Skulptura mamuta, dužine samo 3.7cm koja je isklesana od mamutove kljove, delo je umetnika koji je živeo u severozapadnoj Nemačkoj pre godina.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Skulptura mamuta, dužine samo 3.7cm koja je isklesana od mamutove kljove, delo je umetnika koji je živeo u severozapadnoj Nemačkoj pre godina."

Transcript

1 NUKLEARNA FIZIKA

2 Skulptura mamuta, dužine samo 3.7cm koja je isklesana od mamutove kljove, delo je umetnika koji je živeo u severozapadnoj Nemačkoj pre godina. Koji fizički principi omogućavaju vremensko datiranje?

3 ELEMENTARNE ČESTICE Elementarne čestice su subatomske čestice za koje se veruje da se ne mogu podeliti na manje. Neke elementarne čestice su stabilne, druge su, pak, nestabilne. Ona čestica koja prepuštena sama sebi, tj. kada ne interaguje ni sa jednom drugom česticom, opstaje nepromenjenih karakteristika sve dok traju ti uslovi, naziva se stabilnom. Ona koja čak i u tim uslovima, posle izvesnog vremena, menja svoje karakteristike, odnosno preživljava spontanu transformaciju (raspad) u neke druge elementarne čestice, naziva se nestabilnom. Čestice materije sačinjavaju atome, molekule, živa bića, svet oko nas. U njih spadaju kvarkovi i leptoni. Kvarkovi su elementarne čestice koje sačinjavaju protone, neutrone i sve ostale složene čestice tj. hadrone, nukleone, mezone... Leptoni su elementarne čestice koje ne prave druge složene čestice ali učestvuju u važnim fizičkim procesima. Imaju spin 1/2, naelektrisanje 1C i osetljivi su na slabu silu. Imaju masu koja je znatno manja od mase kvarkova, ali za razliku od njih mogu se naći slobodni.

4 ELEMENTARNE ČESTICE Kvark struktura protona

5 OSNOVNE KARAKTERISTIKE ATOMSKOG JEZGRA Otkriće atomskog jezgra (Raderford, 1911., rasejanje α-čestica) - skoro celokupna masa atoma je skoncentrisana u prostoru dimenzija m, jezgro je deset do hiljadu puta manjeg radijusa od atoma. Ono sadrži protone (pozitivna elementarna naelektrisanja) i neutrone. ƒbroj protona Z određuje redni broj elementa u Periodnom sistemu elemenata, a zbir broja protona (Z) i neutrona (N) daje atomski maseni broj A. Na slici: Litijum (tri elektrona u atomu) je metal koji spontano gori u vodi, dok je helijum (sa dva elektrona u atomu) inertan gas koji ne podleže hemijskoj reakciji. Elektroni u atomu utiču na različite hemijske osobine elemenata, dok sastav jezgra utiče na fizičke osobine hemijskog elementa.

6 A N Z A Z X Aje atomski maseni broj (broj nukleona) i razlikuje se od relativne atomske mase A r. Izotopi nekog hemijskog elementa su atomi čija jezgra imaju jednak redni broj Z, a različit broj neutrona N. Različiti izotopi istog elementa imaju neznatne razlike u nekim fizičkim osobinama kao što je tačka topljenja i ključanja i difuzija. ƒjezgro nema oštru ivicu, približno je sfernog oblika, a veličina poluprečnika jezgra zavisi od masenog atomskog broja: gde je R 0 eksperimentalna konstanta R m 1/3 R R 0 A Masa protona i masa neutrona je približno jednaka i može se izraziti preko 1u (koja je 1/12 mase jezgra ugljenika C12, i iznosi kg. Dakle, atomska masa je relativan bezdimenzionalan broj izražen preko jedinice u, koja je u kg.

7 Osnovne karakteristike atomskog jezgra 1u (83) kg mn u, mp u Gustina jezgra je približno ista kod svih atoma, tj. ne zavisi od vrste atoma. U jezgru osim odbojne elektrostatičke sile između protona, deluje jaka nuklearna sila (interakcija) koja drži sve nukleone (protone i neutrone) na okupu (gravitaciona privlačna sila je zanemarljiva). Jaka nuklearna interakcija je sila kratkodometnog tipa i ne zavisi od naelektrisanja (približno je jednaka između dva protona, dva neutrona ili protona i neutrona). Pošto proton u jezgru deluje odbojnom elektrostatičkom silom na sve druge protone, a privlačne jake nuklearne sile deluju samo između najbližih suseda, da bi jezgro ostalo stabilno sa porastom broja protona u jezgru raste i broj neutrona.

8 Nakon izvesnog broja protona (Z>83) i neutrona u jezgru dalje povećanje broja neutrona više ne može održati stabilnost jezgra. Takva nestabilna jezgra se spontano raspadaju - radioaktivnost (Bekerel, 1896.).

9 DEFEKT MASE JEZGRA I ENERGIJA VEZE Ukupna masa jezgra nije jednaka zbiru masa protona i neutrona koji ga sačinjavaju, već je nešto manja. Razlika u masi jezgra i njegovih sastavnih delova se naziva defekt mase Δm i odgovara energiji veze E v nukleona u jezgru. m Zm ( A Z) m m ( A, Z) p n j Energija veze E v je energija koju je potrebno uložiti za razlaganje jezgra, odnosno energija koja se oslobodi pri stvaranju jezgra. Prema Ajnštajnovoj relaciji o ekvivalentnosti mase i energije, defektu mase Δm odgovara energija veze Ev izražena preko relacije: E Što je energija veze veća, veća je i stabilnost jezgra. v mc 2

10 DEFEKT MASE JEZGRA I ENERGIJA VEZE masa u masa u

11 DEFEKT MASE JEZGRA I ENERGIJA VEZE

12 PRIRODNA RADIOAKTIVNOST Prirodna radioaktivnost se definiše kao spontana transformacija jezgra nestabilnog izotopa jednog hemijskog elementa u izotop drugog hemijskog elementa. Manifestuje se emisijom alfa i beta čestica, antineutrina i elektromagnetnog (gama) zračenja. Osobine: hemijsko dejstvo izaziva jonizaciju, i luminaciju

13 RADIOAKTIVNI NIZOVI U Pb U r a n i j u m o v n i z Neptunijumov niz 237 Torijumov niz 93 Np Bi 90 Th Pb, Aktinijumov niz U Pb

14 RADIOAKTIVNI RASPAD Radioaktivni raspad je slučajan, statistički proces nemoguće je tačno predvideti koje jezgro će se u kom trenutku raspasti, ali se može odrediti broj jezgara koji će se raspasti posle izvesnog intervala vremena. dn Ndt Zakon radioaktivnog raspada: N t N 0 e t

15 Aktivnost (brzina raspada) radioaktivnog materijala dn A N dt Konstanta radioaktivnog raspada određuje verovatnoću raspada Vreme poluraspada vremenski interval nakon kojeg se broj neraspadnutnih jezgara smanji na pola. T 1 / 2 ln 2 Jedinica za aktivnost Bekerel 1raspad 10 1Bq 1Ci Bq s 1 Ci je približno aktivnost 1g izotopa radijuma 226 Ra

16 VRSTE RADIOAKTIVNOG RASPADA RADIOAKTIVNI RASPAD U raspadu se emituje αčestica (jezgro helijuma, pozitivno naelektrisana čestica), pri čemu se dešava tzv. transmutacija jezgra, proces promene jezgra jednog u jezgro drugog elementa. A Z A Z X 2Y He U procesu alfa raspada mogu se razlikovati dve faze: formiranje alfa čestice od dva protona i dva neutrona u jezgru, i emisija alfa čestice iz jezgra. Separacija četiri nukleona u nezavisnu česticu je omogućena saturacijom nuklearnih sila i formirana alfa čestica u tom slučaju trpi manju silu privlačenja susednih nukleona. Energetski spektar emitovanih α čestica je diskretan, a vrednosti energija su strogo određene jer su energije nukleona u jezgru kvantovane kao i energije elektrona u omotaču atoma

17 RADIOAKTIVNI RASPADTUNEL EFEKAT Primer kako izgleda refleksija i tunelovanje talasnog paketa elektrona na potencijalnoj barijeri. Deo talasnog paketa prolazi kroz barijeru kroz koju, prema zakonima klasične fizike, to ne bi bilo moguće. (Treba obratiti pažnju na desnu polovinu slike - tunelovani deo paketa vrlo je bled i jedva se vidi.)

18 RADIOAKTIVNI RASPAD Postoje tri vrste raspada: raspad, + raspad i K-zahvat. U raspadu se emituje čestica (elektron, negativno elementarno naelektrisanje) pri čemu se takođe dešava transmutacija jezgra. n p e _ v Jedan neutron se preko delovanja tzv. slabe nuklearne interakcije (sile) transformiše u proton, pri čemu se uz emisiju elektrona javlja i antineutrino. Antineutrino je čestica praktično nulte mase (tačnije, veoma male mase), bez naelektrisanja, antičestica od neutrina. On deli energiju oslobođenu u raspadu sa ostalim produktima raspada. A Z A X Y Z e

19 + RADIOAKTIVNI RASPAD U + raspadu se emituje + čestica i neutrino. Jedan proton u jezgru se, preko delovanja tzv. slabe nuklearne interakcije (sile), transformiše u neutron. p n e v A Z X A Y Z e U K-zahvatu se jezgro oslobađa viška energije zahvatom elektrona iz atomske orbitale (najčešće K-ljuska, glavni kvantni broj n=1), pri čemu se proton jezgra transformiše u neutron, a jedina emitovana čestica je neutrino. p e n v

20 RADIOAKTIVNO ZRAČENJE raspad se u principu nikada ne koristi kao termin, i ne predstavlja nezavisnu vrstu radioaktivnog raspada jezgra. Gama zračenje ustvari prati alfa i beta raspad, s obzirom da jezgro potomak posle ovih procesa često ostane u pobuđenom stanju. Jezgro pri prelazu u osnovno ili niže pobuđeno energetsko stanje emituje gama foton na isti način kao što pri prelasku iz višeg u niže pobuđeno stanje emituje fotone u optičkom ili X delu spektra. Velika prodornost gama zraka se objašnjava visokim energijama gama fotona. Razlika između energijskih nivoa atomskog jezgra je oko 0.1MeV, dok u atomu E ne prelazi vrednost elektron-volta. A Z X * A Z X

21 INTERAKCIJA RADIOAKTIVNOG ZRAČENJA SA MATERIJOM Emitovano radioaktivno zračenje različito prodire kroz materiju - prodornost raste pri promeni vrste zračenja. Pri prolasku radioaktivnog zračenja kroz materiju, dolazi do gubitka, tj. predaje energije apsorbujućem materijalu.

22 αčestice na svom putu (usled velike mase putanja im je prava linija) jonizuju ili ekscituju čestice materije kroz koju prolaze, brzo gube energiju i imaju veoma mali domet (u vazduhu oko 10 cm). Zaustavlja ih sloj papira, sloj izumrlih ćelija kože ili sloj vazduha od samo nekoliko cm. Znatno veća opasnost od αčestica preti ako se radioaktivni materijal koji ih emituje nalazi u živom organizmu, odnosno inhalira. čestice (elektroni) pri prolasku kroz materiju takođe vrše ekscitaciju (pobuđivanje) elektrona u orbitama atoma materije i/ili jonizaciju i imaju izlomljenu putanju. Pored toga, usled naglog usporavanja naelektrisanih čestica (elektroni ili pozitroni) emituje se i tzv. zakočno X-zračenje.

23 zraci (kvanti elektromagnetnog zračenja) imaju najveći domet i predaju materiji svoju energiju u nekoliko procesa: 1. Fotoelektrični efekatpotpuno predaju energiju elektronima atomskih omotača koji izlaze iz atoma materijala apsorbera. Takvi elektroni, slično česticama, u sekundarnom efektu jonizuju sredinu kroz koju se kreću. Ovaj efekat je dominantan pri niskim energijama kvanata. 2. Komptonovo rasejanje na kvazi-slobodnim elektronima je proces kada kvanti samo delimično gube energiju, a deo energije primaju elektroni u materijalu apsorbera. Ovi elektroni se dalje ponašaju kao i čestice i vrše ekscitaciju elektrona ili jonizaciju atoma materije, a oslabljeni kvanti izazivaju fotoefekat. Ovaj efekat je dominantan pri srednjim energijama kvanata.

24 3. Stvaranje para elektron-pozitron (par-efekat): kada fotoni zraka imaju energiju veću od dvostruke energije mirovanja elektrona E >2m 0 c, može doći u polju jezgra atoma apsorbera do stvaranja elektrona i njegove antičestice, pozitrona. Nastali elektron i pozitron ekscituju i jonizuju sredinu kroz koju se kreću. Ako im je energija mala, oni anihiliraju - ponovo se stvaraju 2 kvanta koji zatim preko fotoelektričnog efekta i Komptonovog rasejanja interaguju sa materijom. Slabljenje intenziteta zračenja pri prolasku kroz materijal debljine x ima eksponencijalni oblik (zakon apsorpcije zračenja): I( x) I 0 e x l l - linearni koeficijent apsorpcije; zavisi od vrste apsorbera i energije γ-zraka.

25 NUKLEARNA MEDICINA/DIJAGNOSTIKA KAMERA Gama kamera je merni instrument u nuklearnoj medicini koji se koristi u dijagnostičke svrhe, ali za razliku od nekih drugih instrumenata recimo rengenske cevi, uopšte ne zrači. Vrlo osetljiv detektor jonizujućeg zračenja, koji može dokazati izuzetno malu količinu radioaktivnosti u telu ispitanika. Slikanjem gama kamerom, odnosno dokazivanjem gama zračenja koje dolazi iz tela bolesnika, nakon što se inekcijom u venu bolesnika unosi radionuklid (obično tehnecijum-99m), dobija scintigram korišćenjem scintilatora.

26 SCINTILATOR Scintilator je materijal koji gama zračenje pretvara u vidljivu svetlost (scintilacija) i tako ga određuje ili detektuje. Kada neki materijali apsorbuju jonizujuće zračenje, deo absorbovane energije pobudi elektrone atoma materije u viša energetska stanja, iz kojih se vraćaju emisijom vidljive svjetlosti. Pojava se zove luminiscencija ili bljeskovi emitovane svetlostiscintilacije. Zbog toga se slike dobijene korišćenjem scintilacionih detektora nazivaju scintigrami. Intenzitet i trajanje pojedinačne scintilacije premali su za rutinsku detekciju. Stoga se koriste pojačivači ili fotomultiplikatorske cevi. Scintilator i fotomultiplikatorska cev zajedno čine scintilacioni brojač.

27

28

29

30 Radioaktivno Zračenje se značajno koristi u medicini za destrukciju tkiva tumora-terapija. Veštački proizvedeni izotopi se koriste kao radioaktivni izvori Prednost imaju kratko vreme života i veće aktivnosti. Lokacija izotopa u organizmu na osnovu emitovanog zračenjadijagnosika Tiroidna žlezda 131 T dana Tehnecijum 99 Tc ( gama linija 143 kev) Radioaktivni trejser (radioactive tracer). I / 2 T 1 / h Scintigram pluća Radioaktivni tricijum 3 H se koristi za tagovanje molekula u kompleksnim organskim reakcijama. Radioaktivno tagovanje npr. molekula pesticida se koristi za praćenje njihovog toka u lancu ishrane.

31 PET-POZITRON EMISIONA TOMOGRAFIJA Pozitron emisiona tomografija (PET) je jedna od najvažnijih imidžing dijagnostičkih procedura koja se pretežno koristi u onkologiji, neurologiji i kod kardiovaskularnih bolesti. Trenutno je PET najefikasniji metod u otkrivanju recidiva raka sa značajnim prednostima u odnosu na CT i MR. PET snimak prikazuje hemiju organa i tkiva. Radiofarmaceutici, kao na primer FDG (fluorodeoksiglukoza), koga čine šećer (glukoza) i radionukleid (radioaktivni element) koji zrači, se ubrizgaju u pacijenta, a emisija radioaktivnog zračenja se meri PET skenerom. PET skener se sastoji od niza detektora koji okružuju pacijenta.korišćenjem gama zraka koje daje injektovani radionuklid, PET meri količinu metaboličke aktivnosti na posmatranom mestu u organizmu i to pretvara u odgovarajuću sliku. Ćelije raka imaju višu metaboličku aktivnost nego normalne ćelije, pa se one vide kao gušća oblast na PET snimku.

32

33 PET/CT PET/CT je vodeći uređaj u slikovnoj i funkcionalnoj dijagnostici u medicini, kombinacijom PET-a (pozitronske emisijske tomografije), koji pokazuje intenzitet metabolizma glukoze u ćelijama, te CT-a (kompjuterizovane tomografije), koji pokazuje anatomiju i morfologiju organa, daje nam informacije o patološkim odstupanjima, kako u funkciji, tako i u morfologiji. PET/CT-om se dobije precizna, tačno određena trodimenzionalna slika unutrašnjosti ljudskog tela i njegovih organa i sistema, prvenstveno funkcije, tj. metabolizma ćelija, što lekaru daje mogućnost odabira najboljeg postupka lečenja kod bolesnika s malignim, srčanim i neurološkim oboljenjima.

34 o o o Za PET/CT se najčešće koristi analog glukoze, fluorodeoksiglukoza (FDG), obeležena ciklotronskim proizvodom, izotopom fluora (18F), koji se inicira intravenski, te ulaskom u ćelije pokazuje regionalnu metaboličku potrošnju glukoze u tkivu. Radioaktivni fluor se raspada emitovanjem pozitrona, otuda i naziv dijagnostičke metode. Naime, poznato je da tumorske ćelije za svoje potrebe koriste puno glukoze, te se ista, kad je obeležena, izrazito nakuplja u tumorskim ćelijama, za razliku od nakupljanja u okolnim, zdravim strukturama, te nam na taj način omogućava razlikovanje tumorskog tkiva, primarnog tumora ili metastaza, od okolnog zdravog tkiva. Osnovna razlika između PET-a i CT-a je u tome što PET-om gledamo primarno funkciju, a CT-om anatomiju organa, dok kod PET/CT dobijamo istovremeno informaciju i o funkciji i o morfologiji organa, tj. tačno se anatomski može odrediti gde se nalazi područje pojačane akumulacije radiofarmaceutika,odnosno tumorsko tkivo. PET imaging. Koncentracija radionuklida po cm3

35 BIOLOŠKI EFEKAT Fizičke veličine koje opisuju biološko dejstvo radioaktivnog zračenja opisuju udružene efekte fizičkih i bioloških procesa u živom organizmu pri delovanju ove vrste zračenja. Apsorbovana energija u materijalu, E D, koji je izložen zračenju, izražava se jedinicama za energiju (J). Kada je izloženi materijal živo biće, posledice izlaganja nisu srazmerne samo apsorbovanoj energiji, nego zavise od vrste zračenja (alfa čestice, fotoni, elektroni, neutroni...) i od načina izlaganja (celo telo, delovi tela). Apsorbovana doza je energija jonizujućeg zračenja apsorbovana od strane jedinice mase supstance izložene zračenju: D E m D 1Gy J kg

36 Učinak zračenja ne zavisi samo od predate energije nego, nego veoma zavisi i od vrste zračenja, od načina izlaganja, od frekvencije izlaganja i od mnogih drugih faktora. Ekvivalentna doza: H 1Sv R D

37 Efektivna ekvivalentna doza, E se definiše kao zbir ekvivalentnih doza H u kritičnim organima i tkivima, korigovane tkivnim težinskim faktorima, T, koji su mera radioosetljivosti tih organa: E T H 1Sv Vrednost težinskog faktora predstavlja verovatnoću da će se desiti određen biološki efekat kad se ozrači neki organ.

38

39

40

41 NUKLEARNE REAKCIJE Nuklearne reakcije su veštački izazvane transformacije atomskih jezgara usled njihove interakcije sa različitim česticama ili sa drugim jezgrima. U većini slučajeva u ovim reakcijama učestvuju dva jezgra i dve čestice: A a B b ili A( a, b) B Energija nuklearne reakcije je razlika u kinetičkoj energiji između produkata nuklearne reakcije i čestica koje ulaze u reakciju. ƒenergija reakcije se može naći iz razlike masa čestica koje ulaze u reakciju i koje su produkti reakcije. Q 2 B b A m m m m c E E E A a B b k k k Reakcija je egzotermna (oslobađanje energije), ako je Q>0. ƒreakcija je endotermna, ako je Q<0.

42 NUKLERNA FISIJA Nuklearna fisija je takva nuklearna reakcija pri kojoj se jezgro atoma nekog hemijskog elementa, pobuđeno zahvatom neutrona, cepa na dva aproksimativno jednaka dela koja se nazivaju fisioni produkti, uz emisiju jednog ili više neutrona i velike količine energije. Nekontrolisana lančana reakcijaatomska bomba Kontrolisana lančana reakcijanuklearni reaktor

43 NUKLEARNA FUZIJA Nuklearna fuzija je proces spajanja lakih jezgara, sa relativno malom energijom veze po nukleonu, u masivnije jezgro veće energije veze po nukleonu. Oslobođena energija u tom procesu je znatno veća nego u procesima fisije (3.5 MeV po nukleonu). Za ostvarivanje fuzije, neophodno je savladavanje elektrostatičke sile odbijanja između pozitivnih jezgara koje ulaze u proces. Velika kinetička energija većem broju jezgara se može saopštiti jedino na temperaturama reda 10 8 K, prevođenjem fuzionog goriva u stanje plazme (smeša elektrona i jezgara - jonizovana materija). Problem kontrole stanja plazme još uvek nije uspešno rešen H1H2He 1 0 n

Osnovne karakteristike atomskog jezgra

Osnovne karakteristike atomskog jezgra Osnovne karakteristike atomskog jezgra Otkriće atomskog jezgra (Raderford, 1911., rasejanje α-čestica) - skoro celokupna masa atoma je skoncentrisana u prostoru dimenzija 10 15 m. Jezgro sadrži protone

Διαβάστε περισσότερα

Fizika atomskog jezgra Sadržaj

Fizika atomskog jezgra Sadržaj Osnovne karakteristike atomskog jezgra 30 Defekt mase jezgra i energija veze 303 Stabilnost atomskog jezgra 305 Radioaktivni raspad 308 akon radioaktivnog raspada 309 Vrste radioaktivnog raspada 30 α-radioaktivni

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Atomska jezgra. Atomska jezgra. Materija. Kristal. Atom. Elektron. Jezgra. Nukleon. Kvark. Stanica

Atomska jezgra. Atomska jezgra. Materija. Kristal. Atom. Elektron. Jezgra. Nukleon. Kvark. Stanica Atomska jezgra Materija Kristal Atom Elektron Jezgra Nukleon Stanica Kvark Razvoj nuklearne fizike 1896. rođenje nuklearne fizike Becquerel otkrio radioaktivnost 1899. Rutherford pokazao da postoje različite

Διαβάστε περισσότερα

To je ujedno 1/12 mase atoma ugljika koja je određena eksperimentom i koja iznosi kg. Dakle mase nukleona:

To je ujedno 1/12 mase atoma ugljika koja je određena eksperimentom i koja iznosi kg. Dakle mase nukleona: Nuklearna fizika_intro Osnovne sile u prirodi, građa atomske jezgre, nukleoni i izotopi, energija vezanja jezgre, radioaktivnost, osnovne vrste radioaktivnog zračenja i njihova svojstva, zakon radioaktivnog

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Atomi i jezgre 1.1. Atomi i kvanti 1.2. Atomska jezgra λ = h p E = hf, E niži

Atomi i jezgre 1.1. Atomi i kvanti 1.2. Atomska jezgra λ = h p E = hf, E niži tomi i jezgre.. tomi i kvanti.. tomska jezgra Kvant je najmanji mogući iznos neke veličine. Foton, čestica svjetlosti, je kvant energije: gdje je f frekvencija fotona, a h Planckova konstanta. E = hf,

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

DALTONOV ATOMSKI MODEL Nastao je čitavih 2300 godina posle DEMOKRITA!

DALTONOV ATOMSKI MODEL Nastao je čitavih 2300 godina posle DEMOKRITA! DALTONOV ATOMSKI MODEL Nastao je čitavih 2300 godina posle DEMOKRITA! Polazna znanja zakoni o: Održanju mase Stalnom (utvrdjenom) sastavu Umnoženim odnosima Zakon o održanju mase masa supstance ne menja

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Elementarne čestice Elementarne ili osnovne ili fundamentalne čestice = Najmanji dijelovi od kojih je sastavljena tvar. Do 1950: Elektron, proton,

Elementarne čestice Elementarne ili osnovne ili fundamentalne čestice = Najmanji dijelovi od kojih je sastavljena tvar. Do 1950: Elektron, proton, Elementarne čestice Elementarne ili osnovne ili fundamentalne čestice = Najmanji dijelovi od kojih je sastavljena tvar. Do 1950: Elektron, proton, neutron Građa atoma Pozitron, neutrino, antineutrino Beta

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

HEMIJSKA VEZA TEORIJA VALENTNE VEZE

HEMIJSKA VEZA TEORIJA VALENTNE VEZE TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

RADIOHEMIJA.

RADIOHEMIJA. RADIOHEMIJA http://www.ffh.bg.ac.rs/geografi_fh_procesi.html 1 ATOM I ATOMSKO JEZGRO Karakteristike elementarnih čestica: elektrona, protona i neutrona Redni i maseni broj hemijskog elementa Izotopi, izobari,

Διαβάστε περισσότερα

PITANJA IZ NUKLEARNE FIZIKE I RADIOAKTIVNOSTI

PITANJA IZ NUKLEARNE FIZIKE I RADIOAKTIVNOSTI PITANJA IZ NUKLEARNE FIZIKE I RADIOAKTIVNOSTI. Od kojih se čestica sastoji atomska jezgra i koja su osnovna svojstva tih čestica?. Zašto elektroni ne mogu nalaziti u jezgri? 3. Kolika je veličina atoma,

Διαβάστε περισσότερα

Kvantna optika Toplotno zračenje Apsorpciona sposobnost tela je sposobnost apsorbovanja energije zračenja iz intervala l, l+ l na površini tela ds za vreme dt. Apsorpciona moć tela je sposobnost apsorbovanja

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

NUKLEARNA FIZIKA. Osnove fizike 4

NUKLEARNA FIZIKA. Osnove fizike 4 NUKLEARNA FIZIKA Osnove fizike 4 Atom= jezgra + elektroni jezgra = protoni + neutroni (nukleoni) POVIJEST NUKLEARNE FIZIKE 1896. Becquerel otkriće radioaktivnosti 1898. Pierre & Marie Curie separacija

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

SAZNANJA O MATERIJI OD STAROG DO XIX VEKA

SAZNANJA O MATERIJI OD STAROG DO XIX VEKA SAZNANJA O MATERIJI OD STAROG DO XIX VEKA U najstarija vremena, čovek je svoja poimanja sveta iskazivao mitovima. MIT (mitos) reč, priča, kazivanje (grč.); MITOLOGIJA od, priča i (logos), reč, učenje.

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Doc. dr Milena Đukanović

Doc. dr Milena Đukanović Doc. dr Milena Đukanović milenadj@ac.me ATOMSKA STRUKTURA MATERIJE: 500 g.p.n.e. Empedokle svijet se sastoji od četiri osnovna elementa: zemlja, vazduh, vatra i voda. 400 g.p.n.e. Demokrit svijet je sagrađen

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

STRUKTURA ATOMA. Dalton (1803) Tomson (1904) Raderford (1911) Bor (1913) Šredinger (1926)

STRUKTURA ATOMA. Dalton (1803) Tomson (1904) Raderford (1911) Bor (1913) Šredinger (1926) Dalton (803) Tomson (904) Raderford (9) Bor (93) Šredinger (96) OTKRIĆA OSNOVNIH SASTOJAKA ATOMA Do početka XX veka važila je Daltonova atomska teorija o nedeljivosti atoma. Karjem XIX i početkom XX veka

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

SPEKTROSKOPIJA SPEKTROSKOPIJA

SPEKTROSKOPIJA SPEKTROSKOPIJA Spektroskopija je proučavanje interakcija elektromagnetnog zraka (EMZ) sa materijom. Elektromagnetno zračenje Proces koji se odigrava Talasna dužina (m) Energija (J) Frekvencija (Hz) γ-zračenje Nuklearni

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Elementarne čestice. "Ništa nije jednostavnije od elementarne čestice. Ova definicija je tolikosavršenadase kaoi sveidealnestvariuopštenekoristi".

Elementarne čestice. Ništa nije jednostavnije od elementarne čestice. Ova definicija je tolikosavršenadase kaoi sveidealnestvariuopštenekoristi. Radiohemija i nklearna hemija Elementarne čestice Šta je elementarna (fndamentalna) čestica? Fndamentalna čestica je najjednostavniji i nedeljivi delić materije, bez oblika i ntrašnje strktre odnosno entitet

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Otkriće prirodne radioaktivnosti

Otkriće prirodne radioaktivnosti Otkriće prirodne radioaktivnosti Kruksove cevi Rentgen [Wilhem Konrad Rontgen, 1845-1923] Sir Wiliam Crookes 1832-1919 Iz Kruksovih cevi se emituje prodorno zračenje Otkriće Xzraka X-zraka - 1895 Prva

Διαβάστε περισσότερα

zračenjem. U atmosferi, pa stoga i u živim organizmima, postoji stalan dobiven iz neke grobnice davao 7.1 raspada u minuti po gramu uzorka,

zračenjem. U atmosferi, pa stoga i u živim organizmima, postoji stalan dobiven iz neke grobnice davao 7.1 raspada u minuti po gramu uzorka, 1RR. Radioaktivni ugljik 14 C proizvodi se u atmosferi kozmičkim zračenjem. U atmosferi, pa stoga i u živim organizmima, postoji stalan omjer 14 C i ostalih izotopa ugljika na svakih 9.3 10 11 atoma 12

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Izdavač. UNIVERZITET U BEOGRADU Fakultet za fizičku hemiju Beograd, Studentski trg Recenzenti. Urednik... Štampa...

Izdavač. UNIVERZITET U BEOGRADU Fakultet za fizičku hemiju Beograd, Studentski trg Recenzenti. Urednik... Štampa... Izdavač UNIVERZITET U BEOGRADU Fakultet za fizičku hemiju Beograd, Studentski trg 12-16 Recenzenti Urednik... Štampa... Univerzitet u Beogradu-Fakultet za fizičku hemiju 2008. Sva prava zadržana. Nijedan

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

Akceleratori. Podela akceleratora. Akceleratori su mašine u kojima se naelektrisane čestice (e -, p +, etc.) ubrzavaju dejstvom elektromagnetnih polja

Akceleratori. Podela akceleratora. Akceleratori su mašine u kojima se naelektrisane čestice (e -, p +, etc.) ubrzavaju dejstvom elektromagnetnih polja Akceleratori Akceleratori su mašine u kojima se naelektrisane čestice (e -, p +, etc.) ubrzavaju dejstvom elektromagnetnih polja Podela akceleratora Trajektorija čestica Linearni - konačna energija ubrzane

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

MEĐUMOLEKULSKE SILE JON-DIPOL DIPOL VODONIČNE NE VEZE DIPOL DIPOL-DIPOL DIPOL-INDUKOVANI INDUKOVANI JON-INDUKOVANI DISPERZNE SILE

MEĐUMOLEKULSKE SILE JON-DIPOL DIPOL VODONIČNE NE VEZE DIPOL DIPOL-DIPOL DIPOL-INDUKOVANI INDUKOVANI JON-INDUKOVANI DISPERZNE SILE MEĐUMLEKULSKE SILE JN-DIPL VDNIČNE NE VEZE DIPL-DIPL JN-INDUKVANI DIPL DIPL-INDUKVANI INDUKVANI DIPL DISPERZNE SILE MEĐUMLEKULSKE SILE jake JNSKA VEZA (metal-nemetal) KVALENTNA VEZA (nemetal-nemetal) METALNA

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje proljeće 2017.)

Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje proljeće 2017.) Zadatci s dosadašnjih državnih matura poredani po nastavnom programu (više-manje svi, izdanje proljeće 2017.) četvrti razred (valna optika, relativnost, uvod u kvantnu fiziku, nuklearna fizika) Sve primjedbe

Διαβάστε περισσότερα

. Iz lonca ključanjem ispari 100 vode za 5. Toplota

. Iz lonca ključanjem ispari 100 vode za 5. Toplota ELEKTROTEHNIČKI FAKULTET SARAJEVO RIJEŠENI ISPITNI ZADACI IF2 II PARCIJALNI Juni 2009 2A. Sunce zrači kao a.c.t. pri čemu je talasna dužina koja odgovara max. intenziteta zračenja jednaka 480. Naći snagu

Διαβάστε περισσότερα

UVOD U KVANTNU TEORIJU

UVOD U KVANTNU TEORIJU UVOD U KVANTNU TEORIJU UVOD U KVANTNU TEORIJU 1.) FOTOELEKTRIČKI EFEKT 2.) LINIJSKI SPEKTRI ATOMA 3.) BOHROV MODEL ATOMA 4.) CRNO TIJELO 5.) ČESTICE I VALOVI Elektromagnetsko zračenje UVOD U KVANTNU TEORIJU

Διαβάστε περισσότερα

Ionizirajuće zračenje u biosferi

Ionizirajuće zračenje u biosferi Sveučilište u Splitu Kemijsko-tehnološki fakultet Ionizirajuće zračenje u biosferi Mile Dželalija Split, 2006. M. Dželalija, Ionizirajuće zračenje u biosferi (interna skripta), Sveučilište u Splitu, Kemijsko-tehnološki

Διαβάστε περισσότερα