hõlmab peamiselt Pivot Table i ja diagrammide kasutamist MS Excel is, lisaks ka veel χ 2 -testi ja regressioonanalüüsi. 1. Kirjeldage lammaste jagunemist EUROP klassifitseerimissüsteemi alusel, leides erinevatesse klassidesse kuuluvate rümpade arvud ja protsendid (seda siis 3 tunnuse tarvis rümba üldkategooria, lihakusklass ja rasvasusklass). o Kui mõnda lihakus- ja/või rasvasusklassi kategooriat esineb väga vähe, pange see kokku sarnase naaberkategooriaga. o Illustreerige saadud tabeleid sektordiagrammidega, kirjutades igale sektorile juurde sellele vastava väärtuse ja esinemise suhtelise sageduse protsentides. 2. Kas rümpade jagunemine rasvasusklassidesse sõltub rümba üldkategooriast? o Võimaliku seose kirjeldamiseks konstrueerige (uuele töölehele) vastav 2-mõõtmeline sagedustabel, viimasesse leidke nii rea- kui ka veeruprotsendid ja sõnastage lause(d), kasutades vähemalt kahte leitud suhtelistest sagedustest. 3. Jätkuna punktile 2 testige rümpade üldkategooriatesse ja rasvasuklassidesse jagunemise vahelise seose statistilist olulisust. o Et oleks selge, mida te üldse testite, pange esmalt kirja kontrollitav hüpoteeside paar. o Järgnevalt konstrueerige uus 2-mõõtmeline sagedustabel, mis sisaldab üksnes absoluutseid sagedusi, selle alusel arvutage tunnuste sõltumatuse juhule (nullhüpoteesile) vastavad sagedused ja o teostage funktsiooni CHITEST abil χ 2 -test viimane võrdleb empiirilisi (andmetabelist arvutatud) sagedusi teoreetiliste (sõltumatuse juhule vastavate) sagedustega ja väljastab olulisuse tõenäosuse p väärtuse. o Sõnastage lõppjäreldus (viidates sõnastuses ka p-väärtusele, millel järeldus baseerub). 4. Prognoosige tallerümpade 1 kg hinda lähtuvalt rümba massist. Kui palju võinuks aasta sügisel keskmiselt raha saada 20 kg kaaluva tallerümba eest. o Esmalt sorteerige/filtreerige algandmed vastavalt rümpade üldkategooriale ja tehke uuele töölehele koopia tallerümpade massidest ja 1 kg hindadest. o Teostage regressioonanalüüs graafiliselt. Selleks laske Excel l joonistada hajuvusdiagramm (punktdiagramm), kus x-teljel paiknevad rümpade massid ja y-teljel hinnad. Valmis diagrammile lisage regressioonisirge, regressioonivõrrand ja viimase baasil saadavate prognooside täpsust kirjeldav determinatsioonikordaja R 2. Tanel Kaart sügis,
3 Lisaks tavalisele lineaarsele regressioonanalüüsile sobitage punktiparvest läbi ka ruutfunktsiooni graafik ning tellige sellegi tarvis Excel lt võrrand ja R 2 (parema võrdlemise huvides värvige vastav joon ja parameetrid näiteks punaseks). Kumba seost lineaarset või ruutseost eelistada tallerümba 1 kg hinna prognoosimisel? Miks? o Pange töölehele kirja regressioonivõrrand ja prognoosige 20 kg kaaluva tallerümba hinda. 5. Lisaülesanne. Leidke Pivot Table i abil uuele töölehele rümpade arv, keskmine, minimaalne ja maksimaalne mass ning massi standardhälve sõltuvalt lamba päritolust (jõudluskontrolli alusest karjast või mitte). o Illustreerige leitud keskmisi tulpdiagrammiga, kus rümba masside varieeruvust kirjeldavad standardhälbed on kujutatud nö veajoontena (joonise tegemiseks tehke vajalikest Pivot Table i abil leitud väärtustest abitabel). o Sorteerige (või filtreerige) algandmed vastavalt jõudluskontrolli alla kuulumisele ning tehke leitud keskmistega samale lehele abitabel, mis sisaldab ühes veerus jõudluskontrollialusest karjast pärit rümpade masse ja teises veerus mitte jõudluskontrollialusest karjast pärit rümpade masse. o Testige keskmiste masside erinevuse statistilist olulisust (esmalt F-test ja selle tulemusest lähtuvalt õiget tüüpi t-test). Sõnastage lõppjäreldus. Kui aru ei saa (näiteks, mida mingi funktsioon teeb või miks midagi just näidatud kujul tööjuhendis realiseeritud on), siis küsi! Tanel Kaart sügis,
4 Illustreeritud (ja mittetäielik) tööjuhend 1. Konstrueerime järgnevalt näitena sagedustabeli rümba lihakusklassi kohta, analoogselt käib sagedustabelite tegemine ka rümba üldkategooriale ja rasvasusklassile. Paigutage kursor andmetabeli suvalisse lahtrisse. Data / Andmed PivotTable and PivotChart Report / PivotTable ja PivotChart Aruanne Loodava tabeli vasaku ülemise nurga asukoht Tanel Kaart sügis,
5 Sorteerige lihakusklassid sisulise järjestuse alusel (Excel ei pruugi seda alati õigesti teha) lihtsaim võimalus vaid mõnd üksikut gruppi ümber tõsta on klikkida selle nimel (näiteks lahtril P ) ja tõsta see lahtri servast kinni hoides õigesse kohta. Tanel Kaart sügis,
6 Lisaks absoluutsetele sagedustele suhteliste sageduste arvutamine. Tanel Kaart sügis,
7 Et paremaks kui hea (kood R ) on hinnatud vaid üht rümpa, võiks selle kas edasisest analüüsist välja jätta või ühendada grupiga R (moodustada uus grupp vähemalt hindega hea rümbad). Tanel Kaart sügis,
8 Grupeerige analoogsel viisil ka lahjad ja eriti lahjad rümbad (sest ega seal suurt vahet pole). Pivot Table i abil konstrueeritud tabeli põhjal kenade jooniste tegemiseks on sageli soovitatav teha vajalikest väärtustest abitabel ja teha joonis selle alusel. Põhjuseks on see, et otse Pivot Table alusel joonise tegemise tulemuseks on nn Pivot Chart, mis on sarnaselt Pivot Table ga lingitud andmetabeliga, seeläbi kergesti täiendatav ja ümberarvutatav, aga ei võimalda muuta kõike tavalisel Excel i diagrammil muudetavat (või on see märksa keerulisem). mitte enam kui lahja 8,9% vähemalt hea 50,7% rahuldav 40,4% Tanel Kaart sügis,
9 Järgnevalt konstrueerige sagedustabelid ja joonistage nende alusel sektordiagrammid ka rümba (üld)kategooriale ja rasvasusklassile. NB! Uue PivotTable i tegemisel ilmuvale lisaküsimusele on kõige lollikindlam vastata No : 2. Kas rümpade jagunemine rasvasusklassidesse sõltub rümba üldkategooriast? Võimaliku seose kirjeldamiseks konstrueerige (uuele töölehele) vastav 2-mõõtmeline sagedustabel, viimasesse leidke nii rea- kui ka veeruprotsendid ja sõnastage lause(d), kasutades vähemalt kahte leitud suhtelistest sagedustest. Tanel Kaart sügis,
10 Kommentaarid. Tanel Kaart sügis,
11 3. Rümpade üldkategooriatesse ja rasvasuklassidesse jagunemise vahelise seose statistiline olulisus. Teoreetiliste sageduste arvutamine: Tanel Kaart sügis,
12 χ 2 -testi saab Excel s teostada funktsiooniga CHITEST (tulemuseks on olulisuse tõenäosus p). Et oleks lihtsam aru saada, milliste arvude võrdlemisel χ2-test baseerub (ehk siis millised tabelite osad tuleb Excel i vastavale funktsioonile ette anda), võib vastavad lahtrid selguse mõttes näiteks ära värvida. Järgnevalt, nagu funktsioonide puhul ikka, tuleb kursor panna lahtrisse, kuhu soovitakse tulemust saada (ja juurde võiks enne ka kirjutada, mida arvutama hakatakse). Sõnastage lõppjäreldus (Kas seos on statistiliselt oluline? Miks te nii otsustasite?). Tanel Kaart sügis,
13 4. Prognoosige tallerümpade 1 kg hinda lähtuvalt rümba massist. Kui palju võinuks aasta sügisel keskmiselt raha saada 20 kg kaaluva tallerümba eest. Tanel Kaart sügis,
14 R_kg_hind R_kg_hind Rümba 1 kg hind, EEK y = 0,4573x + 29,29 R 2 = 0,1274 y = -0,1141x 2 + 4,7521x - 9,5525 R 2 = 0, Rümba mass, kg Tanel Kaart sügis,
Mõõtmised, andmetöötlus ja automaatika lihanduses ja piimanduses, VL-1112 & VL-1122
Praks 2 Eel- ja järeltöö 1. Salvestage arvutisse andmestik lammas.xls (http://ph.emu.ee/~ktanel/vl_1112/lammas.xls). 2. Avage salvestatud fail MS Excel is. 3. Peale ülesannete lahendamist salvestage fail
Praktikum 2. Kommentaarid andmestiku kohta
Praktikum 2 Salvestage kursuse kodulehelt omale arvutisse andmestik lammas.xls (http://ph.emu.ee/~ktanel/vl_1112/lammas.xls). Kommentaarid andmestiku kohta Lammaste andmebaas on moodustatud aastal 2003
Statistiline andmetöötlus, VL-0435 sügis, 2008
Praktikum 6 Salvestage kursuse kodulehelt omale arvutisse andmestik lehmageen.xls. Praktikum püüab kirjeldada mõningaid võimalusi tunnuste vaheliste seoste uurimiseks. Kommentaarid andmestiku kohta Konkreetselt
Andmeanalüüs molekulaarbioloogias
Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
Matemaatiline statistika ja modelleerimine
Matemaatiline statistika ja modelleerimine Kahe arvtunnuse ühine käitumine, korrelatsioon- ja regressioonanalüüs EMÜ doktorikool DK.0007 Tanel Kaart Lineaarne e Pearsoni korrelatsioonikordaja Millal kasutada
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
2.2.1 Geomeetriline interpretatsioon
2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
Mõõtm., andmetöötlus ja autom. piimanduses ja lihanduses, VL-1112 ja VL-1122 Praktikum 1
Praktikum 1 Praktikumi sisuks on kirjeldav statistika ja selle teostamine MS Excelis. Esimesed seitse lehekülge juhendis ( Üldine sissejuhatus: ) on lihtsalt mõningate Exceli kohta käivate põhitõdede meenutus
Praktikum 1. Matemaatiline statistika ja modelleerimine, DK.0007
Praktikum 1 MS Excelis on võimalik teostada suur hulk andmete haldamisest ja esmasest statistilisest analüüsist, sageli ka kogu vajalik analüüside hulk. Kuigi tänane praktikum käsitleb vaid erinevaid kirjeldava
SORTEERIMINE JA FILTREERIMINE
Praktikum 3 Tänase praktikumi teema on andmetabelite filtreerimine ja kokkuvõtvate tabelite loomine, juttu tulebka mõningatest pisut nutikamatest funktsioonidest keskmiste ja vaatluste arvu arvutamisel.
Andmete haldus ja analüüs MS Excelis Praktikum 1
Praktikum 1 Tänase praktikumi teema on MS Exceli peamised andmeanalüüsivahendid funktsioonid, statistikaprotseduurid, risttabelid (PivotTabel) ja joonised ning valdavalt kirjeldav statistika. VÄGA ÜLDINE
Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus
Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus 1. Haljala valla metsa pindala Haljala valla üldpindala oli Maa-Ameti
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
PLASTSED DEFORMATSIOONID
PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
7.7 Hii-ruut test 7.7. HII-RUUT TEST 85
7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat
Matemaatiline statistika ja modelleerimine
Matemaatiline statistika ja modelleerimine Kirjeldav statistika EMÜ doktorikool DK.7 Tanel Kaart Sagedused ja osakaalud diskreetne tunnus Mittearvuliste või diskreetsete tunnuste (erinevate väärtuste arv
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid
Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}
sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =
KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α
Excel Statistilised funktsioonid
Excel2016 - Statistilised funktsioonid Statistilised funktsioonid aitavad meil kiiresti leida kõige väiksemat arvu, keskmist, koguarvu, tühjaks jäänud lahtreid jne jne. Alla on lisatud sellesse gruppi
KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV
U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].
KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1
laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad
T~oestatavalt korrektne transleerimine
T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:
Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika
Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika
Kontekstivabad keeled
Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,
Funktsioonide õpetamisest põhikooli matemaatikakursuses
Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,
Eesti koolinoorte XLIX täppisteaduste olümpiaad
Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.
Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA tüüpi mudelitega
TARTU ÜLIKOOL MATEMAATIKA INFORMAATIKATEADUSKOND Matemaatilise statistika instituut Finants- ja kindlustusmatemaatika eriala Kärt Päll Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA
Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a.
Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja 0. klass) 6. november 2002. a.. ) 2a + 2 = a 2 2 2) 2a + a 2 2 = 2a 2 ) 2a + I 2 = 2aI 4) 2aI + Cl 2 = 2aCl + I 2 5) 2aCl = 2a + Cl 2 (sulatatud
Ecophon Square 43 LED
Ecophon Square 43 LED Ecophon Square 43 on täisintegreeritud süvistatud valgusti, saadaval Dg, Ds, E ja Ez servaga toodetele. Loodud kokkusobima Akutex FT pinnakattega Ecophoni laeplaatidega. Valgusti,
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397
Ecophon Line LED Ecophon Line on täisintegreeritud süvistatud valgusti. Kokkusobiv erinevate Focus-laesüsteemidega. Valgusti, mida sobib kasutada erinevates ruumides: avatud planeeringuga kontorites; vahekäigus
I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal
I. Keemiline termdünaamika I. Keemiline termdünaamika 1. Arvutage etüüni tekke-entalpia ΔH f lähtudes ainete põlemisentalpiatest: ΔH c [C(gr)] = -394 kj/ml; ΔH c [H 2 (g)] = -286 kj/ml; ΔH c [C 2 H 2 (g)]
HULGATEOORIA ELEMENTE
HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad
Enam kui kahe grupi keskmiste võrdlus
Bomeetra Enam ku kahe populatsoon keskväärtuste võrdlemne dspersoonanalüüs Enam ku kahe grup keskmste võrdlus H 0 : 1 = 2 = = k H 1 : leduvad sellsed grupd,j, et Eeldustel, et j uurtav (sõltuv) tunnus
28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.
8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G
HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud
Seminar II: Mitmemõõtmeline dispersioonanalüüs (MANOVA)
Kursus: Mitmemõõtmeline statistika Seminar II: Mitmemõõtmeline dispersioonanalüüs (MANOVA) Õppejõud: Katrin Niglas PhD, dotsent informaatika instituut Statistilise olulisustesti põhisammud: E I: Analüüsisin
Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD
Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD 1 Nõudmised krüptoräsidele (Hash-funktsionidele) Krüptoräsiks nimetatakse ühesuunaline funktsioon
1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD
1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki
Eesti LV matemaatikaolümpiaad
Eesti LV matemaatikaolümpiaad 2. veebruar 2008 Piirkonnavoor Kommentaarid Kokkuvõtteks Selleaastast komplekti võib paremini õnnestunuks lugeda kui paari viimase aasta omi. Lõppvooru pääsemise piirid protsentides
Kontrollijate kommentaarid a. piirkondliku matemaatikaolümpiaadi
Kontrollijate kommentaarid 2002. a. piirkondliku matemaatikaolümpiaadi tööde kohta Kokkuvõtteks Uuendusena oli tänavusel piirkondlikul olümpiaadil 10.-12. klassides senise 5 asemel 6 ülesannet, millest
Matemaatilised ja trigonomeetrilised funktsioonid
Matemaatilised ja trigonomeetrilised funktsioonid Alustame nüüd Exceli põhiliste töövahenditega - funktsioonidega. Võtame esimesena sihikule Matemaatilised ja trigonomeetrilised funktsioonid. Kuigi kogu
Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist
Loeng 2 Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist P2 - tuleb P1 lahendus T P~Q = { x P(x)~Q(x) = t} = = {x P(x)
2. HULGATEOORIA ELEMENTE
2. HULGATEOORIA ELEMENTE 2.1. Hulgad, nende esitusviisid. Alamhulgad Hulga mõiste on matemaatika algmõiste ja seda ei saa def ineerida. Me võime vaid selgitada, kuidas seda abstraktset mõistet endale kujundada.
20. SIRGE VÕRRANDID. Joonis 20.1
κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii
MateMaatika õhtuõpik
Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline
Sissejuhatus mehhatroonikasse MHK0120
Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti
KRITON Platon. Siin ja edaspidi tõlkija märkused. Toim. Tõlkinud Jaan Unt
KRITON Platon AKADEEMIA, 1/1994 lk 57 71 Tõlkinud Jaan Unt SOKRATES: Miks sa nii vara siin oled, Kriton? Või polegi enam vara? KRITON: On küll. SOKRATES: Ja kui vara siis? KRITON: Alles ahetab. SOKRATES:
Milline navi on Androidi
Testis HTC uus Sensation Mida teha Windowsitahvelarvutiga? Dell tegi odava suure puutetundliku kuvari Sony Vaio proovib olla MacBook Nr 75, juuli 2011 Hind 2.79 ; 43.65 kr Kellel on Eestis levi? Suur suvine
Mathematica kasutamine
mathematica_lyhi_help.nb 1 Mathematica kasutamine 1. Sissejuhatus Programmi Mathematica avanemisel pole programmi tuum - Kernel - vaikimisi käivitatud. Kernel on programmi see osa, mis tegelikult teostab
Smith i diagramm. Peegeldustegur
Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes
MATEMAATILISEST LOOGIKAST (Lausearvutus)
TARTU ÜLIKOOL Teaduskool MATEMAATILISEST LOOGIKAST (Lausearvutus) Õppematerjal TÜ Teaduskooli õpilastele Koostanud E. Mitt TARTU 2003 1. LAUSE MÕISTE Matemaatilise loogika ühe osa - lausearvutuse - põhiliseks
Arvuti kasutamine uurimistöös
Arvuti kasutamine uurimistöös Ülesannete kogu informaatika valikaine e-õpiku juurde Mart Laanpere, Katrin Niglas, Kairi Osula, Kai Pata Tallinna Ülikool 2013 Õppekomplekti rahastas ESF TeaMe programm Eesti
Parim odav. nutitelefon
Transformer, väga eriline tahvelarvuti Samsungi relv ipadi vastu 2000 eurot maksev HP sülearvuti Kodune Logitechi helipark Nr 76, august 2011 Hind 2.79 ; 43.65 kr Parim odav Üheksa videokaamerat. Ainult
Lexical-Functional Grammar
Lexical-Functional Grammar Süntaksiteooriad ja -mudelid 2005/06 Kaili Müürisep 6. aprill 2006 1 Contents 1 Ülevaade formalismist 1 1.1 Informatsiooni esitus LFG-s..................... 1 1.2 a-struktuur..............................
Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused
Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning
Milline on hea. odav Android? Pane oma failid siia: testime kõvakettaid. [digi] kool: DLNA, AirPlay, Wireless HDMI
LG tegi imeõhukese kuvari ja me testime Kaamera, mis sobib küünevärviga Lugejate nõudmisel: testis head klapid Katsetame HP kõik ühes arvutit Nr 71, märts 2011 Hind 2.79 ; 43.65 kr Pane oma failid siia:
1. Paisksalvestuse meetod (hash)
1. Paisksalvestuse meetod (hash) Kas on otsimiseks võimalik leida paremat ajalist keerukust kui O(log n)? Parem saaks olla konstantne keerukus O(1), mis tähendaks seda, et on kohe teada, kust õige kirje
Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008
Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub
Pesumasin Πλυντήριο ρούχων Mosógép Veļas mašīna
ET Kasutusjuhend 2 EL Οδηγίες Χρήσης 17 HU Használati útmutató 34 LV Lietošanas instrukcija 50 Pesumasin Πλυντήριο ρούχων Mosógép Veļas mašīna ZWG 6120K Sisukord Ohutusinfo _ 2 Ohutusjuhised _ 3 Jäätmekäitlus
1 Funktsioon, piirväärtus, pidevus
Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks
6.6 Ühtlaselt koormatud plaatide lihtsamad
6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline
Semantiline analüüs. Süntaksipuu dekoreeritakse tüübi- ja muu kontekstist sõltuva
Semantiline analüüs Semantiline analüüs Semantiline analüüs kontrollib programmi kontekstuaalsete sõltuvuste korrektsust: leiab vastavuse defineerivate ja kasutusesinemiste vahel, leiab esinemiste tüübid
1 MTMM Kõrgem matemaatika, eksamiteemad 2014
1 MTMM.00.188 Kõrgem matemaatika, eksamiteemad 2014 Eksamitöö annab kokku 80 punkti ja ülesanded jagunevad järgmisse kuude gruppi: P1 ( 10p ) - ülesanded I kontrolltöö põhiteemade peale; P2 ( 10p ) - ülesanded
Kauaoodatud Spore [digi] käes testis Ainuraksest kosmosevallutajaks
Muusika! Uued kõrva sisse käivad klapid üllatavad kvaliteediga Uus kaamera Nikon D90: amatöörile parim Soome elab veel! Peaaegu nagu iphone: Nokia E71 on kiire ja mugav On see printer? HP teeb nalja Maailma
Vahendid Otsus Analüüs: Analüüsi Riskantseid Otsuseid
Vahendid Otsus Analüüs: Analüüsi Riskantseid Otsuseid Link: http://home.ubalt.edu/ntsbarsh/opre640a/partix.htm Kui sa alustada kindlust, siis lõpetab kahtlusi, kuid kui te tahate sisu alustada kahtlusi,
Wilcoxoni astakmärgitest (Wilcoxon Signed-Rank Test)
Peatükk 2 Wilcoxoni astakmärgitest (Wilcoxon Signed-Rank Test) 2.1 Motivatsioon ja teststatistik Wilcoxoni astakmärgitesti kasutatakse kahe s~oltuva valimi v~ordlemiseks. Oletame näiteks, et soovime v~orrelda,
=217 kj/mol (1) m Ühe mooli glükoosi sünteesil lihtainetest vabaneb footoneid: Δ H f, glükoos n (glükoos) =5,89 mol (1) E (footon)
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Vanem rühm (11. ja 12. klass) Kohtla-Järve, Kuressaare, Narva, Pärnu, Tallinn ja Tartu 6. oktoober 2018 1. a) 1 p iga õige ühendi eest. (4) b) Võrrandist ():
Tallinna Tehnikaülikool Mehaanikainstituut Deformeeruva keha mehaanika õppetool. Andrus Salupere STAATIKA ÜLESANDED
Tallinna Tehnikaülikool Mehaanikainstituut Deformeeruva keha mehaanika õppetool Andrus Salupere STAATIKA ÜLESANDED Tallinn 2004/2005 1 Eessõna Käesolev ülesannete kogu on mõeldud kasutamiseks eeskätt Tallinna
Veaarvutus ja määramatus
TARTU ÜLIKOOL Tartu Ülikooli Teaduskool Veaarvutus ja määramatus Urmo Visk Tartu 2005 Sisukord 1 Tähistused 2 2 Sissejuhatus 3 3 Viga 4 3.1 Mõõteriistade vead................................... 4 3.2 Tehted
Sisukord. 2 Programmeerimiskeel C
Veiko Sinivee 2 Programmeerimiskeel C Sisukord Sissejuhatus...1 Programmeerimiskeel C...1 C - keele programmi ehitusest...4 Abiprogramm MAKE...13 Enamkasutatavad funktsioonid...16 Funktsioonid printf()
Sisukord. 4 Tõenäosuse piirteoreemid 36
Sisukord Sündmused ja tõenäosused 5. Sündmused................................... 5.2 Tõenäosus.................................... 8.2. Tõenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni
Kas Androidi ostmiseks on õige aeg? Eesti esimene võrdlustest!
Uus ipod Nano Nüüd kaamera ja raadioga Pentax K7 Mida arvata järjekordsest kaamerast? Odav ja hea ka Poola värk Poolakate telefoni käib kaks SIM-kaarti Säästuaeg Testis ilma jalata kuvar Kas Androidi ostmiseks
Rein Teinberg: "Põllumajandusloomade geneetika", 7. POPULATSIOONIGENEETIKA. toimetanud M. Viikmaa, "Valgus", Tallinn, 1978.
Rein Teinberg: "Põllumajandusloomade geneetika", toimetanud M. Viikmaa, "Valgus", Tallinn, 1978 7. POPULATSIOONIGENEETIKA lk 202-215 Põllumajandusloomade geneetika üheks iseärasuseks, võrreldes üldgeneetikaga
1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...
Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega
Prisma. Lõik, mis ühendab kahte mitte kuuluvat tippu on prisma diagonaal d. Tasand, mis. prisma diagonaal d ja diagonaaltasand (roheline).
Prism Prisms nimese ulu, mille s u on vsvl rlleelsee j võrdsee ülgedeg ulnurgd, ning ülejäänud ud on rööüliud, millel on ummgi ulnurgg üine ülg. Prlleelseid ulnuri nimese rism õjdes j nende ulnurde ülgi
5. OPTIMEERIMISÜLESANDED MAJANDUSES
5. OPTIMEERIMISÜLESNDED MJNDUSES nts asma Sissejuhatus Majanduses, aga ka mitmete igapäevaste probleemide lahendamisel on piiratud võimalusi arvestades vaja leida võimalikult kasulik toimimisviis. Ettevõtete,
Kuidas... suures testis. mp3-mängijat
Nr 39, Hind 39.90 kr riistvara tarkvara fototehnika mobiilid kodutehnika Kuidas...... internetis turvaliselt surfata... faile jäädavalt kustutada... osta mängukonsooli... koju printerit osta... suvistel
DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.
Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka
Sirgete varraste vääne
1 Peatükk 8 Sirgete varraste vääne 8.1. Sissejuhatus ja lahendusmeetod 8-8.1 Sissejuhatus ja lahendusmeetod Käesoleva loengukonspekti alajaotuses.10. käsitleti väändepingete leidmist ümarvarrastes ja alajaotuses.10.3
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH
Kõrv vastu arvutit: testis 2.1 arvutikõlarid
Microsofti telefoni- Windows on tagasi Testime Nikoni uut D7000 kaamerat Kinect teeb mängud täitsa uueks Uputame ja togime Samsungi matkafoni Nr 69, jaanuar 2011 Hind 42.90 kr; 2.74 Kõrv vastu arvutit:
PÕHIKOOLI LÕPUEKSAM FÜÜSIKA 16. JUUNI Kool: Maakond/linn: Õpilase ees- ja perekonnanimi: MEELESPEA
Punkte Eksamihinne Aastahinne FÜÜSIKA 16. JUUNI 2004 Kool: Maakond/linn: Õpilase ees- ja perekonnanimi: Poiss Tüdruk Punktide arv ülesandeti 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 3p
Skalaar, vektor, tensor
Peatükk 2 Skalaar, vektor, tensor 1 2.1. Sissejuhatus 2-2 2.1 Sissejuhatus Skalaar Üks arv, mille väärtus ei sõltu koordinaatsüsteemi (baasi) valikust Tüüpiline näide temperatuur Vektor Füüsikaline suurus,
1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5
1. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 2013-14. 1 Reaalarvud ja kompleksarvud Sisukord 1 Reaalarvud ja kompleksarvud 1 1.1 Reaalarvud................................... 2 1.2 Kompleksarvud.................................