PROJEKTIRANJE ELEKTRIČNIH POSTROJENJA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PROJEKTIRANJE ELEKTRIČNIH POSTROJENJA"

Transcript

1 Tehnički fakultet Sveučilišta u ijeci -Upute za izau konstukcijskog aa- UVOD a oeđivanje potencijalnih pilika na uzemljivaču TS 110/10(20) kv općenito bi tebalo azmotiti osim JKS unuta stanice i JKS izvan nje to jest u ostalim tansfomatoskim stanicama 110 kv meže. Međutim, u sklopu ovih uputa kao i pilikom izae konstukcijskih aova to neće biti potebno za oeđivanje najvišeg potencijala uzemljivača stanice. 1. EDUCIANE STUJE NAINUTE NA SUSTAV UEMLJENJA eukcijski faktoi voova 110 kv Stuje koje koz zemlju olaze (ili olaze) na sustav uzemljenja mjeoavne su za oeđivanje potencijala. To u pavilu nije ukupna stuja jenopolnog kvaa je se jean io te stuje najčešće vaća metalnim vezama pa ne olazi u zemlju i ne utječe na potencijal uzemljivača. Stuja nainuta u nekom m-tom čvou sustava uzemljenja koja u zemlju olazi koz sustav uzemljenja (tzv. euciana stuja) efinia se općenito kao: I m I kam - I Tm - I in m gje je: I kam - ukupna (oveena) stuja JKS u m-tom čvou; I Tm - suma stuja oveenih peko uzemljenih tansfomatoa u m-tom čvou; I in m - suma inucianih stuja oveena zaštitnim voičima piključenim na m-ti čvo (ekani/plaštevi visokonaponskih voova, plaštevi TK kabela i.). Uzemljivači postojenja u meži 110 kv mogu biti povezani metalnim ekanima kabelskih voova 110 kv, 3x(1x1000 Al/95 Cu) mm 2, koji se polažu ili u avnini ili u tolist fomaciji, onosno peko zaštitne užai na alekovonim stupovima. Kabelski voovi imaju nizak otpo ekana i jaku elektomagnetsku spegu faznih voiča pema voičima ekana pa se u slučaju pojave JKS u jenom o postojenja 110 kv, peko ekana tih kabela penosi jaka stujna eakcija pema uzemljivačima ostalih postojenja pipane kabelske meže 110 kv.

2 1.1 EDUKCIJSKI FAKTOI KABELA Jakost elektomagnetske spege faznih voiča i ekana može se pocijeniti koisteći eukcijske faktoe voova. eukcijski fakto sustava o ti jenožilna kabela ili o šest jenožilnih kabela (slučaj va kabela u jenom ovu) ačuna se kao: z ek ek j X ek ek - ani otpo ti, onosno šest ekana (Ω/km); z - jeinični otpo povatnog puta koz zemlju (Ω/km); X ek - eaktancija paalelno vezanih (3 ili 6) ekana (Ω/km). Pema tome, za slučaj jenog kabela (ti žile) u ovu veličina ek iznosi jenu tećinu jeiničnog otpoa ekana jene žile. a slučaj va kabela (šest žila) u ovu veličina ek iznosi jenu šestinu jeiničnog otpoa ekana jene žile. Otpo z iznosi: z 0,05 Ω/km eaktancija X ek ačuna se kao: gje je: ρ - specifični otpo tla X ek 93 ρ 0,1445 log SGU SGU - senji geometijski polumje paalelno vezanih ekana. a ti ekana (1 kabel u ovu) vijei: SGU 3 e e D e - senji polumje jenog ekana (m); 12, 13 - ualjenost voiča 1-2, 1-3; ko kabela u tolistu to je veličina jenaka pomjeu žile kabela (D). a šest ekana veličina SGU ačuna se kao: SGU e e D D1 2 D azmak između va kabelska tolista; uz petpostavku a vijei D 1-2 >>D. 2

3 Ukoliko se želi obuhvatiti i pijelazni otpo na kajevima kabelskih plašteva onosno otpoe uzemljenja susjenih postojenja, taa teba vijenosti ek oati otpoe uzemljenja stanica na oba kaja kabela. Stuje inuciane u ekanima kabela popocionalne su s (1-), a zbog elativno malog iznosa može se zaključiti a će kabeli 110 kv imati izazito jaku elektomagnetsku speg 1.2 EDUKCIJSKI FAKTOI NADEMNIH VODOVA Jakost elektomagnetske spege faznih voiča i zaštitnog voiča može se pocijeniti koisteći eukcijske faktoe nazemnih voova. eukcijski fakto sustava o ti fazna voiča i jenog zaštitnog voiča ačuna se kao: z uz j X j X m - ani otpo jenog, onosno va zaštitna užeta (Ω/km); z - jeinični otpo povatnog puta koz zemlju (Ω/km); uz seijski zboj otpoa uzemljenja stanica piključenih na kaj zaštitnog užeta (Ω/km); X m - međusobna eaktancija zaštitne užai i faznih voiča (Ω/km); X vlastita eaktancija zaštitne užai (1 ili 2) (Ω/km). a slučaj nazemnog voa s va zaštitna užeta veličina iznosi jenu polovinu jeiničnog otpoa jenog zaštitnog užeta. Otpo z iznosi: z 0,05 Ω/km eaktancije X m i X ačunaju se kao: X m a 0,1445 log 0, 11 μ X 93,1 ρ 0,1445 log 0, 11 μ gje je: ρ - specifični otpo tla a - senja geometijska ualjenost zaštitnog užeta o faznih voiča vlastita senja geometijska ualjenost zaštitnih užeta μ fakto elativne magnetske pemeabilnosti zaštitnog užeta 3

4 Senja geometijska ualjenost a ačuna se za jeno zaštitno uže pema: a 3 a b c a, b, c, - ualjenost faznih voiča o zaštitnog užeta (m); a va zaštitna užeta veličina a se ačuna kao: a 6 ap bp cp aq bq cq ap, bp, cp, aq, bq, cq, - ualjenost faznih voiča o zaštitnih užeta (m); Vlastita SGU za jeno zaštitno uže iznosi: Vlastita SGU za va zaštitna užeta iznosi: D gje je: vanjski polumje zaštitnog užeta (m) D azmak zaštitnih užeta (m) Ukoliko se pijelazni otpoi na kajevima zaštitnih užeta onosno otpoi uzemljenja susjenih postojenja, ne uzimaju u obzi, taa je iz izaza za oeđivanje eukcijskog faktoa potebno izostaviti vijenost uz. Stuje inuciane u zaštitnim užetima popocionalne su s (1-), a zbog elativno velikog iznosa može se zaključiti a će nazemni voovi 110 kv imati manju elektomagnetsku spegu o kabela. euciana stuja za slučaj JKS u TS 110/10(20) kv Pimjenom eukcijskih faktoa iz pethone točke oeđuje se euciana stuja za slučaj JKS u TS 110/20 kv: I n i 1 3I i 0i 4

5 2. SUSTAV UEMLJENJA TS 110/10(20) kv Sustav uzemljenja TS 110/10(20) kv sastoji se o sljeećih elemenata: - uzemljivača same TS 110/10(20) kv; - bakene užai položene u kabelske tase (110 kv i 10(20) kv); - uzemljivača piključenih TS 10(20)/0,4 kv koji su vezani na osnovni uzemljivač TS 110/10(20) kv putem ekana kabela 10(20) kv. U aljnjem tekstu pikazat će se poačun impeancije uzemljenja svih naveenih elemenata, te ukupne impeancije sustava uzemljenja. 2.1 Uzemljivač postojenja TS 110/10(20) kv Uzemljivač naveenog postojenja najčešće je nepavilnog oblika, čija se povšina može ekvivalentiati povšinom kvaata. Otpo uzemljenja takve konfiguacije može se oeiti fomulom: ρ - specifični otpo tla; A - ekvivalentna stanica uzemljivača (m). TS 0, 50 ρ A 2.2. Uzemljivačka uža u tasi kabelskih voova U izlazne kabelske ovove obavezno se postavlja bakena uža, obično pesjeka Cu 50 mm 2. Kabeli 110 kv u obično izlaze iz stanice koz kabelski tunel, a ona se polažu u uobičajeni kabelski ov. Kabeli 10(20) kv takođe se izvoe ili koz katki kabelski tunel, ili se iektno azvoe u kabelskim ovovima pema meži senjeg napona. U kabelskim tunelima bakeno uže nije u izavnom kontaktu s tlom, zbog čega se povezuje s amatuom tunela. Impeancija uzemljenja ugačkog uzemljivačkog užeta oeđuje se pomoću fomule: uze z y gje su: z - uzužna impeancija Cu užeta (Ω/km) y - popečna voljivost Cu užeta (S/km). 5

6 Impeancija z ačuna se kao: z uze j X uze uze - jeinični jelatni otpo Cu užeta (Ω/km) x uze 93 0,1445 log a ρ a - polumje užeta (m) ρ - specifični otpo tla (Ωm). Popečna voljivost y ačuna se temeljem slijeećeg izaza: π y g ρ ln 10 3 l 2 h a h - ubina ukopavanja užeta (m); l - ganična užina nakon koje uzemljivač ne sujeluje u ovođenju stuje u zemlju (m). Ganična užina l oeđuje se posebnim iteativnim postupkom. Postupak kojim se oeđuje ganična užina za bakeno uže u kabelskoj tasi je sljeeći: Najpije se oei koeficijent α, pema: α e( z ) Nakon toga oee se koeficijenti A i B, pema sljeećim izazima: gje je: h ubina ukopavanja bakenog užeta (m), D vanjski pomje bakenog užeta (m). 1 A ln, h D 6

7 gje su: ρ - specifični otpo tla (Ωm), ε zahtjevana točnost poačuna (obično 0,05). ρ 1 B ln 2 α π ε 2 Potom je numeički, onosno iteativnim postupkom potebno potažiti ješenje sljeeće jenaže po nepoznanici l. 2 l B lnl A 2.3. Nazemni vo kao element sustava uzemljenja Otpo uzemljenja kojega čini nazemni vo sa svojim zaštitnim voičima te uzemljenjem alekovonih stupova moa se uzeti u obzi pilikom oeđivanja ukupnog otpoa uzemljenja u stanici 110/10(20) kv. Izazi za impeanciju uzemljenja nazemnog voa osta su složeni, međutim za slučaj ugih onosno katkih voova ti se izazi pojenostavljuj Obziom a će se najčešće aiti o ugim voovima onosno voovima s više o 5-10 aspona, pikazat će se postupak oeđivanja impeancije uzemljenja upavo za takve voove. Da bi sljeeći izazi bili pimjenjivi potebno je povjeiti a li je vo u kontekstu oeđivanja impeancije uzemljenja ugačak, onosno vijei li: 1, 5 n a gje n pestavlja boj aspona nakon kojega se vo može smatati ugim. Veličina a oeđuje se pema: a e 2 s s ( jx ) l 1 93,1 ρ x 0,1445 log 0, 016 μ a gje su: impeancija jenog aspona zaštinog užeta l 1 uljina jenog aspona jeinični jelatni otpo zaštitnog užeta 7

8 x jeinični inuktivni otpo zaštitnog užeta a vanjski aijus zaštitnog užeta Konačno, izaz za impeanciju uzemljenja nazemnog voa, pema pibližnoj elaciji koja vijei za uge voove, glasi: u 1 2 Ukoliko vo posjeuje va zaštitna užeta, jeinični jelatni otpo potebno je poijeliti sa va, a vanjski aijus zaštitnog užeta zamijeniti s vlastitim SGU za va zaštitna užeta na međusobnoj ualjenosti D, onosno: s a D s Uzemljenje senjenaponske istibucijske meže Iz TS 110/10(20) kv enegija se najčešće istibuia kabelima 10(20) kv, tipa XHE 49-A 3x1x150/25 (3x1x185/25) mm 2. Naveeni kabeli polažu se u jenožilnoj izvebi, a svaki voič ima ekan izveen o baka, pesjeka Cu 25 mm 2. Ekani se galvanski povezuju s uzemljivačem TS 110/10(20) kv te uzemljivačima TS 10(20)/0,4 kv. Otpo uzemljenja tansfomatoskih stanica 10(20)/0,4 kv bez utjecaja piključenih SN kabela i njihovog uzemljenja sačinjavaju: otpo aspostianja uzemljivača niskonaponskih stanica, eventualno otpo uzemljenja temelja i otpo uzemljenja pipane nuliane niskonaponske meže glean iz same tansfomatoske stanice. a gaske uvjete i tansfomatoske stanice 10(20)/0,4 kv može se uz ovoljnu sigunost pihvatiti vijenost o: NN 2 Ω. Uzužna impeancija sustava o 3 paalelno vezana ekana kabela 20 kv ačuna se kao: 3ek ek 93 ρ ( j 0,1445 log ) l 3 a ek - jelatni otpo jenog ekana (Ω/km) ρ - specifični otpo tla (Ωm) l - užina kabela (km) a sgu - senja geometijska ualjenost između 3 ekana (m) sgu a 3 2 sgu ek 8

9 - pomje jene žile kabela (m); ek - polumje peko jenog ekana kabela (m) Ukupna impeancija sustava uzemljenja Veoma je teško uzeti u obzi sve elemente sustava uzemljenja. To se naočito onosi na mežu senjeg napona, zbog izaženog međuutjecaja susjeno položenih kabela 10(20) kv, ali i susjenih meža niskog napona u sustavu uzemljenja. ato se aljnji poačun temelji na sljeećim petpostavkama: - uzimaju se u obzi 4 bakena užeta Cu 50 mm 2, koja se azilaze u kabelskim tasama 110 kv i 10(20) kv u azličitim smjeovima; - u obzi se uzimaju samo 4 kabela 10(20) kv, sa samo jenom piključnom TS 10(20)/0,4 kv. Gonji pistup je estiktivan, a poačun se ovoi na stanu sigunosti. Impeancija ukupnog sustava uzemljenja ačuna se kao: 1 e 1 TS n uze m SN k DV gje su: n boj bakene užai u ovovima VN i SN kabela m boj SN kabela čija se impeancija uzemljenja uzima u obzi k boj VN nazemnih voova čija se impeancija uzemljenja uzima u obzi Poačun utjecaja uzemljenja meža niskog napona koje su piključene na pipane TS 10(20)/0,4 kv vlo je teško egzaktno moeliati. ato se njihov utjecaj nastoji obuhvatiti apoksimativnim putem, ali tako a bue na stani sigunosti. Kajnje pojenostavljeni moel, koji petpostavlja a je na svakom kabelu 10(20) kv piključena samo jena tansfomatoska stanica poslužit će za oeđivanje otpoa SN kabela i pipanih NN meža. Dakako, u stvanosti je situacija povoljnija zbog većeg boja piključenih TS 10(20)/0,4 kv iako njihov opinos smanjenju ukupne impeancije ne može biti lineaan. Jasno, obiveni ezultat je na stani sigunosti. Ostale TS 10(20)/0,4 kv u aljnjem poačunu su zanemaene. Osim toga uzeta su u obzi samo 4 kabela koja se azilaze u azličitim smjeovima. 9

10 Pema tome, impeancija SN ačuna se kao: SN 3ek NN Konačno, potencijal uzemljivača TS 110/10(20) kv pilikom jenopolnog katkog spoja na stani 110 kv jenak je umnošku euciane stuje JKS i ukupne impeancije uzemljenja stanice 110/10(20 kv) i iznosi : ϕ I e 3. INESENI POTENCIJAL I NAPONI DODIA U DISTIBUCIJSKOJ MEŽI Pojavom jenopolnog kvaa u postojenju 110 kv olazi o pojave povišenog potencijala uzemljivača u onosu na efeentnu (aleku) zemlj Povišeni potencijal se putem ekana kabela 10(20) kv te ugih metalnih masa penosi u istibucijsku mežu, sve o kajnjih tošila. Pi tome je nužno a ezultiajući naponi oia ostanu u opuštenim ganicama koje ovise o tajanju kvaa, a što je u ovom slučaju oganičeno poaom zaštite sabinica. Pema važećim tehničkim popisima izvan postojenja naponi oia su oganičeni na vijenost: U 160 V. No, pema važećoj nomi HN 637 opušteni napon oia za t0,1 s iznosi: U 325 V. Napon oia u nekoj točki nalazi se u koelaciji s iznešenim potencijalom iz TS 110/10(20) kv: f - fakto kojim se obuhvaća izjenačenost potencijala (< 1); s - fakto kojim se obuhvaća utjecaj pijelaznog otpoa stajališta (> 1). U f s ϕ U gonjoj fomuli zanemaeno je pigušenje iznešenog potencijala iz TS 110/10(20) kv je je u blizini postojenja taj efekat neizvjestan. Time su poačuni oveeni na stanu sigunosti. Fakto f oeđuje se mjeenjima. 10

11 Kaakteistične vijenosti za fakto f su: OBJEKAT TS 10/0,4 kv 0,3 azvoni kabelski omai 0,4 kv 0,45 0,72 stupovi nazemne meže 0,4 kv 0,6 0,8 neuzemljeni stupovi javne asvjete 0,61 0,96 kabelske piključne kutije na ziovima zgaa 0,06 0,66 stambeni objekti - kuhinje 0,03 0,06 stambeni objekti - kupaonice 0,04 0,4 f Fakto s ačuna se kao: S 11,5 ρ s 10-3 ρ s - specifični otpo povšinskog sloja tla (Ωm). Pema elevantnoj liteatui, specifični otpo ρ s stajališta u kućanstvima u suhim uvjetima popima iznos veći o: ρ s 1000 Ωm. Pema tome za kućanstva se mogu izačunati slijeeće vijenosti faktoa f i s : f 0,4 s 11, ,5 (suhi uvjeti) s 1 (kupaonica, vlažni uvjeti). Najnepovoljniji naponi oia u kućanstvima taa iznose: - suhi uvjeti: U 0,16 ϕ - vlažni uvjeti: U 0,40 ϕ Što se tiče objekata na otvoenom postou, siguno je a neće biti poblema ako je stajalište asfaltiano ili pošljunčano (veoma veliki fakto s ). Opet, pema elevantnoj liteatui, asfalt ima paktički beskonačni specifični otpo tla. Pozonost teba obatiti samo na objekte ukoliko je stajalište zemlja, np. na stupove javne asvjete ukoliko oni nisu uzemljeni. 11

12 PILOG 1. Vijenosti specifičnog otpoa na kaakteističnim mjestima stajanja Neglačana hastovina u blizini aijatoa VSTA TLA suho tlo ρ S (Ωm) vlažno tlo 1850 U seini postoije 1110 kaj zia Hastovina glačana voskom nezavisno o mjesta stajanja Keamičke Pločice Cement Pločnik Teacolit Pokivač izna pločice u seini postoije 3560 kaj zia 500 o keamike, ispo umivaonika pješčanog kamena (ges), ispo umivaonika 1100 pješčanog kamena, u seini postoije u seini postoije 7550 na betonom na kamenom 5340 na mšavim betonom položenim peko pionog tla na amianim betonom o staklenih pločica metalno amianih staklenih pločica kamena, u seini postoije u seini postoije na temeljem 1060 kaj zia 1550 kaj aijatoa pohabani io kaj vlažnog zia šljunkom ili sitnim kamenom ebljine cm pionog tla 5200 Sloj asfalta ebljine 2-5 cm 12

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

p d R r E 1, ν 1 Slika 15. Stezni spoj glavčina-osovina (vratilo); puna osovina (slika a), šuplja osovina (slika b)

p d R r E 1, ν 1 Slika 15. Stezni spoj glavčina-osovina (vratilo); puna osovina (slika a), šuplja osovina (slika b) BLOSTJN POSU JV - STZN SPOJ STZN SPOJ zazi za naezanja i omake ko sastavljenih cijevi mogu se abiti ko oačuna steznog soja gje elementi soja mogu biti o istog ili o azličitih mateijala.. SPOJ OSOVN GLAVČN

Διαβάστε περισσότερα

σ (otvorena cijev). (34)

σ (otvorena cijev). (34) DBLOSTJN POSUD CIJVI - UNUTARNJI ILI VANJSKI TLAK 8 "Dobo je htjeti, ali teba i znati." Z. VNUČC, 9. NAPRZANJA I POMACI DBLOSTJN POSUD ILI CIJVI NASTAVAK. Debelostjena osa oteećena ntanjim tlaom Debelostjena

Διαβάστε περισσότερα

PROJEKTIRANJE ELEKTRIČNIH POSTROJENJA - IV

PROJEKTIRANJE ELEKTRIČNIH POSTROJENJA - IV PROJEKTIRANJE ELEKTRIČNIH POSTROJENJA - IV Doc.dr.sc. Srđan Žutobradić Hrvatska energetska regulatorna agencija (HERA) (Voditelj odjela za električnu energiju i obnovljive izvore) Mail: szutobradic@hera.hr

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Prosti cevovodi

MEHANIKA FLUIDA. Prosti cevovodi MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

TEKSTOVI ZADATAKA (2. kolokvijum) iz Elektromagnetike (studijski program EEN, 2012/1)

TEKSTOVI ZADATAKA (2. kolokvijum) iz Elektromagnetike (studijski program EEN, 2012/1) TEKSTOV ZADATAKA (2. kolokvijum) iz Elektomgnetike (stuijski pogm EEN, 22/). Oeiti silu koj eluje n tčksto opteećenje Q smešteno izn polusfeične povone izočine nultog potencijl. 2. Oeiti elimične kpcitivnosti

Διαβάστε περισσότερα

ELEKTROMAGNETSKE POJAVE

ELEKTROMAGNETSKE POJAVE ELEKTROMAGETSKE POJAVE ELEKTROMAGETSKA IDUKCIJA IDUKCIJA SJEČEJEM MAGETSKIH SILICA Pojava da se u vodiču pobuđuje ii inducia eektomotona sia ako ga siječemo magnetskim sinicama, zove se eektomagnetska

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Priveznice W re r R e o R p o e p S e l S ing n s

Priveznice W re r R e o R p o e p S e l S ing n s Priveznice Wire Rope Slings PRIVEZNICE OD ČEIČNO UŽEA (RAE) jenosruke SINE WIRE ROPE SINS Sanar EN P P P P P P P P P P P P ozvoljeno operećenje kg elemeni priveznice prekina jenokrako vešanje ) ouvaanje

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA

6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE 6. TEHNIČKE MJERE SIGURNOSTI U IZVEDBI ELEKTROENERGETSKIH VODOVA Doc. dr. sc. Vitomir Komen, dipl. ing. el. 1/14 SADRŽAJ: 6.1 Sigurnosni razmaci i sigurnosne visine

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Složeni cevovodi

MEHANIKA FLUIDA. Složeni cevovodi MEHANIKA FLUIDA Složeni cevovoi.zaata. Iz va velia otvorena rezervoara sa istim nivoima H=0 m ističe voa roz cevi I i II istih prečnia i užina: =00mm, l=5m i magisalni cevovo užine L=00m, prečnia D=50mm.

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

2, r. a : b = k i c : d = k, A 1 c 1 B 1

2, r. a : b = k i c : d = k, A 1 c 1 B 1 Zaatak 4 (Amia, gimnazija) Dvije jenake kuglice, svaka mase 3 mg, vise u zaku na tankim nitima uljine m Niti slobonim kajevima objesimo na istu točku i kuglice ostanu međusobno ualjene 75 cm Oeite naboj

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

NAPON KORAKA, NAPON DODIRA I POJAM IZNOŠENJA POTENCIJALA

NAPON KORAKA, NAPON DODIRA I POJAM IZNOŠENJA POTENCIJALA NAPON KOAKA, NAPON DODIA I POJAM IZNOŠENJA POTENCIJALA Osnovne definicije zemljenje - ostvarivanje vodljive veze između dijelova elektro-energetskih postrojenja i zemlje. zemljenje u postrojenju ima zadatak

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I . Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Sistem sučeljnih sila

Sistem sučeljnih sila Sistm sučljnih sila Gomtrijski i analitički način slaganja sila, projkcija sil na osu i na ravan, uslovi ravnotž Sistm sučljnih sila Za sistm sila s kaž da j sučljni ukoliko sil imaju zajdničku napadnu

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. ANALITIČA GEOMETRIJA PROSTORA II. DIO (Pv).. Min Roić Linović 9./. Pv u otou Jenž v Nek je: T (,, ) n točk oto {,, } ni vekto mje Znom točkom oto oli mo v leln nim vektoom. T (,,) - oivoljn točk v

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

POGON SA ASINHRONIM MOTOROM

POGON SA ASINHRONIM MOTOROM OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Kvalifikacijski test - praktični dio - α

Kvalifikacijski test - praktični dio - α Kvalifikacijski test - paktični io - α. Na fotogafiji Mjeseca oei ijaeta katea A (Agippa) koji se nalazi u blizini seišta Mjesečeve ploče. Fotogafija je sniljena kaa je Mjesec bio u eiijanu i načinjena

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

ILIŠTA U RIJECI Zavod za elektroenergetiku. Elektrostatika. Električni potencijal Električni napon. Osnove elektrotehnike I: Elektrostatika

ILIŠTA U RIJECI Zavod za elektroenergetiku. Elektrostatika. Električni potencijal Električni napon. Osnove elektrotehnike I: Elektrostatika TEHNIČKI FKULTET SVEUČILI ILIŠT U RIJECI Zavod za elektoenegetiku Studij: Peddiplomski stučni studij elektotehnike Kolegij: Osnove elektotehnike I Pedavač: v. ped. m.sc. anka Dobaš Elektostatika Elektični

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

H07V-u Instalacijski vodič 450/750 V

H07V-u Instalacijski vodič 450/750 V H07V-u Instalacijski vodič 450/750 V Vodič: Cu klase Izolacija: PVC H07V-U HD. S, IEC 7-5, VDE 08- P JUS N.C.00 450/750 V 500 V Minimalna temperatura polaganja +5 C Radna temperatura -40 C +70 C Maksimalna

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Opšte KROVNI POKRIVAČI I

Opšte KROVNI POKRIVAČI I 1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk

Διαβάστε περισσότερα

Uzemljenje TS i nadzemnih vodova

Uzemljenje TS i nadzemnih vodova Sistem uzemljenja TS dimenzioniše se prema toplotnim opterećenjima i naponima dodira koje prouzrokuje struja zemljospoja u režimima sa nesimetričnim kvarovima Distributivne mreže SN se uzemljuju preko

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα