Výrazy a ich úpravy. -17x 6 : -17 koeficient; x premenná; 6 exponent premennej x. 23xy 3 z 5 = 23x 1 y 3 z 5 : 23 koeficient; x; y; z premenné;
|
|
- Ενυώ Τομαραίοι
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Výrazy a ich úpravy Počtový výraz je matematický zápis, ktorým vyjadrujeme počtové operácie s číslami a poradie v akom majú byť prevedené. Napr.: ( (5 1,76)+5):0,4. Počtové výrazy sa pomenovávajú podľa počtových operácií - výkonov, napr. počtový výraz 3 + je súčet, 6-4 je rozdiel,. 4 je súčin, 4 : alebo 4 je podiel. Matematický zápis, v ktorom po nahradení premenných konštantami dostaneme konštantu, nazývame algebraický výraz Racionálny algebraický výraz neobsahuje odmocniny, napr. x x Iracionálny algebraický výraz obsahuje odmocniny, napr. Jednočlen je výraz, ktorý sa dá zapísať ako: konštanta 5; -.36; -1/3; π; e premenná a; x; y súčin, podiel konštánt, premenných a ich mocnín 5.x; -7.a.b Snažíme sa vždy o čo najstručnejší zápis, preto - súčiny rovnakých premenných zapisujeme ako mocniny 3.a.a.a.b.b 3.a 3.b - konštanty v súčine vyjadrujeme jedným číslom 5.x.7.z 35.x.z - bodky označujúce násobenie obvykle vynechávame 5.a.c 5a c Pomenovanie zložiek jednočlena: -17x 6 : -17 koeficient; x premenná; 6 exponent premennej x Číslo 6 zároveň vyjadruje aj stupeň jednočlena 3xy 3 z 5 3x 1 y 3 z 5 : 3 koeficient; x; y; z premenné; 1; 3; 5 exponenty premenných x; y; z Číslo zároveň vyjadruje aj stupeň jednočlena 1
2 Mnohočlen je výraz, ktorý sa dá zapísať ako súčet jednočlenov : 5k + 3p pq + 56 Názov mnohočlenu je odvodený od počtu jeho jednočlenov (sú oddelené znamienkami + alebo -) - jednočlen x 5 - dvojčlen m + n - trojčlen a - b štvorčlen pq + p q - 5p + Zátvorky u záporných koeficientov vynechávame : 8x + (-)xy 8x - xy Stupeň mnohočlena určuje najväčší stupeň jeho jednočlenov. Napr.: 3a 7 5b + 4a 3 b 5 je trojčlen 8. stupňa Výraz typu A(x) a n x n + a n-1 x n a x + a 1 x + a 0, pričom a 0, a 1, a,..., a n, x R, a n 0, n N nazývame polynómom mnohočlen n - tého stupňa s premennou x. Stupeň polynómu je najvyšší exponent premennej. Číselnú hodnotu mnohočlena dostaneme ak do mnohočlena dosadíme za premennú niektoré číslo z oboru premennej. Počítanie s mnohočlenmi - usporiadanie mnohočlenov vzostupne alebo zostupne - sčítanie a odčítanie mnohočlenov - násobenie a umocňovanie mnohočlenov - delenie mnohočlena jednočlenom alebo mnohočlenom - rozklad mnohočlena na súčin Mnohočleny môžeme usporiadať buď vzostupne, t.j. od člena s najmenším exponentom po najväčší, alebo naopak, čiže zostupne. Pre mnohočleny sú definované podobné operácie, ako pre reálne čísla. Opačný mnohočlen je mnohočlen, ktorý vznikne z daného mnohočlenu po vynásobení číslom -1. Pri sčítaní, resp. odčítaní dvoch mnohočlenov sčítavame, resp. odčítavame všetky členy s rovnakým exponentom tej istej premennej. Pri násobení mnohočlenov násobíme každý člen prvého mnohočlena s každým členom druhého mnohočlena. Pri umocňovaní mnohočlenov buď využívame vzorce pre mocniny reálnych čísel, alebo mocninu nahradíme zodpovedajúcim súčinom.
3 Najčastejšie používané vzorce pre úpravu výrazov: Definičný obor premenných algebraického výrazu je množina všetkých takých hodnôt premenných, pre ktoré je algebraický výraz definovaný má zmysel. Zvyčajne ho označujeme D ( D f ). Príklad 1: Určte definičný obor reálnych premenných pre dané algebraické výrazy: x a) V(x) x 3 x 4 b) W(x) Riešenie: a) 3 x 0 x 3 teda D x R {3} b) x 7 0 x 7 x 3,5, t.j. D x <3,5; ) Zjednodušenie výrazu je taká úprava výrazu, ktorej výsledkom je výraz s menším počtom operátorov, funkcií, čísel a premenných s nenulovými koeficientmi. Dva algebraické výrazy V 1, V sa rovnajú v množine M, ktorá je podmnožinou definičných oborov oboch výrazov práve vtedy, keď pre všetky rovnaké prípustné hodnoty premenných nadobúdajú oba výrazy rovnakú hodnotu. Potom píšeme V 1 (x) V (x). Príklad : x 16 Pre aké hodnoty premennej x sú si rovné výrazy V 1 (x) x + 4 a V (x) x 4? Riešenie: x 16 V 1 (x) x + 4 ( x 4 )(. x + 4 ) x + 4 x 4 D 1(x) R - {-4} D (x) R M D 1(x) D (x) R - {-4} 3
4 Úpravou algebraického výrazu rozumieme nahradenie daného výrazu iným výrazom, ktorý sa mu rovná v spoločnom definičnom obore premenných. Tento definičný obor určíme z podmienok, za ktorých má daný výraz i jeho riešenie zmysel. Pri úpravách sa často vyžaduje: úprava výrazu na súčin, zjednodušenie výrazu, odstránenie odmocniny z menovateľa usmernenie zlomku,... Operácie s polynómami (mnohočlenmi) A. Sčítanie (odčítanie): dva polynómy sa sčítavajú (odčítavajú) tak, že vzájomne sčítame (odčítame) tie členy polynómov s rovnakou premennou (premennými) a rovnakým stupňom polynómu. Napr.: K(x, y) 4x 3 + 3x + xy + 1 L(x, y) 9x 4 + 8x + 7xy + 5x K(x, y) + L(x, y) 4x 3 + 3x + xy x 4 + 8x + 7xy + 5x K(x, y) + L(x, y) 9x 4 + 4x x + 9xy + 5x + 1 Poznámka: Výsledok je vhodné zapísať čo najjednoduchšie a usporiadane. B. Násobenie: dva polynómy sa násobia tak, že vzájomne prenásobíme všetky členy polynómov medzi sebou ( každý s každým ), pričom sčítame stupne členov. Napr.: K(x) x + x + 3 L(x) 5x + 6 V(x) K(x) L(x) (x + x + 3) (5x + 6) V(x) 5x x + 5x x + 5x x + 6 x V(x) 5 x (+1) + 5 x (1+1) x + 6 x + 6 x V(x) 5x x + 15x + 6x + 1x + 18 V(x,y) 5x x + 7x
5 C. Umocňovanie (odmocňovanie) polynómov: polynómy sa umocňujú tak, že vynásobíme stupeň daného člena, stupňom, na ktorý je umocnený a koeficient člena riadne umocníme. Napr.: Odmocňuje sa podobným spôsobom, pretože K(x) 5x 3 V(x) [K(x)] 3 V(x) (5x 3 ) 3 V(x) 5 3 x (3*3) V(x) 15x 9 Napr. : L(x) 4x L ( x) 4x 4x 1 V(x) ( ) V(x) x.(1/) x D. Rozklad mnohočlenov na súčin (1) Vynímaním pred zátvorku () Využitím vzorcov a +ab+b (a + b) ; napr.: 4+1x+9x (+3x).(+3x) (+3x) a -ab+b (a - b) ; napr.: y -14y+49 (y -7).(y -7) (y -7) a 3 +3a b+3ab +b 3 (a + b) 3 ; napr.: 8+60x+150x +15x 3 (+5x) 3 a 3-3a b+3ab -b 3 (a - b) 3 ; napr.: 1-6y+1y -8y 3 (1-y) 3 5
6 a - b (a - b).(a + b); napr.: 4 9x ( 3x).(+3x) a 3 + b 3 (a + b).(a ab + b ); napr.: 7+15x 3 (3+5x).(9 15x+5x ) a 3 - b 3 (a - b).(a + ab + b ); napr.: 8p 3 7q 3 (p 3q).(4p +6pq 9q ) E. Delenie mnohočlenov: mnohočleny môžeme deliť buď jednočlenom (1) alebo môžeme deliť mnohočleny vzájomne medzi sebou () (1) delenie jednočlenom K(x) 6x 4 + 4x 3 - x L(x) x V ( x) K( x) L( x) 6x x x x 4 6x x 3 4x + x x x V(x) 3.x (4-1) +.x (3-1) 1.x (-1) 3x 3 + x x 1 () delenie mnohočlenov navzájom bez zvyšku (postup) Poznámka: Pred delením mnohočlenov je výhodné delenca aj deliteľa usporiadať zostupne. 6
7 (3) delenie mnohočlenov navzájom so zvyškom (postup) Postupujeme presne podľa toho istého postupu ako v bode (), až na to, že na konci nebudeme mať 0 ale nejakú číselnú hodnotu. Úlohy: 1) Vydeľte : (x 4 3x 3 + x + x + 1):(x 3 x +1) ) Rozložte na súčin : 10a 4 b 3 0a 3 b + 15a b 3) Rozložte na súčin : 7x 3 8y 3 Riešenia: 1) x 1, zvyšok ) 5a b (a b 4a + 3) 3) (3x y)(9x + 6xy + 4y ) 7
8 Pri úpravách racionálnych lomených výrazov používame vzťahy pre počítanie so zlomkami a vzťahy na rozklad mnohočlenov. Sčítanie a odčítanie algebraických zlomkov: Príklad 3: 3 x Vypočítajte: + x + 1 x 1 x 1 Riešenie: najskôr určíme podmienky, za ktorých majú dané výrazy zmysel (menovateľ sa nesmie rovnať 0, základ druhej odmocniny musí byť 0); potom rozložíme menovatele na súčin lineárnych jedno- alebo dvojčlenov pomocou vynímania pred zátvorku alebo pomocou vyššie uvedených vzťahov; potom určíme spoločný menovateľ tak, že najskôr odpíšeme prvý menovateľ a postupne z každého menovateľa pridávame tie činitele, ktoré sa v spoločnom menovateli ešte nenachádzajú, čiže odpíšeme (x-1) a potom pridáme (x+1); následne spoločný menovateľ (x+1)(x 1) delíme menovateľom (x+1) a násobíme príslušným čitateľom 3, teda píšeme 3 (x 1) ; podobne spoločný menovateľ (x+1)(x 1) delíme menovateľom (x-1)(x+1) a násobíme príslušným čitateľom x, teda píšeme 1 x čiže x ; a nakoniec spoločný menovateľ (x+1)(x 1) delíme menovateľom (x-1) a násobíme príslušným čitateľom, teda píšeme (x+1) ; zjednodušíme čitateľ a ak sa dá, pokúsim sa upraviť ho na súčin a vykrátiť s menovateľom; 3x 3 + x x + ( x + 1)( x 1) ( x 1 ).1 1 ( x + 1)( x 1) x + 1 Násobenie algebraických zlomkov: Pri násobení zlomkov násobíme čitateľa čitateľom a menovateľa menovateľom a ak chceme daný výraz zjednodušiť, tak menovateľ i čitateľ rozložíme na súčin a vykrátime. Príklad 4: x x + Vypočítajte:. x 4 3x 8
9 Riešenie: Podmienky riešiteľnosti: x ± x 0 D (x) R - {-; 0; } Poznámka: Pri algebraických výrazoch obsahujúcich premenné v menovateli je potrebné uvádzať podmienky, pre ktoré je výraz definovaný má zmysel, t.j. definičný obor výrazu. Delenie algebraických zlomkov: pri delení dvoch zlomkov násobíme prvý zlomok prevrátenou hodnotou druhého zlomku; Príklad 5: x 5x Vypočítajte: : x 6x x Riešenie: Podmienky riešiteľnosti: x 3 x 0 D (x) R - {0; 3} Úprava zloženého algebraického zlomku: postupujeme buď tak, že zložený zlomok nahradíme delením dvoch zlomkov alebo podľa nasledovnej schémy (vonkajšie krát vonkajšie lomeno vnútorné krát vnútorné): Príklad 6: x Vypočítajte: x x x + 3x Riešenie: Podmienky riešiteľnosti: x -3 x 0 x 1 D (x) R - {-3; 0; 1} 9
10 Úlohy súhrn: 1) Dané sú mnohočleny: P(x) x 3 + 4x 5x + 7, Q(x) 3 x, R(x) 3x + 5x +. a) Určte ich stupeň. b) Vymenujte ich členy. c) Určte: kvadratický člen mnohočlena P(x), lineárny člen mnohočlena Q(x), absolútny člen mnohočlena R(x). d) Určte koeficienty lineárnych členov jednotlivých mnohočlenov. e) Vypočítajte hodnoty: P(), Q(0), R(1). f) Určte mnohočlen W(x) Q(x). [P(x) R(x)]. ) Určte výraz, ktorý musíme pripočítať k výrazu (x + y) + z, aby sme dostali výraz (x + y z) 3) Upravte: (x x 1) : (x 1) 4) Zapíšte ako súčin: a) x 0,3x b) 1x 48 c) 3x 5x d) x 6 e) x 81 f) (x + 1) 4 g) (x + 3) (x 1) h) x 3 16x 5) Dané trojčleny rozložte na súčin lineárnych dvojčlenov a pritom určte ich najmenšiu hodnotu: a) x + 16x 17 b) x 8x +1 c) x x 3 d) x + 5x 50 e) x 5x 6 f) x x 110 g) x 6x 0 h) x 0,6x 0,16 i) 4x 6x + 6) Určte hodnotu výrazu V(a, b) pre: a) a, b 0 b) a 1, b 10 6 V(a, b) a + b a b b a b 1+ a + b b. a + b a b b b 7) Určte výraz V(a), ak platí V ( a) a 1 3 a + 1 a 1 8) Upravte: a) [(3x + y) (x 3y) ]. xy b) (x 1) 3 8( x) 3 9) Upravte: x x + 4 x + x x + 4 x : 4x 1 x + 8 x x x + x 3 6x 10
11 10) Upravte: x y x y x + y + + x y x y + y x 11) Upravte: (7x 3 8) : (3x ) 1) Upravte výraz: x + 9x + 14 x : x x 1 x + 6x 7 x 15 11
PRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY
Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ PRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY Strojnícka fakulta Andrea Feňovčíková Gabriela Ižaríková aaaa aaaa Táto
Διαβάστε περισσότεραCvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Διαβάστε περισσότεραALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov
ALGEBRA Číselné množiny a operácie s nimi. Úprava algebrických výrazov Definícia Množinu považujeme za určenú, ak vieme o ľubovoľnom objekte rozhodnúť, či je alebo nie je prvkom množiny. Množinu určujeme
Διαβάστε περισσότεραMatematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Διαβάστε περισσότερα6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Διαβάστε περισσότεραMatematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Διαβάστε περισσότεραIntegrovanie racionálnych funkcií
Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie
Διαβάστε περισσότεραEkvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Διαβάστε περισσότερα7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Διαβάστε περισσότεραČíslo a číslica. Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva.
Číslo a číslica Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva. Číslica (cifra) je grafický znak, pomocou ktorého zapisujeme
Διαβάστε περισσότεραGoniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Διαβάστε περισσότεραSTREDOŠKOLSKÁ MATEMATIKA
TECHNICKÁ UNIVERZITA V KOŠICIACH FAKULTA ELEKTROTECHNIKY A INFORMATIKY KATEDRA MATEMATIKY A TEORETICKEJ INFORMATIKY STREDOŠKOLSKÁ MATEMATIKA pre študentov FEI TU v Košiciach Ján BUŠA Štefan SCHRÖTTER Košice
Διαβάστε περισσότεραPolynómy. Hornerova schéma. Algebrické rovnice
Polynómy. Hornerova schéma. Algebrické rovnice Teoretické základy Definícia 1 Nech (koeficienty) a 0, a 1,..., a n sú komplexné čísla a nech n je nezáporné celé číslo. Výraz P n (x) = a n x n + a n 1 x
Διαβάστε περισσότερα1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Διαβάστε περισσότεραStart. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Διαβάστε περισσότεραprimitívnoufunkcioukfukncii f(x)=xnamnožinereálnychčísel.avšakaj 2 +1 = x, tedaajfunkcia x2
Neurčitý integrál. Primitívna funkcia a neurčitý integrál Funkcia F(x)sanazývaprimitívnoufunkcioukfunkcii f(x)naintervale(a,b),akpre každé x (a,b)platí F (x)=f(x). Z definície vidíme, že pojem primitívnej
Διαβάστε περισσότεραFunkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
Διαβάστε περισσότεραKomplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Διαβάστε περισσότερα1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Διαβάστε περισσότεραObvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Διαβάστε περισσότεραMotivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Διαβάστε περισσότερα1. Komplexné čísla. Doteraz ste pracovali s číslami, ktoré pochádzali z nasledovných množín:
1. Komplexné čísla Po preštudovaní danej kapitoly by ste mali byť shopní: poznať použitie a význam komplexnýh čísel v elektrikýh obvodoh rozumieť pojmom reálna a imaginárna časť, imaginárna jednotka, veľkosť,
Διαβάστε περισσότεραZákladné vzťahy medzi hodnotami goniometrických funkcií
Ma-Go-2-T List Základné vzťahy medzi hodnotami goniometrických funkcií RNDr. Marián Macko U: Predstav si, že ti zadám hodnotu jednej z goniometrických funkcií. Napríklad sin x = 0,6. Vedel by si určiť
Διαβάστε περισσότεραTomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
Διαβάστε περισσότεραSúčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.
Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií
Διαβάστε περισσότεραDefinícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
Διαβάστε περισσότεραZákladná škola Jána Hollého s materskou školou Madunice. Prehľad učiva matematiky. základnej školy
Základná škola Jána Hollého s materskou školou Madunice Prehľad učiva matematiky základnej školy Obsah strana 1. Prirodzené, celé, racionálne, reálne čísla... 1 2. Operácie s racionálnymi číslami... 2
Διαβάστε περισσότεραModerné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Διαβάστε περισσότεραARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Διαβάστε περισσότεραGoniometrické rovnice riešené substitúciou
Ma-Go-10-T List 1 Goniometrické rovnice riešené substitúciou RNDr. Marián Macko U: Okrem základných goniometrických rovníc, ktorým sme sa už venovali, existujú aj zložitejšie goniometrické rovnice. Metódy
Διαβάστε περισσότεραTechnická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach
Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan
Διαβάστε περισσότεραMatematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Διαβάστε περισσότεραTREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT k predmetu Matematika pre 2. ročník SOŠ v Strážskom, študijný odbor 3760 6 00 prevádzka a ekonomika dopravy Operačný program: Vzdelávanie Programové obdobie:
Διαβάστε περισσότερα1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17
Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy
Διαβάστε περισσότεραDeliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
Διαβάστε περισσότερα3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Διαβάστε περισσότερα4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme
Διαβάστε περισσότεραDerivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií
Derivácia funkcie Derivácia funkcie je jeden z najužitočnejších nástrojov, ktoré používame v matematike a jej aplikáciách v ďalších odboroch. Stručne zhrnieme základné informácie o deriváciách. Podrobnejšie
Διαβάστε περισσότεραARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
Διαβάστε περισσότεραLogaritmus operácie s logaritmami, dekadický a prirodzený logaritmus
KrAv11-T List 1 Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus RNDr. Jana Krajčiová, PhD. U: Najprv si zopakujme, ako znie definícia logaritmu. Ž: Ja si pamätám, že logaritmus súvisí
Διαβάστε περισσότεραTesty a úlohy z matematiky
Testy a úlohy z matematiky Spracovala a zostavila: c Mgr. Hedviga Soósová 008 Vydavateľ: Copyright c VARIA PRINT, s. r. o. 008. Prvé vydanie. Kontakt: VARIA PRINT, s. r. o. Mgr. Marta Varsányiová Ul. františkánov
Διαβάστε περισσότεραÚvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Διαβάστε περισσότεραVektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich
Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:
Διαβάστε περισσότεραJán Buša Štefan Schrötter
Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako
Διαβάστε περισσότεραMatematika 2. časť: Funkcia viac premenných Letný semester 2013/2014
Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk
Διαβάστε περισσότεραmatematika 1. časť pre 9. ročník základnej školy a 4. ročník gymnázia s osemročným štúdiom
.. B Publikácia bola hradená z finančných prostriedkov Ministerstva školstva, vedy, výskumu a športu Slovenskej republiky. ISBN 978-80-10-02291-5 w w w. s p n - m l a d e l e t a. s k matematika 9 1. časť
Διαβάστε περισσότεραObsahový a výkonový štandard MATEMATIKA
Obsahový a výkonový štandard MATEMATIKA Matematika, 1.ročník Numerácia v obore prirodzených čísel do 100 dvojice, vzťah rovnako nerovnako, viac menej kvalita čísel počítanie po jednom, po dvoch... poznávanie
Διαβάστε περισσότεραLineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus
1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových
Διαβάστε περισσότεραCieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,
Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne
Διαβάστε περισσότεραTECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA 1. Funkcia jednej premennej a jej diferenciálny počet
TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA časťa Funkcia jednej premennej a jej diferenciáln počet Dušan Knežo, Miriam Andrejiová, Zuzana Kimáková 200 RECENZOVALI: prof. RNDr. Jozef
Διαβάστε περισσότεραObsah. 1.1 Základné pojmy a vzťahy Základné neurčité integrály Cvičenia Výsledky... 11
Obsah Neurčitý integrál 7. Základné pojmy a vzťahy.................................. 7.. Základné neurčité integrály............................. 9.. Cvičenia..........................................3
Διαβάστε περισσότεραJKTc01-T List 1. Číselné množiny. Mgr. Jana Králiková
JKTc01-T List 1 Číselné množiny Mgr. Jana Králiková U: Čo si predstavuješ pod pojmom množina? Ž: Skupinu nejakých vecí. U: Presnejšie by sa dalo povedať, že množina je skupina (súbor, súhrn) navzájom rôznych
Διαβάστε περισσότερα7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Διαβάστε περισσότεραM6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Διαβάστε περισσότεραTC Obsahový štandard Výkonový štandard
Celé čísla. Počtové operácie s celými číslami UČEBNÉ OSNOVY ÔSMY ROČNÍK TC Obsahový štandard Výkonový štandard Pojem celé číslo Kladné a záporné čísla, kladné a záporné desatinné čísla Opačné čísla Absolútna
Διαβάστε περισσότεραJednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Διαβάστε περισσότερα2 Chyby a neistoty merania, zápis výsledku merania
2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné
Διαβάστε περισσότεραMATEMATIKA II ZBIERKA ÚLOH
TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA KATEDRA MATEMATIKY A DESKRIPTÍVNEJ GEOMETRIE RNDr. Pavol PURCZ, PhD. RNDr. Martina RÉVAYOVÁ MATEMATIKA II ZBIERKA ÚLOH KOŠICE 6 Copyright c 6, RNDr. Pavol
Διαβάστε περισσότεραGoniometrické substitúcie
Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať
Διαβάστε περισσότεραUčebný zdroj pre žiakov z predmetu Matematika
STREDNÁ ODBORNÁ ŠKOLA Komenského 6, 08 7 Lipany Učebný zdroj pre žiakov z predmetu Matematika Odbor: Kozmetik a Pracovník marketingu Autorka: PaedDr. Iveta Štefančínová, Ph.D. Moderné vzdelávanie pre vedomostnú
Διαβάστε περισσότεραSTRIEDAVÝ PRÚD - PRÍKLADY
STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =
Διαβάστε περισσότεραGymnázium v Košiciach, Opatovská 7 MATEMATIKA
Gymnázium v Košiciach, Opatovská 7 MATEMATIKA ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, 80 00 BRATISLAVA VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM (štvorročné štúdium) Vypracoval:
Διαβάστε περισσότεραCHÉMIA Ing. Iveta Bruončová
Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov
Διαβάστε περισσότεραx x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Διαβάστε περισσότερα1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
Διαβάστε περισσότερα2 Základy vektorového počtu
21 2 Základy vektorového počtu Fyzikálne veličíny sa dajú rozdeliť do dvoch skupín. Prvú skupinu fyzikálnych veličín tvoria tie, pre ktorých jednoznačné určenie postačí poznať veľkosť danej fyzikálnej
Διαβάστε περισσότερα,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Διαβάστε περισσότερα23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
Διαβάστε περισσότερα1.4 Rovnice, nerovnice a ich sústavy
1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,
Διαβάστε περισσότερα4 Reálna funkcia reálnej premennej a jej vlastnosti
Reálna unkcia reálnej premennej a jej vlastnosti Táto kapitola je venovaná štúdiu reálnej unkcie jednej reálnej premennej. Pojem unkcie patrí medzi základné pojmy v matematike. Je to vlastne matematický
Διαβάστε περισσότεραMetodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
Διαβάστε περισσότερα3. prednáška. Komplexné čísla
3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet
Διαβάστε περισσότερα2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin
2. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Verzia: 27. 9. 2009 Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi
Διαβάστε περισσότεραTéma Pojmy Spôsobilosti
OBSAH VZDELÁVANIA 1.ročník (Prima) 4 hod. týždenne + 0,5 RH / 148,5 hod. ročne Tematický celok počet hodín Obsahový štandard Výkonový štandard Prostriedky hodnotenia Téma Pojmy Spôsobilosti Opakovanie
Διαβάστε περισσότεραXVIII. ročník BRKOS 2011/2012. Pomocný text. Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú
Pomocný text Číselné obory Číselné obory Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú ľudia začali vnímať. Abstrakcia spočívala v tom, že množstvo, ktoré sa snažili
Διαβάστε περισσότεραMIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Διαβάστε περισσότεραPREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
Διαβάστε περισσότεραV. Matematika a práca s informáciami
V. Matematika a práca s informáciami Vzdelávacia oblasť Matematika a práca s informáciami rozvíja logické a kritické myslenie žiakov, ich schopnosť analyzovať a syntetizovať, argumentovať, komunikovať
Διαβάστε περισσότεραÚvod do lineárnej algebry
Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.
Διαβάστε περισσότεραMATEMATIKA I ZBIERKA ÚLOH
TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA ÚSTAV TECHNOLÓGIÍ, EKONOMIKY A MANAŽMENTU V STAVEBNÍCTVE KATEDRA APLIKOVANEJ MATEMATIKY RNDr. Pavol PURCZ, PhD. Mgr. Adriana ŠUGÁROVÁ MATEMATIKA I ZBIERKA
Διαβάστε περισσότεραNumerické metódy Učebný text pre bakalárske štúdium
Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu
Διαβάστε περισσότεραZlomky sčítanie, odčítanie. A forma. B forma. 1. Kontrolná práca z matematiky 7. ročník. 1. Vypočítajte : = d) ( ) Vypočítajte : a) 5 + =
1. Kontrolná práca z matematiky 7. ročník Zlomky sčítanie, odčítanie 1. Vypočítajte : 6 2 5 7 2 2 2 a) + + = c) + = 7 3 21 9 3 3 9 3 5 1 1 + + 1 = d) ( ) 5 + 3,7 + 1 4 15 6 = 2. Vypočítajte : a) 1 5 5
Διαβάστε περισσότεραVýroky, hypotézy, axiómy, definície a matematické vety
Výroky, hypotézy, axiómy, definície a matematické vety Výrok je každá oznamovacia veta (tvrdenie), o ktorej má zmysel uvažovať, či je pravdivá alebo nepravdivá. Výroky označujeme pomocou symbolov: A, B,
Διαβάστε περισσότεραSLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA CHEMICKEJ A POTRAVINÁRSKEJ TECHNOLÓGIE Ústav informatizácie, automatizácie a matematiky
SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA CHEMICKEJ A POTRAVINÁRSKEJ TECHNOLÓGIE Ústav informatizácie, automatizácie a matematiky Semestrálny projekt E-learning: Proseminár z matematiky a Matematika
Διαβάστε περισσότεραFunkcie komplexnej premennej
(prezentácia k prednáške FKP/10) doc. RNDr., PhD. 1 1 ondrej.hutnik@upjs.sk umv.science.upjs.sk/analyza Prednáška 1 16. februára 2016 Podmienky Obsah nepovinná účast (!prelínanie prednášok a cvičení!)
Διαβάστε περισσότεραSK skmo.sk. 2009/ ročník MO Riešenia úloh domáceho kola kategórie A
SK MATEMATICKÁOLYMPIÁDA skmo.sk 2009/2010 59. ročník MO Riešenia úloh domáceho kola kategórie A 1. V obore reálnych čísel riešte sústavu rovníc x2 y = z 1, y2 z = x 1, z2 x = y 1. (Radek Horenský) Riešenie.
Διαβάστε περισσότεραNumerické metódy Zbierka úloh
Blanka Baculíková Ivan Daňo Numerické metódy Zbierka úloh Strana 1 z 37 Predhovor 3 1 Nelineárne rovnice 4 2 Sústavy lineárnych rovníc 7 3 Sústavy nelineárnych rovníc 1 4 Interpolačné polynómy 14 5 Aproximácia
Διαβάστε περισσότεραSK skmo.sk. 66. ročník Matematickej olympiády 2016/2017 Riešenia úloh domáceho kola kategórie B
SK MATEMATICKÁOLYMPIÁDA skmo.sk 66. ročník Matematickej olympiády 2016/2017 Riešenia úloh domáceho kola kategórie B 1. Každému vrcholu pravidelného 66-uholníka priradíme jedno z čísel 1 alebo 1. Ku každej
Διαβάστε περισσότερα16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
Διαβάστε περισσότεραReálna funkcia reálnej premennej
(ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od
Διαβάστε περισσότεραObsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
Διαβάστε περισσότεραZáklady matematickej štatistiky
1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov
Διαβάστε περισσότεραFUNKCIE N REÁLNYCH PREMENNÝCH
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE
Διαβάστε περισσότεραHASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
Διαβάστε περισσότεραTechnická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh
Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II Zbierka riešených a neriešených úloh Anna Grinčová Jana Petrillová Košice 06 Technická univerzita v Košiciach Fakulta
Διαβάστε περισσότεραGoniometrické nerovnice
Ma-Go--T List Goniometrické nerovnice RNDr. Marián Macko U: Problematiku, ktorej sa budeme venovať, začneme úlohou. Máme určiť definičný obor funkcie f zadanej predpisom = sin. Máš predstavu, s čím táto
Διαβάστε περισσότεραNUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky
Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory
Διαβάστε περισσότεραKATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
Διαβάστε περισσότεραNumerická lineárna algebra. Zobrazenie
Numerická lineárna algebra. Zobrazenie reálnych čísiel v počítači Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Reálne čísla v počítači 1/16
Διαβάστε περισσότεραu R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
Διαβάστε περισσότερα