Číselné charakteristiky náhodných vektorov Regresná priamka
|
|
- Τιμοθέα Βούλγαρης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Číselné charakteristiky náhodných vektorov Regresná priamka I. Jednoduchá dvojica dátových súborov a) Nech vektor x predstavuje určité kontrolné body a vektor y hodnoty namerané v týchto bodoch. To znamená, že i-ta zložka vektora y sa viaže výlučne k i-tej zložke vektora x. >> x=1:50+rand(1,50); >> y=0.01*x.^2-3*x+7; Vzájomnú väzbu vektorov x, y vyjadruje ich kovariancia. Hodnota kovariancie bude východiskom pre výpočet korelačného koeficientu a rovnice regresnej priamky. >> cov(x,y) ans = 1.0e+003 * Príkaz cov(x,y) alebo cov(x,y,0) počíta korigovanú kovarianciu tj. pracuje so vzorcom, v ktorom sa delí hodnotou (n-1). Nekorigovanú kovarianciu získame príkazom cov(x,y,1). Matlab na príkaz cov odpovedá maticou. Hľadanú kovarianciu nájdeme mimo hlavnej uhlopriečky. Na hlavnej uhlopriečke sa nachádzajú variancie vektorov x a y. Overme si to priamym výpočtom kovariancie a variancií: >> n=length(x); xm=mean(x); ym=mean(y); sxy=(x-xm)*(y-ym)'/(n-1) sxy = >> vx=(x-xm)*(x-xm)'/(n-1) >> vy=(y-ym)*(y-ym)'/(n-1) vx = vy = e+003 Výsledky sú potvrdené. Korelačný koeficient môžeme počítať z hodnôt, ktoré už máme k dispozícii: >> kk=sxy/sqrt(vx*vy) kk =
2 Matlab má však svoj vlastný príkaz na výpočet korelačného koeficientu: >> corrcoef(x,y) ans = Výsledok je opäť v matici. Maticová odpoveď Matlabu v príkazoch cov a corrcoef je trochu nepohodlná, pretože výsledok musíme ešte zo získanej matice vybrať. Prečo nám to Matlab tak komplikuje? Jednou z hlavných príčin je pohodlnosť pri výpočte korelácie a korelačného koeficientu pri väčšom počte vektorov. Jedným príkazom cov získame v matici prehľadne usporiadané korelácie každého vektora s každým. Pristúpme ku kresleniu regresnej priamky závislosti y od x. Jej smernicu získame z matice sxy: >> k=sxy(1,2)/sxy(1,1) k = Vzorec regresnej priamky zostavíme na základe poznatku, že musí prechádzať cez bod [xm, ym]: y = ym + k*(x-xm) Kreslenie začneme vyznačením bodov daných vektormi x, y (tj. stanovíšť a nameraných hodnôt): >> plot(x,y,'x'), hold on Parametrom 'x' prikazujeme kresliť iba samotné body (nespájať ich čiarami). Vykreslené body majú tvar voličského krížika. Príkaz hold on spôsobí, že ďalšie príkazy na kreslenie sa zrealizujú v existujúcom obrázku (inak by sa zmazal). Na vykreslenie priamky nám stačia dva body, ktoré potom spojíme červenou (parameter 'r'): >> xe=[min(x)-5, max(x)+5]; ye=ym + k*(xe-xm); plot(xe,ye, 'r')
3 b) Nakreslíme (červenou) regresnú priamku závislosti y od x pre viac rozptýlené hodnoty (x necháme pôvodné): >> y=0.1*x.^2-3*x+70*rand(size(x)); >> sxy=cov(x,y); k=sxy(1,2)/sxy(1,1); plot(x,y,'x'), hold on >> xm=mean(x); ym=mean(y); >> xe=[min(x)-5, max(x)+5]; ye=ym + k*(xe-xm); >> plot(xe,ye, 'r') Tu musíme zdôrazniť, že ide o závislosť y od x. Opačnú závislosť, x od y, modeluje iná regresná priamka, ktorú získame štandardným postupom: >> ki=sxy(1,2)/sxy(2,2); ye=[min(y)-5, max(y)+5]; xe=xm + ki*(ye-ym); Kresliť chceme do pôvodného obrázku, preto musíme nechať pôvodné poradie xe a ye. Na odlíšenie od prvej priamky zvolíme zelenú farbu: >> plot(xe,ye, 'g') Priamky nie sú totožné. Pri hľadaní regresnej priamky preto treba starostlivo rozlišovať medzi primárnou a závislou veličinou. Otázka na záver: aké sú súradnice bodu, v ktorom sa obe priamky pretínajú?
4 II. Dvojrozmerné diskrétne rozdelenie Náhodné veličiny X a Y nadobúdajú nasledujúce hodnoty: >> x= -5:4:99; y=1:0.1:7; Pravdepodobnosť jednotlivých hodnôt [xi,yi] určuje funkcia (1./(abs(15*y-x)+0.1)/q.. Vyrobme tabuľku hodnôt pre všetky dvojice [xi,yi] a nájdime hodnotu q. Predbežne urobíme tabuľku hodnôt bez koeficientu q. Predstavme si kartézsky súčin vektorov x a y. Do matíc X a Y umiestnime zvlášť prvú a druhú zložku všetkých dvojíc kart. súčinu: >> X=x'*ones(size(y)); Y=ones(size(x'))*y; (Pre lepšie pochopenie si pozrite hodnoty X a Y v array editore.) Teraz dosadíme do F na jedenkrát kartézsky súčin [X, Y]: >> f=inline('1./(abs(15*y-x)+0.1)'); >> fxy=f(x,y); Poznámka. Maticu fxy môžeme vyrobiť aj dvojicou cyklov: >> for i=1:length(x), for j=1:length(y), fxy(i,j)=f(x(i),y(j)); end, end Aby bola fxy správne definovaná, musí mať súčet 1. Hodnota q teda bude súčtom predbežnej fxy: >> q=sum(sum(fxy)) >> fxy=fxy/q; Poznámka. Vnútorný príkaz sum najprv urobil súčty stĺpcov v matici, výsledkom bol riadkový vektor. Vonkajší príkaz sum potom sčítal zložky tohto vektora. Na výpočet číselných charakteristík daného rozdelenia nám už nepomôžu jednoduché príkazy Matlabu, ktoré sme využívali v prvej časti. Nájdime najprv pravdepodobnostné funkcie samostatných náhodných veličín X a Y: >> fx=sum(fxy,2); fy=sum(fxy, 1); Vektor fx (stĺpec) získame súčtom riadkov fxy (parameter 2 znamená voľbu sčitovania cez riadky), podobne fy (riadok) získame súčtom cez stĺpce (volíme parametrom 1 alebo žiadnym parametrom). Stredná hodnota je skalárnym súčinom hodnôt vektora a hodnôt jeho pravdepodobnostnej funkcie: >> EX=x*fx, EY=y*fy' EX = EY = e e+000
5 Pre varianciu platí: var(x) = E(x 2 ) - (E(x)) 2, kde E(x 2 ) = Σ i x i 2 fx(x i ). Výpočet v Matlabe: >> varx=(x.^2)*fx - EX^2, vary = (y.^2)*fy' - EY^2 varx = e+002 vary = e+000 Pre kovarianciu platí kde cov(x,y) = E(X.Y) - E(X).E(Y), E(X.Y) = Σij fxyij xiyj = x*fxy*y Výpočet v Matlabe: >> covxy = x*fxy*y' - EX*EY covxy = e+001 Korelačný koeficient: >> kkxy = covxy / sqrt(varx*vary) kkxy = e-001 Korelačný koeficient je cca. 0,82. To znamená, že má zmysel hľadať zobrazenie lineárnej väzby regresnou priamkou. Nakreslíme si jednotlivé body [x, y] v rovine (tvoria uzly rovnomernej siete), pričom si farebne zvýrazníme ich pravdepodobnostnú váhu. Na to slúži príkaz mesh (maticu fxy vkladáme transponovanú taká je syntax): >> mesh(x,y,fxy')
6 Regresná priamka je dvojrozmerná záležitosť, preto bude vhodné si urobiť pohľad zhora alebo pôdorys: >> contour(x,y,fxy'), hold on Do tohto obrázku zakreslíme regresnú priamku y = EY + (covxy/varx)*(x-ex). >> xk=[min(x)-5, max(x)+5]; yk=ey+(covxy/varx)*(xk-ex); plot(xk,yk,'k') V obrázku vidíme len miesta, ktoré majú najvyššiu pravdepodobnosť. Preto prekvapuje, že priamka neprechádza priamo cez ne. Svoju úlohu tu zohrávajú totiž pravdepodobnostné váhy aj tých bodov, ktoré sa v obrázku stratili v bielej farbe.
7 II. Dvojrozmerné spojité rozdelenie Opäť sa budeme venovať príkladu z predošlého odseku. Tentoraz však náhodné veličiny X a Y budú z reálnych intervalov [-5, 99], [1, 7]. Pravdepodobnostnú funkciu nahradí rovnako definovaaná funkcia hustoty (1./(abs(15*y-x)+0.1)/q. >> f=inline('1./(abs(15*y-x)+0.1)'); Aby sme zistili hodnotu q, musíme f integrovať cez obdĺžnik [-5, 99] [1, 7]. >> q=dblquad(f, -5, 99, 1, 7) >> f=inline('1./(abs(15*y-x)+0.1)/ '); Funkciu hustoty veličiny X získame integrovaním f podľa y cez interval [1, 7]. Pomocou nej potom analogicky ako v druhom odseku počítame strednú hodnotu a varianciu. Nebudeme pritom funkciu hustoty zvášť vyjadrovať pri výpočte strednej hodnoty a variancie si vždy v rámci dvojného integrálu funkciu hustoty vyrobíme: >> fxe=inline('x./(abs(15*y-x)+0.1)/ ') >> EX=dblquad(fxe,-5, 99, 1, 7) EX = >> fxv=inline('x.^2./(abs(15*y-x)+0.1)/ ') >> varx=dblquad(fxv,-5, 99, 1, 7) - EX^2 varx = e+002 Podobne postupujeme v prípade Y: >> fye=inline('y./(abs(15*y-x)+0.1)/ ') >> EY=dblquad(fye,-5, 99, 1, 7) -EY^2 EY = >> fyv=inline('y.^2./(abs(15*y-x)+0.1)/ ') >> vary=dblquad(fyv,-5, 99, 1, 7)-EY^2 vary = Porovnávajte získané výsledky s hodnotami z predošlého odseku! Mali by vychádzať rádovo zhodné.
8 Podobne počítame kovarianciu a korelačný koeficient: >> fcxy=inline('x.*y./(abs(15*y-x)+0.1)/ ') >> covxy=dblquad(fcxy,-5, 99, 1, 7)-EX*EY covxy = >> kkxy=covxy/sqrt(varx*vary) kkxy = Nakreslíme si priestorový graf funkcie hustoty. Na to bude potrebné si diskretizovať intervaly možných hodnôt X a Y. 1 Sieť hodnôt funkcie hustoty vypočítame rovnako ako v predošlom odseku: >> >> x= -5:1:99; y=1:0.1:7; >> X=x'*ones(size(y)); Y=ones(size(x'))*y; >> fxy=f(x,y); Miesto siete, ktorá je iba pomôcku, si necháme vykresliť celú plochu (surface): >> surf(x,y,fxy') 1 Hustotu diskretizácie treba voliť obozretne ak je príliš veľká, výpočet bude veľmi dlhý a výsledkom bude tak hustý nákres, že sa všetky farby zlejú do čiernej. Naša voľba je niekde na hranici únosnosti.
9 Koreláciu opäť znázorníme regresnou priamkou položenou na farebnú mapu: >> xk=[min(x)-5, max(x)+5]; yk=ey+(covxy/varx)*(xk-ex); plot(xk,yk,'k') Opäť vidíme regresnú priamku trochu nakrivo príčiny sú rovnaké ako v predošlom prípade. Na farebnej mape sa objavili iba najvýraznejšie pravdepodobnosti, avšak aj biela farba predstavuje určitú váhu, ktorá zaváži pri výpočte smernice priamky.
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi
Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Typy súvislostí javov a vecí: nepodstatné - vonkajšia súvislosť nevyplýva z vnútornej potreby (javy spoločne vznikajú, majú zhodný priebeh, alebo
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich
Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:
Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.
Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................
Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.
Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
Základy matematickej štatistiky
1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov
Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014
Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Riešenie rovníc s aplikáciou na elektrické obvody
Zadanie č.1 Riešenie rovníc s aplikáciou na elektrické obvody Nasledujúce uvedené poznatky z oblasti riešenia elektrických obvodov pomocou metódy slučkových prúdov a uzlových napätí je potrebné využiť
2 Chyby a neistoty merania, zápis výsledku merania
2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
Príklady na precvičovanie Fourierove rady
Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru
MATEMATIKA I ZBIERKA ÚLOH
TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA ÚSTAV TECHNOLÓGIÍ, EKONOMIKY A MANAŽMENTU V STAVEBNÍCTVE KATEDRA APLIKOVANEJ MATEMATIKY RNDr. Pavol PURCZ, PhD. Mgr. Adriana ŠUGÁROVÁ MATEMATIKA I ZBIERKA
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Úvod do lineárnej algebry
Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.
HANA LAURINCOVÁ KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP Štatistika Poistná matematika
UNIVERZITA KOMENSKÉHO, BRATISLAVA FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY KATEDRA POISTNEJ MATEMATIKY A ŠTATISTIKY PARCIÁLNA A MNOHONÁSOBNÁ KORELÁCIA: KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP (Bakalárska práca)
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
Deliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
Integrovanie racionálnych funkcií
Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
Zložené funkcie a substitúcia
3. kapitola Zložené funkcie a substitúcia Doteraz sme sa pri funkciách stretli len so závislosťami medzi dvoma premennými. Napríklad vzťah y=x 2 nám hovoril, ako závisí premenná y od premennej x. V praxi
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
Základy metodológie vedy I. 9. prednáška
Základy metodológie vedy I. 9. prednáška Triedenie dát: Triedny znak - x i Absolútna početnosť n i (súčet všetkých absolútnych početností sa rovná rozsahu súboru n) ni fi = Relatívna početnosť fi n (relatívna
Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
4 Reálna funkcia reálnej premennej a jej vlastnosti
Reálna unkcia reálnej premennej a jej vlastnosti Táto kapitola je venovaná štúdiu reálnej unkcie jednej reálnej premennej. Pojem unkcie patrí medzi základné pojmy v matematike. Je to vlastne matematický
Súradnicová sústava (karteziánska)
Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)
(Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 εκεµβρίου 29 5.1. Στο τυχαίο πείραµα της ϱίψης δύο διακεκριµένων κύβων έστω X η ένδειξη του πρώτου κύβου και Y η µεγαλύτερη από τις δύο ενδείξεις. Να προσδιορισθούν
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
4. domáca úloha. distribučnú funkciu náhodnej premennej X.
4. domáca úloha 1. (rovnomerné rozdelenie) Električky idú v 20-minútových intervaloch. Cestujúci príde náhodne na zastávku. Určte funkciu hustoty rozdelenia pravdepodobnosti a distribučnú funkciu náhodnej
15. Matlab Lineárna algebra
1 Portál pre odborné publikovanie ISSN 1338-0087 15. Matlab Lineárna algebra Blaho Michal MATLAB/Comsol 18.09.2009 Matlab pracuje s dátami vo forme vektorov a matíc. Základnej práci s vektormi a maticami
Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,
Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne
MATEMATIKA I. Doc. RNDr. Michal Šabo, CSc
MATEMATIKA I Doc. RNDr. Michal Šabo, CSc 2 Obsah Predhovor 5 2 VYBRANÉ STATE Z ALGEBRY 2. Úvod................................... 2.2 Reálne n-rozmerné vektory...................... 2.3 Matice..................................
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus
1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových
Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
Goniometrické funkcie
Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej
Reálna funkcia reálnej premennej
(ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od
Analytická geometria
Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je
Matematika 2. Lineárna algebra. (ver )
Matematika 2 Lineárna algebra (ver.01.03.2011) 1 Úvod Prehľad. Tieto poznámky obsahujú podklady k prednáške Matematika 2 na špecializácii Aplikovaná informatika: jedná sa o 12 dvojhodinových prednášok
Numerické metódy matematiky I
Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc
Tutoriál3 : Využitie grafických možností jazyka Matlab
NÁPLŇ 1. ÚVOD DO PRÁCE S GRAFIKOU 2. 2D GRAFIKA 3. 3D GRAFIKA 4. PRÍKLADY NA SAMOSTATNÉ RIEŠENIE 1 Matlab ponúka rýchlu a kvalitnú reprezentáciu funkcií vo forme grafov. Disponuje pokročilou grafikou v
Ján Buša Štefan Schrötter
Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako
Goniometrické substitúcie
Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať
množiny F G = {t1, t2,, tn} T a pre ľubovoľný valec C so základňou B1, B2,, Bn v bodoch t1, t2,, tn, takou, že pre t G - F je Bt = E, platí PF(C) = PG
STOCHASTICKÝ PROCES Definícia stochastického procesu Definícia 1 Nech (Ω, F, P) je pravdepodobnostný priestor a nech T je podmnožina R. Pre každé t T nech X(t, ω) je náhodná premenná definovaná na pravdepodobnostnom
Περιεχόμενα. Ιδιότητες του cov(x, Y) Ιδιότητες των εκτιμητών Παράδειγμα. 1 Συσχέτιση Μεταβλητών. 2 Εκτιμητές και κατάλοιπα
Περιεχόμενα 1 Συσχέτιση Μεταβλητών Ιδιότητες του cov(x, Y 2 Ιδιότητες των εκτιμητών BEΠ (UPatras Γραμμικά Μοντέλα 4η, 5η Διάλεξη, 2018-19 1 / 12 Συσχέτιση Μεταβλητών Ιδιότητες του cov(x, Y Ένα μέτρο της
MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:
1.ÚLOHA: MOSTÍKOVÁ METÓDA a, Odmerajte odpory predložených rezistorou pomocou Wheastonovho mostíka. b, Odmerajte odpory predložených rezistorou pomocou Mostíka ICOMET. c, Odmerajte odpory predložených
FUNKCIE N REÁLNYCH PREMENNÝCH
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE
FUNKCIE. Funkcia základné pojmy. Graf funkcie
FUNKCIE Funkcia základné pojm. Graf funkcie V prai sa často stretávame so skúmaním závislosti veľkosti niektorých veličín od veľkosti iných veličín, napríklad dĺžka kružnice l závisí od jej priemeru d
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
Obsah. 1.1 Základné pojmy a vzťahy Základné neurčité integrály Cvičenia Výsledky... 11
Obsah Neurčitý integrál 7. Základné pojmy a vzťahy.................................. 7.. Základné neurčité integrály............................. 9.. Cvičenia..........................................3
Numerické metódy Učebný text pre bakalárske štúdium
Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27
Analýza hlavných komponentov
Analýza hlavných komponentov Motivácia Úloha: Navrhnite scenáre zmien výnosovej krivky pre účely stresového testovania v dlhopisovom portfóliu Problém: Výnosová krivka sa skladá z väčšieho počtu bodov,
UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky. Dua lne c ı sla. Bakala rska pra ca. S tudijny odbor: Matematika
UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky Dua lne c ı sla Bakala rska pra ca S tudijny odbor: Matematika Vedu ci bakala rskej pra ce: RNDr. Pavel Chalmoviansky, PhD.
Metoda hlavních komponent a její aplikace
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Mária Dubová Metoda hlavních komponent a její aplikace Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce:
Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2
Obsah Úvod Predhovor Sylaby a literatúra Označenia Euklidovské vektorové priestory 3 Skalárny súčin 3 Gram-Schmidtov ortogonalizačný proces 8 Kvadratické formy 6 Definícia a základné vlastnosti 6 Kanonický
Numerické metódy, pravdepodobnosť a matematická štatistika
Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Strana 1 z 262 Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Strana
Numerické metódy, pravdepodobnosť a matematická štatistika. Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER
Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Prvé vydanie Za
u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia
p(α 1 ) = u 1. p(α n ) = u n. Definícia (modulárna reprezentácia polynómu). Zobrazenie
1. Rychlá Fourierová transformácia Budeme značiť teleso T a ω jeho prvok. Veta 1.1 (o interpolácií). Nech α 0, α 1,..., α n sú po dvoch rôzne prvky telesa T[x]. Potom pre každé u 0, u 1,..., u n T existuje
Smernicový tvar rovnice priamky
VoAg1-T List 1 Smernicový tvar rovnice priamk RNDr.Viera Vodičková U: Medzi prevratné objav analtickej geometrie patrí to, že s priamkou nenarábame ako s geometrickým objektom, ale popisujeme ju rovnicou.
NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky
Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory
Priezvisko: Ročník: Katedra chemickej fyziky. Krúžok: Meno: Dátum cvičenia: Dvojica:
Katedra chemickej fyziky Dátum cvičenia: Ročník: Krúžok: Dvojica: Priezvisko: Meno: Úloha č. 7 URČENIE HUSTOTY KVPLÍN Známka: Teória Tabuľka Výpočet Zaokrúhľovanie Záver Meranie 1. Úlohy: a) Určte hustotu