2 VAJA: POVRŠINSKO AKTIVNE SNOVI IN KRITIČNA MICELSKA KONCENTRACIJA
|
|
- Ναζωραῖος Αγγελόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 MEDFAZNA NAPETOST IN MOČENJE 2 VAJA: POVRŠINSKO AKTIVNE SNOVI IN KRITIČNA MICELSKA KONCENTRACIJA 2.1 Površinska in medfazna napetost Vsako molekulo v tekočini privlačijo sosednje molekule in rezultante vseh sil se v povprečju izničijo, če je molekula pod površino. Drugače je s tistimi molekulami, ki so na površini. Nanje delujejo močne sile molekul pod njimi, ki jih molekule iz plinske faze (npr. zraka) ne morejo kompenzirati. Zato kaže rezultanta vseh sil v notranjost tekočine. Iz tega razloga zavzame tekočina vedno najmanjšo možno površino (slika 1). Navzven se ta sila kaže kot sila, ki "vleče površino skupaj". Na površini nastane opna, ki je bolj ali manj "trdna" oziroma govorimo o površinski napetosti in jo označjemo z γ. Ta napetost se upira povečanju površine. Enota je mn/m oz. stara enota dyn/cm (1mN/m=dyn/cm). Slika 1: Shematski prikaz različnih sil, ki so jim izpostavljene molekule v kapljici in na površini kapljice tekočine Kadar obravnavamo medfazo tekočina-plin govorimo o površinski napetosti, medtem ko govorimo pri obravnavi medfaz med dvema tekočinama, dvema trdnima snovema ter tekočino in trdno snovjo, o medfazni napetosti oziroma energiji. Površinsko napetost definiramo kot silo, ki deluje na dolžinsko enoto površinskega roba. Razložimo jo lahko na modelu žičnatega ogrodja preko katerega damo premično palico (slika 2). Med točkami ABCD tvorimo milno opno, ki jo lahko raztegujemo z delovanjem sile (z obešanjem uteži) na premično palico z dolžino L. Ko utež odstranimo, se opna zaradi svoje površinske napetosti skrči. Ker ima opna tekočine dve medfazni površini ( pod in nad listom papirja ) je celokupna dolžina enaka dvema dolžinama palice. Zapišemo lahko: F b =sila, ki je potrebna za pretrganje opne L=dolžina premične palice γ = F b 2L Slika 2: Model žičnatega ogrodja z milno opno za razlago površinske napetosti. 19
2 MEDFAZNA NAPETOST IN MOČENJE 2.2 MERJENJE POVRŠINSKE IN MEDFAZNIH NAPETOSTI Tenziometrični način določanja površinske napetosti Ta metoda je relativno hitra, enostavna in zadovoljivo natančna (slika 3). Določamo silo, ki je potrebna, da se kovinski obroček odtrga od površine tekočine, ki ji določamo površinsko napetost. Obroček (zanka) iz Pt-Ir potopimo in ga nato počasi dvignemo nad površino. S torzijsko tehtnico izmerimo silo, ki je potrebna, da se kovinski obroček odtrga od površine tekočine, ki ji določamo površinsko napetost: F= 4πr 0 γ r 0 je polmer obročka, dvojni obseg pa je zato, ker vlečeta navzdol obe površini tekočinske plasti, ki ju obroček ob dviganju izvleče. obroč Slika 3: Du-Nouy Tenziometer Wilhelmijeva metoda s ploščico Razvita je bila leta 1863 in temelji na merjenju sile pri vleku telesa iz tekočine oziroma pri potisku v njo (slika 4). Za merjenje uporabimo navpično postavljeno pravokotno ploščico z znanimi dimenzijami (slika 5) 1 - precizna tehtnica, 2 - prikazovalnik, 3 - merilna enota, a - ploščica, b - merjena tekočina, 4 - premična plošča. 5 - stojalo Slika 4: Shema Wilhelmyjeve naprave Slika 5: Dimenzije ploščice 20
3 Površinsko napetost izračunamo kot kvocient sile in obsega ploščice: F=izmerjena sila p=obseg ploščice=2l+2b γ l =površinska napetost tekočine 2. 3 Površinsko aktivne snovi F γ l = p Snovi, ki se zaradi svoje kemijske strukture porazdeljujejo na meji med dvema fazama (tekoče tekoče, tekoče plinasto, tekoče - trdno) imenujemo površinsko aktivne oziroma amfifilne snovi. Adsorbcija površinsko aktivnih snovi (PAS) na medfazi povzroči spremembe, ki jih izkoriščamo tudi v farmaciji. Zniževanje medfazne napetosti med vodo in oljem pospeši in omogoča tvorbo emulzije, adsorbcija PAS na netopne delce omogoča njihovo dispergiranje v obliko suspenzije ali vgrajevanje v micele pri čemer nastane bistra raztopina. Značilnost površinsko aktivnih snovi je prisotnost hidrofilnega in hidrofobnega dela v kemijski strukturi (slika 6). Slika 6: Shematski prikaz molekule površinsko aktivne snovi Preglednica 1: Razdelitev površinsko aktivnih spojin 21
4 Hidrofobni del molekule so najpogosteje nenasičene verige ogljikovodikov in manj pogosto heterociklični ali aromatski obroči. Hidrofilna področja molekule so lahko kationska, anionska ali neionska. Površinsko aktivne snovi ponavadi opredeljujemo glede na naravo hidrofilnega dela molekule. Tipični predstavniki so podani v preglednici 1. Na mejni površini voda olje so molekule površinsko aktivne snovi orientirane tako, da so hidrofobni deli obrnjeni stran od molekul vode, s čimer dosežejo stanje z najnižjo prosto energijo (slika 7). Privlačne sile med temi skupinami, ki so zamenjale molekule vode na površini so manjše kot med molekulami vode, zaradi česar se zniža tudi površinska napetost. Podobno se zgodi na med fazi med dvema tekočinama. Medfazna napetost med dvema tekočinama, ki se ne mešata je med vrednostima obeh tekočin (npr. benzen 28,9 mn/m in voda 72,8 mn/m) Nastanek micela Z naraščanjem koncentracije površinsko aktivne snovi v vodni raztopini pada površinska napetost dokler molekule zapolnjujejo mejno površino med obema fazama. Pri določeni koncentraciji se te površine nasitijo in površinsko aktivne snovi se pričnejo združevati in tvoriti agregate, ki jih imenujemo miceli (Slika 8). Hidrofobne skupine, ki tvorijo jedra teh struktur so obdane s hidrofilnimi skupinami kar omogoča topnost PAS tudi pri višjih koncentracijah. Koncentracijo pri katerih se pričnejo tvoriti miceli imenujemo kritična micelska koncentracija (KMK). Določimo jo lahko z različnimi metodami. Pri merjenju odvisnosti površinske napetosti, prevodnosti, osmoznega tlaka ali sipanja svetlobe od koncentracije PAS, pride v določeni točki do spremembe (slika 9). Površinska napetost pri nizkih koncentracijah pada hitro, pri KMK se ustali in nato pada zelo počasi. Splošna pravila, ki veljajo za KMK so: - KMK se znižuje s podaljševanjem hidrofobne verige - dodatek elektrolitov pri ionskih PAS zniža KMK in poveča velikost micela. V večini primerov micele sestavlja od molekul (opredelimo jih z agregacijskim številom) s premerom, ki je pogosto enak dolžini verige PAS. Miceli so v dinamičnem ravnotežju z monomernimi molekulami PAS, kar pomeni, da se nenehno razgrajujejo in izgrajujejo. Po tej lastnosti se tudi razlikujejo od ostalih koloidnih delcev ter jih zato imenujemo asociacijski koloidi. Oblike, ki nastanejo so lahko zelo različne. Najpogosteje imajo miceli obliko diska ali ploščato elipsoidno obliko (slika10). Slika 7: Orientiranje molekul PAS na medfazi oziroma površini pri nizkih koncentracijah. Slika 8: Primera zgradbe micela v vodi (levo) ali olju (desno). 22
5 Slika 9: Lastnosti raztopine PAS v odvisnosti od koncentracije (c): A osmotski tlak = f (c), B topnost težko topne PAS = f (c), C intenziteta sipanja svetlobe = f(c), D površinska napetost = f (log c), E molska prevodnost = f(c 1/2 ) Slika 10: Nekatere oblike micelov: a sferična, b lamelarna, c inverzno sferična, d ploščata elipsoidna, e raztegnjena cilindrična Solubilizacija Ko je biološka uporabnost učinkovine prenizka oziroma, ko moramo zagotoviti ustrezno koncentracijo raztopljene učinkovine že v farmacevtski obliki (npr. v injekciji), uporabimo različne pristope. Eden izmed teh je solubilizacija, s katero povečujemo topnost in hitrost raztapljanja. Natančno pomeni solubilizacija pripravo termodinamično stabilne izotropne raztopine v vodi težko topne spojine, v prisotnosti amfifilnih spojin pri ali nad njihovo kritično micelsko koncentracijo. Širše pomeni solubilizacija tudi uporabo drugih metod povečevanja topnosti, kot je npr. uporaba sotopil. PAS vplivajo na raztapljanje učinkovine z različnimi mehanizmi, med katerimi je pomembno izboljšanje močenja, ki lahko pripomore k večji hitrosti raztapljanja z ali brez vpliva na topnost. Poleg tega PAS pri koncentracijah nad kritično micelsko koncentracijo solubilizirajo učinkovino v micelu in tako povečajo navidezno topnost. Splošno lahko rečemo, da se bo s povečevanjem topnosti učinkovine v raztopini PAS nad KMK povečala tudi hitrost raztapljanja. Pri raztapljanju učinkovine iz tablet lahko poleg izboljšanja močenja oziroma solubilizacijskega učinka PAS, vpliva na raztapljanje tudi dobra topnost PAS, ki povzroči lokalno razpadanje ogrodja tablet. Odvisno od kemijske strukture učinkovine, ki jo solubiliziram, lahko pride do vključevanja v strukturo micela v različnih področjih (slika 10). Najpogosteje se nepolarne učinkovine vključujejo (raztopijo) v sredici micela. Delno polarne učinkovine se porazdelijo z molekulami PAS. V neionskih sistemih so polarne molekule solubilizirane v hidratiranem področju skorje micela. V posebnih primerih ionskih PAS je učinkovina lahko vezana v električnem dvosloju na površini micela. Tako kot je struktura PAS pomembna za kritično micelsko koncentracijo, agregacijsko število in obliko micela, vpliva tudi na vključevanje molekul. Prav tako lahko dodana učinkovina vpliva na lastnost micela. Pride lahko do znižanja kritične micelske koncentracije. 23
6 Slika 11: Področja solubilizacije učinkovine v micelu: a v sredici, b v sredici in skorji, c v hidratiranem področju skorje, d v primeru ionskih PAS je učinkovina združena z električnim dvoslojem. NALOGE 1.a.Pripravi okrog 10 raztopin izbrane površinsko aktivne snovi različnih koncentracij (npr. 0,00001 M, 0,00005 M, 0,0001 M, 0,0005 M, 0,001 M, 0,002 M, 0,005 M, 0,008 M, 0,01 M, 0,02 M). Smiselno je najprej izdelati raztopino z najvišjo koncentracijo, ki jo na osnovi rezultatov merjenja površinske napetosti, ustrezno redčite. b. Z metodo Wilhelmijeve ploščice in z zanko izmeri površinsko napetost vode. Rezultata morata biti podobna in nad 70 mn/m. Na ta način potrdite, da je voda čista. c. Z metodo Wilhelmijeve ploščice in izmeri površinsko napetost raztopin. č. Nariši diagram odvisnosti površinske napetosti od koncentracije. d. Določi kritično micelsko koncentracijo izbrane površinsko aktivne snovi. 24
7 25
8 26
9 Vaja JE NI priznana. Datum: Pregledal: 27
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Fazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
Tabele termodinamskih lastnosti vode in vodne pare
Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Dinamika kapilarnega pomika
UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Goran Bezjak SEMINARSKA NALOGA Dinamika kapilarnega pomika Mentor: izr. prof. dr. Gorazd Planinšič Ljubljana, december 2007 1 Povzetek
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
II. gimnazija Maribor PROJEKTNA NALOGA. Mentor oblike: Mirko Pešec, prof. Predmet: kemija - informatika
II. gimnazija Maribor PROJEKTNA NALOGA Mentor vsebine: Irena Ilc, prof. Avtor: Andreja Urlaub Mentor oblike: Mirko Pešec, prof. Predmet: kemija - informatika Selnica ob Dravi, januar 2005 KAZALO VSEBINE
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov
28. 3. 11 UV- spektrofotometrija Biuretska metoda Absorbanca pri λ=28 nm (A28) UV- spektrofotometrija Biuretska metoda vstopni žarek intenziteta I Lowrijeva metoda Bradfordova metoda Bradfordova metoda
OSNOVE HIDROSTATIKE. - vede, ki preučuje mirujoče tekočine
OSNOVE HIDROSTATIKE - vede, ki preučuje mirujoče tekočine HIDROSTATIKA Značilnost, da je sila na katero koli točko v tekočini enaka iz vseh smeri. Če ta pogoj o ravnovesju sil ne velja, se tekočina premakne
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Kotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Mehanika fluidov. Statika tekočin. Tekočine v gibanju. Lastnosti tekočin, Viskoznost.
Mehanika fluidov Statika tekočin. Tekočine v gibanju. Lastnosti tekočin, Viskoznost. 1 Statika tekočin Če tekočina miruje, so vse sile, ki delujejo na tekočino v ravnotežju. Masne volumske sile: masa tekočine
2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA
2.1. MOLEKULARNA ABSORPCJSKA SPEKTROMETRJA Molekularna absorpcijska spektrometrija (kolorimetrija, fotometrija, spektrofotometrija) temelji na merjenju absorpcije svetlobe, ki prehaja skozi preiskovano
- Geodetske točke in geodetske mreže
- Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Zakonitosti hitrosti reakcije in konstante hitrosti (Rate laws)
Zakonioi hiroi reakcije in konane hiroi (Rae law) Merjena hiro reakcije je odvina od koncenracije reakanov na neko poenco. v k [A] [B] k konana hiroi reakcije (neodvina od koncenracije) (odvina od T) Ekperimenalno
vaja Izolacija kromosomske DNA iz vranice in hiperkromni efekt. DNA RNA Protein. ime deoksirbonukleinska kislina ribonukleinska kislina
transkripcija translacija Protein 12. vaja Izolacija kromosomske iz vranice in hiperkromni efekt sladkorji deoksiriboza riboza glavna funkcija dolgoročno shranjevanje genetskih informacij prenos informacij
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Laboratorijske vaje iz fizikalne kemije. Navodila in predloge za pisanje poročil iz vaj. Interno gradivo
Laboratorijske vaje iz fizikalne kemije Navodila in predloge za pisanje poročil iz vaj Interno gradivo Navodila za izdelavo grafov s programom Excel 1. Označite stolpca (označeni stolpec na levi strani
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Slika 5: Sile na svetilko, ki je obešena na žici.
4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno
ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
Simbolni zapis in množina snovi
Simbolni zapis in množina snovi RELATIVNA MOLEKULSKA MASA ON MOLSKA MASA Relativna molekulska masa Ker so atomi premajhni, da bi jih merili z običajnimi tehtnicami, so ugotovili, kako jih izračunati. Izražamo
Mojca Slemnik POSKUSI V FIZIKALNI KEMIJI. zbrano gradivo, zbirka vaj
Mojca Slemnik POSKUSI V FIZIKALNI KEMIJI zbrano gradivo, zbirka vaj Maribor, februar 2014 Mojca Slemnik, Poskusi v fizikalni kemiji Avtor: Vrsta publikacije: Založnik: Naklada: Dostopno: Doc. dr. Mojca
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
3.1 Površinska napetost
3 Tekočine Lastnosti tekočin so za fiziologijo pomembne, saj kar približno 70 % človeškega telesa sestavlja najpomembnejša tekočina voda. Osnovna lastnost tekočin je, da ohranjajo prostornino, ne pa tudi
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
17. Električni dipol
17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje
CO2 + H2O sladkor + O2
VAJA 5 FOTOSINTEZA CO2 + H2O sladkor + O2 Meritve fotosinteze CO 2 + H 2 O sladkor + O 2 Fiziologija rastlin laboratorijske vaje SVETLOBNE REAKCIJE (tilakoidna membrana) TEMOTNE REAKCIJE (stroma kloroplasta)
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)
Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU
NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.
Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
Sestava topil Topila s šibkimi vodikovimi vezmi:
TOPILA Večina premazov vsebuje hlapne komponente, ki izhlapijo tekom aplikacije (nanosa) in nastanka filma. Hlapne komponente premaza s skupnim imenom imenujemo topila, kljub temu, da se smola v določenih
Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1
Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni
1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
UPOR NA PADANJE SONDE V ZRAKU
UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži
u ê ê ê ê ê : ê ê ê } ê ê ê ê ê ê ê ê
kemija 1_2.qxd 26.6.2009 7:56 Page 123 y u ê ê ê ê ê : ê ê ê } ê ê ê ê ê ê ê ê ê } ê ê ê ê ê ê ê ê w ê êr ê ê r ê ê ê 7. 1 Vodne raztopine so v nas in okoli nas Z raztopinami se sre~ujemo vsak dan. Pri
Nova področja v analizni kemiji
Univerza v Ljubljani Fakulteta za kemijo in kemijsko tehnologijo Doktorski študijski program Kemija Nova področja v analizni kemiji Seminar 2011 Nosilec predmeta: prof. dr. Boris Pihlar Seminarska naloga
1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ
TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri
Raztopine. Raztopine. Elektroliti. Elektrolit je substanca, ki pri raztapljanju (v vodi) daje ione. A a B b aa b+ + bb a-
Raztopine Mnoge analizne metode temeljijo na opazovanju ravnotežnih sistemov, ki se vzpostavijo v raztopinah. Najpogosteje uporabljeno topilo je voda! RAZTOPINE: topljenec topilo (voda) (Enote za koncentracije!)
TOPNOST, HITROST RAZTAPLJANJA
OPNOS, HIOS AZAPLJANJA Denja: onos (oz. nasčena razona) redsavlja sanje, ko je oljene (rdn, ekoč, lnas) v ravnoežju z razono (oljenem, razoljenm v olu). - kvanavn zraz - r določen - homogena molekularna
VEKTORJI. Operacije z vektorji
VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,
1. Splošna varnostna priporočila za ravnanje z biološkim materialom. 2. Opredelitev nekaterih kemijskih pojmov
Splošni del 1. Splošna varnostna priporočila za ravnanje z biološkim materialom Pri ravnanju z biološkim materialom veljajo splošna varnostna priporočila: biološki material je potencialno kužen in nevaren;
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
Zaporedna in vzporedna feroresonanca
Visokonapetostna tehnika Zaporedna in vzporedna feroresonanca delovanje regulacijskega stikala T3 174 kv Vaja 9 1 Osnovni pogoji za nastanek feroresonance L C U U L () U C () U L = U L () U C = ωc V vezju
Izločanje zdravilnih učinkovin iz telesa:
Izločanje zdravilnih učinkovin iz telesa: kinetični vidiki Biofarmacija s farmakokinetiko Aleš Mrhar Izločanje učinkovin Izraženo s hitrostjo in maso, dx/dt = k e U očistkom in volumnom, Cl = k e V Hitrost
TRDNOST (VSŠ) - 1. KOLOKVIJ ( )
TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem
+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70
KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih
DISKRETNA FOURIERJEVA TRANSFORMACIJA
29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,
Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled
Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q
Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
1. Newtonovi zakoni in aksiomi o silah:
1. Newtonovi zakoni in aksiomi o silah: A) Telo miruje ali se giblje enakomerno, če je vsota vseh zunanjih sil, ki delujejo na telo enaka nič. B) Če rezultanta vseh zunanjih sil, ki delujejo na telo ni
Aleš Mrhar. kinetični ni vidiki. Izraženo s hitrostjo in maso, dx/dt očistkom
Izločanje zdravilnih učinkovin u iz telesa: kinetični ni vidiki Biofarmacija s farmakokinetiko Univerzitetni program Farmacija Aleš Mrhar Izločanje učinkovinu Izraženo s hitrostjo in maso, dx/ k e U očistkom
Matematika 2. Diferencialne enačbe drugega reda
Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:
Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Ponedeljek, 30. avgust 2010 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M07* MEHNIK JESENSKI IZPITNI ROK NVODIL Z OCENJEVNJE Ponedeljek, 0. avgust 00 SPLOŠN MTUR RIC 00 M0-7-- PODROČJE PREVERJNJ Pretvorite podane veličine
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Energije in okolje 1. vaja. Entalpija pri kemijskih reakcijah
Entalpija pri kemijskih reakcijah Pri obravnavi energijskih pretvorb pri kemijskih reakcijah uvedemo pojem entalpije, ki popisuje spreminjanje energije sistema pri konstantnem tlaku. Sistemu lahko povečamo
0,00275 cm3 = = 0,35 cm = 3,5 mm.
1. Za koliko se bo dvignil alkohol v cevki termometra s premerom 1 mm, če se segreje za 5 stopinj? Prostorninski temperaturni razteznostni koeficient alkohola je 11 10 4 K 1. Volumen alkohola v termometru
Tokovi v naravoslovju za 6. razred
Tokovi v naravoslovju za 6. razred Bojan Golli in Nada Razpet PeF Ljubljana 7. december 2007 Kazalo 1 Fizikalne osnove 2 1.1 Energija in informacija............................... 3 2 Projekti iz fizike
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
S53WW. Meritve anten. RIS 2005 Novo Mesto
S53WW Meritve anten RIS 2005 Novo Mesto 15.01.2005 Parametri, s katerimi opišemo anteno: Smernost (D, directivity) Dobitek (G, gain) izkoristek (η=g/d, efficiency) Smerni (sevalni) diagram (radiation pattern)
[ ]... je oznaka za koncentracijo
9. Vaja: Elektrolitska disociacija a) Osnove: Elektroliti so snovi, ki prevajajo električni tok; to so raztopine kislin, baz in soli. Elektrolitska disociacija je razpad elektrolita na ione. Stopnja elektrolitske
1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )
VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]
Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom
VSŠ Velenje ELEKTRIČNE MERITVE Laboratorijske vaje Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom Vaja št.2 M. D. Skupina A PREGLEDAL:. OCENA:.. Velenje, 22.12.2006 1. Besedilo naloge
MAGNETNI PRETOK FLUKS
MGNETNI PRETOK FLUKS Equation Section 4 Vsebina poglavja: Določitev magnetnega pretoka, brezizvornost magnetnega polja, upodobitev polja z gostotnicami, induktivnost, lastna induktivnost, magnetni sklep.
POPIS DEL IN PREDIZMERE
POPIS DEL IN PREDIZMERE ZEMELJSKI USAD v P 31 - P 32 ( l=18 m ) I. PREDDELA 1.1 Zakoličba, postavitev in zavarovanje prečnih profilov m 18,0 Preddela skupaj EUR II. ZEMELJSKA DELA 2.1 Izkop zemlje II.
Nanosenzorji iz nanožic in nanocevk (Nanotube and nanowire nanosensors)
Univerza v Ljubljani Fakulteta za matematiko in fiziko Nanosenzorji iz nanožic in nanocevk (Nanotube and nanowire nanosensors) Miha Devetak Mentor: prof. dr. Dragan Mihailović Ljubljana, marec 2006 1 1
Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko. Seminar za 4. letnik. Elektrika iz vode. Povzetek
Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko Seminar za 4. letnik Elektrika iz vode Avtor: Domen Mlakar Mentor: Prof. Dr. Rudolf Podgornik Bled, 13. maj 2008 Povzetek Pri toku
fosfat fosfat H deoksiriboza H O KEMIJA Z BIOKEMIJO učbenik za študente visokošolskega strokovnega študija kmetijstva
Cl Cl Na + Cl Na + Na + Cl Na + O H H Cl Cl O H H Na + O H H fosfat H deoksiriboza N C N fosfat H H N C C C N N C H H O H C C C N N C N deoksiriboza CH 3 C O C N O C C N fosfat H deoksiriboza H H N C H
SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W