1 Algoritmus spätného šírenia Back-Propagation
|
|
- Φίλητος Χαράλαμπος Κοτζιάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Pri práci s neurónovými sieťami sa budeme držať konvencie použitej v MAT- LABe, špeciálne v toolboxe pre neurónové siete: Vstupné vektory sú vždy stĺpcové. Aby sa dobre počítal potenciál neurónu, tak váhy synapsií vstupujúcich do neurónu sú uložené ako riadkový vektor. 1 Algoritmus spätného šírenia Back-Propagation Je daná vrstevnatá neurónová sieť s topológiou [2,2,1], tj. sieť má 2 vstupné neuróny, 2 skryté neuróny a jeden výstupný neurón. Synaptické váhy medzi vstupnou a skrytou vrstvou neurónov sú dané maticou: w_i_h = w_i_h(i,j) je váha spoja zo vstupu j do skrytého neurónu i. Tj. riadok váhovej matice zodpovedá vstupným váham jedného neurónu! Synaptické váhy medzi skrytou a výstupnou vrstvou neurónov sú dané maticou: w_h_o = w_h_o(1,i) je váha spoja zo skrytého neurónu i do výstupného neurónu. Prahy skrytých neurónov sú v matici: b_h = a prah výstupného neurónu je: b_o = Teda váhy zo vstupnej vrstvy do skrytej vrstvy s pridaným jednotkovým neurónom pre prah sú: >> w_i_hb=[w_i_h b_h] w_i_hb = Váhy zo skrytej vrstvy do výstupnej vrstvy s pridaným jednotkovým neurónom pre prah sú: >> w_h_ob=[w_h_o b_o] w_h_ob =
2 Úlohy: 1. Spočítajte výstup siete pre vzory p1=[-1; 1] a p2=[1; -1]. Pri výpočte v MATLABe môžete využiť funkciu logsig(x), ktorá počíta (logickú) sigmoidu 1 logsig(x) = 1 + e x. Jedná sa teda o sigmoidu so strmosťou Vzor p1=[-1; 1] je trénovací vzor, pre ktorý je požadovaný výstup 0.9. Aká je chyba siete pre tento vzor? Ako sa zmenia váhy siete pri vykonaní jedného kroku algoritmu spätného šírenia s parametrom učenia α = 0.2? 1.1 Učenie vrstevnatej siete algoritmom spätného šírenia v MATLABe Pozrite si stránky s nápovedou cez Help Neural Network Toolbox Backpropagation. Použitie vrstevnatých neurónových sietí sa skladá zo 4 krokov 1. Zostavenie trénovacích dát funkcie pre predspracovanie (normalizácia dát),... Vstupy i požadované výstupy sú stĺpcové vektory: p = [ ] t = [ ]; 2. Vytvorenie siete: príkaz newff má nasledujúce parametre: (a) Matica trénovacích vzorov. (b) Matica požadovaných výstupov. (c) riadkový vektor [i 1, i 2,..., i m ] popisujúci topológiu siete i j je počet neurónov v j-tej vrstve. Vstupná vrstva je 0-tá a jej veľkosť sa určí z prvého parametra. i m je počet neurónov v poslednej skrytej vrstve. Veľkosť výstupnej vrstvy sa určí z druhého parametra. (d) Zoznam mien prenosových funkcií použitých v jednotlivých vrstvách (skrytých a výstupnej). (e) Meno trénovacieho algoritmu. net=newff(p,t,[5],{ logsig, purelin }, trainlm ); Funkcia newff má v skutočnosti ešte viacej parametrov viz nápoveda k MATLABu. Tiež je možné vynechať implicitné hodnoty parametrov napríklad volanie newff(p,t,5) je ekvivalentné volaniu newff(p,t,5,{ tansig, purelin }, trainlm ). 2
3 Potom je možné nastaviť parametre siete, alebo nechať implicitné nastavenie: net.trainparam.lr = 0.05; net.trainparam.epochs = 300; net.trainparam.goal = 1e-5; Pri vytvorení je sieť automaticky inicializovaná. Už hotovú sieť je možné znova inicializovať volaním: net=init(net) Toto sa používa pri opakovanom učení siete. 3. Trénovanie siete. [net,tr]=train(net,p,t); Pred učením siete sa množina vzorov rozdelí na trénovaciu množinu, validačnú množinu a testovaciu množinu (implicitne v pomere 60%:20%:20%). Potom sa spustí učenie siete. Automaticky sa otvorí okno, kde sa zobrazuje priebeh učenia: 3
4 Učenie končí pri splnení niektorej z nasledujúcich podmienok: Bol dosiahnutý maximálny počet epoch implicitne Dá sa nastaviť pomocou net.trainparam.epochs = 300 Bola dosiahnutá chyba menšia než net.trainparam.goal implicitne 0. Gradient klesol pod net.trainparam.min_grad implicitne Chyba na validačnej množine vzrástla v net.trainparam.max_fail po sebe idúcich epochách (implicitne 6 krát). Čas učenia prekročil nastavenú dobu net.trainparam.time implicitne táto doba nie je obmedzená a tento parameter má hodnotu Inf. Niektoré algoritmy (napr. Levenberg-Marquardtov) majú ďalšie parametre, ktorých hraničná hodnota sa dá sledovať a použiť ako stopkritérium. Pri vyššie uvedenom spôsobe volania funkcie train je v druhom parametre tr vrátený výsledok učenia, z ktorého sa dá prečítať mnoho informácií o použitom algoritme, priebehu učenia a dosiahnutých výsledkoch: >> tr tr = trainfcn: trainlm trainparam: [1x1 struct] performfcn: mse performparam: [1x1 struct] dividefcn: dividerand divideparam: [1x1 struct] trainind: [ ] valind: [ ] testind: [ ] stop: Validation stop. num_epochs: 115 best_epoch: 109 goal: 0 states: {1x8 cell} epoch: [1x116 double] time: [1x116 double] perf: [1x116 double] vperf: [1x116 double] tperf: [1x116 double] mu: [1x116 double] gradient: [1x116 double] val_fail: [1x116 double] 4
5 Avšak tento druhý parameter sa pri volaní nemusí uvádzať a je možné používať iba volanie net1=train(net,p,t); V priebehu alebo po skončení učenia je možné sledovať vývoj chyby siete (tlačítko Performance ): a tiež stav učenia (tlačítko Training State ): Grafy regresnej analýzy naučenej siete dostaneme stlačením tlačítka Regression : 5
6 4. Vybavovanie siete simulácia siete na nových dátach. Funkcia sim(net1,p). Napríklad >> p = [1;2]; >> a = sim(net1,p) a = Transformácie dát Normalizácia hodnôt vektorov môže výrazne urýchliť učenie siete. V balíku na neurónové siete sú pre takého transformáie pripravené funkcie. Naviac mnoho modelov neurónových sietí v Toolboxe robí automatické predspracovanie vstupov. Napr. newff najprv nahradí chýbajúce hodnoty vstupov (NaN), vynechajú sa konštantné riadky a urobí sa min-max normalizácia na interval < 1, 1 >. Je to v parametroch siete net.inputs{1}.processfcns = { fixunknowns, removeconstantrows, mapminmax } net.outputs{2}.processfcns = { removeconstantrows, mapminmax }) 6
7 2.1 Min-max škálovanie na interval < 1, 1 > [pn,ps] = mapminmax(p); [tn,ts] = mapminmax(t); net = train(net,pn,tn); pn, resp. tn, sú transformované vstupné vzory, resp. požadované výstupy. ps, resp. ts, sú parametre príslušných transformácií, ktoré sa využijú pri spätnej transformácii. Keď takto naučenú sieť aplikujeme, tak jej výstup musíme patrične transformovať an = sim(net,pn); a = mapminmax( reverse,an,ts); Ak chceme použiť tú istú transformáciu na nové dáta pnewn = mapminmax( apply,pnew,ps); anewn = sim(net,pnewn); anew = mapminmax( reverse,anewn,ts); 2.2 Škálovanie podľa priemeru a štandardnej odchýlky Funkcie [pn,ps] = mapstd(p); [tn,ts] = mapstd(t); an = sim(net,pn); a = mapstd( reverse,an,ts); pnewn = mapstd( apply,pnew,ps); anewn = sim(net,pnewn); anew = mapstd( reverse,anewn,ts); 2.3 Principal Component Analysis Najprv je treba dáta normalizovať tak, aby mali strednú hodnotu 0 a rozptyl 1. Potom môžeme urobiť PCA analýzu. [pn,ps1] = mapstd(p); [ptrans,ps2] = processpca(pn,0.02); Pri vyššie uvedenej transformácii sa vynechajú zložky, ktoré prispievajú menej než 2% k celkovému rozptylu. Ak chceme túto transformáciu použiť na nových údajoch 7
8 pnewn = mapstd( apply,pnew,ps1); pnewtrans = processpca( apply,pnewn,ps2); a = sim(net,pnewtrans); Úloha: Súbor obsahuje dve matice. Matica p sú vzory a matica (riadkový vektor) t sú požadované výstupy. (Do MATLABu sa načítajú príkazom load dataset1.) 1. Vyberte z tejto trénovacej množiny polovicu vzorov a použite ich ako trénovaciu množinu pre naučenie vrstevnatej neurónovej siete. 2. Pomocou nftool naučte neurónovú sieť aproximaovať funkciu podľa vzorov z p a t. 3. Pomocou nntool naučte neurónovú sieť s dvomi skrytými vrstvami aproximaovať funkciu podľa vzorov z p a t. Vyskúšajte rôzne učiace algoritmy traingd, traingdm, trainbr,... 8
1 Neurónové siete. 1.1 Perceptrón
1 Neurónové siete Pri práci s neurónovými sie ami sa budeme drºa konvencie pouºitej v MAT- LABe, ²peciálne v toolboxe pre neurónové siete: Vstupné vektory sú vºdy st pcové. Aby sa dobre po ítal potenciál
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
1.1 Min-max normalizácia na interval < A, B >
1 Normalizácia dát Máme vstupné dáta X = {x 1, x 2,..., x N }. 1.1 Min-max normalizácia na interval < A, B > Napíšte funkciu mmscale(x), ktorá transformuje vektor x tak, že jeho zložky lineárne namapuje
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27
AerobTec Altis Micro
AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných
Neurónové siete Inžiniersky prístup (1. diel)
Neurónové siete Inžiniersky prístup (1. diel) Peter Sinčák Katedra kybernetiky a umelej inteligencie Elektrotechnická fakulta Technická Univerzita Košice e-mail: sincak@ccsun.tuke.sk & Gabriela Andrejková
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017
Kompilátory Cvičenie 6: LLVM Peter Kostolányi 21. novembra 2017 LLVM V podstate sada nástrojov pre tvorbu kompilátorov LLVM V podstate sada nástrojov pre tvorbu kompilátorov Pôvodne Low Level Virtual Machine
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
Backpropagation Multilayer Feedforward Δίκτυα. Κυριακίδης Ιωάννης 2013
Backpropagation Multilayer Feedforward Δίκτυα Κυριακίδης Ιωάννης 2013 Εισαγωγή Τα νευρωνικά δίκτυα Perceptron που εξετάσαμε μέχρι τώρα είχαν το μειονέκτημα ότι δεν μπορούσαν να αντιμετωπίσουν προβλήματα
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.
Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
8. prednáška Logické neuróny a neurónové siete
8. prednáška Logické neuróny a neurónové siete Priesvitka Logické neuróny McCullocha a Pittsa Logické neuróny a neurónové siete boli prvý krát študované v publikácii Warrena McCullocha a Waltera Pittsa
1. prednáška Logické neuróny a neurónové siete
. prednáška Logické neuróny a neurónové siete priesvitka: Mozog a neurónové siete Metafora ľudského mozgu hrá dôležitú úlohu v modernej informatike. Pomocou tejto metafory boli navrhnuté nové paralelné
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť
Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
Reálna funkcia reálnej premennej
(ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH
6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet
2 Chyby a neistoty merania, zápis výsledku merania
2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné
M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie"
M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie" Úlohy: 1. Zostavte matematický popis modelu M8 2. Vytvorte simulačný model v prostredí: a) Simulink zostavte blokovú schému, pomocou rozkladu
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
Α. ΤΕΙ ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής και Πολυµέσων Εργαστήριο Νευρωνικών Δικτύων
Α. ΤΕΙ ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής και Πολυµέσων Εργαστήριο Νευρωνικών Δικτύων 5 BACKPROPAGATION MULTILAYER FEEDFORWARD ΔΙΚΤΥΑ Α. ΕΙΣΑΓΩΓΗ Τα νευρωνικά δίκτυα που εξετάσαµε µέχρι τώρα είχαν
Transformátory 1. Obr. 1 Dvojvinuťový transformátor. Na Obr. 1 je naznačený rez dvojvinuťovým transformátorom, pre ktorý platia rovnice:
Transformátory 1 TRANSFORÁTORY Obr. 1 Dvojvinuťový transformátor Na Obr. 1 je naznačený rez dvojvinuťovým transformátorom, pre ktorý platia rovnice: u d dt Φ Φ N i R d = Φ Φ N i R (1) dt 1 = ( 0+ 1) 1+
Υπολογιστική Νοημοσύνη. Μάθημα 9: Γενίκευση
Υπολογιστική Νοημοσύνη Μάθημα 9: Γενίκευση Υπερπροσαρμογή (Overfitting) Ένα από τα βασικά προβλήματα που μπορεί να εμφανιστεί κατά την εκπαίδευση νευρωνικών δικτύων είναι αυτό της υπερβολικής εκπαίδευσης.
UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia
Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523
Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,
Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne
Primjena neuronskih mreža
INTELIGENTNO UPRAVLJANJE Primjena neuronskih mreža Vanr. Prof.dr. Lejla Banjanovic-Mehmedovic Neural Networks in Matlab net = newff(minmax(d), [h o], {'tansig', 'tansig'}, 'traincgf'); net = train(net,
8. TRANSFORMÁCIA SÚRADNÍC
8. TRANSFORMÁCIA SÚRADNÍC V geodetickej pra je častou úlohou zmeniť súradnice bodov bez toho aby sa zmenila ich poloha na zemskom povrchu. Zmenu súradníc označujeme pojmom transformácia. Transformácia
Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014
Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/52 Metódy minimalizácie funkcie jednej premennej Metódy minimalizácie funkcie jednej premennej p. 2/52 Metódy minimalizácie funkcie jednej
Základy metodológie vedy I. 9. prednáška
Základy metodológie vedy I. 9. prednáška Triedenie dát: Triedny znak - x i Absolútna početnosť n i (súčet všetkých absolútnych početností sa rovná rozsahu súboru n) ni fi = Relatívna početnosť fi n (relatívna
Zadanie pre vypracovanie technickej a cenovej ponuky pre modul technológie úpravy zemného plynu
Kontajnerová mobilná jednotka pre testovanie ložísk zemného plynu Zadanie pre vypracovanie technickej a cenovej ponuky pre modul technológie úpravy zemného plynu 1 Obsah Úvod... 3 1. Modul sušenia plynu...
Vlastnosti regulátorov pri spätnoväzbovom riadení procesov
Kapitola 8 Vlastnosti regulátorov pri spätnoväzbovom riadení procesov Cieľom cvičenia je sledovať vplyv P, I a D zložky PID regulátora na dynamické vlastnosti uzavretého regulačného obvodu (URO). 8. Prehľad
Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.
Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií
Ρεφανίδης Γιάννης. Οκτώβριος 2011. http://users.uom.gr/~yrefanid/courses/neuralnetworks/
Νευρωνικά Δίκτυα Ρεφανίδης Γιάννης Οκτώβριος 2011 Γενικά Σελίδα μαθήματος: http://users.uom.gr/~yrefanid/courses/neuralnetworks/ Συγγράμματα: Πανεπιστημιακές παραδόσεις για Νευρωνικά Δίκτυα και Εξελικτικούς
Meranie na jednofázovom transformátore
Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................
Tutoriál3 : Využitie grafických možností jazyka Matlab
NÁPLŇ 1. ÚVOD DO PRÁCE S GRAFIKOU 2. 2D GRAFIKA 3. 3D GRAFIKA 4. PRÍKLADY NA SAMOSTATNÉ RIEŠENIE 1 Matlab ponúka rýchlu a kvalitnú reprezentáciu funkcií vo forme grafov. Disponuje pokročilou grafikou v
Základy matematickej štatistiky
1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY
UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MINIMAXNÉ OPTIMÁLNE NÁVRHY REGRESNÝCH EXPERIMENTOV DIPLOMOVÁ PRÁCA 2014 Bc. Gabriel GROMAN UNIVERZITA KOMENSKÉHO V BRATISLAVE
FUNKCIE N REÁLNYCH PREMENNÝCH
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE
Hydromechanika II. Viskózna kvapalina Povrchové napätie Kapilárne javy. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013)
Hyomechanika II Viskózna kvaaina Povchové naäie Kaiáne javy Donkové maeiáy k enáškam z yziky I e E Dušan PUDIŠ (013 Lamináne vs. Tubuenné úenie Pi úení eánej kvaainy ôsobia mezi voma susenými vsvami i
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP
Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP 7 Obsah Analýza poruchových stavov pri skrate na sekundárnej strane transformátora... Nastavenie parametrov prvkov
Numerické metódy matematiky I
Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený
BANACHOVE A HILBERTOVE PRIESTORY
BANACHOVE A HILBERTOVE PRIESTORY 1. ZÁKLADNÉ POJMY Normovaným lineárnym priestorom (NLP) nazývame lineárny (= vektorový) priestor X nad telesom IK, na ktorom je daná nezáporná reálna funkcia : X IR + (norma)
CHÉMIA Ing. Iveta Bruončová
Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov
Motivácia na zlepšenie obrazu sa používajú frekvenčné metódy a priestorové metódy.
OBRAZOVÉ TRANSFORMÁCIE Motivácia na zlepšenie obrazu sa používajú frekvenčné metódy a priestorové metódy. Fourierova transformácia Jednorozmerný spojitý prípad Nech f(x je spojitá funkcia reálnej premennej
Obyčajné diferenciálne rovnice
(ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
Δίκτυα Perceptron. Κυριακίδης Ιωάννης 2013
Δίκτυα Perceptron Κυριακίδης Ιωάννης 2013 Αρχιτεκτονική του δικτύου Το δίκτυο Perceptron είναι το πρώτο νευρωνικό δίκτυο το οποίο θα κατασκευάσουμε και στη συνέχεια θα εκπαιδεύσουμε προκειμένου να το χρησιμοποιήσουμε
Metódy numerickej matematiky I
Úvodná prednáška Metódy numerickej matematiky I Prednášky: Doc. Mgr. Jozef Kristek, PhD. F1-207 Úvodná prednáška OBSAH 1. Úvod, sylabus, priebeh, hodnotenie 2. Zdroje a typy chýb 3. Definície chýb 4. Zaokrúhľovanie,
Úvod do lineárnej algebry
Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.
Kódovanie a dekódovanie
Kódovanie a deovanie 1 Je daná množina B={0,1,2} Zostrojte množinu B* všetkých možných slov dĺžky dva 2 Je daná zdrojová abeceda A={α,β,ϕ,τ} Navrhnite príklady aspoň dvoch prostých ovaní týchto zdrojových
1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17
Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy
Číselné charakteristiky náhodných vektorov Regresná priamka
Číselné charakteristiky náhodných vektorov Regresná priamka I. Jednoduchá dvojica dátových súborov a) Nech vektor x predstavuje určité kontrolné body a vektor y hodnoty namerané v týchto bodoch. To znamená,
Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S
1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3
Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 3 1.3 Základné označenia................................. 3 2 Množiny a zobrazenia
Nelineárne optimalizačné modely a metódy
Nelineárne optimalizačné modely a metódy Téma prednášky č. 8 Metódy transformujúce úlohu naviazaný extrém na úlohu na voľný extrém Prof. Ing. Michal Fendek, CSc. Katedra operačného výskumu a ekonometrie
REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických
REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu
Podmienenost problému a stabilita algoritmu
Podmienenost problému a stabilita algoritmu Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Podmienenost a stabilita 1/19 Obsah 1 Vektorové a
Inteligentný elektronický Solárny regulátor pre ohrev TUV SR868C8. Návod na použitie
Inteligentný elektronický Solárny regulátor pre ohrev TUV SR868C8 Návod na použitie 1, Zobrazovacia jednotka display: Číslo Tlačítko na panely Popis tlačítka 1 Zelená kontrolka Kontrolka siete 2 Zapnuté/
18. kapitola. Ako navariť z vody
18. kapitola Ako navariť z vody Slovným spojením navariť z vody sa zvyknú myslieť dve rôzne veci. Buď to, že niekto niečo tvrdí, ale nevie to poriadne vyargumentovať, alebo to, že niekto začal s málom
9. kapitola Boolove funkcie a logické obvody
9. kapitola Boolove funkcie a logické obvody Priesvitka 1 Boolova algebra Elektronické obvody v počítačoch a v podobných zariadeniach sú charakterizované binárnymi vstupmi a výstupmi (rovnajúcimi sa 0
2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin
2. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Verzia: 27. 9. 2009 Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi