8. prednáška Logické neuróny a neurónové siete

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "8. prednáška Logické neuróny a neurónové siete"

Transcript

1 8. prednáška Logické neuróny a neurónové siete Priesvitka

2 Logické neuróny McCullocha a Pittsa Logické neuróny a neurónové siete boli prvý krát študované v publikácii Warrena McCullocha a Waltera Pittsa A logical calculus of the ideas immanent to nervous activity" z r. 943, ktorá je medzníkom v rozvoji metafory konekcionizmuv umelej inteligencii a kognitívnej vedy. V tejto práci bolo s geniálnou jasnozrivosťou ukázané, že neurónové siete sú efektívnym výpočtovým prostriedkom v doméne Boolových funkcií, t. j. ľubovolná Boolova funkcia je simulovaná pomocou neurónovej sieti obsahujúcej logické neuróny. Hneď úvodom je potrebné konštatovať, že táto práca McCullocha a Pittsa je veľmi ťažko čitateľná, matematicko-logická časť práce zrejme bola písaná Walterom Pittsom, ktorý bol tak v logike ako aj v matematika autodidaktom. Až zásluhou amerických vedcov, logika S. C. Kleeneho a informatika N. Minskeho, táto významná práca bola preložená v druhej polovici 50. rokov minulého storočia do štandardného jazyka súčasnej logiky a matematiky, čím sa stali myšlienky v nej obsiahnuté všeobecne prístupnými a akceptovanými. Priesvitka 2

3 Warren McCulloch ( ) a Walter Pitts ( ) Priesvitka 3

4 Elementárnou jednotkou neurónových sietí je logický neurón McCullocha a Pittsa (výpočtová jednotka), pričom stav neurónu je binárny (t. j. má dva stavy, alebo 0). Takýto logický neurón možno interpretovať ako jednoduché elektrické zariadenie - relé. Predpokladajme, že dendritický systém logického neurónu obsahuje tak excitačné vstupy (opísané binárnymi premennými x, x 2,..., x n, ktoré zosilňujú odozvu), ako aj inhibičné vstupy (opísané binárnymi premennými x n+, x n+2,..., x m, ktoré zoslabujú odozvu) exitačné vstupy soma neurónu x x n x n+ x m ϑ y axón - výstup dendritický vstupn ý systém inhibičné vstupy Priesvitka 4

5 Aktivita logického neurónu je jednotková, ak vnútorný potenciál neurónu definovaný ako rozdiel medzi sumou excitačných vstupných aktivít a inhibičných vstupných aktivít je väčší alebo rovný prahu ϑ, v opačnom prípade je nulová ( x xn x + n... xm ϑ) y = 0 ( x xn x + n... xm < ϑ) Pomocou jednoduchej krokovej funkcie ( pre ξ 0) s( ξ ) = 0 ( pre ξ< 0) môžeme aktivitu y vyjadriť takto: y = s x xn x + n... x m +ϑ ξ Priesvitka 5

6 Tento vzťah pre aktivitu logického neurónu môžeme alternatívne interpretovať tak, že excitačné aktivity vstupujú do neurónu cez spoje, ktoré sú ohodnotené jednotkovým váhovým koeficientom (w = ), zatiaľ čo inhibičné aktivity vstupujú do neurónu cez spoje so záporným jednotkovým váhovým koeficientom (w = -). Potom aktivitu logického neurónu môžeme vyjadriť takto m y = s wx wmxm +ϑ = s wixi +ϑ i= ξ Kde váhové koeficienty w ij sú definované takto ( spoj j i má exitačný charakter) wij = ( spoj j i má inhibičný charakter) 0 ( spoj j i neexistuje) V neurónovej sieti váhové koeficienty sú fixne a sú určené topológiou syntaktického stromu špecifikujúceho Boolovu funkciu. Priesvitka 6

7 E. D. Adrian ( ) Britský elektrofyziológ, laureát Nobelovej ceny za fyziológiu. Formuloval experimentálne evidentnosti pre neurovedný zákon všetko alebo nič, ktorý špecifikuje aktivitu neurónov ľudského mozgu. Culoch a Pitts poznali experimentálne práce Adriana o správaní neurónu all or none, táto vlastnosť má centrálne postavenie v ich prístupe. Priesvitka 7

8 Implementácia elementárnych Boolovych funkcií x... x y y y... n 0 x n x 2 x n x x 0 y Boolova funkcia disjunkcie Boolova funkcia konjunkcie Boolova funkcia implikácie y = x... x n y = x... x n y = x x 2 Boolova funkcia negácie y = x Štyri realizácie logických neurónov na implementáciu Boolových funkcií disjunkcií, konjunkcií a negácie. Excitačné spoje sú znázornené plným krúžkom, inhibičné prázdnym krúžkom. Priesvitka 8

9 Ako príklad uvedenie formulu pre aktivitu logického neurónu, ktorý špecifikuje disjunkciu yor ( x,x2) = s( x + x2 ) Funkčné hodnoty tejto Boolovej funkcie sú ukázané v tabuľke Binárna Boolova funkcia disjunkcie # x x 2 y OR (x,x 2 ) x x s(-) s(0) 3 0 s(0) 4 s() Z tabuľky vyplýva, že Boolova funkcia y OR simuluje Boolovu funkciu disjunkcie. Podobným spôsobom môžeme verifikovať ak ostatné elementárne boolove funkcie yand ( x,x2) = s( x + x2 2) yimp ( x,x 2) = s( x + x2) y x = s x NEG ( ) ( ) Priesvitka 9

10 Neurónové siete Každá Boolova funkcia je reprezentovaná pomocou syntaktického stromu, ktrorý reprezentuje jej rekurentnú výstavbu (zdola nahor) inicializovanú Boolovými premennými a končiacu danou Boolovou funkciou (funkciou výrokovej logiky) p q p q p q p syntaktický strom A neurónová sieť Neurónová sieť obsahujúca logické neuróny spojok, ktoré sa vyskytujú v príslušnom syntaktickom strome. Vidíme, že medzi syntaktickým stromom a príslušnou neurónovou sieťou existuje veľmi tesná previazanosť, ich topológia je identická, odlišujú sa len vo vrcholoch. Obrazne môžeme povedať, že neurónovú sieť pre Boolovu funkciu ϕ zostrojíme pomocou jej syntaktického stromu tak, že vrcholy zo syntaktického stromu, ktoré reprezentujú logické spojky, nahradíme príslušnými logickými neurónmi, koreň syntaktického stromu je zamenený. B q Priesvitka 0

11 Veta. Každá Boolova funkcia môže byť vyjadrená pomocou neurónovej siete zloženej z logických neurónov vyjadrujúcich logické spojky. Použitie techniky váhových koeficientov umožňuje formálne zjednodušiť teóriu logických neurónov, potom nie je potrebné a-priori odlišovať excitačné a inhibičné vstupy do neurónu xi = t wijxj +ϑi j kde sumácia prebieha nad všetkými neurónmi, ktoré v neurónovej sieti predchádzajú i-ty neurón. Váhové koeficienty w ij sú definované takto ( spoj j i má exitačný charakter ) wij = ( spoj j i má inhibičný charakter ) 0 ( spoj j i neexistuje) To znamená, že v neurónovej sieti váhové koeficienty sú fixné a sú určené topológiou syntaktického stromu špecifikujúceho Boolovu funkciu. Priesvitka

12 3-vrstvová neurónová sieť Architektúra neurónovej siete, ktorá je zostrojená pre danú Boolovu funkciu môže byť podstatne zjednodušená na tzv. 3-vrstvovú neurónovú sieť, t. j. obsahuje vrstvu vstupných neurónov (ktoré len kopírujú vstupné aktivity, nie sú výpočtovými jednotkami), vrstva skrytých neurónov a posledná vrstva obsahujúca výstupný neurón. Logický neurón, ktorý simuluje konjunktívnu klauzulu, ktorá obsahuje konjunkciu konečného prvku výrokových premenných alebo ich negácií, y = x... x x... x. n n+ m Priesvitka 2

13 Táto Boolova funkcia sa rovná len pre x =... = x n = a x = n... = + x = m 0, vo všetkých ostatných pravdivostných kombináciách argumentov jej hodnota je 0 (nepravdivý výrok) ( pre τ =τ0) valτ ( x... xn x n+... xm) = 0 ( pre τ τ0) kde τ 0 = ( x,...,x n,x n+ 0,...,xm 0) je špecifikácia pravdivostných hodnôt premenných. Ľahko sa presvedčíme o tom, že táto klauzula je simulovaná logickým neurónom znázorneným na obrázku, jeho výstupná aktivita je určená formulou y = s( x xn x n+... xm n) Funkčná hodnota tejto funkcie sa rovná vtedy, ak x x x... x n n n+ m Priesvitka 3

14 McCulloch a Pitts taktiež ukázali, že všeobecná neurónová sieť, ktorá je pšecifikovaná syntaktickým stromom, môže byť zjednodušená na 3-vrstvovú neurónovú sieť, ktorá je priradená ekvivalentnou DNF funkciou ( τ) ( τ) ( τ) ϕ = x x... x DNF ( val ( ϕ= ) ) τ τ 2 Kde uvažujeme len členy s jednotkovou funkčnou hodnotou n skryté neuróny vstupné neuróny vstupný neurón... kde skryté neuróny sú priradené konjunktívnzm klauzulám s jednotkovou funkčnou hodnotou. Priesvitka 4

15 Príklad Boolova funkcia je yadaná tabuľkou = 2 3 klauzula x x2 x3 4 0 x x2 x x x2 x # x x 2 x 3 y f ( x,x,x) Potom Boolova funkcia má tento DNF tvar y= f x,x,x = x x x x x x x x x ( ) ( ) ( ) ( ) Priesvitka 5

16 Táto Boolova funkcia môže byť zjednodušená tak, že prvá a druhá klauzula sa zjednodušia ( x x2 x3) ( x x2 x3) = x x2 ( x3 x3) = x x2 Potom ( ) ( ) ( ) y = f x,x,x = x x x x x opt x x x 2 2 y x 2 2 y x 3 2 štandardná neurónová sieť x 3 optimálna neurónová sieť Priesvitka 6

17 Všeobecný tvar 3-vrstvovej neurónovej siete skryté neuróny vstupné neuróny vstupný neurón... 3-vrstvové neurónové siete obsahujúce logické neuróny sú univerzálne výpočtové zariadenia pre doménu Boolových funkcií. Tento výsledok predznačil moderný výsledok neurónových sietí z prelomu 80. a 90. rokov minulého storočia, podľa ktorého trojvrstvové dopredné neurónové siete so spojitou aktivačnou funkciou majú vlastnosť univerzálneho aproximátora Veta. Ľubovoľná Boolova funkcia f je simulovaná pomocou 3-vrstvovej neurónovej siete. Priesvitka 7

18 Môžeme si položiť otázku, aké Boolove funkcie je schopný vyjadriť jeden logický neurón? Výpočtová funkcia logického neurónu rozdeľuje priestor vstupov na dva polpriestory pomocou roviny w x + w 2 x w n x n = ϑ, pre koeficienty w i =0,±. Hovoríme, že Boolova funkcia f(x, x 2,..., x n ) je lineárne separovateľná, ak existuje taká rovina w x + w 2 x w n x n = ϑ, ktorá separuje priestor vstupných aktivít tak, že v jednej časti priestoru sú vrcholy ohodnotené 0, zatiaľ čo v druhej časti priestoru sú vrcholy ohodnotené x 2 objekty ohodnotené objekty ohodnotené 0 nadrovina x Priesvitka 8

19 Veta 8.3. Logický neurón je schopný simulovať Boolove funkcie, ktoré sú lineárne separovateľné. Klasický príklad Boolovej funkcie, ktorá nie je lineárne separovateľná, je výroková spojka exkluzívna disjunkcia (XOR), ktorá je formálne definovaná ako negácia ekvivalencie ( x y) ( x y), potom ϕ XOR ( x,y ) = x y. # x y ϕ XOR (x,y) x 2 0 x Ak si jej funkčné hodnoty vynesieme do stavového priestoru x - y dostaneme diagram, z ktorého jasne vyplýva, že táto funkcia nie je lineárne separovateľná. Priesvitka 9

20 Zostrojíme neurónovú sieť, ktorá simuluje túto elementárnu lineárne neseparovateľnú funkciu XOR v tvare DNF # x y ϕ XOR (x,y) x x x x 2 2 x x x y (0) y (0) x 2 A x 2 B Diagram C reprezentuje 3-vrstvovú neurónovú sieť, ktorá ako skryté neuróny obsahuje neuróny z diagramu A a B, výstupný neurón reprezentuje disjunkciu výstupných aktivít zo skrytých neurónov. x 2 C y XOR Priesvitka 20

21 Príklad Zostrojme neurónovú sieť, ktorá simuluje sčítanie dvoch binárnych číslic (nazývana polosumátor semi adder) α α2 ββ 2 kde jednotlivé binárne premenné výsledku sumy sú určené takto: β =α α 2 β 2 =α α 2 α α ( 2) α α ( 2) Príslušná neurónová sieť je znázornená na obrázku 8.0. Priesvitka 2

22 Príklad polosumátora môžeme ľahko zovšeobecniť na plný sumátor (full adder) α α2 α3 ββ 2 Ktorý je špecifikovaný tabuľkou # α α 2 α 3 β β β =ααα 2 3 +ααα 2 3 +ααα 2 3 +ααα 2 3 β =ααα +ααα +ααα +ααα Priesvitka 22

23 3-vrstvová neurónová sieť pre plný sumátor α α 2 β α 3 α α 2 β 2 α 3 Priesvitka 23

24 Logický neurón vyššieho rádu Logické neuróny sú schopné korektne klasifikovať len lineárne separovateľné Boolove funkcie. Toto podstatné obmedzenie logických neurónov môže byť odstránené pomocou logických neurónov vyšších rádov, ktorých aktivita je určená yahrnutím členov vyšších rádov n n y = s wx i i + wijxx i j ϑ i= i,j= ( i< j) ξ Ak potenciál neurónu ξ obsahuje aj kvadratické a prípadne aj ďalšie členy, potom sa nazýva "logický neurón vyššieho rádu". Podľa Minského a Paperta platí nasledujúca veta, ktorá hovorí o tom, že perceptróny vyššieho rádu sú schopné simulovať aj množiny objektov, ktoré nie sú lineárne separovateľné. Veta. Ľubovolná Boolova funkcia f je simulovaná logickým neurónom vyššieho rádu. Priesvitka 24

25 Príklad Ako ilustračný príklad vety študujme Boolovu funkciu XOR, ktorá nie je lineárne separovateľná a ktorej funkčné hodnoty sú uvedené v tabuľke 4.. Nech aktivita logického neurónu je určená pomocou kvadratického potenciálu (čiže sa jedná o logicky neurón druhého rádu) y = s wx + w2x2+ w2xx 2 ϑ ξ Pre jednotlivé riadky tabuľky 2.3 funkcie XOR platí ϑ< 0 w2 ϑ 0 w ϑ 0 w + w2 + w2 ϑ< 0 Postupným riešením týchto nerovníc dostaneme, že váhové koeficienty a prah majú napr. takéto riešenie ϑ =,w = w =,w = 2 (8.7) 2 2 Priesvitka 25

26 x x x 2 xx 2 y= x x 2 x 2 2 xx 2 y= x x 2 A B Znázornenie logického neurónu druhého rádu simulujúceho funkciu XOR, kde excitačné vstupné aktivity sú binárne premenné x a x 2, inhibičná aktivita je priradená premennej druhého rádu x x 2. Výstupná aktivita z je určená pomocou krokovej funkcie, z= s( x+ x2 2xx2 ), priamou verifikáciou sa presvedčíme, že simuluje funkciu XOR. Priesvitka 26

27 Pojem lineárnej separovateľnosti Boolových funkcií je ľahko zovšeobecniteľný na kvadratickú (kubickú, ) separovateľnosť pomocou kvadratickej (kubickej, ) nadplochy. Definícia. Boolova funkcia f sa nazýva kvadraticky separovateľná, ak existujú také váhové koeficienty w i, w ij a prahový faktor ϑ, že pre každú špecifikáciu premenných x,x,...,x platí 2 n ( ) y x,x,...,x = w x + w x x ϑ req 2 n i i ij i j i= i,j= ( ) ( i< j) y x,x,...,x = 0 w x + w x x <ϑ req 2 n i i ij i j i= i,j= n n n n ( i< j) Priesvitka 27

28 Konštrukcia binárnych obvodov Logické neuróny môžu byť použité na konštrukciu jednoduchých binárnych obvodov [4,7], ich kombináciou môžeme zostrojiť už zložité zariadenia, akými sú napr. rôzne sčítačky, násobičky a podobne. Časový posunovač Časový posunovač je taký binárny obvod, ktorý posunie tok signálu o niekoľko vopred zvolených jednotiek. Študujme jednoduchý obvod Δt= Δt=2 Δt=3 x y x y x y A B ktorý realizuje posun o predpísaný počet jednotiek. C Priesvitka 28

29 Aktivitu neurónu v čase t môžeme vyjadriť takto ( t) ( t ) y = t x ( ) Vstupný signál v čase t sa transformuje na výstupný signál v čase t+ () t ( t+ ) ( t) ( t+ ) x = 0 y = t = 0,x = y = t 0 = ( ) Vstupná a výstupná sekvencia pre jednotkový časový posunovač čas vstup x výstup y # Sériovým zapojením jednotkových posunovačov dostaneme posunovače o dve, tri,.. časové jednotky, pozri diagramy B a C. ( ) Priesvitka 29

30 Riadený prepínač Riadený prepínač pomocou riadiaceho signálu zapína alebo vypína tok signálu. Tak ak v excitačnom riadenom prepínači je riadiaci signál jednotkový, potom prepínač prepúšťa signál na výstup prepínača. V alternatívnom prípade, pre inhibične riadený prepínač, nulový riadiaci signál spôsobuje prenos signálu na výstup. Tieto dva prepínače sú znázornené na obr Excitačný riadený prepínač Inhibičný riadený prepínač x 2 y x y x 2 2 y 2 x 2 y 2 x 3 2 y 3 x 3 y 3 riadiaci signál riadiaci signál Kombináciou excitačného a inhibičného prepínača zostrojíme riadené rozdvojovacie zariadenie. Priesvitka 30

31 Neurónová sieť riadeného rozdvojovacieho zariadenia x y 2 y 2 y 3 vstup ý vstup x 2 2 x 3 y y 2 vstup ý 2 y 3 riadiaci signál Ak riadiaci signál je jednotkový (nulový), potom vstup je riadený na. výstup (2.výstup). Obrazne môžeme povedať, že riadiaci signál pôsobí ako prepínač do. alebo 2. polohy. Priesvitka 3

32 Binárny paralelný dekodér Budeme študovať paraleny dekodér pre tri binárne číslice. Predpokladáme, že informácia do dekodéra prichádza prostredníctvom impulzov cez tri paralelne vlákna, pozri obr Dekóder obsahuje osem nezávislých elementov neurónov, z ktorých každý dekóduje jednu možnú binárnu kombináciu prichádzajúcich signálov. vstupný signál Priesvitka 32

33 Všeobecná diskusia k neurónovým sieťam Neurónové siete zložené z logických neurónov sú univerzálnym aproximátorom Boolových funkcií (t. j. každá Boolova funkcia môže byť ňou reprezentovaná). Podstatným ohraničením logických neurónov je, že klasifikujú len Boolove funkcie, ktoré sú lineárne separovateľné. Bolo ukázané práve McCullochom a Pittsom, že toto ohraničenie logického neurónu je prekonané neurónovými sieťami. Druhá alternatívna možnosť, ako prekonať toto ohraničenie lineárnej separovateľnosti, sú logické neuróny vyššieho rádu, ktoré navrhli Minski a Pappert. Tieto vlastnosti logického neurónu môžeme sumarizovať tak, že tieto sú univerzálnym výpočtovým zariadením v doméne Boolových fikcií. Priesvitka 33

34 Ďalší, nemenej zaujímavý aspekt neurónových sietí obsahujúcich logické neuróny je skutočnosť, že poskytujú informatický a výpočtový pohľad na vzťah medzi mysľou a mozgom (známy filozofický problém myseľ telo" alebo "duša telo" problém, ktorý vo filozofii patrí medzi centrálne problémy). Práve, moderná neuroveda, prostredníctvom neurónových sietí (v najjednoduchšom priblížení vyjadrených pomocou logických neurónov) ponúka vedecké riešenie tohto problému. Neurovedný pohľad umelej inteligencie a kognitívnej vedy na komplex mozog myseľ je založený na predpoklade, že mozog je mohutný paralelný počítač, ktorý transformuje vstupné údaje x (produkované zrakom, sluchom, čuchom a pod.) na motorické impulzy y (pričom táto transformácia je závislá od vnútorného stavu s (pozri diagram A ). Táto neurovedná interpretácia mozgu na mikroskopickej (neurálnej) úrovni neumožňuje priame štúdium vyšších kognitívnych aktivít (riešenie problémov, porozumenie ľudskej reči, a pod.). Priesvitka 34

35 Neurálny prístup je vhodný na štúdium elementárnych kognitívnych aktivít (napr. prvotné spracovanie vizuálnej informácie zo sietnice oka). Vyššie kognitívne aktivity mozgu sú študované na symbolickej úrovni, založeného na predstave, že ľudský mozog je počítač, ktorý pracuje podľa týchto princípov (ktoré tvoria základ tzv. symbolickej paradigmy), ktorý () transformuje symboly pomocou syntaktických pravidiel na iné symboly, pričom (2) myšlienky sú symbolické reprezentácie implementované pomocou jazyka myslenia, a (3) mentálne procesy sú kauzálne sekvencie symbolov generované syntaktickými pravidlami. Priesvitka 35

36 s x y x x x 2 s s 2 s 3 y s 4 y 2 y A x a vstupné neuróny skry té ne uróny výstupné neuróny B (A) Kybernetická interpretácia mozgu ako zariadenia, ktoré transformuje vstup x na výstup y, pričom táto transformácia je ovplyvnená vnútorným stavom s. Touto špecifikáciou mozgu môžeme dostať dve rôzne odozvy y a y 2 na rovnaký vstup x. (B) Konekcionistický (neurálny) model mozgu pomocou neurónovej siete, ktorá obsahuje () vstupné neuróny (napr. percepčné neuróny retiny oka), (2) skryté neuróny, na ktorých prebieha transformácia vstupu na výstup a (3) výstupné neuróny (napr. neuróny riadiace motorické aktivity). Aktivity skrytých neurónov tvoria vnútorný stav neurónovej siete, rôzne počiatočné nastavenie týchto aktivít zapríčiňuje rôznu odozvu na rovnaké vstupné aktivity x. y b Priesvitka 36

37 Použitie termínu počítač obvykle evokuje predstavu sekvenčného počítača von neumannovskej architektúry (napr. personálne počítače majú túto architektúru), kde je možné striktne oddeliť hardware od software; kde na tom istom počítači hardware môže byť vykonávaných nepreberné množstvo rozdielnych programov softwarov. Pre tieto von neumannovské počítače existuje striktná dichotómia medzi počítačom a programom t. j. medzi hardwarom a softwarom. Žiaľ, paradigma mysle ako počítača implikuje u mnohých ľudí predstavu, že je možné oddeliť mozog od mysle, ako dva nezávislé fenomény, kde mozog hrá úlohu hardwaru, zatiaľ čo myseľ je software (vykonávaný na hardwaru mozgu). Mozog môže byť chápaný ako mohutný paralelný počítač, ktorého výpočtové jednotky sú neuróny s extrémne jednoduchou výpočtovou prahovou aktivitou (verbálne vyjadrenou vetou - víťaz berie všetko). Možno konštatovať, že schopnosť mozgu vykonávať nielen kognitívne aktivity, ale byť aj pamäťou, je plne zakódovaná do jeho architektúry. Priesvitka 37

38 Na základe týchto neurovedných poznatkov bazálneho charakteru môžeme konštatovať, že počítačová paradigma ľudského mozgu sa musí formulovať tak, že mozog je paralelne distribuovaný počítač (obsahujúci obrovské množstvo neurónov, elementárnych procesorov, ktoré sú medzi sebou poprepájané do zložitej neurónovej siete). Program v tomto paralelnom počítači je priamo zabudovaný do architektúry neurónovej siete, t. j. ľudský mozog je jednoúčelový paralelný počítač reprezentovaný neurónovou sieťou, ktorý nie je možné preprogramovať bez zmeny jeho architektúry. Z týchto všeobecných úvah vyplýva, že myseľ s mozgom tvoria jeden integrálny celok; myseľ v tomto prístupe sa chápe ako program vykonávaný mozgom, avšak tento program je špecifikovaný architektúrou distribuovanej neurónovej siete reprezentujúcej mozog. Priesvitka 38

39 Mozog a myseľ tvoria dva rôzne pohľady na ten istý objektu: () Keď hovoríme o mozgu, myslíme tým hardwarovú štruktúru, biologicky realizovanú neurónmi a ich synaptickými spojmi (formálne reprezentovanú neurónovou sieťou), v opačnom prípade, (2) keď hovoríme o mysli, myslíme tým kognitívne a iné aktivity mozgu, realizované výpočtami neurónovej siete reprezentujúcej mozog. Na záver tejto kapitoly poznamenajme, že logické neuróny McCullocha a Pittsa majú v informatike, umelej inteligencii a kognitívnej vede mimoriadne postavenie, sú nielen univerzálnym aproximátorom v doméne Boolovych funkcií (umožňujú realizovať jednoduchú syntézu elektronických zariadení pre realizáciu štandardných binárnych operácií, ktoré sa opakované mnohokrát vyskytujú pri návrhu počítačov, čoho si prvý všimol von Neumann), ale majú význam až "filozofický", tvoria prirodzenú teóriu pre interpretáciu mozgu ako paralelného výpočtového zariadenia a riešenia problému vzťahu medzi mysľou a mozgom. Priesvitka 39

40 The End Priesvitka 40

1. prednáška Logické neuróny a neurónové siete

1. prednáška Logické neuróny a neurónové siete . prednáška Logické neuróny a neurónové siete priesvitka: Mozog a neurónové siete Metafora ľudského mozgu hrá dôležitú úlohu v modernej informatike. Pomocou tejto metafory boli navrhnuté nové paralelné

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

9. kapitola Boolove funkcie a logické obvody

9. kapitola Boolove funkcie a logické obvody 9. kapitola Boolove funkcie a logické obvody Priesvitka 1 Boolova algebra Elektronické obvody v počítačoch a v podobných zariadeniach sú charakterizované binárnymi vstupmi a výstupmi (rovnajúcimi sa 0

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus 1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Vladimír Kvasnička. Úvod do logiky pre informatikov

Vladimír Kvasnička. Úvod do logiky pre informatikov Vladimír Kvasnička Úvod do logiky pre informatikov Ústav aplikovanej informatiky Fakulta informatiky a informačných technológií Slovenská technická univerzita v Bratislave 202 2 Úvod V tejto knihe, ktorá

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin

2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin 2. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Verzia: 27. 9. 2009 Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL. Matematická logika

VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL. Matematická logika Matematická logika VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL Matematická logika Slovenská technická univerzita v Bratislave 2006 prof. Ing. Vladimír Kvasnička, DrSc., doc. RNDr. Jiří Pospíchal, DrSc. Lektori:

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL. Matematická logika

VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL. Matematická logika VLADIMÍR KVASNIČKA JIŘÍ POSPÍCHAL Matematická logika Slovenská technická univerzita v Bratislave 2006 prof. Ing. Vladimír Kvasnička, DrSc., doc. RNDr. Jiří Pospíchal, DrSc. Lektori: doc. PhDr. Ján Šefránek,

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

9. kapitola. Viachodnotové logiky trojhodnotová Łukasiewiczova logika a Zadehova fuzzy logika. priesvitka

9. kapitola. Viachodnotové logiky trojhodnotová Łukasiewiczova logika a Zadehova fuzzy logika. priesvitka 9. kapitola Viachodnotové logiky trojhodnotová Łukasiewiczova logika a Zadehova fuzzy logika 1 Úvodné poznámky o viachodnotových logikách V klasickej logike existujú prípady, keď dichotomický pravdivostný

Διαβάστε περισσότερα

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti 4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

3. kapitola. Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou. priesvitka 1

3. kapitola. Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou. priesvitka 1 3. kapitola Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou priesvitka 1 Axiomatická výstavba modálnej logiky Cieľom tejto prednášky je ukázať axiomatickú výstavbu rôznych verzií

Διαβάστε περισσότερα

Automatizácia technologických procesov

Automatizácia technologických procesov Téma: Logické obvody. Základné pojmy. Logická algebra,logické funkcie. Znázornenie logických funkcií a základy ich minimalizácie. - sú častým druhom riadenia, ktoré sa vyskytujú ako samostatné ako aj v

Διαβάστε περισσότερα

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných

Διαβάστε περισσότερα

5. kapitola Predikátová logika I Úvod do predikátovej logiky

5. kapitola Predikátová logika I Úvod do predikátovej logiky 5. kapitola Predikátová logika I Úvod do predikátovej logiky Priesvitka 1 Gottlob Frege (1848-1925) Bertrand Russell (1872-1970) Priesvitka 2 Intuitívny prechod od výrokovej logiky k predikátovej logike

Διαβάστε περισσότερα

Funkcie - základné pojmy

Funkcie - základné pojmy Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

ZÁKLADY MATEMATIKY 1 UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED

ZÁKLADY MATEMATIKY 1 UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE FAKULTA PRÍRODNÝCH VIED ZÁKLADY MATEMATIKY 1 Kitti Vidermanová, Júlia Záhorská Eva Barcíková, Michaela Klepancová NITRA 2013 Názov: Základy matematiky 1 Edícia Pírodovedec.

Διαβάστε περισσότερα

KLP-100 / KLP-104 / KLP-108 / KLP-112 KLP-P100 / KLP-P104 / KLP-P108 / KLP-P112 KHU-102P / KVM-520 / KIP-603 / KVS-104P

KLP-100 / KLP-104 / KLP-108 / KLP-112 KLP-P100 / KLP-P104 / KLP-P108 / KLP-P112 KHU-102P / KVM-520 / KIP-603 / KVS-104P Inštalačný manuál KLP-100 / KLP-104 / KLP-108 / KLP-112 KLP-P100 / KLP-P104 / KLP-P108 / KLP-P112 KHU-102P / KVM-520 / KIP-603 / KVS-104P EXIM Alarm s.r.o. Solivarská 50 080 01 Prešov Tel/Fax: 051 77 21

Διαβάστε περισσότερα

Logické systémy. doc. RNDr. Jana Galanová, PhD. RNDr. Peter Kaprálik, PhD. Mgr. Marcel Polakovič, PhD.

Logické systémy. doc. RNDr. Jana Galanová, PhD. RNDr. Peter Kaprálik, PhD. Mgr. Marcel Polakovič, PhD. Logické systémy doc. RNDr. Jana Galanová, PhD. RNDr. Peter Kaprálik, PhD. Mgr. Marcel Polakovič, PhD. KAPITOLA 1 Úvodné pojmy V tejto časti uvádzame základné pojmy, prevažne z diskrétnej matematiky, ktoré

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

Neurónové siete Inžiniersky prístup (1. diel)

Neurónové siete Inžiniersky prístup (1. diel) Neurónové siete Inžiniersky prístup (1. diel) Peter Sinčák Katedra kybernetiky a umelej inteligencie Elektrotechnická fakulta Technická Univerzita Košice e-mail: sincak@ccsun.tuke.sk & Gabriela Andrejková

Διαβάστε περισσότερα

Výroky, hypotézy, axiómy, definície a matematické vety

Výroky, hypotézy, axiómy, definície a matematické vety Výroky, hypotézy, axiómy, definície a matematické vety Výrok je každá oznamovacia veta (tvrdenie), o ktorej má zmysel uvažovať, či je pravdivá alebo nepravdivá. Výroky označujeme pomocou symbolov: A, B,

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana. Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

3. prednáška. Komplexné čísla

3. prednáška. Komplexné čísla 3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet

Διαβάστε περισσότερα

3. Výroková logika. Princíp dvojhodnotovosti (bivalencie): Existujú práve dve pravdivostné hodnoty pravda a nepravda.

3. Výroková logika. Princíp dvojhodnotovosti (bivalencie): Existujú práve dve pravdivostné hodnoty pravda a nepravda. 3. Výroková logika Výroková logika patrí do klasickej logiky - do jednej z dvoch oblastí, na ktoré môžeme rozdeliť súčasnú logiku. 22 Sochor (2011, 21) prirovnáva výrokovú logiku ku gramatickému rozboru

Διαβάστε περισσότερα

Príklady na precvičovanie Fourierove rady

Príklady na precvičovanie Fourierove rady Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)

Διαβάστε περισσότερα

Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017

Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017 Kompilátory Cvičenie 6: LLVM Peter Kostolányi 21. novembra 2017 LLVM V podstate sada nástrojov pre tvorbu kompilátorov LLVM V podstate sada nástrojov pre tvorbu kompilátorov Pôvodne Low Level Virtual Machine

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

Prednáška 1. Logika, usudzovanie a teória dôkazu

Prednáška 1. Logika, usudzovanie a teória dôkazu Prednáška 1 Logika, usudzovanie a teória dôkazu Logika je charakterizovaná ako analýza metód používaných v ľudskom myslení alebo uvažovaní. Logika nie je dôležitá len v matematike a informatike, ale aj

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

Obyčajné diferenciálne rovnice

Obyčajné diferenciálne rovnice (ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú

Διαβάστε περισσότερα

Ú V O D Z Á K L A D N É L O G I C K É Č L E N Y

Ú V O D Z Á K L A D N É L O G I C K É Č L E N Y Ú V O D Z Á K L A D N É L O G I C K É Č L E N Y Všetky logické integrované obvody (IO) pracujú v dvojkovej sústave; sú citlivé len na dva druhy diskrétnych signálov. a) Tzv. log.1 prestavuje vstupný signál

Διαβάστε περισσότερα

FUNKCIE N REÁLNYCH PREMENNÝCH

FUNKCIE N REÁLNYCH PREMENNÝCH FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 % Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO

Διαβάστε περισσότερα

Reálna funkcia reálnej premennej

Reálna funkcia reálnej premennej (ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od

Διαβάστε περισσότερα

Vybrané partie z logiky

Vybrané partie z logiky FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO Katedra informatiky Vybrané partie z logiky poznámky z prednášok martin florek 22. mája 2004 Predhovor Vďaka nude a oprášeniu vedomostí z

Διαβάστε περισσότερα

M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie"

M8 Model Valcová a kužeľová nádrž v sérií bez interakcie M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie" Úlohy: 1. Zostavte matematický popis modelu M8 2. Vytvorte simulačný model v prostredí: a) Simulink zostavte blokovú schému, pomocou rozkladu

Διαβάστε περισσότερα

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený

Διαβάστε περισσότερα

Pravdivostná hodnota negácie výroku A je opačná ako pravdivostná hodnota výroku A.

Pravdivostná hodnota negácie výroku A je opačná ako pravdivostná hodnota výroku A. 7. Negácie výrokov Negácie jednoduchých výrokov tvoríme tak, že vytvoríme tvrdenie, ktoré popiera pôvodný výrok. Najčastejšie negujeme prísudok alebo použijeme vetu Nie je pravda, že.... Výrok A: Prší.

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák

Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák Prednáška 6 6.1. Fourierove rady Základná myšlienka: Nech x Haφ 1,φ 2,...,φ n,... je ortonormálny systém v H, dá sa tento prvok rozvinút do radu x=c 1 φ 1 + c 2 φ 2 +...,c n φ n +...? Ako nájdeme c i,

Διαβάστε περισσότερα

Planárne a rovinné grafy

Planárne a rovinné grafy Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia

Διαβάστε περισσότερα

Katedra Informatiky Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava. Lucia Haviarová

Katedra Informatiky Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava. Lucia Haviarová Katedra Informatiky Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava Čiastočné boolovské funkcie (Bakalárska práca) Lucia Haviarová Vedúci: doc. RNDr. Eduard Toman, CSc. Bratislava,

Διαβάστε περισσότερα

Zbierka úloh z VÝROKOVEJ LOGIKY

Zbierka úloh z VÝROKOVEJ LOGIKY Zbierka úloh z VÝROKOVEJ LOGIKY Martin Šrámek 0 OBSAH Úvod...2 Výrok...3 Výroková premenná...3 Logické spojky...4 Formula výrokovej logiky...4 Logická ekvivalencia...4 Tabuľková metóda riešenia úloh...4

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

Riešenie cvičení z 5. kapitoly

Riešenie cvičení z 5. kapitoly Riešenie cvičení z 5. kapitoly Cvičenie 5.1. Vety prepíšte pomocou jazyka predikátovej logiky, použite symboly uvedené v úlohách. (a Niekto má hudobný sluch (H a niekto ho nemá. ( H( ( H( (b Niektoré dieťa

Διαβάστε περισσότερα

MATEMATIKA PRE FARMACEUTOV

MATEMATIKA PRE FARMACEUTOV V Y S O K O Š K O L S K Á U Č E B N I C A Farmaceutická fakulta Univerzity Komenského Vladimír Frecer MATEMATIKA PRE FARMACEUTOV UNIVERZITA KOMENSKÉHO V BRATISLAVE 1 V Y S O K O Š K O L S K Á U Č E B N

Διαβάστε περισσότερα

Matematická logika. Emília Draženská Helena Myšková

Matematická logika. Emília Draženská Helena Myšková Matematická logika Emília Draženská Helena Myšková Košice 2014 Recenzenti: RNDr. Ján Buša, CSc. RNDr. Daniela Kravecová, PhD. Tretie rozšírene a opravené vydanie Za odbornú stránku učebného textu zodpovedajú

Διαβάστε περισσότερα

Predikátová logika II prirodzená dedukcia a sylogizmy. 6.1 Metóda prirodzenej dedukcie pre predikátovú logiku

Predikátová logika II prirodzená dedukcia a sylogizmy. 6.1 Metóda prirodzenej dedukcie pre predikátovú logiku 6. kapitola Predikátová logika II prirodzená dedukcia a sylogizmy 6.1 Metóda prirodzenej dedukcie pre predikátovú logiku Jednoduché rozšírenie metódy prirodzenej dedukcie pre predikátovú logiku uskutočníme

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie, Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c)

DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach Božena Mihalíková, Ivan Mojsej Strana 1 z 43 DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) 1 Obyčajné diferenciálne rovnice 3 1.1 Úlohy

Διαβάστε περισσότερα

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2

Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2 Obsah Úvod Predhovor Sylaby a literatúra Označenia Euklidovské vektorové priestory 3 Skalárny súčin 3 Gram-Schmidtov ortogonalizačný proces 8 Kvadratické formy 6 Definícia a základné vlastnosti 6 Kanonický

Διαβάστε περισσότερα

Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh

Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II Zbierka riešených a neriešených úloh Anna Grinčová Jana Petrillová Košice 06 Technická univerzita v Košiciach Fakulta

Διαβάστε περισσότερα

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =. Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií

Διαβάστε περισσότερα

23. Zhodné zobrazenia

23. Zhodné zobrazenia 23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:

Διαβάστε περισσότερα

Základy matematickej štatistiky

Základy matematickej štatistiky 1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov

Διαβάστε περισσότερα

Riešenia. Základy matematiky. 1. a) A = { 4; 3; 2; 1; 0; 1; 2; 3}, b) B = {4; 9; 16}, c) C = {2; 3; 5},

Riešenia. Základy matematiky. 1. a) A = { 4; 3; 2; 1; 0; 1; 2; 3}, b) B = {4; 9; 16}, c) C = {2; 3; 5}, Riešenia Základy matematiky 1. a) A = { ; ; ; 1; 0; 1; ; }, b) B = {; 9; 16}, c) C = {; ; 5}, d) D = { 1}, e) E =.. B, C, D, F (A neobsahuje prvok 1, E obsahuje navyše prvok 1, G neobsahuje prvok 1)..

Διαβάστε περισσότερα

Deliteľnosť a znaky deliteľnosti

Deliteľnosť a znaky deliteľnosti Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a

Διαβάστε περισσότερα

1.1 Zobrazenia a funkcie

1.1 Zobrazenia a funkcie 1 Teória vypočítateľnosti poznámky z prednášky #1 1.1 Zobrazenia a funkcie Definícia. Čiastočné (totálne) zobrazenie trojice (A, B, f) pre ktoré platí: f A B Ku každému vstupu a A existuje najviac jeden

Διαβάστε περισσότερα

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17 Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy

Διαβάστε περισσότερα

Vybrané partie z logiky

Vybrané partie z logiky FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO Katedra informatiky Vybrané partie z logiky Eduard Toman Bratislava 2005 Obsah 1 Úvod 3 1.1 Jazyk logiky..................................

Διαβάστε περισσότερα