ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ



Σχετικά έγγραφα
Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου

Θέματα εξετάσεων στους μιγαδικούς

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΚΕΦΑΛΑΙΟ 2ο Μιγαδικοί Αριθμοί (Νο 1) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

v a v av a, τότε να αποδείξετε ότι ν <4.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

Ασκήσεις. x ' x οι ευθείες πάνω στις οποίες κινούνται οι εικόνες Μ(z).

ΤΡΥΦΩΝ ΠΑΥΛΟΣ Μαθηµατικά Γ Λυκείου - Κατεύθυνσης

ΘΕΜΑ (επαναληπτικές) α. Δίνονται Να περιγράψετε οι μιγαδικοί γεωμετρικά αριθμοί το, σύνολο, (Σ) των εικόνων των μιγαδικών αριθμών 3 με 3 3. πο

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΓΑ ΙΚΟΙ. iz+α. (z 1)(z + 1) f ( ) = f (z). (1993-2ο- 1) (1994-2ο) (1999-2ο) ΑΘΑΝΑΣΙΑΔΗΣ ΚΩΣΤΑΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

x R, να δείξετε ότι: i)

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (1o Γ Λυκείου) να ανήκουν στη γραφική παράσταση της συνάρτησης f( x)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

Θέματα από τους μιγαδικούς

Ισότητα μιγαδικών αριθμών πράξεις στο C Έστω z 1 =α+βi και z 2 =γ+δi δύο μιγαδικοί (α,β,γ,δ R) z 1 =z 2 α=γ και β=δ z 1 =0 α=0 και β=0

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης

Ερωτήσεις σωστού-λάθους

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R

5, 5 = 1. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΙΑ ΣΥΛΛΟΓΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ 30 ΑΣΚΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΜΟΝΟ ΜΙΓΑΔΙΚΟΙ + 10 ΑΣΚΗΣΕΩΝ ΜΙΓΑΔΙΚΟΙ ΜΕ ΑΝΑΛΥΣΗ

x 1 vii) f(x) 5 x 4 viii) 2 + γ) f (x) = στ) f (x) = e x -1 Β. Γραφική παράσταση Γ. Ίσες συναρτήσεις x 3 x 3 f(x), g(x) ιι)

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R

20 επαναληπτικά θέματα

1 ο Τεστ προετοιμασίας Θέμα 1 ο

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

αβ (, ) τέτοιος ώστε f(x

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

Θωμάς Ραϊκόφτσαλης 01

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος)

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - Θ. BOLZANO - Θ. ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ. , ώστε η συνάρτηση. η γραφική της παράσταση να διέρχεται από το σημείο M

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Φροντιστήρια. Κεφαλά. ( x) = + ( ) ( ) ( )

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

ΣΥΝΘΕΤΗ & ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣH

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός Εἰ ἄρα ὁ δίκαιος ἀργύριον δεινὸς φυλάττειν, καὶ κλέπτειν δεινός.

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

(2 x) ( x 5) 2(2x 11) 1 x 5

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

α) ( ) β) ( ) γ) ( ) δ) ( ) ( ) β) ( ) ( ) δ) ( ) ( ) ( )

ΟΡΙΑ ΣΥΝΕΧΕΙΑ ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ. 2 f (x) =, να βρεθεί ο k Î R, ώστε να. . β) Να βρείτε το. , αν για κάθε x Î U(, á) όρια lim fx ( ) και lim gx ( ).

Γ Λυκείου 4 ΓΛΧ. M.Ι.Παπαγρηγοράκης Χανιά. [Μαθηματικά] Θετικής Τεχνολογικής Κατεύθυνσης 12.09

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει

ΣΥΝΑΡΤΗΣΕΙΣ. 3. Μια μπάλα πέφτει από την κορυφή ενός πυργου. Το ύψος στο οποίο βρίσκετε μετά από t sec δίνεται από τη συνάρτηση f () x 75 3

Ασκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

4 ΤΥΠΟΣ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ Στο δι λανό Έστω η συνάρτηση f(x) = l n Αν f( x) = x+ x + 1. Να α οδείξετε ότι

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

Α ΕΚΔΟΣΗ:31/01/2012. R είναι δύο φορές παραγωγίσιμη και ισχύουν οι σχέσεις

II. Συναρτήσεις. math-gr

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑ ΙΚΟΥΣ

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1

έχει μοναδική ρίζα στο. β. Να δείξετε ότι για κάθε x. x 2

Transcript:

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΜΑ Δίνεται η εξίσωση w w + i 0 () και το πολυώνυμο 3 P ( ) + a + β -,, R α) Να λύσετε την εξίσωση () β)αν ο αριθμός w που βρήκατε στο ερώτημα α) είναι ρίζα της εξίσωσης P ( ) 0, τότε να βρείτε τις τιμές των α και β γ) αν και είναι οι μη πραγματικές ρίζες της εξίσωσης P ( ) 0, να αποδείξετε ότι: + 7 ΘΕΜΑ Δίνεται η συνάρτηση f ( ) i) Nα εξετάσετε αν η f είναι - ii) Να βρείτε την αντίστροφη της f iii) Να λύσετε την εξίσωση f ( ) f ( ) iv) Να βρεθούν οι συναρτήσεις fof, f of ΘΕΜΑ 3 Για κάθε μιγαδικό αριθμό C A Να λυθούν οι εξισώσεις: α) f () i β) f () /{ i} θέτουμε f ( ) i Και να βρεθούν οι εικόνες Α, Κ αντίστοιχα των προηγούμενων λύσεων Β Θέτουμε + yi όπου, y R Να εκφράσετε συναρτήσει των,y τους Re f () και Im f () α) Να καθορίσετε και να παραστήσετε στο μιγαδικό επίπεδο το σύνολο των σημείων Μ() που είναι τέτοια ώστε ο f() να είναι πραγματικός β) Να καθορίσετε και να παραστήσετε στο μιγαδικό επίπεδο το σύνολο των σημείων Μ() που είναι τέτοια ώστε ο f() να είναι φανταστικός

γ) Εξετάστε τη σχέση των σημείων Α, Κ ως προς τα σύνολα των σημείων που έχουν καθοριστεί τα ερωτήματα (Β α)) και (Β β)) Σχεδιάστε στο ίδιο σύστημα αξόνων αυτά τα σύνολα Γ Θεωρούμε τώρα όλους τους μιγαδικούς που βρίσκονται πάνω στην ευθεία που καθορίζουν τα σημεία Α και Κ Βρείτε το μέτρο του μιγαδικού αριθμού f() Τι παρατηρείτε; ΘΕΜΑ 4 Για κάθε μιγαδικό αριθμό 0 θέτουμε f () Επίσης για κάθε μιγαδικό 0 σημειώνουμε με Μ την εικόνα του και με Μ την εικόνα του f() στο μιγαδικό επίπεδο Να επιλυθεί στο C η εξίσωση 4 + 8 0 Ονομάζουμε, τις ρίζες της προηγούμενης εξίσωσης Βρείτε τους μιγαδικούς αριθμούς f (),f ( ) και τοποθετήστε στο μιγαδικό επίπεδο τα σημεία A( ),B( ),A'(f ()) και B' (f ( )) Τι παρατηρείτε; Αποδείξτε ότι ( OM ) ( OM' ) διάφορο της αρχής Ο για κάθε σημείο του μιγαδικού επιπέδου Μ, f () Αποδείξτε ότι για κάθε 0 έχουμε αν και μόνο αν f () αν και μόνο αν f () f () Έστω (c) ο κύκλος που έχει κέντρο το σημείο Ι(,0) και ακτίνα r Δείξτε ότι το σημείο Μ() διαγράφει τον κύκλο (c) αν και μόνο αν Δείξτε ότι το τμήμα ΑΒ είναι διάμετρος του κύκλου (c) Εάν το σημείο Μ() με 0 διαγράφει τον κύκλο (c) να βρείτε τον γεωμετρικό τόπο του σημείου Μ (f()) ΘΕΜΑ 5 Δίνεται η συνάρτηση f() 3 ++ Νδο: η f αντιστρέφεται

Να βρείτε, αν ορίζεται, το f - (4) Nα λύσετε τις εξισώσεις f(), f - () - Να βρείτε τα κοινά σημεία της C - f με τους άξονες καθώς και με την ευθεία ψ Να λύσετε την εξίσωση (-ημ χ) 3 ημ 3 χ+ημ χ+ημχ- Nα λύσετε τις ανισώσεις f - ()<3, f - (+) +5 ΘΕΜΑ 6 Έστω ο αριθμός + i 3 3 + i Α Να βρείτε τους αριθμούς Re( ) και Im( ) Β Να αποδείξετε ότι Γ Να αποδείξετε ότι i Δ Να αποδείξετε ότι 3 I Ε Να αποδείξετε ότι 03 + 3i ΘΕΜΑ 7 Έστω οι μιγαδικοί, ώστε + + i και i Α Να αποδείξετε ότι + i και i 3 3 Β Να αποδείξετε ότι Re( ) + Re( ) Im( ) + Im( ) 0 Γ Έστω M M( ) και M M( ) Να αποδείξετε ότι το τρίγωνο OM M είναι ορθογώνιο και ισοσκελές ΘΕΜΑ 8 Έστω η συνάρτηση f : R R που ικανοποιεί την σχέση f () f (y) f ( y) για κάθε,y και η εξίσωση f () 0 που έχει μοναδική ρίζα Α Να βρεθεί το f (0) Β Να δείξετε ότι η f είναι Γ Αν f () < 0 για κάθε < 0 α Να δείξετε ότι η f είναι γν αύξουσα β Να λύσετε την ανισωση f ( e ) + f ( 3 ) < f ( e ) +

ΘΕΜΑ 9 Έστω ο αριθμός + i με α, β R του οποίου οι εικόνες Μ() κινούνται στον κύκλο (k) : + (y ) Έστω και οι αριθμοί w i Α Αποδείξτε ότι ο γεωμετρικός τύπος των M (w) είναι κύκλος (c) : + y Β Αν 0 είναι εκείνος ο με το μεγαλύτερο μέτρο, να αποδείξετε ότι w i Γ Να αποδείξετε ότι οι αριθμοί και w είναι διαφορετικοί Δ Να αποδείξετε ότι (w ) 3 i ΘΕΜΑ 0 Έστω k + i, ki με k R Α Να αποδείξετε ότι Α) i και Α) i Β Να αποδείξετε ότι 4 4 6 6 Β Να αποδείξετε ότι (k + i) + ( ki) 0 Γ Αν ο αριθμός είναι φανταστικός να αποδείξετε ότι k 0 και τότε να βρείτε τις τιμές του 3 v v N ώστε + + + + ΘΕΜΑ Α Έστω η συνάρτηση f για την οποία ισχύει ότι: f( f ()) R Να δείξετε ότι f( ) f() Να βρεθεί το f () Β Έστω η συνάρτηση f () και η ευθεία ε : y α + β Να βρείτε τα σημεία τομής της C f με τους άξονες για κάθε Αν η C f και η ε τέμνονται πάνω στην ευθεία και η ε διέρχεται από το σημείο A(,3) να βρείτε τα α,β ΘΕΜΑ Έστω οι μιγαδικοί αριθμοί,w ώστε Α Να αποδείξετε ότι Β Να εκφράσετε τον w σε συνάρτηση του w + w Γ Αν η εικόνα του w κινείται στον κύκλο κέντρου Ο(0,0) και ακτίνας p να

αποδείξετε ότι η εικόνα Μ() του κινείται στον άξονα y y Δ Αν ο μιγαδικός είναι φανταστικός, να αποδείξετε ότι w ΘΕΜΑ 3 Έστω οι συναρτήσεις f, g με πεδίο ορισμού το ΙR Δίνεται ότι η συνάρτηση της σύνθεσης fog είναι - Α Να δείξετε ότι η g είναι - Β Αν για κάθε θετικό πραγματικό αριθμό ισχύει: g(f(ln)+) g(χ+) να δείξετε ότι f() e +, ε ΙR ΘΕΜΑ 4 Έστω η εξίσωση ( ε ) : ηµθ + 0, (0, ) και Z C Α Να αποδείξετε ότι αυτή έχει δύο ρίζες μη πραγματικές Β Έστω οι ρίζες αυτής ώστε Im( ) > Im( ) 00 Β Να αποδείξετε ότι ( + ) 0 < θ Β Να αποδείξετε ότι ηµ ( ) i Β3 Αν i, να προσδιορίσετε τους μιγαδικούς, ΘΕΜΑ 5 Έστω η συνάρτηση f () Α Να βρείτε το ευρύτερο υποσύνολο του R στο οποίο ορίζεται Β Να αποδείξετε ότι η f είναι - Γ Να αποδείξετε ότι είναι γνήσια φθίνουσα Δ Να βρείτε το πεδίο τιμών της και να την εξετάσετε ως προς τα ακρότατα ΘΕΜΑ 6 Αν C με 6 i + 3 3 τότε : i) να βρείτε τη μέγιστη και την ελάχιστη τιμή των παραστάσεων : A, B i ii) Να βρείτε ποιοι από τους παραπάνω μιγαδικούς έχουν την ιδιότητα να μεγιστοποιούν ή να ελαχιστοποιούν τις παραστάσεις Α, Β

iii) Αλλάζει κάτι στις απαντήσεις των (i), (ii) αν αντί της δοθείσας ισότητας είχαμε 6i + 3 3 ; ΘΕΜΑ 7 Έστω οι μιγαδικοί και, με και + 0 Έστω και ο μιγαδικός w Να δείξετε ότι: + 4 α) και 4 β) w w και w R γ) w δ)αν w,τότε το τρίγωνο που έχει κορυφές τις εικόνες των μιγαδικών 0, και είναι ισόπλευρο ΘΕΜΑ 8 Αν f ( + y) f ( ) + f ( y) για, y R να αποδείξετε ότι: Α f ( 0) 0 Α η συνάρτηση f είναι περιττή Α3 f ( y) f ( ) f ( y) με, y R Β Να αποδείξετε ότι f ( v) vf ( ) για * v N Β Υπολογίστε την τιμή της παράστασης Π f ( ) + f () + f ( ) + f (5) f (7) Β3 Αν η f είναι -, να λύσετε την εξίσωση f ( ) f () + f (3) + f (6) 003 + i ΘΕΜΑ 9 Δίνεται ο μιγαδικός f (), C, + Α Να γραφεί ο μιγαδικός f ( + i) στη μορφή α + βi Β Αν w + 3i 5 + να βρεθεί η μέγιστη και η ελάχιστη τιμή της παράστασης f( + i) w Γ Να βρεθεί ο γεωμετρικός τόπος των εικόνων του για τους οποίους ισχύει: f() πραγματικός Δ Να γραφεί ο μιγαδικός f( i) ως άθροισμα των μιγαδικών, των

οποίων οι εικόνες βρίσκονται πάνω στις ευθείες ε :y και ε : y αντίστοιχα + ΘΕΜΑ 0 Έστω η ορισμένη στο A ( 0, + ) συνάρτηση f και η ορισμένη στο A g R συνάρτηση g( ) Α Να βρείτε το ευρύτερο υποσύνολο Κ του R που ορίζεται η fog A Aν ( fog )( ), να αποδείξετε ότι ο τύπος της f είναι f ( ) f Α3 Να βρείτε το ευρύτερο υποσύνολο του R στο οποίο οι f, g γίνονται ίσες Β Να ορίσετε τις συναρτήσεις Β) f g και Β) g o f ΘΕΜΑ Θεωρούμε τους μιγαδικούς αριθμούς + yi, όπου, y πραγματικοί αριθμοί, για τους οποίους υπάρχει α IR ώστε να ισχύει: + + i i + ( )i Να αποδείξετε ότι: α αν Im() 0, τότε α β αν α 0, τότε + 0 γ για τον πραγματικό αριθμό α ι σχύει: 0 α δ οι εικόνες Μ των μιγαδικών αυτών αριθμών στο μιγαδικό επίπεδο ανήκουν σε κύκλο, του οποίου να βρείτε το κέντρο και την ακτίνα, 5