To je ujedno 1/12 mase atoma ugljika koja je određena eksperimentom i koja iznosi kg. Dakle mase nukleona:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "To je ujedno 1/12 mase atoma ugljika koja je određena eksperimentom i koja iznosi kg. Dakle mase nukleona:"

Transcript

1 Nuklearna fizika_intro Osnovne sile u prirodi, građa atomske jezgre, nukleoni i izotopi, energija vezanja jezgre, radioaktivnost, osnovne vrste radioaktivnog zračenja i njihova svojstva, zakon radioaktivnog raspada, nuklearne reakcije - zakon očuvanja naboja i masenog broja, fisija i fuzija Osnovne sile u prirodi Za postojanje materije kakvu poznajemo odgovorne su četiri osnovne sile u prirodi: gravitacijska, elektromagnetska, slaba i jaka nuklearna sila. O gravitacijskoj i elektromagnetskoj već je bilo riječi. Novost je tzv. prijenosnik sile (medijator) - čestica koja generira određenu vrstu međudjelovanja odnosno vrstu sile. Gravitacijska sila beskonačan doseg privlačan karakter medijator je graviton (koji zasad nije eksperimentalno potvrđen) Elektromagnetska sila beskonačan doseg privlačan i odbojan karakter, ovisno o naboju čestica medijator je foton - čestica bez mase Slaba nuklearna sila vrlo kratki doseg (do m) omogućuje beta-raspad, odgovorna za postojanje teških elemenata medijator je bozon Jaka nuklearna sila kratak doseg (oko m) djeluje među protonima i neutronima u jezgri (ne reagira na naboj čestice) medijator je gluon, koji djeluje među kvarkovima; npr. proton je u biti vezano stanje tri kvarka p uud, u - up kvark, d - down kvark; postoje još i s - strange kvark, c - charmed kvark, b - bottom i t - top kvarkovi

2 Građa atomske jezgre, nukleoni i izotopi U samom središtu atoma, zaklonjena, tj. okružena elektronima nalazi se atomska jezgra (nukleus). U jezgri nalazimo dvije vrste čestica - protone i neutrone, koje zajedničkim imenom nazivamo nukleoni. Rutherfordovi eksperimenti pokazali su da su mase nukleona znatno veće od mase elektrona (preko 99.9% mase atoma potječe od jezgre). Prije nego navedemo mase nukleona, definirati ćemo atomsku jedinicu mase koju označavamo s u, a koja iznosi To je ujedno 1/12 mase atoma ugljika koja je određena eksperimentom i koja iznosi kg. Dakle mase nukleona: odnosno, Prema Einsteinovoj formuli masa je povezana s energijom mirovanja, E0 = mc 2 i stoga masi od 1 u odgovara energija U atomskoj i nuklearnoj fizici, energije se uobičajeno izražavaju mjernom jedinicom elektronvolt iz čega slijedi Provjerite da masi elektrona odgovarajuća energija iznosi svega MeV, a protona 938 MeV.

3 Jezgre atoma razlikuju se po veličini, naboju i masi. Da bismo razlikovali jezgre različitih atoma uvodimo dva broja koji ih jednoznačno opisuju. To su redni broj (Z) i maseni broj (A). Redni broj predstavlja broj protona u jezgri atoma (a samim time i broj elektrona u neutralnom atomu elementa), dok maseni broj predstavlja broj nukleona (protona i neutrona zajeno) u jezgri. Jezgre s definiranim brojevima A i Z nazivaju se nuklidi. Npr Cl Izotopi: Atomi elementa koji u jezgri imaju različit broj neutrona, ne razlikuju se po kemijskom sastavu i stoga zauzimaju isto mjesto u periodnom sustavu elemenata. Takve elemente nazivamo izotopi. Npr. izotopi neona 20 10Ne, Ne, i Ne Energija vezanja jezgre Gustoća jezgre ( kg/m 3 ) daje naslutiti da su nukleoni međusobno povezani vrlo jakom silom. Priroda nuklearne sile i danas se istražuje, a sada ćemo navesti njezina osnovna svojstva. Premda se u jezgri nalaze pozitivno nabijene čestice (protoni) ne dolazi do raspada jezgre koji bi bio posljedica djelovanja električne sile između naboja istog predznaka tj. protona. Među nukleonima jezgre djeluje nuklearna sila. Odgovorna je za vezanje protona i neutrona u jezgri. Djelovanje nuklearne sile jest vrlo kratkog dosega (reda veličine femtometra; 1 fm=10-15 m) Ako se nukleoni udalje svega nekoliko femtometara, djelovanje nuklearne sile prestaje. Nakon toga postaje dominantno djelovanje odbojne električne sile među protonima. Na osnovi izloženog razmislite zbog čega nemamo stabilne jezgre s npr protona? Nuklearna sila ne ovisi o naboju nukleona i u tom smislu jednako tretira proton koji je pozitivno nabijen i neutron koji je električki neutralan. Da bi nastala jezgra nukleoni se moraju spajati! Otkriveno je da spajanjem nukleona pri stvaranju jezgre oni dio svoje mase koriste za oslobađanje energije. U obrnutom slučaju, ako određenu jezgru želimo razložiti na protone i neutrone tada moramo uložiti energiju. Rad koji moramo uložiti da se jezgra rastavi na protone i neutrone zove se energija vezanja jezgre. Nakon razdvajanja nastali nukleoni nemaju nikakvu kinetičku energiju.

4 Energija vezanja jezgre računa se prema formuli ΔE = Δm c 2 pri čemu je defekt mase jezgre Δm, a brzina svjetlosti u vakuumu c. Mjerna jedinica je džul (J), odnosno uobičajemo MeV. Defekt mase jezgre je razlika između mase jezgre i mase njezinih sastavnih dijelova, a računa se prema gdje je M masa jezgre, Z redni broj, N=A-Z broj neutrona u jezgri, mp masa protona i mn masa neutrona. Energije vezanja jezgre očekivano se razlikuju za pojedine jezgre. Korisna mjera za stabilnost neke jezgre jest energija vezanja jezgre po nukleonu (ΔE/A). Što je energija vezanja jezgre po nukleonu veća jezgra je stabilnija. Slika 1. prikazuje kako energija vezanja po nukleonu ovisi o masenom broju jezgre. Slika 1. Graf energije vezanja po nukleonu Na danom grafu najveća vrijednost energije vezanja po nukleonu iznosi 8.8 MeV/nukleonu kada je broj nukleona jednak 56. To je jezgra izotopa željeza, dakle najstabilnija jezgra. Vidimo da najveću stabilnost (tj. najjače vezane jezgre) nalazimo kod jezgri iz sredine periodnog sustava. Za jezgre s početka periodnog sustava (mali maseni brojevi) postoje velike i skokovite razlike. Za jezgre s velikim brojem nukleona primjećujemo opadanje vrijednosti energije vezanja po nukleonu, te za uran ona iznosi 7.6 MeV/nukleonu. Dakle, za izdvojiti jedan nukleon iz jezgre urana treba uložiti energiju od 7.6 MeV.

5 Radioaktivnost Stabilnost jezgre ovisi o nuklearnoj sili koja se bori protiv odbojne kulonske (električne) sile na razini dimenzija jezgre. Mnoge jezgre su u osnovi nestabilne i kroz spontana restrukturiranja postaju stabilnije tj. dolaze u stanje niže energije. Za takve jezgre kažemo da su radioaktivne. Osnovne vrste radioaktivnog zračenja i njihova svojstva Jezgre s velikim A ili one u kojima je nepovoljan omjer broja protona prema broju neutrona tipično su radioaktivne. Povoljnije energijsko stanje takve jezgre postižu izvođenjem jednog ili više radioaktivnih raspada. To su: alfa raspad, beta raspad i gama raspad. alfa raspad (α-raspad) Karakterističan za jezge s velikim brojem nukleona, npr. pri čemu se emitira α-čestica odnosno jezgra helija Time se velika jezgra brzo riješi 4 nukleona. Primjetimo da prilikom raspada imamo očuvanje masenog i rednog broja, a što će biti osobina i ostalih raspada. Jezgra koja se raspada naziva se roditelj, a jezgra koja nastaje kćer. Općenita reakcija za alfa raspad ima oblik Rn Po + 24 α 4 2He A Z X A 4 Z 2 Y He beta raspad (β-raspad) Ima više vrsta ovog raspada: β - (beta minus), β + (beta plus) i uhvat elektrona koji nećemo razmatrati. beta minus raspad: kada je omjer broja neutrona prema broju protona u jezgri prevelik tj. kada jezgra ima previše neutrona dolazi do ovog raspada. Pritom se neutron transformira u proton i elektron koji napušta jezgru kao tzv. beta čestica. U toj pretvorbi nastaje i misteriozni antineutrino, a za takvu reakciju odgovorna je slaba nuklearna sila. Primjer reakcije je pretvorba jezgre ugljika u jezgru dušika odnosno općenita formula bi bila 14 6C 14 7 N e + ν e A Z X A Z+1 Y + 10 β + ν e

6 beta plus raspad: kada je u jezgri prevelik broj protona prema broju neutrona događa se ovaj raspad. Proton se transformita u neutron i pritom još nastaje pozitron (beta plus čestica) i neutrino. Pozitron je antičestica elektronu i ima pozitivan naboj. Primjer ovog raspada je odnosno općenito 17 9F 17 8 O e + ν e gama raspad A Z X A Z 1 Y β + ν e U dosad navedenim raspadima imali smo pretvorbu jezgre elementa u neki drugi element (pogledajte primjere). Tako nešto se pri gama raspadu jezgre ne događa, već ova vrsta raspada služi jezgri da se njezina energija dodatno spusti i da time postigne stabilnije stanje. Npr. prvo imamo beta minus raspad jezgre kalija 42 19K Ca e + ν e čime nastaje zvjezdicom označena jezgra kalcija u stanju s visokom energijom. Dalje slijedi njezin gama raspad prema 42 20Ca Ca + γ Tom prilikom emitira se gama kvant ili gama čestica koja u stvari nije čestica već elektromagnetski val izuzetno velike frekvencije i samim time, prema E=hf, energije. Na gama kvant ne djeluje magnetsko polje jer nema naboj, za razliku od alfa i beta čestica koje imaju naboj. Slika 2. prikazuje djelovanje magnetskog polja na navedene čestice. Slika 2. Djelovanje magnetskog polja na čestice

7 Zakon radioaktivnog raspada Radioaktivni raspad slučajni je proces tijekom kojeg se jezgre radioaktivnog uzorka raspadaju neovisno jedna o drugoj. Tako se u radioaktivnom uzorku broj nestabilnih jezgara tijekom vremena smanjuje. Ako s N0 označimo broj neraspadnutih jezgri u početnom trenutku, tada je broj neraspadnutih jezgri N nakon vremena t dan formulom N = N 0 e λ t koju zovemo zakon radioaktivnog raspada. U navedenoj jednadžbi λ predstavlja konstantu raspada (nije valna duljina!) kojoj je mjerna jedinica s -1. Ako je za radioaktivni uzorak konstanta raspada velika znači da se jezgre tog uzorka brzo raspadaju i obratno, mala konstanta raspada znači sporije raspadanje jezgri. Navedeni zakon radioaktivnog raspada jest statistički zakon koji nam ne govori kada će se neka jezgra raspasti već podatak da je nakon određenog vremena dio jezgri iz uzorka imao raspad. Osim konstante raspada za jezgre se navodi vrijeme poluraspada T1/2. Nakon što od početka raspada prođe vrijeme T1/2 u uzorku se nalazi N0/2 neraspadnutih jezgri (slika 3.) Slika 3. Vrijeme poluraspada Konstanta raspada i vrijeme poluraspada povezani su formulom T 1/2 = λ Ponekad se zakon radioaktivnog raspada daje i izrazom N = N 0 2 t T 1/2

8 Aktivnost radioaktivnog uzorka A govori nam o broju emitiranih čestica ili fotona s radioaktivnog uzorka u jedinici vremena, dakle brzinu kojom se raspada jezgra. Vrijedi formula A = λ N gdje je λ konstanta raspada, a N broj neraspadnutih jezgara u uzorku. Mjerna jedinica za aktivnost je bekerel, Bq. Nuklearne reakcije - zakon očuvanja naboja i masenog broja U nuklearnim reakcijama imamo pretvorbu jednog elementa u drugi na umjetan način. Slično kemijskim reakcijama i nuklearne zapisujemo simbolički poput 14 7N He 1 1 H O Općenito za nuklearne reakcije možemo pisati a + A B + b gdje smo s a označili česticu koja bombardira metu, jezgru A. Kao rezultat reakcije nastaje jezgra B (koja se ponekad naziva rezidualna jezgra), te čestica b. Za svaku nuklearnu reakciju vrijede sljedeći zakoni očuvanja: Fisija i fuzija Nuklearna fisija jest reakcija pri kojoj nakon apsorpcije neutrona u masivnoj jezgri dolazi do njezinog cijepanja na lakše i stabilnije jezgre uz oslobađanje energije. Nuklearna fuzija jest reakcija kada se manje masivne jezgre sjedinjuju i na taj način stvaraju masivniju jezgru uz oslobađanje energije.

9 Korisno je znati oznake koje se koriste za obilježavanje čestica u nuklearnoj fizici: proton 1 1p ili 1 1 H 1 neutron 0n β - čestica (elektron) 0 1e ili 0 1β 0 β + čestica (pozitron) +1e ili +10 β 0 γ čestica (γ foton) 0γ 4 α čestica 2α ili 4 2 He

Atomska jezgra. Atomska jezgra. Materija. Kristal. Atom. Elektron. Jezgra. Nukleon. Kvark. Stanica

Atomska jezgra. Atomska jezgra. Materija. Kristal. Atom. Elektron. Jezgra. Nukleon. Kvark. Stanica Atomska jezgra Materija Kristal Atom Elektron Jezgra Nukleon Stanica Kvark Razvoj nuklearne fizike 1896. rođenje nuklearne fizike Becquerel otkrio radioaktivnost 1899. Rutherford pokazao da postoje različite

Διαβάστε περισσότερα

Atomi i jezgre 1.1. Atomi i kvanti 1.2. Atomska jezgra λ = h p E = hf, E niži

Atomi i jezgre 1.1. Atomi i kvanti 1.2. Atomska jezgra λ = h p E = hf, E niži tomi i jezgre.. tomi i kvanti.. tomska jezgra Kvant je najmanji mogući iznos neke veličine. Foton, čestica svjetlosti, je kvant energije: gdje je f frekvencija fotona, a h Planckova konstanta. E = hf,

Διαβάστε περισσότερα

Elementarne čestice Elementarne ili osnovne ili fundamentalne čestice = Najmanji dijelovi od kojih je sastavljena tvar. Do 1950: Elektron, proton,

Elementarne čestice Elementarne ili osnovne ili fundamentalne čestice = Najmanji dijelovi od kojih je sastavljena tvar. Do 1950: Elektron, proton, Elementarne čestice Elementarne ili osnovne ili fundamentalne čestice = Najmanji dijelovi od kojih je sastavljena tvar. Do 1950: Elektron, proton, neutron Građa atoma Pozitron, neutrino, antineutrino Beta

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

PITANJA IZ NUKLEARNE FIZIKE I RADIOAKTIVNOSTI

PITANJA IZ NUKLEARNE FIZIKE I RADIOAKTIVNOSTI PITANJA IZ NUKLEARNE FIZIKE I RADIOAKTIVNOSTI. Od kojih se čestica sastoji atomska jezgra i koja su osnovna svojstva tih čestica?. Zašto elektroni ne mogu nalaziti u jezgri? 3. Kolika je veličina atoma,

Διαβάστε περισσότερα

Fizika atomskog jezgra Sadržaj

Fizika atomskog jezgra Sadržaj Osnovne karakteristike atomskog jezgra 30 Defekt mase jezgra i energija veze 303 Stabilnost atomskog jezgra 305 Radioaktivni raspad 308 akon radioaktivnog raspada 309 Vrste radioaktivnog raspada 30 α-radioaktivni

Διαβάστε περισσότερα

Osnovne karakteristike atomskog jezgra

Osnovne karakteristike atomskog jezgra Osnovne karakteristike atomskog jezgra Otkriće atomskog jezgra (Raderford, 1911., rasejanje α-čestica) - skoro celokupna masa atoma je skoncentrisana u prostoru dimenzija 10 15 m. Jezgro sadrži protone

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

NUKLEARNA FIZIKA. Osnove fizike 4

NUKLEARNA FIZIKA. Osnove fizike 4 NUKLEARNA FIZIKA Osnove fizike 4 Atom= jezgra + elektroni jezgra = protoni + neutroni (nukleoni) POVIJEST NUKLEARNE FIZIKE 1896. Becquerel otkriće radioaktivnosti 1898. Pierre & Marie Curie separacija

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Ionizirajuće zračenje u biosferi

Ionizirajuće zračenje u biosferi Sveučilište u Splitu Kemijsko-tehnološki fakultet Ionizirajuće zračenje u biosferi Mile Dželalija Split, 2006. M. Dželalija, Ionizirajuće zračenje u biosferi (interna skripta), Sveučilište u Splitu, Kemijsko-tehnološki

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

NUKLEARNI ALFA-RASPAD

NUKLEARNI ALFA-RASPAD NUKLEARNI ALFA-RASPAD U lakim jezgrama energija separacije α-čestice usporediva je s energijom separacije nukleona: 8-10 MeV. Tek za teške jezgre A>150 energija separacije može biti negativna i energetski

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Povijesni pregled rođenje nuklearne fizike; Henri Becquerel ( ) otkrio radioaktivnost u uranovoj rudi

Povijesni pregled rođenje nuklearne fizike; Henri Becquerel ( ) otkrio radioaktivnost u uranovoj rudi Nuklearna fizika Povijesni pregled 1896. rođenje nuklearne fizike; Henri Becquerel (1852.-1908.) otkrio radioaktivnost u uranovoj rudi 1898. Pierre & Marie Curie: separacija Ra Rutherford pokazao da postoji

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje proljeće 2017.)

Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje proljeće 2017.) Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje proljeće 2017.) četvrti razred (valna optika, relativnost, uvod u kvantnu fiziku, nuklearna fizika) Sve primjedbe

Διαβάστε περισσότερα

Elementarne čestice i temeljna međudjelovanja

Elementarne čestice i temeljna međudjelovanja Elementarne čestice i temeljna međudjelovanja Elementarne četice Uvod. Prve ideje o elementarnim četicama Prve ideje o elementarnim česticama došle su iz stare grčke i provlačile su se kroz čitavu filozofiju

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

zračenjem. U atmosferi, pa stoga i u živim organizmima, postoji stalan dobiven iz neke grobnice davao 7.1 raspada u minuti po gramu uzorka,

zračenjem. U atmosferi, pa stoga i u živim organizmima, postoji stalan dobiven iz neke grobnice davao 7.1 raspada u minuti po gramu uzorka, 1RR. Radioaktivni ugljik 14 C proizvodi se u atmosferi kozmičkim zračenjem. U atmosferi, pa stoga i u živim organizmima, postoji stalan omjer 14 C i ostalih izotopa ugljika na svakih 9.3 10 11 atoma 12

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

E 2? E = λ 1 = 10 µm = 10-5 m, λ 2 = 10 nm = 10-8 m,

E 2? E = λ 1 = 10 µm = 10-5 m, λ 2 = 10 nm = 10-8 m, adata (Brano, srednja šola) Valna je duljina infrarvenog zračenja µm, a ultraljubičaste svjetlosti nm. ato je energija fotona ultraljubičaste svjetlosti: A. puta veća B. puta veća C. puta veća D. puta

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

Fizika 2. Predavanje 12. Rendgensko zračenje, Laseri. Atomska jezgra. Dr. sc. Damir Lelas

Fizika 2. Predavanje 12. Rendgensko zračenje, Laseri. Atomska jezgra. Dr. sc. Damir Lelas Fakultet elektrotehnike, strojarstva i brodogradnje Razlikovni studiji (910/920/930/940/950) Fizika 2 Predavanje 12 Rendgensko zračenje, Laseri. Atomska jezgra Dr. sc. Damir Lelas (Damir.Lelas@fesb.hr

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

RADIOHEMIJA.

RADIOHEMIJA. RADIOHEMIJA http://www.ffh.bg.ac.rs/geografi_fh_procesi.html 1 ATOM I ATOMSKO JEZGRO Karakteristike elementarnih čestica: elektrona, protona i neutrona Redni i maseni broj hemijskog elementa Izotopi, izobari,

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Sustav dvaju qubitova Teorem o nemogućnosti kloniranja. Spregnuta stanja. Kvantna računala (SI) 17. prosinca 2016.

Sustav dvaju qubitova Teorem o nemogućnosti kloniranja. Spregnuta stanja. Kvantna računala (SI) 17. prosinca 2016. 17. prosinca 2016. Stanje qubita A prikazujemo vektorom φ A u Hilbertovom prostoru H A koristeći ortonormiranu bazu { 0 A, 1 A }. Stanje qubita B prikazujemo vektorom φ B u H B... Ako se qubitovi A i B

Διαβάστε περισσότερα

Skulptura mamuta, dužine samo 3.7cm koja je isklesana od mamutove kljove, delo je umetnika koji je živeo u severozapadnoj Nemačkoj pre godina.

Skulptura mamuta, dužine samo 3.7cm koja je isklesana od mamutove kljove, delo je umetnika koji je živeo u severozapadnoj Nemačkoj pre godina. NUKLEARNA FIZIKA Skulptura mamuta, dužine samo 3.7cm koja je isklesana od mamutove kljove, delo je umetnika koji je živeo u severozapadnoj Nemačkoj pre 35000 godina. Koji fizički principi omogućavaju vremensko

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

Rad, energija i snaga

Rad, energija i snaga Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

1 Aksiomatska definicija skupa realnih brojeva

1 Aksiomatska definicija skupa realnih brojeva 1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna

Διαβάστε περισσότερα

Vježbe iz nuklearne fizike

Vježbe iz nuklearne fizike Vježbe iz nuklearne fizike Matko Milin i Ivica Friščić Fizički odsjek Prirodoslovno-matematički fakultet Sveučilišta u Zagrebu verzija: 31. listopada 2010. 3 Struktura nukleona 3.1 Kvarkovi i leptoni Kvarkovi

Διαβάστε περισσότερα

POBUĐENJA JEZGRE I RASPADI

POBUĐENJA JEZGRE I RASPADI POBUĐENJA JEZGRE I RASPADI Radioaktivni raspadi iz osnovnog ili pobuđenih stanja jezgre γ-raspad : elektromagnetska interakcija. Početno i konačno stanje pripadaju istoj Jezgri. Elektromagnetski prijelazi

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

HEMIJSKA VEZA TEORIJA VALENTNE VEZE

HEMIJSKA VEZA TEORIJA VALENTNE VEZE TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje

Διαβάστε περισσότερα

Rješenje 141 Uočimo da je valna duljina čestice obrnuto razmjerna sa razlikom energijskih razina. h = E E n m h E E. m c

Rješenje 141 Uočimo da je valna duljina čestice obrnuto razmjerna sa razlikom energijskih razina. h = E E n m h E E. m c Zadatak 4 (Ivia, trukovna škola) Crtež prikazuje dio energijkih razina vodikova atoma. Koja od trjelia prikazuje emiiju fotona najkraće valne duljine? Zaokružite ipravan odgovor. A. a) B. b) C. ) D. d

Διαβάστε περισσότερα

Rijeseni neki zadaci iz poglavlja 4.5

Rijeseni neki zadaci iz poglavlja 4.5 Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz

Διαβάστε περισσότερα