( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

Σχετικά έγγραφα
ÏÑÏÓÇÌÏ ÇÑÁÊËÅÉÏ ( )( ) ( )( ) Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. w w + 1= + 1. α= α.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2015 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Δευτέρα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ. Α4.) α) Λάθος, β) Σωστό, γ) Λάθος, δ) Σωστό, ε) Σωστό

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ/ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου 2001

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

ΘΕΜΑ Α. A2. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Μονάδες 2. Α3. Να διατυπώσετε το θεώρημα Rolle. Μονάδες 6

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Α1. Θεωρία Σελίδες Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ 2014

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

Πανελλαδικές εξετάσεις 2015

Για να προσδιορίσουμε τη μονοτονία της συνάρτησης η πρέπει να βρούμε το πρόσημο της h, το οποίο εξαρτάται από τη συνάρτηση φ(x) = e x 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

5o Επαναληπτικό Διαγώνισμα 2015 Διάρκεια: 3 ώρες

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα


Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α2. Να διατυπώσετε το θεώρημα του Βolzano. Μονάδες 5

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

Α1. Να διατυπωθεί και να δοθεί η γεωµετρική ερµηνεία του θεωρήµατος Μέσης Τιµής του ιαφορικού Λογισµού. (3 µονάδες)

2018 Φάση 1 ιαγωνίσµατα Προετοιµασίας ΜΑΘΗΜΑΤΙΚΑ. Γ' Γενικού Λυκείου. Θετικών Σπουδών / Σπουδών Οικονοµίας & Πληροφορικής

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x

Θέµα 3 ο : Έστω οι µιγαδικοί z και z µε z = z = και z z. Έστω ο µιγαδικός αριθµός zz! = z z Να δείξετε ότι: α. z = και z =. z z β.! " R γ.! " ΜΟΝΑΔΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

2015zi 2015zi 2015zi 2015zi 4030zi 4030zi z z

Λύσεις του διαγωνίσματος στις παραγώγους

5o Επαναληπτικό Διαγώνισμα 2016

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό.

( ) ( ) ( ) ( ) ( ) ( )

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΜΑΙΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ. Άρα ο γ.τ. των Μ(z) είναι κύκλος µε κέντρο το Ο(0, 0) και ακτίνα ρ=1

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

AΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ( t) f dt = G(β) G(α) A2. Πότε η γραφική παράσταση μιας συνάρτησης f λέμε ότι έχει:

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Transcript:

ΘΕΜΑ ο Γ' ΤΑΞΗ ΓΕΝΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ Α Έστω f µία συνεχής συνάρτηση σ ένα διάστηµα [α, β] Αν G είναι µία β παράγουσα της f στο [α, β], τότε f ( t) dt = G( β ) G( α ) B B α (Μονάδες ) Πότε λέµε ότι µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο του πεδίου ορισµού της (Μονάδες ) Να δώσετε την γεωµετρική ερµηνεία του παράγωγου αριθµού στο σηµείο Μ, f της γραφικής παράστασης της f ( (Μονάδες ) Γ Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση α) Αν z z + = και z, z C αναγκαστικά z =z = g α lim g α lim f y = l τότε β) Αν κοντά στο µε = και ( ) lim f g = l γ) Αν η f είναι παραγωγίσιµη στο [α, β] και συνάρτησης, τότε κατ ανάγκη θα είναι = y α f β µέγιστη τιµή της f β δ) Αν µία συνάρτηση f είναι κυρτή και δύο φορές παραγωγίσιµη στο διάστηµα, τότε f > ε) Αν µία συνάρτηση f είναι συνεχής στο [, ] και f στο [ ] f d τότε,, (Μονάδες )

ΘΕΜΑ ο + w Οι µιγαδικοί αριθµοί z, w συνδέονται µε τη σχέση z = και η εικόνα του w w Κ και ακτίνα ρ = ανήκει στον κύκλο µε κέντρο (,) α) Να δείξετε ότι η εικόνα του z ανήκει σε κύκλο µε κέντρο το Ο(, ) και ακτίνα ρ = β) Αν z= () και z, z, z οι εικόνες τριών µιγαδικών αριθµών για τους οποίους ισχύει η σχέση () να δείξετε ότι: z+ z z+ z z+ z i) Ο αριθµός α= + + είναι πραγµατικός z z z (Μονάδες 7) ii) Αν επιπλέον z +z +z = τότε να αποδείξετε ότι: z z z Re + + = z z z (Μονάδες 7) γ) ίνεται η ευθεία (ε): + y = Να βρεθεί η µέγιστη και η ελάχιστη απόσταση των εικόνων του µιγαδικού w από την ευθεία (ε) (Μονάδες ) ΘΕΜΑ ο Έστω η παραγωγίσιµη συνάρτηση f :(, ) + ισχύουν f = f e + και f = α) Να δείξετε ότι η συνάρτηση g = e + είναι - β) Να δείξετε ότι f ln = για κάθε > γ) Να µελετήσετε τη συνάρτηση h βρεθεί το σύνολο τιµών της + R τέτοια, ώστε για κάθε > (Μονάδες ) f = ως προς την µονοτονία και να

συν ηµ ηµ συν δ) Να λύσετε την εξίσωση π = αν e e, (Μονάδες ) ε) Να εξετασθεί η h ως προς κυρτότητα και να δείξετε ότι για κάθε, µε h h > > ισχύει e ΘΕΜΑ ο Έστω συνάρτηση f : R R η οποία είναι παραγωγίσιµη και τέτοια, ώστε u f t dt du 6 για κάθε R Να αποδείξετε ότι: α) f ( t) dt= (Μονάδες 7) β) Αν η εφαπτοµένη της γραφικής παράστασης της f στο σηµείο Α (, f ()) είναι η ευθεία + y = να υπολογίσετε το γ) Αν για κάθε ισχύει f > και ότι για κάθε > ισχύει h h > t f ( t) dt lim (Μονάδες ) h = f ( t) dt, να αποδείξετε δ) Να δείξετε ότι υπάρχει ένα τουλάχιστον (,) f ( ξ ) + = ξ (Μονάδες 7) ξ τέτοιο, ώστε

Γ' ΤΑΞΗ ΓΕΝΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ ο Α Σχολικό βιβλίο σελ Β σελ Β σελ Γ α Λ β Σ γ Λ δ Λ ε Σ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο + w z = w z w = + w w w + zw = z w( + z) = z z z w = ( z ) w + = + z + z + z + z + z + w + = = z + z + Από την υπόθεση w+ = Άρα z + w + = = z + = z + z + α) Έχουµε z + = z + z + z + = z + z + z zw = + w zz + z + z + = zz + z + z + z = z = β) i) Έχουµε z = z = zz = z =, z =, z = z z z Επειδή z R z = z (Πρέπει να αποδειχθεί) αρκεί να δείξουµε ότι α= α

ii) Οπότε γ) ος Τρόπος z z z z z z z z z z z z α + + + ɶ z z z z z z z = + + + + + = z z z z z + + + + + = z z z z z z z z z z z z z+ z z+ z z+ z = + + = α z z z z z z z z z + + + + + z z z z z z z z z Έχουµε Re + + = = z z z z z z z z z z+ z z z z z + + + + + + + + + z z z z z z z z z = = z z z z z z = = = + + = + + + + + = z z z z z z z z z Έχουµε ( ) + d ( Kε, ) = = = + Οπότε Ελάχιστη απόσταση είναι: AM = d K, ε ρ = = και µέγιστη ος Τρόπος BM = d K, ε + ρ= + = ε δ λ δ βρούµε το Μ λύνουµε το σύστηµα Έχουµε = Άρα + y = (, y) =, άρα M y + = ( KM ) = + + = = δ : y = + y + = Για να,

Οπότε Ελάχιστη απόσταση είναι: ( AM ) = ( KM ) ρ = = και µέγιστη ( BM ) = ( KM ) + ρ = + = ΘΕΜΑ ο α) Είναι g = e + () Τότε g e Άρα η συνάρτηση g είναι ως γνησίως αύξουσα = + > για κάθε (, ) β) Έχουµε + f f = f ( e + ) = + f e + f f e f f + = + ( e + f ) = ( + ln ) f e + f = + ln + c Για = έχουµε f () e + f () = + c µε c = Άρα f ln ln ln ( ) = ( ln ) Αλλά η g είναι - Άρα f ln e + f = + = e + και λόγω της () έχουµε g f g γ) Είναι h Τότε h f = ( ln ln ) ln = = = = ή ln = ή ln= ή = e Αν h e h () h() + Έχουµε h h( e ) + = + H h είναι γνησίως αύξουσα για κάθε (, e H h είναι γνησίως φθίνουσα για κάθε [ e, + ) lne ma = = = e e Πεδίο τιµών : lim h = lim ( ln ) = ( + )( ) = + +

ln ( ln ) lim h = lim = lim = lim = + + + + ( ( ( ) h A = lim h, h e lim h, h e =,,, = + + e e e συν ηµ ηµ συν δ) Έχουµε = e e π Για κάθε, ισχύει ηµ, συν > > e e Λογαριθµίζουµε τη σχέση και έχουµε: συν ηµ ln ηµ συν ηµ συν = ln συν ln = ηµ ln e e e e ln( ηµ ) ln( συν) συν ( ln( ηµ ) lne) = ηµ ( ln( συν) lne) = ηµ συν h( ηµ ) = h( συν ) () π Για κάθε, ισχύουν οι σχέσεις < ηµ <, < συν < και (,) (,e ) Η h είναι - ως γνησίως αύξουσα στο διάστηµα (,e Από τη () έχουµε π ηµ = συν ή εφ = ή = ln h = και ( ln ) ln ( ln ) ln h + = = = = h = ή ln = ή ln= ή = e / Η h είναι κοίλη στο διάστηµα (,e e / h () ++ Η h είναι κυρτή στο διάστηµα e /, + ) h () ε) Έχουµε / / ln e h min ( e ) = = = e e / ( e )

Τότε ΘΕΜΑ ο h για κάθε > e, ως πηλίκο συνεχών συναρτήσεων Η h είναι συνεχής στο [ ] Η h είναι παραγωγίσιµη στο (, ) ως πηλίκο παραγωγίσιµων ln συναρτήσεων µε h = Από το ΘΜΤ υπάρχει ένα τουλάχιστον h h( ) ξ (, ) ώστε h ( ξ ) = () Αλλά για κάθε > εποµένως και για το ξ > ισχύει h ( ξ ) () e h h Από τις () και () έχουµε e u α) Θεωρούµε την συνάρτηση g = f ( t) dt du + 6 g g και η g παρουσιάζει ελάχιστο για = Έχουµε g() = Τότε Από το Θεώρηµα Fermat ισχύει g = f t dt g = Αλλά και για = έχουµε g = f ( t) dt - = ή β) Για = και y = f() έχουµε + f = f = και f = Έχουµε : ( ) f t dt= t f ( t) dt t f t dt f - lim lim lim DLH = = = f f f () = lim = lim = f = = γ) ος Τρόπος Για κάθε > η ανίσωση γίνεται: h > h h h >

6 Θέτουµε K = ( ) h h = ( ) f h για [, ) + Έτσι έχουµε K = f + ( ) f h = f + ( ) f f = = f > για κάθε > Άρα η K είναι γνησίως αύξουσα στο [,+ ) αφού είναι συνεχής στο [,+ ) Εποµένως K K ( ) h h ος τρόπος > > > Θεωρούµε την συνάρτηση h( u) = f ( t) dt, u [, ] u = Η h είναι συνεχής στο [, ] και παραγωγίσιµη στο (, ) µε h ( u) f ( u) Από το ΘΜΤ υπάρχει ένα τουλάχιστον ξ (, ) ώστε h ( ξ ) h h h() = Αλλά h() = f ( t) dt = οπότε h ( ξ ) = () Επίσης h = f και h = f > Άρα η h είναι γνησίως αύξουσα για κάθε και για ξ< έχουµε h ( ξ ) < h () Από τις σχέσεις () και () έχουµε h h > δ) Θεωρούµε την συνάρτηση, ϕ = f t dt + R Η φ είναι συνεχής στο [, ] ως άθροισµα συνεχών συναρτήσεων Η φ είναι παραγωγίσιµη στο (, ) ως άθροισµα παραγωγίσιµων συναρτήσεων µε ϕ = f + ϕ = = = f t dt + = Είναι ϕ() ϕ() ϕ 9 9 Από το Θεώρηµα Rolle υπάρχει ένα τουλάχιστον (,) ϕ ( ξ ) = f ( ξ ) + ξ = f ( ξ ) + = ξ ξ ώστε 6