TITULARIZARE 2000 Varianta 1. cot 2p+1 = 1
|
|
- Ἰοκάστη Λιάπης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 TITULARIZARE 2000 Varianta 1 1. a) Teoremele lui Bernoulli-L Hôpital. b) Relații binare. Relații de echivalență și mulțimi cât. Relații de ordine. Exemple. 2. a) Exemple și contraexemple în predarea noțiunilor de șir monoton, șir mărginit, șir convergent. b) Teorema celor trei perpendiculare și reciprocele. 3. a) Fie n N. i. Descompuneți în factori ireductibili în C[X] polinomul p n = (X +1) n (X 1) n. ii. Demonstrați că pentru orice p N are loc egalitatea: b) Fie D = { x R p kπ cot 2p+1 = 1 2p+1. k=1 } 2x x 2 1 > 0 și f : D R, f(x) = ln 2x x 2. Să se determine α D pentru 1 care există lim n ( 1)n α n f (n) (α), unde f (n) : D R este derivata de ordinul n N a funcției f : D R. 1
2 Varianta 2 1. a) Teorema lui Lagrange pentru grupuri. Consecințe. Mica teoremă a lui Fermat. Teorema lui Euler. b) Proprietatea lui Darboux. Enunț și exemple. Teorema: Orice funcție continuă pe un interval are proprietatea lui Darboux. 2. a) Distanța dintre două drepte necoplanare, perpendiculara comună, diverse metode de determinare. b) Legături între primitivabilitate și integrabilitate Riemann pe un interval real. 3. a) Fie n N și a 1, a 2,..., a n numere reale astfel încât 0 < a 1 < a 2 <... < a n. Pentru fiecare n permutare σ S n, se notează S σ = a j a σ(j). Determinați permutările σ pentru care S σ are valoarea minimă. j=1 b) i. Dovediți că pentru orice x [0, 1], au loc inegalitățile: ii. Calculați lim 2n n k=n+1 sin 2 1 k. x 2 x4 3 sin2 x x 2. 2
3 Varianta 3 1. a) Inelul polinoamelor cu o nedeterminată cu coeficienți într-un inel comutativ. Gradul unui polinom. Funcție polinomială. b) Continuitate uniformă. 2. a) Metoda inducției matematice. Principiile 1 și 2. Ilustrarea în probleme cu identități, inegalități și divizibilitate. b) Reprezentarea trigonometrică a numerelor complexe. 3. a) Să se determine funcția polinomială p : R R astfel încât funcția f : R R, definită prin {e 1 x f(x) = 2 1, x < 1 p(x), x 1 să fie indefinit derivabilă pe R. b) Determinați în mulțimea numerelor reale marginea inferioară și marginea superioară a mulțimii: { } 1 A = n +( 1)n R n N. 3
4 Varianta 4 1. a) Corpul numerelor reale. Prezentări axiomatice echivalente. Schița construcției unui model. b) Cicli și transpoziții în S n. Definiții, proprietăți, descompunerea unei permutări în produs de cicli. 2. a) Logaritmul unui număr pozitiv. Definiție și proprietăți. b) Drepte perpendiculare, dreapta perpendiculară pe un plan, plane perpendiculare. 3. a) Pentru fiecare x R, să se calculeze: sin 2 x 0 arcsin tdt+ cos 2 x 0 arccos tdt. b) Pe aceeași mulțime suport, două legi de compoziție interne definesc câte o structură de grup. Știind că una dintre aceste legi este distributivă față de cealaltă, aflați cardinalul mulțimii suport. 4
5 Varianta 5 1. a) Mulțimea numerelor complexe: forma algebrică și forma matriceală. b) Definirea unitară a unei conice ca loc geometric. 2. a) Îmbinarea aspectelor intuitive, desene, modele, etc. cu rigoarea în predarea proprietăților funcțiilor derivabile: teoremele lui Fermat, Rolle, Lagrange. b) Aspecte metodice privind rezolvarea ecuației a sinx+b cosx+c = 0, a, b, c R. 3. a) Calculați lim n 2 n k=1 descrescătoare pe [0, ). n 1 n 2 folosind, eventual, faptul că funcția f : R R, f(x) = +k2 1+x 2 este b) Fie f : (1, ) ( 2, ), f(x) = x 3 3x. Să se arate că funcția f admite, în raport cu operația de compunere a funcțiilor, o inversă g : ( 2, ) (1, ) de două ori derivabilă și să se calculeze g (2) și g (2). 5
6 Varianta 6 1. a) Subgrupurile grupului aditiv al numerelor întregi. b) Puterea unui punct față de un cerc. 2. a) Metode de rezolvare a problemelor de aritmetică. b) Drepte paralele, dreaptă paralelă cu un plan, plane paralele. 3. a) Determinați numerele întregi x care îndeplinesc simultan condițiile: x 2 (mod 7), x 1 (mod 8) și x 3 (mod 9). b) Fie d o dreaptă, iar A și B două puncte în spațiu nesituate pe d. Determinați poziția punctului M pe dreapta d astfel încât MA+MB să fie minimă. c) Fie ecuația x 2 x 2+1 = 0 cu soluțiile complexe x 1 și x 2. Să se calculeze: E = x5 1 x4 1 +x 1 +1 x 5 1 +x4 1 x x5 2 x4 2 +x 2 +1 x 5 2 +x4 2 x
7 Varianta 7 1. a) Grupul rădăcinilor complexe de ordinul n ale unității. b) Teorema împărțirii cu rest pentru numere întregi. 2. a) Metoda inducției complete. b) Drepte perpendiculare, dreaptă perpendiculară pe un plan, teorema celor trei perpendiculare. 3. a) Fie A = (0, )\{1} și funcția f : A A R, f(u, v) = log u v log v u. Să se rezolve ecuația unde a A, b A, a b. f(a, b x ) f(b, a x ) = 2f(a, b) cu necunoscuta x R, b) Pe dreapta d se consideră două puncte mobile P și Q. Fie AB un segment de lungime 2a, paralel cu d și la distanța h de d. Se notează PA QB = {M} și PB QA = {N}. i. Să se arate că dreapta MN trece printr-un punct fix. ii. Să se afle locul geometric al punctelor M și N în ipoteza că PQ = 2k, pentru k a. iii. Considerând poziția în care MN AB, să se afle valorile lui k în funcție de a și h pentru care N este centrul cercului înscris în triunghiul MAB. 7
8 Varianta 8 1. a) Inel, subinel, omomorfisme de inele. b) Mica teoremă a lui Fermat. 2. a) Funcții injective, surjective, bijective. b) Teoremele lui Menelaus și Ceva și aplicații ale lor în probleme de coliniaritate și concurență. 3. a) Fie m R. În raport cu necunoscuta x R să se rezolve și să se discute după m R inecuația x m 1 mx 1. b) Fie ABCD un patrulater convex și M un punct pe diagonala AC. Paralelele prin M la AB, respectiv CD, intersectează BC în P, respectiv AD în Q. Arătați că: Precizați în ce caz are loc egalitatea. MP 2 +MQ 2 AB2 CD 2 AB 2 +CD 2. 8
9 Varianta 9 1. a) Relații binare, relații de echivalență, clase de echivalență, mulțimi cât. b) Teorema lui Cramer. 2. a) Relații metrice: teorema lui Pitagora generalizată și relația lui Stewart. b) Unghiul a două drepte necoplanare, unghiul format de o dreaptă cu un plan, unghiul a două plane. 3. a) Fie a, b R și n N cu proprietatea n 2. Să se rezolve și să se discute ecuația cu necunoscuta x: n a x+ n x b n a x = 3 n a x n x b n x b. b) Pe segmentul fix AB se ia punctul mobil M și se construiesc, de aceeași parte a segmentului, triunghiurile echilaterale AM C și M DB. i. Să se găsească locul geometric al centrului de greutate al triunghiului DMC. ii. Să se determine poziția punctului M astfel încât aria triunghiului DMC să fie maximă. 9
10 Varianta a) Corp, subcorp, omomorfism de corpuri. b) Calculul rădăcinilor raționale ale unei ecuații polinomiale cu coeficienți întregi. 2. a) Progresii geometrice. b) Probleme de extrem în geometria plană. Tehnici de abordare. 3. a) Fie ABCD un tetraedru. Demonstrați că următoarele afirmații sunt echivalente: i. AB CD, AC BD, AD BC; ii. înălțimile tetraedrului sunt concurente; iii. AB 2 +CD 2 = AC 2 +BD 2 = AD 2 +BC 2. b) Se dă funcția f : R R, f(x) = x 2 +2(k p)x+k 2, unde k și p sunt numere naturale nenule. Determinați valorile lui p N, știind că punctul de minim al funcției f aparține produsului cartezian [0, 2] [ 2p, 0]. 10
11 Satu Mare 1. a) Grupuri ciclice. Ordinul unui element. b) Teoremele lui Bernoulli-L Hôpital. 2. a) Rolul primei derivate în studiul funcțiilor. b) Formule pentru aria unui triunghi. 3. a) i. Să se demonstreze că cercul înscris într-un triunghi ABC trece prin centrul cercului circumscris dacă și numai dacă sin A 2 sin B 2 sin C =. 4 ii. Să se arate că OI R B C sin 2, notațiile fiind cele cunoscute. b) Să se discute după valorile parametrului real a numărul soluțiilor reale ale sistemului următor: { x 2 +y 2 = z. x+y +z = a 11
12 Dej 1. a) Clase de funcții integrabile Riemann. b) Forma analitică a izometriilor planului. 2. a) Hiperbola. b) Compunerea funcțiilor, funcții inversabile: definiții, proprietăți. 3. a) Fie n N, x R și E n (x) = xc 0 n + x2 2 C1 xn+1 n + + n+1 Cn n. i. Să se rezolve ecuația E n (x) = 0 și să se verifice numărul rădăcinilor reale ale acesteia. ii. Să se calculeze 1 0 E n (x)e n ( x)dx. b) Să se afle cel mai mare element al mulțimii: { A = (2n 2 +3n) 3 (3n 2 +2n) } 2 R n N. 12
13 Baia Mare 1. a) Funcții cu proprietatea lui Darboux. b) Relațiile de echivalență induse de un subgrup și indicele unui subgrup. Teorema lui Lagrange. 2. a) Demonstrați teorema lui Ceva și reciproca ei. Ilustrați teorema directă printr-un exemplu și precizați o aplicație pentru teorema reciprocă. b) Proprietățile determinanților. 3. a) Pe laturile triunghiului ABC se construiesc în exterior triunghiurile echilaterale ABP, ACN, BCM. Fie {I} = BN CP. Să se arate că: i. punctele A, I și M sunt coliniare; ii. dacă O 1, O 2, O 3 sunt centrele de greutate ale triunghiurilor echilaterale construite, atunci triunghiul O 1 O 2 O 3 este echilateral. b) Fie n N. Dându-se I n = I n lim. n J n 1 n 1 n+1 arctan 2 nxdx și J n = 1 n 1 n+1 arcsin 3 nxdx, să se calculeze 13
14 Zalău 1. a) Integrala Riemann (definiție, exemple). Criterii de integrabilitate Riemann. b) Teorema împărțirii cu rest în Z și Z[X]. 2. a) Rezolvarea ecuațiilor trigonometrice elementare: sinx = a, cosx = a, tanx = a. b) Logaritmi. Definiție. Proprietăți. Schimbarea bazei. x 2 e t2 dt 0 3. a) Să se calculeze lim x 0 sin 2 x. b) Fie a R și n N. Calculați: a a a a a a a a a n. 14
15 Alba Iulia 1. a) Funcții cu proprietatea lui Darboux. b) Sisteme de ecuații liniare. Definiție. Teoremele lui Kronecker-Capelli și Rouche. c) Fie p, q N cu proprietatea p, q 2. Să se calculeze: lim n p n x dx. q n x dx d) Să se arate că ecuațiile sin x = sin x și cos x = cos x sunt echivalente. 2. a) Funcția logaritmică. b) Progresii geometrice. 15
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Διαβάστε περισσότεραGRADUL II n α+1 1
GRADUL II 2007 BUCUREŞTI 1. Fie A un inel cu unitate. Notăm cu Z(A) = {a A ( )x A,ax = xa}. Să se arate că: a) Z(A) este un subinel comutativ al lui A (numit centrul inelului A). b) Dacă B este un alt
Διαβάστε περισσότεραCOLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Διαβάστε περισσότεραPlanul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότεραToate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
Διαβάστε περισσότεραGRADUL II 1995 CRAIOVA PROFESORI I
GRADUL II 1995 CRAIOVA PROFESORI I 1. Fie f : R R definită prin f(x) = x(1+e x ). a) Să se arate că f este indefinit derivabilă şi că f (n) (x) = a n e x +b n xe x, ( ) n 3, ( ) x R. Deduceţi că a n+1
Διαβάστε περισσότεραIntegrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Διαβάστε περισσότεραProfesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Διαβάστε περισσότεραDEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0
DEFINITIVAT 1993 TIMIŞOARA PROFESORI I 1. a) Metodica predării noţiunii de derivată a unei funcţii. b) Să se reprezinte grafic funci a sinx, dacă x (0,2π] f : [0,2π] R, f(x) = x. 0, dacă x = 0 2. Fie G
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Διαβάστε περισσότεραCONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a XVII-a, 7 8 Aprilie CLASA a IV-a
Ediţia a XVII-a, 7 8 Aprilie 207 SUBIECTUL CLASA a IV-a Într-o zi de Duminică, la Salina Turda, a venit un grup de vizitatori, băieți și de două ori mai multe fete. Au intrat în Salină 324 băieți și 400
Διαβάστε περισσότεραGEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Διαβάστε περισσότεραCurs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότεραCONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva
Διαβάστε περισσότεραGEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Διαβάστε περισσότεραSubiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Διαβάστε περισσότεραCONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
Διαβάστε περισσότεραConice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Διαβάστε περισσότεραSă se arate că n este număr par. Dan Nedeianu
Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)
Διαβάστε περισσότεραDefiniţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Διαβάστε περισσότεραTestul nr. 1. Testul nr. 2
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1986 Clasa a V-a 1. Este numărul 1+2+3+ +1985 par? 2. Să se afle cel mai mic număr natural care împărțit la 5 dă restul 4, împărțit la 6 dă restul
Διαβάστε περισσότεραIII. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Διαβάστε περισσότεραCurs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότεραCONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2016 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
ADOLF HAIMOVICI, 206 Clasa a IX-a profil științe ale naturii, tehnologic, servicii. Se consideră predicatul binar p(x, y) : 4x + 3y = 206, x, y N și mulțimea A = {(x, y) N N 4x+3y = 206}. a) Determinați
Διαβάστε περισσότεραDISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Διαβάστε περισσότεραy y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =
Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului
Διαβάστε περισσότερα5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Διαβάστε περισσότεραEcuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Διαβάστε περισσότεραT R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
Διαβάστε περισσότεραFunctii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
Διαβάστε περισσότεραDEFINITIVAT 1991 PROFESORI I. x 2 dacă x [ 2,2) f(x) =. 10 x 2, dacă x [2, 5] x+1, dacă x Q x 3 +2, dacă x / Q,
DEFINITIVAT 99 BUCUREŞTI. a) Derivabilitate. Proprietăţi ale funcţiilor derivabile. b) Fie f : [ 3, ) R dată prin 4, dacă x [ 3, 2) x x 2 dacă x [ 2,2) f(x) =. 0 x 2, dacă x [2, 5] 2, dacă x ( 5, ) Să
Διαβάστε περισσότεραGRADUL II 1991 PROFESORI I
GRADUL II 1991 BUCUREŞTI 1. a) Continuitatea uniformă (definiţie şi teorema privind continuitatea uniformă a funcţiilor continue pe un interval compact). b) Să se determine punctele de continuitate ale
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότεραCurs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Διαβάστε περισσότεραCONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a. 1. Scriem numerele naturale nenule consecutive sub forma:
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a 1. Scriem numerele naturale nenule consecutive sub forma: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,... (pe fiecare
Διαβάστε περισσότεραConice - Câteva proprietǎţi elementare
Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii
Διαβάστε περισσότεραCONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1996 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1996 Clasa a V-a 1. Să se determine două numere naturale a și b astfel încât c.m.m.d.c.pa,bq 12 și c.m.m.m.c.pa, bq 216. Câte soluții are problema?
Διαβάστε περισσότεραEDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă
Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a
Διαβάστε περισσότεραSisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Διαβάστε περισσότεραAsemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu,
Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu, Iaşi Repere metodice ale predării asemănării în gimnaziu
Διαβάστε περισσότεραConcursul Interjudeţean de Matematică Academician Radu Miron Vaslui, noiembrie Subiecte clasa a VII-a
Concursul Interjudeţean de Matematică Academician Radu Miron Vaslui, -3 noiembrie 0 Subiecte clasa a VII-a. Fie în exteriorul triunghiului ascuţitunghic ABC, triunghiurile dreptunghice ABP şi ACT cu ipotenuzele
Διαβάστε περισσότερα7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează
TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014
Διαβάστε περισσότεραVARIANTE PENTRU BACALAUREAT, M1-1, 2007
VARIANTE PENTRU BACALAUREAT, M-, 27 VARIANTA SUBIECTUL I. a) Să se determine ecuația dreptei care trece prin punctul A(2; 5;3) și este paralelă cu dreapta x = y 2 4 6 = z +3 9. b) Să se determine valoarea
Διαβάστε περισσότεραCONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar
Διαβάστε περισσότεραBACALAUREAT 2007 SESIUNEA IULIE M1-1
BACALAUREAT 2007 SESIUNEA IULIE M1-1 Filiera teoretică, specializarea matematică - informatică. Filiera vocaţională, profil Militar, specializarea matematică - informatică. a) Să se calculeze modulul vectorului
Διαβάστε περισσότεραEDITURA PARALELA 45. Matematică de excelenţă pentru concursuri, olimpiade şi centre de excelenţă. clasa a VIII-a. mate 2000 excelenţă
Maranda Linţ Dorin Linţ Rozalia Marinescu Dan Ştefan Marinescu Mihai Monea Steluţa Monea Marian Stroe Matematică de excelenţă pentru concursuri, olimpiade şi centre de excelenţă clasa a VIII-a mate 000
Διαβάστε περισσότεραV.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Διαβάστε περισσότεραProbleme pentru clasa a XI-a
Probleme pentru clasa a XI-a 1 ( ) 01. Fie A si B doua matrici de ordin n cu elemente numere reale, care satisfac relatia AB = A + B. a) Sa se arate ca det(a 2 + B 2 ) 0. b) Sa se arate ca rang A + B =
Διαβάστε περισσότεραSubiecte Clasa a VIII-a
(40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii
Διαβάστε περισσότεραOlimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
Διαβάστε περισσότεραSubiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Διαβάστε περισσότεραAplicaţii ale numerelor complexe în geometrie, utilizând Geogebra
ale numerelor complexe în geometrie, utilizând Geogebra Adevărul matematic, indiferent unde, la Paris sau la Toulouse, este unul şi acelaşi (Blaise Pascal) Diana-Florina Haliţă grupa 331 dianahalita@gmailcom
Διαβάστε περισσότεραCONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2014 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2014 Clasa a V-a 1. Aflați cel mai mare număr de cinci cifre astfel încât cea de-a patra cifră să fie mai mare decât cea de-a cincea, a treia să fie
Διαβάστε περισσότεραDreapta in plan. = y y 0
Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului
Διαβάστε περισσότεραBACALAUREAT 1998 SESIUNEA IUNIE Varianta 1
Profilul matematică - fizică, informatică, metrologie BACALAUREAT 1998 SESIUNEA IUNIE Varianta 1 Se consideră funcția f : D R, f(x) = x(x 1)+ x(x+1). 1. Să se determina domeniul maxim de definiție D, domeniul
Διαβάστε περισσότεραCurs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Διαβάστε περισσότεραAsupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Διαβάστε περισσότεραTeste admitere Facultatea de Automatică şi Calculatoare Domeniul Calculatoare şi Tehnologia Informaţiei
Teste admitere Facultatea de Automatică şi Calculatoare Domeniul Calculatoare şi Tehnologia Informaţiei 0 aprilie 04 Cuprins Algebră 5 Analiza 39 3 Trigonometrie 6 4 Geometrie 69 5 Modele teste 73 5.
Διαβάστε περισσότεραConcurs MATE-INFO UBB, 25 martie 2018 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, 5 martie 18 Proba scrisă la MATEMATICĂ NOTĂ IMPORTANTĂ: 1 Problemele tip grilă (Partea A pot avea unul
Διαβάστε περισσότερα2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Διαβάστε περισσότερα29 Iunie Aplicaţii ale numerelor complexe în Geometrie. Absolvent: Haliţă Diana-Florina. Coordonator ştiinţific: Prof. Dr.
I UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Specializarea Matematică-Informatică, linia de studiu română 29 Iunie I 1 2 3 I 4 5 MATEM 6 MATEM 7 Bibliografie I Motivaţia:
Διαβάστε περισσότεραTESTE GRILĂ DE MATEMATICĂ 2018
TESTE GRILĂ DE MATEMATICĂ 8 A U T O R I Prof.univ.dr. Vasile Câmpian Prof.univ.dr. Iuliu Crivei Prof.univ.dr. Bogdan Gavrea Prof.univ.dr. Ioan Gavrea Prof.univ.dr. Dumitru Mircea Ivan Prof.univ.dr. Nicolaie
Διαβάστε περισσότεραConcurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
Διαβάστε περισσότεραVectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.
liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia
Διαβάστε περισσότεραCERCUL LUI EULER ŞI DREAPTA LUI SIMSON
CERCUL LUI EULER ŞI DREAPTA LUI SIMSON ABSTRACT. Articolul prezintă două rezultate deosebite legate de patrulaterul inscriptibil şi câteva consecinţe ce decurg din aceste rezultate. Lecţia se adresează
Διαβάστε περισσότεραSeminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Διαβάστε περισσότεραOrice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).
Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y
Διαβάστε περισσότερα3. Locuri geometrice Locuri geometrice uzuale
3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile
Διαβάστε περισσότερα2.3. Inegalităţi şi limite Convergenţă, monotonie, mărginire Limite remarcabile Limita unei funcţii...
Cuprins GEOMETRIE 1 Vectori 1 11 Segmente orientate Vectori în plan 1 12 Operaţii cu vectori 3 13 Vectori coliniari 8 14 Vectori de poziţie 10 15 Drepte paralele, concurente Colinearitate 12 16 Produsul
Διαβάστε περισσότερα1. Mulţimi. Definiţia mulţimii.
Definiţia mulţimii. 1. Mulţimi Definiţia 1.1. (Cantor) Prin mulţime înţelegem o colecţie de obiecte bine determinate şi distincte. Obiectele din care este constituită mulţimea se numesc elementele mulţimii.
Διαβάστε περισσότεραMinisterul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
Διαβάστε περισσότεραCURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi
Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială
Διαβάστε περισσότεραf(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +
Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,
Διαβάστε περισσότεραVarianta 1. SUBIECTUL I Pe foaia de teză se trec numai rezultatele.
Varianta 1 1 a) Rezultatul calculului 3,7 1 6 este egal cu numărul b) Rădăcina pătrată a numărului 11 este egală cu numărul c) Media aritmetică a numerelor 3 + 7 şi 3 7 este egală cu a) Soluţia întreagă
Διαβάστε περισσότεραGeometrie computationala 2. Preliminarii geometrice
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,
Διαβάστε περισσότεραSEMINAR TRANSFORMAREA FOURIER. 1. Probleme
SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)
Διαβάστε περισσότεραCONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2017 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2017 Clasa a V-a 1. Fiind dat un număr natural nenul n, vom nota prin n! produsul 1 2 3... n (de exemplu, 4! = 1 2 3 4). Determinați numerele naturale
Διαβάστε περισσότεραCONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a X-a, MAI 2010 CLASA A IV-A
Ediţia a X-a, 4 5 MAI 00 CLASA A IV-A I. Suma a două numere naturale este 75. Dacă adunăm de patru ori primul număr cu de trei ori al doilea număr obţinem 40. Aflaţi numărul cel mai mare. Eugenia Miron
Διαβάστε περισσότερα1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.
Copyright c ONG TCV Scoala Virtuala a Tanarului Matematician Ministerul Educatiei al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 4 iunie Profilul real Timp
Διαβάστε περισσότεραAlgebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
Διαβάστε περισσότεραπ } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.
Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)
Διαβάστε περισσότεραCurs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Διαβάστε περισσότεραCercul lui Euler ( al celor nouă puncte și nu numai!)
Cercul lui Euler ( al celor nouă puncte și nu numai!) Prof. ION CĂLINESCU,CNDG, Câmpulung Voi prezenta o abordare simplă a determinării cercului lui Euler, pe baza unei probleme de loc geometric. Preliminarii:
Διαβάστε περισσότεραUniversitatea din Bucureşti Facultatea de Matematică şi Informatică. Algebră (1)
Universitatea din ucureşti.7.4 Facultatea de Matematică şi Informatică oncursul de admitere iulie 4 omeniul de licenţă alculatoare şi Tehnologia Informaţiei lgebră (). Fie x,y astfel încât x+y = şi x +
Διαβάστε περισσότεραGEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi
GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE Gabriel POPA, Paul GEORGESCU c August 0, 009, Iaşi Cuprins 1 SPAŢIUL VECTORILOR LIBERI. STRUCTURA AFINĂ 4 SPAŢIUL VECTORILOR LIBERI.
Διαβάστε περισσότεραCONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2016 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2016 Clasa a V-a 1. Fie a, b și c cifre nenule nu neapărat distincte. Aflați cel mai mic și cel mai mare număr natural abc cu proprietatea că media
Διαβάστε περισσότεραavem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +
Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.
Διαβάστε περισσότεραLectia VII Dreapta si planul
Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.
Διαβάστε περισσότεραCONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2018 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a profil științe ale naturii, tehnologic, servicii 1. a) Aflați valorile reale x care verifică egalitatea x + 20 18 = 2018. b) Fie x, y R astfel încât 8x 7y 15 2000 și 8y 9x 1 2. Demonstrați
Διαβάστε περισσότεραEcuatii trigonometrice
Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos
Διαβάστε περισσότεραTITULARIZARE 2009 HARGHITA
TITULARIZARE 2009 prof. SZÉP GYUSZI HARGHITA. În triunghiul isoscel ABE avem AB = AE şi m(â) = 30. În exteriorul triunghiului construim triunghiul echilateral BEC. Pe perpendiculara în punctul B pe dreapta
Διαβάστε περισσότεραLaborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Διαβάστε περισσότεραLucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.
Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,
Διαβάστε περισσότεραVectori liberi-seminar 1
Vectori liberi-seminar ) Determinati α R astfel incat vectorii ā = m+ n si b = m+α n sa fie coliniari, unde m, n sunt necoliniari. ) Demonstrati ca urmatorii trei vectori liberi sunt coplanari: ā = ī j
Διαβάστε περισσότεραMetode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Διαβάστε περισσότεραSERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Διαβάστε περισσότεραConcursul de matematica Arhimede Editia a IV-a. Etapa I-a 25 noiembrie Subiecte clasa a III-a
Editia a IV-a. Etapa I-a 5 noiembrie 006. Subiecte clasa a III-a I. Aflati cea mai mica suma de forma în care s-au folosit doar cifrele 0,,, 4, 5, 6 o singura data. Aratati variantele posibile. II. a)
Διαβάστε περισσότερα